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Abstract

Objective: To perform a comprehensive review of the use of artificial intelligence

(AI) and machine learning (ML) in dentistry, providing the community with a broad

insight on the different advances that these technologies and tools have produced,

paying special attention to the area of esthetic dentistry and color research.

Materials and methods: The comprehensive review was conducted in MEDLINE/

PubMed, Web of Science, and Scopus databases, for papers published in English lan-

guage in the last 20 years.

Results: Out of 3871 eligible papers, 120 were included for final appraisal. Study

methodologies included deep learning (DL; n = 76), fuzzy logic (FL; n = 12), and other

ML techniques (n = 32), which were mainly applied to disease identification, image

segmentation, image correction, and biomimetic color analysis and modeling.

Conclusions: The insight provided by the present work has reported outstanding

results in the design of high-performance decision support systems for the aforemen-

tioned areas. The future of digital dentistry goes through the design of integrated

approaches providing personalized treatments to patients. In addition, esthetic den-

tistry can benefit from those advances by developing models allowing a complete

characterization of tooth color, enhancing the accuracy of dental restorations.

Clinical significance: The use of AI and ML has an increasing impact on the dental

profession and is complementing the development of digital technologies and tools,

with a wide application in treatment planning and esthetic dentistry procedures.
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1 | INTRODUCTION

Since its beginnings, the use of artificial intelligence (AI) has brought

advancements of high importance, which have enhanced our daily life

and everyday activities in many ways (facial recognition, self-driving

cars, and image classification, among others). A growing number of

fields can benefit from AI support, including the surgical field

(e.g., intelligent systems for assisted surgery, and video-surgery)1,2

automatic disease diagnosis (e.g., decision support diagnosis systems

from images)3–5 and the recently developed personalized medicine,

which provided the predisposition to diseases, diagnosing, and selec-

tion of the best treatment for a given individual6–11 Although, den-

tistry might not seem to be greatly impacted by the advances in AI,

certain areas such as image-based automatic detection of diseases

and other diagnosis-support systems,12,13 image segmentation for

automatic detection of oral traits,14,15 and resolution enhancement of

dentistry related images,16 are undergoing significant improvements

thanks to the use of AI.17 On the robotics side, several advances are

similarly enabling the utilization of robotic support in dentistry.18

Either way, the door is still wide-open to AI techniques in many areas

of dentistry, all under the emerging digital dentistry paradigm.

Several factors have contributed to this recent wave of AI revolu-

tion in biomedicine. First, data collection has increased exponentially

over the last decades. Yet, data by itself is not enough. Thanks to the

developments in high-performance computing (HPC), new powerful

AI techniques have enabled a thorough and insightful extraction of

information from collected data. This information extraction process

is normally referred to as machine learning (ML), that is, the data-

driven part of AI, whose objective is to allow the machines (algorithms

executed in computer systems) to learn about a specific topic from a

certain available dataset. This type of information extraction is usually

performed by using supervised learning techniques, which have

solved many problems with great success.19 Supervised learning is the

task of learning a function that maps an input sample to a desired out-

put, all based on a database of examples of input–output pairs. Once

this function has been learned by using training data, new predictions

over new incoming samples can be performed.19

Within this dramatic expansion across all the biomedical sciences,

ML has reached a number of important milestones. These include the

resurgence in recent years of neural networks under the new para-

digm of deep learning (DL), the incursion of fuzzy logic (FL) for the

treatment of uncertainty and the labeling of numerical data through

“linguistic” terms, and the boom in kernel methods (KMs) and other

specific ML techniques such as XGBoost.

KMs revolutionized the ML field in the late 1990s and the begin-

ning of the 2000s,20 being a highly considered technique for pattern

recognition tasks for middle sized datasets.21 Other pattern recognition

techniques that strongly impacted the ML field include random forest

(RF) and XGBoost,22,23 decision-tree based methods frequently applied

to a wide range of biomedical problems, including dentistry.24

FL is a well-known paradigm, which has been widely used in the

design of decision-making support systems and other applica-

tions.25,26 Its main advantages are related to their capacity to deal

with uncertainty in data and with its ability to provide interpretable

solutions to the experts in the form of rule bases. Specifically, an area

with important applicability to esthetic dentistry is the so-called color

naming (i.e., color designation) technique. Early results indicate that

bridging the gap between the computational representation of colors

in digital devices and subjective human perception of color may be

possible.27 Fuzzy colors, defined as fuzzy sets, allow semantics to be

introduced in the automatic operation and description of color.28

Finally, DL29 has matched and improved human performance for

very complex tasks in areas such as image processing (e.g., object detec-

tion, and facial identification) and sound processing (e.g., speech synthe-

sis and processing). In dentistry, the first models based on convolutional

neural networks (CNNs) and 2D and 3D photography are emerging for

the 3D design of dental prostheses, with very encouraging results.14,15

Industrial initiatives to store information virtually from a large number of

cases for subsequent processing enable a knowledge base to be built to

help with the design of optimized treatments based on big data and AI

techniques.30 Recently, several reviews have been published relating AI

and ML with dentistry. They have approached the topic from a clinical

point of view,31–34 either focusing on specific dentistry research areas

(AI for dental and maxillofacial radiology,35 forensic odontology,36

orthodontics,37,38 dental caries39) or on specific AI working areas of den-

tistry (DL in dentistry,40 AI for dental imaging).39,41–43 Other review

works have approached future trends and challenges.44–48

This comprehensive narrative review provides an insight into the

different applications of ML in dentistry from a ML-focused approach

to the problem. Special attention was paid to the area of esthetic den-

tistry and color research, and the great benefits that techniques such

as DL and FL bring to this area.

The manuscript is organized as follows: Section 2 presents the

methodology carried out to perform the present review. Then, the

articleis organized based on the classification of ML techniques, on

the three aforementioned main milestones and their application in

dentistry. Section 3 presents the well-known and break-through para-

digm of DL, which has dramatically changed the way computation and

science is done, and summarizes the up-to-date dental applications

that make use of deep neural networks (DNNs) to solve a variety of

problems. An introduction to other ML techniques in provided in

Section 4, such as KMs and gradient-boosting decision tree tech-

niques, and their applications. Finally, Section 5 introduces the FL par-

adigm, including use of fuzzy systems for color naming in dentistry

and fuzzy systems for diagnosing dental diseases. Section 5 is dedi-

cated to some recent clinical assistance software initiatives, which

have gained attention in the last few years, and that claim to apply AI

techniques in their operation. Finally, Section 6 is dedicated to the

future scope of data-driven AI techniques in dentistry, both from the

computational and clinical points of view.

2 | MATERIALS AND METHODS

The review included studies that reported on AI and ML methodolo-

gies and applications in dentistry. In addition, the datasets and the
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comparison (expert opinion or reference standards) used for the

model had to be indicated, and studies outcomes had to be quantified

(predictive or measurable outcomes). In contrast, the exclusion criteria

were as follows:

1. Type of study: animal studies, forensic studies, literature reviews

of AI applications for dentistry, letter to editors, comments,

questionnaire-based studies, and conferences abstracts.

2. Methodology: AI studies not applied to dentistry, robotics, AI

model not described.

3. Outcome: studies that did not report numerical or measurable

outcomes.

4. Studies using supervised learning that did not provide information

on the data sets used for either training-test or cross validation for

the assessment of the methodology

A systematic search was conducted in three different databases

(MEDLINE/PubMed, Web of Science and Scopus). All studies have

been published in the English language within the last 20 years, and

the last search was performed on January 1, 2021. Table 1 shows the

search strategy and the terms used for PubMed. The search strategy

performed on Web of Science, and Scopus were adapted for each

database.

After searching each database, Mendeley software was used to

eliminate duplicates. Two reviewers (FCP and OEP) independently

selected the studies analyzing the title and abstract, according to

criteria previously described. In case of disagreement, this was

resolved by the consensus of a third reviewer (Luis Javier Herrera).

During full text reading, the reasons for excluding any paper was

recorded (Figure 1).

A descriptive analysis of the findings was used to evaluate the

data. As the selected studies had a large diversity of objectives and

the objective of the present study is to analyze the different method-

ologies of ML applied in dentistry, a quantitative analysis was consid-

ered impractical. Therefore, a qualitative data synthesis was

performed for this comprehensive narrative review based on a sys-

tematic search.

Table 2 shows the AI methodologies and applications in dentistry

reported in the included studies (120), which are also organized based

on their data type. Table 3 shows a glossary with AI and ML terms

used along the manuscript.

3 | DEEP LEARNING APPLICATIONS IN
DENTISTRY

Artificial neural networks (ANNs) are learning algorithms based on the

functioning of biological neural networks. They can be used for super-

vised, unsupervised, and reinforcement learning problems and been

used to solve many different problems. The basic structure of an ANN

is a set of interconnected layers of operating neurons, and the term

deep refers to ANN with a large (deep) number of both layers and neu-

rons per layer.

Applications of DL in dentistry are probably the most promising

area of research in this field. This type of techniques can contribute to

the design of high-performance decision-making support systems

since they allow the identification of specific patterns from large data-

bases of images (although any type of biomedical signal or other data

sources could be used).

3.1 | Basic operation of an artificial neural network

The most general type of ANN is the multilayer perceptron, also

known as feed forward neural network (FFNN), wherein connections

between the nodes do not form a cycle. In this type of networks, the

information moves in only one direction, forward, from the input

nodes, through the hidden nodes (if any) and to the output nodes.162

The basic building blocks of ANNs (and FFNNs specifically) are the so-

called neurons. The neuron is formed by a weight vector W, a unique

value named bias b, and the activation function. The neuron calculates

the inner product of its inputs and the weight vector plus the bias

and, given this calculus, the activation function determines whether

the neuron will activate or not. If the sum exceeds a threshold θ, it will

return a one; if it does not, it will return a zero. Neurons are grouped

in layers, which in the case of FFNNs are named as follows:

TABLE 1 Structured search strategy carried out in MEDLINE/
PubMed database. Searches on Scopus, and Web of Science were
adapted according to the respective database

Search Topic and terms

#1 Artificial Intelligence: “artificial intelligence” OR “machine

learning” OR “neural networks” OR “deep learning” OR

“Fuzzy logic” OR “computational intelligence” OR

“machine intelligence” OR “computer reasoning” OR

“Support Vector Machines” OR “generative adversarial

networks” OR “color naming” OR “TSK fuzzy system”
OR “Computer Vision Systems” OR “Supervised Machine

Learning” OR “Fuzzy C-means” OR “Unsupervised
Machine Learning” OR “Clustering” OR “Natural

Language Processing” OR “TSK fuzzy system” OR

“Computer Vision Systems” OR “Supervised Machine

Learning” OR “Fuzzy C-means” OR “Unsupervised
Machine Learning” OR “Clustering” OR “Natural

Language Processing”

#2 Dentistry: “dentistry” (Mesh) OR “dentistry” OR “operative
dentistry” OR “esthetic dentistry” OR “orthodontics” OR

“pediatric dentistry” OR “oral pathology” OR

“periodontics” OR “preventive dentistry” OR

“prosthodontics” OR “oral surgery” OR “oral medicine”
OR “endodontics” OR “oral cancer” OR “tooth
segmentation” OR “prosthodontics” OR “dental
materials” OR “tooth color” OR “orthodontics” OR

“pediatric dentistry” OR “oral pathology” OR

“periodontics” OR “preventive dentistry” OR “oral
surgery” OR “oral medicine” OR “endodontics” OR “oral
cancer”

#3 Search #1 AND #2
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• Input layer: Layer that receives the input data.

• Output layer: Layer that determines the output of the network.

The output layer would have the same number of neurons and

the number of classes in the dataset.

• Hidden layer: Layer (there can be one or several) that processes

the information from the previous layer and calculates its output,

which is taken as input by the next layer.

For a given problem, neurons weights need to be learned in order

to properly approximate the function that would classify or predict an

input. To accomplish this task, the backpropagation algorithm163 was

proposed. It uses a dataset of samples of a problem with known out-

put, and in an iterative way updates the weights as follows:

wkþ1 ¼wkþΔw,

Δwi ¼�η � ∂E
∂w

,

where η is the learning rate and ∂E
∂w is the errors gradient in respect to

the weights. The gradient gives how a function varies in respect to

the variable is being derived. The negative sign is used since the error

needs to be minimized. FFNNs were proven to be a universal

approximator.164 A basic scheme of an FFNN can be observed in

Figure 2.

This basic operation of networks with a certain number of layers

represents the building block for other more complex DL models, such

as recurrent neural networks (RNN) or the next reviewed CNNs.

These have been shown to be useful in solving in a number of specific

problems.

3.2 | Convolutional neural networks

Based on the popularity of the multilayer perceptron, other neural

network architectures have been proposed. One example is CNNs,

with a strong impact in computer vision thanks to an architecture

F IGURE 1 Flow diagram of the electronic search
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based on the convolution operation, which is applied as a matrix mul-

tiplication between a filter and the data. CNNs have been around for

a long time. Although they were first proposed in 1980,165 it was not

until diverse modifications were applied to the learning algorithms,

the quantity of data available was dramatically increased, and the nec-

essary computing platforms were developed, that CNNs were

revisited. One of the most important works from this new era of

CNNs was proposed for solving a digit classification problem.166 Since

then, many studies have been published showing CNNs out-

performing other established techniques (in some cases even out-

performing human capabilities) in multiple computer vision

problems,167 including pattern recognition, image segmentation, and

image generation.

What makes CNNs so special is their refined ability to auto-

matically extract features from data. Previously, features needed to

be extracted by hand from images for later processing.168 Due to

its complexity, this was considered as one of the toughest tasks in

computer vision. Figure 3 shows the convolution basic operation.

At its most basic, it can easily detect edges, lines, textures, and

other simple patterns in an image. By using different layers

together with an adequate learning algorithm, more complex filters

can be learned. These more complex filters would not only be able

to detect specific complex shapes in images or in the signals pres-

ented, which are more relevant to the problem tackled, but they

would also improve the model performance when compared with

other more traditional methods. In fact, in CNNs, by applying the

convolution operation and through the backpropagation of the

error for the weights update, those complex filters are learned in a

straightforward manner.29 By grouping the convolutional operation

in convolutional layers, different specific features can be learned

within the same layer. The use of multiple layers would lead to a

hierarchical structure where the first layers will learn basic features

TABLE 2 Included studies organized by the AI methods and techniques, target problems, and data type used

Technique Application Target problem and studies number Data type used

Deep

learning

Disease identification Dental caries,12,49–53 oral cancer,54–62

gingivitis,63,64 other diseases65–80
Radiography,12,49,50,57,58,65–73,77 CT

images,59,74,76,80 Other image formats,51,53–

56,61,63,64,75,78,79 clinical data52,60,62

Image segmentation 3D tooth segmentation,14,15,81–84 2D tooth

segmentation,85–89 teeth classification and

numbering,90–95 segmentation for disease

diagnosis,53,61,72,73,79,80 segmentation of

other oral surfaces,96–102 metal

artifacts,103–105 root morphology,106 teeth

alignment107

Radiography,72,73,85–88,91–93,95,99–102,106 CBCT

images,14,80,82–84,89,90,94,98,103,104 other

image formats15,53,61,79,81,96,97

Image correction Image enhancement16,108,109 CBCT images16,108,109

Other applications Dental implants classification,110–112 landmark

detection,113–116 forecast cutting forces,117

need of orthodontic treatment,118,119 dental

artifact status prediction.105 Color

matching120

Radiography,110–112,115 CBCT Images,105,116

clinical/other types of data,117–120 other

image formats113,114

ML

techniques

Disease identification Dental caries,13,121,122 periodontal

disease,123–127 oral cancer,128–135 dental

pain,136 oral malodour,137 oral clefts

detection.138 Oral disease prevention139

Radiography,122 other image

formats,121,128,129 clinical/biological

data13,123–127,130–139

Other applications Dental restoration detection,140 dental

deformities,141 failure of dental implants,142

tooth segmentation and numbering,143,144

predict implant bonelevels,145 shade

matching,146 dental care and tooth

extraction needs24,147–150

Radiography,140,143 CBCT images,144 clinical/

biological data,24,142,147–149 other image

formats141,146,150

Fuzzy logic

Disease identification Periodontal disease,151 Candidiasis risk

factor,152 other diseases and

applications153–158

Clinical/biological data,151–154

radiography155–158

Biomimetic color analysis and

modeling

Color naming,28 color threshold

calculation,159,160 shade guide

optimization161

Tooth color measurements28,159–161
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(e.g., lines or corners) and will pass that information to the

remaining layers in order to detect more complex features

(e.g., numbers or traffic signs). In their operation, CNNs are formed

by different kind of layers:

• Convolutional layer: As explained, these are based on the con-

volutional operation, which is applied to the whole data spatial

domain (image or signal). Their main goal is to extract information

from the data, transforming the input values into a different repre-

sentation. Internally they are weight matrices that are learned dur-

ing the training process (Figure 3).

• Pooling layer: Pooling layers reduce the dimensions of the data by

combining the outputs of neuron clusters at one layer into a single

neuron in the next layer. They are usually placed after the

activation function.29 This reduces the amount of information

extracted by the convolution filters.

• Fully connected/dense layers: These are placed as final layers of

the CNN. Fully connected layers connect every neuron in one layer

to every neuron in another layer, and it is the same main compo-

nent of FFNN. They operate over the features learned by the con-

volutional layers in order to perform the classification.

A general architecture for a CNN can be observed in Figure 4.

The feature extraction operation is performed by a set of con-

volutional filters (in the form of convolutional layers). Later, those fil-

ters are used for predictive tasks, using fully connected layers.

An important aspect to be considered when using DL techniques

is that they normally require large databases of high-quality images to

TABLE 3 Glossary

Acronym Term Definition

AI Artificial intelligence The theory and development of computer systems able to perform tasks normally requiring human

intelligence, such as visual perception, speech recognition, decision-making, and translation between

languages

Supervised learning ML approach where labeled data is used for predicting labels or outcomes

NN Neural network ML technique inspired in biological neurons where the input is fed to one or multiple layers to produce an

output

FFNN Feed forward neural

network

ML technique inspired in biological neurons where the input is fed to one or multiple layers to produce an

output

DNN Deep neural network NN with multiple hidden layers, allowing more complex feature construction

TL Transfer learning Technique for DNN that used the previously learnt weights from a bigger dataset to learn in an smaller one

CNN Convolutional neural

network

Special type of NN. It can extract spatial information by means of filters, which use the convolution operator

GANs Generative adversarial

networks

Methodology that is used to generate data similar to the input data. Make use of two different models that

compete against each other

SVMs Support vector machines ML technique where for classification a maximum margin separating hyperplane is built so that the samples

of different categories are divided by a clear gap that is as wide as possible

DT Decision tree Flowchart-like structure in which each internal node represents a “test” on an attribute, each branch

represents the outcome of the test, and each leaf node represents a class label

Bagging ML methodology that combines the prediction of multiple weak classifiers in order to improve classification

performance

Boosting ML methodology that builds classifiers sequentially based on the error of the previous classifier in order to

improve classification performance

RFs Random forest Methodology that combines the prediction of a high number of weak decision trees, averaging their

predictions to perform a final prediction

GB Gradient boosting Methodology that builds classifiers sequentially based on the error of the previous ones

FL Fuzzy logic A form of many-valued logic in which the truth values of variables may be any real number between 0 and 1

both inclusive. It is used to handle the concept of partial truth, where the truth value may range between

completely true and completely false

Fuzzification process Converts the given numbered-valued inputs into fuzzy sets according to their membership functions for its

later operation using fuzzy logic

Knowledge database Provides the definition of the linguistic values of each of the variables considered in a problem, together

with the rules making up the rule base of the system

Inference engine Operates according to the input values provided and the rule base. It is itself the core of the fuzzy system

and resembles the human capability to take decisions

Biomimetic Is defined as the examination of nature, its models, systems, processes, and elements to emulate or take

inspiration from nature in order to solve human problems

6 CARRILLO-PEREZ ET AL.



learn very specific patterns. This requires much computational time

and powerful HPC systems. In order to avoid these possible draw-

backs, transfer learning (TL) allows the use of a pretrained network

(a DNN that has been trained on another dataset), which is able to

identify complex patterns in image data, for a certain application. That

network could be partially retrained (fine-tuning) with the application

database (which is usually much smaller) in order to classify a set of mod-

erately different patterns. This greatly expands the usability of DL models

for specific tasks, by learning global image patterns in a sufficiently big

database, but refining them with a smaller, more specific one. Several net-

works are commonly used by researchers to approach computer vision

problems using TL, such as GoogLeNet Inception v3,170 ResNet171 in its

various forms (Resnet-18, Resnet-34, Resnet-50, Resnet-101, and

Resnet-152) or VGG net.172 Details and examples of this general tech-

nique can be reviewed in several published papers.173–175

3.3 | Deep learning applications

Since large amounts of medical data are stored digitally, deep ANNs

with computer-aided detection systems can be applied to several

medical fields. In dentistry, the use of ANNs, and more concretely

CNNs, has produced interesting results in diagnosis and prediction,

especially in radiology and pathology, highlighting three application

areas: disease or injury identification, image segmentation and their

applications, and image correction through the use of Generative

Adversarial Neural Networks. The next subsections expand on each of

these application areas.

3.3.1 | Disease identification

ANNs have been successfully used for detection of dental caries from

periapical radiographic images,12,49,50 other types of radiographic

images,51 near-infrared transillumination images53 or clinical features.52

Similarly, oral cancer diagnosis has benefit from the use of DL, either

from hyperespectral54 or photographic55 images, different types of

medical images,56–59,61 or through the use of clinical data.60,62

One group used a pretrained GoogLeNet Inception v3 CNN net-

work170 to detect and diagnose dental caries in premolar and molar

teeth.12 The dataset (3000 periapical radiographic images) was trained

using TL. The diagnosis accuracy of dental caries was 89.0% for pre-

molars and 88.0% for molars. More recently, it was reported that a

CNN-based model (U-Net176) for caries detection was used, reaching

an accuracy of 80% using radiographic images.49 The use of clinical

data on shallow FFNNs has also been inspected for caries presence

estimation,52 and for post-Streptococcus mutants estimation prior to

caries excavation.50

For oral cancer diagnosis and prognosis, CNNs with hyperspectral

images as input were used, reaching an accuracy of 91.4% in a 7-fold

CV.54 Photographic images and TL were used for oral cavity squa-

mous cell carcinoma using a large database with more than 40.000

images to reach a 92.3% of accuracy.55 Other works have focused on

CNN models using other types of images (histopathological,56

x-ray57,58 or cone bean computer tomography-CBCT-scans59), or shal-

low ANNs60,62 using clinical features, all with a more modest success.

For other diseases, TL was used to train a CNN algorithm for the

diagnosis and prediction of periodontally compromised teeth from

radiographic images.65 Analyzing the periapical dataset (N = 1840) with

the DL algorithm, the diagnosis accuracy of periodontal disease was

81.0% for premolars and 76.7% for molars. Besides, different

approaches have been followed for the diagnosis of the gingivitis dis-

ease, by employing shallow FFNNs63,64 and CNNs.79 An extreme learn-

ing machine (a simple way of training a model by using randomly

assigned parameters) over a basic ANN architecture with manually

extracted features was used to diagnose gingivitis.63 The features

extracted were based on contrast-limited adaptive histogram equaliza-

tion (CLAHE) and the gray-level co-occurrence matrix (GLCM). The

dataset used by the authors contained 93 digital images (58 images

were from gingivitis cases and 35 images were from healthy patients

used as control). The methodology was built upon previous work64 and

showed improvements in the results, reaching 74% accuracy, 75%

F IGURE 2 Example architecture of
FFNN with four inputs and one output.
FFNN, feed forward neural network

CARRILLO-PEREZ ET AL. 7



sensitivity, and 73% specificity. CNNs were also used for the early iden-

tification of the disease in intraoral images, reaching great results.79

New approaches, such as mobile health (mHealth) alternatives, are

currently under development for the self-examination and identification

of different oral conditions (diseases or early disease signals) using a

smartphone camera and the internet-of-thing (IoT) approaches.75 A

smart dental health IoT platform, which uses the Mask-RCNN net-

work177 for the detection and classification of seven different oral dis-

eases, reaching a mean accuracy of 93.6%, was proposed.75

DL has also been used in the detection and assessment of other

diseases or lesions using different types of images. Radiographs have

been found useful for periodontal bone loss,66,73,77 ostheoporosis,67

maxillary cyst-like lesions,68 periapical disease,69 apical lesions,70

lesions detection72 or the detection of root fractures.71 Also, CBCT

scans have been successfully used to diagnose Sjögren's syndrome,76

periapical pathosis74 or lesions detection.80 Finally, the use of RGB

images for plaque detection78 has also been explored in literature.

3.3.2 | Dental image segmentation and applications

CNN models have been widely used for 3D14,15,81–84 and 2D85–89

tooth segmentation, including teeth classification and

numbering,90–95 using CBCT scans for the 3D evaluations.14,82–84 A

manually extracted set of geometry features as face feature repre-

sentations from CBCT scans, and a manually labeled dental mesh

dataset with 1200 samples were used as input for this task.14 For

tooth segmentation, a two-level hierarchical CNNs structure was

used for teeth-gingiva labeling and inter-teeth labeling, reaching an

accuracy of 99.1%. Similar approaches were taken, and authors used

volumes of interest for the segmentation.82 Some authors used the

U-Net176 architecture,83 or a Multi-task 3D CNN,84 all achieving

remarkable results. Other types of three-dimensional data have been

used for tooth segmentation. A separate approach used a CNN and

3D dental models in combination with a sparse voxel octree,

reaching a high accuracy in the segmentation task.15 3D dental

models were also successfully applied as input, using FFNNs for the

segmentation task.81

The use of 2D images has also been explored in literature for

tooth detection and segmentation, mainly by employing

radiographs,85–88 but also 2D images obtained from CBCT scans.89

Periapical radiographs were used for tooth segmentation using a

VGG-16 architecture, reaching a high precision and recall (95.8% and

96.1%, respectively).85 Similarly, the Resnet-101 architecture was uti-

lized for the same task, obtaining a precision in the tooth detection of

99.6%.86 Two papers used similar approaches, reaching great

results.87,88 The U-Net176 architecture and 2D images obtained from

computer tomography (CT) scans were also used, reaching a dice simi-

larity coefficient of 91.7%.89

The segmentation of oral diseases can increase the performance

of the diagnostic process, as the algorithm can then focus on the

identified regions of interest. Therefore, several works have seg-

mented the disease prior to the diagnosis for a range of diseases and

a range of image types. This approach has been useful, for instance,

F IGURE 3 Example of convolutional
operation in a convolutional layer

F IGURE 4 Example of a
general CNN architecture.169

CNN, convolutional neural
network
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in maxillary sinus lesions on panoramic radiographs,72 oral squamous

cell carcinoma segmentation in whole-slide imaging (WSI),61 gingivi-

tis segmentation in intraoral images,79 the segmentation of peri-

odontal bone loss and stage periodontitis classification using

panoramic radiographs,73 lesion segmentation using CT images,80 or

dental caries segmentation using near-infrared transillumination

images.53

The segmentation of other oral surfaces has also been widely

explored in literature by using dental radiographs,99–102 intraoral

ultrasound imaging,97 3D intraoral scans,96 or CBCT Scans.98 For

instance, one paper used a U-Net based model for the segmentation

of the third molar and the mandibular nerve.99 Authors obtained a

dice-coefficient of 0.95 for third molar, and 0.847 for nerve. CNNs

have also been used for molar angulation measurement,100 mandibu-

lar canal detection,98,102 maxillofacial segmentation,101 and alveolar

bone segmentation.97 FFNNs were also implemented for the segmen-

tation and labeling of raw dental surfaces, reaching a mean dice-

coefficient of 0.95.96

Finally, other problems have been addressed using the aforemen-

tioned DL techniques, such as: the segmentation of metal artifacts,103–105

root morphology,106 or segmenting for teeth alignment.107

3.3.3 | Image correction through generative
adversarial networks

Generative adversarial networks (GANs) are an ANN framework

based on a game theory scenario where two players—the generator

network and the discriminator network—play against each other. The

generator network produces samples based on what it learns from the

training data, while the discriminator network tries to distinguish

between samples draw directly from training data and those produced

by the generator. The discriminator emits a probability for that sample

being drawn from training data or produced by the generator. There-

fore, the discriminator goal is to correctly classify samples as real or

fake. At the same time, the generator tries to fool the classifier into

believing its samples are real, learning from the data presented. At

convergence, the generator's samples are indistinguishable from real

data, and the discriminator outputs everything as real data. A diagram

of a GAN can be observed in Figure 5.

Since the introduction of GANs,178 several different applications

have been presented, mainly for computer vision problems. Any kind

of model can be used with GANs, but since GANs are mainly used in

computer vision problems, CNNs have usually been the preferred

model. In the case CNNs are chosen, the model is called deep con-

volutional GAN (DCGAN). These techniques have been mainly applied

in dentistry for dental CT images.

In dentistry GANs have been used to improve low resolution or

defective images. One study presented a DL-based method for enhanc-

ing the resolution of dental CT images using two CNN architectures

(a subpixel network and the U-net network).16 Different metrics (peak

signal-to-noise ratio [PSNR], structure similarity index, and other objec-

tive measures estimating human perception) were used to evaluate the

model. The CNN approach improved the CT images, allowing better

detection of features, such as the size, shape, and curvature of the root

canal. Similarly, Wasserstein GANs were used for artifact correction of

low-dose dental CT imaging.108 The authors trained a GAN with Was-

serstein distance (WGAN) and mean squared error (MSE) loss, called m-

WGAN, to remove artifacts and obtain high-quality CT dental images.

The metrics used to assess performance were PSNR and structural

F IGURE 5 Example architecture for a GAN. GAN, generative adversarial network
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similarity (SSIM), and statistical properties were used for metrics. The

proposed m-WSGAN model outperformed general GAN. Another team

used GANs for imaging denoising of dental CT, obtaining a PSNR of

24.0 and a SSIM of 0.96.109

3.3.4 | Other DL applications

DL techniques have been widely used in other related problems, such

as dental implants classification.110–112 When TL and periapical radio-

graphs were used as input for implant identification, an accuracy of

98% was reported.110 Similar results were obtained with the same

methodology, except for the use of x-ray images.111 Another study

utilized CNNs and radiograph images for predicting dental implants

from different manufacturers.112

Literature also addressed landmark detection for orthodontic

treatments.113–116 Cephalograms were used on a multi-head attention

ANN for cephalometric landmark prediction, reaching an accuracy of

87.6%.113 Similarly, a 3D CNN was used for surgery landmark predic-

tion using CT images, achieving a mean error of 5.8 mm in comparison

to the original landmark.116 X-ray images have been used as inputs for

the landmark detection task with an encoder-decoder architecture114

or Bayesian CNNs.115

Within the color research area, shallow FFNNs were used to design

a color matching system identifying the pigments needed to match a

specific color.120 Authors used a database with 43 samples using pig-

ments combinations for the body layer of metal-ceramic specimens. In

comparison with a visual approach, they reduced the average ΔE from

3.54 ±1.11 to 1.89 ±0.75. More interesting problems that have been

explored are the need of orthodontic treatment,118,119 dental artifact

status prediction105 or forecasting of cutting forces of different

ceramic prostheses employing different manually selected features.117

4 | OTHER ML APPLICATIONS IN
DENTISTRY

Using manually extracted features to design automatic decision support

systems has also been an interesting area of research in dentistry. Sev-

eral well-known ML methodologies can be found in the reference liter-

ature of AI, including basic techniques such as k-nearest neighbors,

decision-tree, Naive-Bayes classifier, and logistic regression, as well as

more advanced and powerful-contrasted methods, such as kernel-

methods, RFs, and XGBoost. In this section, the focus is only on the

three because of their comparative importance and modeling power.

4.1 | Support vector machines

KMs, and more specifically support vector machines (SVMs),179,180

are an important family of learning algorithms. They gained popularity

in the mid-1990s, and since then they have been applied to multiple

problems in a variety of areas with remarkable results.6,181,182

In linear SVM classification, a maximum margin separating hyper-

plane is built so that the samples of different categories are divided by

a clear gap that is as wide as possible. For that, the learning process

automatically identifies a certain number of training samples (called

support vectors) that define such hyperplane. New examples are then

mapped and predicted to belong to a category depending on which

side of the gap they fall. Although on its basis SVM is a binary

classifier, it can also be applied as a multi-class classifier by following a

one-against-one (OVO) set of classifiers methodology. Under OVO

classification, K(K1)/2 binary classifiers are trained. At prediction time,

a voting scheme is applied: all K(K1)/2 classifiers are applied to an

unseen sample, and the class with the highest number of “+1” predic-
tions is predicted by the combined classifier.183

The success of KMs, and SVMs in particular, has been related to

their effectiveness in performing a nonlinear classification using what is

called the kernel trick, implicitly mapping their inputs into high-

dimensional feature spaces. The kernel trick internally operates the

inner product in that so-called dual space. In practice, the kernel func-

tion can be seen as a similarity measure between samples, so that when

a new sample arrives, it is applied to the incoming sample with respect

to the support vectors in order to select the final class of the sample.

4.2 | Random forest

RFs22 are an ensemble learning methodology based on decision trees.

The popularity of individual decision trees lies in their straightforward

interpretability, from which it is easy to check the decisions of the

classifier. A decision tree is formed by a group of nodes, branches, and

leaves. In each node a specific feature is tested. Each branch repre-

sents the outcome of that test and each leaf would represent a class.

An example of a decision tree can be observed in Figure 6A. However,

decision trees suffer from a significant performance bias in compari-

son with other well-known methodologies.

RFs, on the other hand, are formed by a vast number of decision

trees, each making a prediction, and the class with the most votes is

the RF classifier prediction. Interpretability is mostly lost, but they pre-

sent a very precise behavior. Their power relies on having uncorrelated

trees, since the trees—being uncorrelated—will protect each other from

individual error. While some trees may be wrong, many other trees will

be right, so, as a group, the RF can move in the correct direction. This

technique can be enclosed in what is called bagging, a simple assem-

bling technique in which many independent predictors/models/learners

are built and combined using some model averaging techniques

(weighted average, majority vote, or normal average). An example of a

RF schema when predicting can be observed in Figure 6B.

4.3 | Gradient boosting

Unlike RF, gradient boosting (GB)185 can be classified within the boo-

sting ensemble techniques, in which the predictors, typically also deci-

sion trees, are determined sequentially rather than independently. In
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this case, the subsequent predictors (also known as weak models

within GB terminology) learn from the mistakes of the previous classi-

fiers. Therefore, errors do not propagate through iterations since the

subsequent models are correcting them, and each additional weak

model reduces the MSE of the overall model. The applied tweaks are

based on the computed error, named direction vector. Based on that,

the tweak is computed by using gradient descent, which gives a mag-

nitude and a direction. The training process can be summarized as:

1. Fit a classifier on data.

2. Calculate error residuals. Actual target value, minus predicted tar-

get value.

3. Fit a new model on error residuals as a target variable with the

same input variables.

4. Add the predicted residuals to the previous predictions.

5. Fit another model on residuals that are still left, and repeat steps

2–5 until it starts overfitting or the sum of residuals becomes con-

stant. Overfitting can be controlled by consistently checking the

accuracy of validation data.

4.4 | ML techniques applied to dentistry

The aforementioned algorithms have been used in the literature to

solve a range of different problems in which specific significant fea-

tures were manually identified/extracted by experts for a group of

patients/cases.

ML methods were utilized to select the most relevant variables to

classify the presence and absence of root caries in a study that

included a total of 5135 volunteers.13 Several variables fed the ML

models, and it was determined that the age of individual was the most

relevant variable. Comparing the methods used in the study, SVMs

showed the best performance for the detection of root caries, with an

accuracy of 97.1%, precision of 95.1%, sensitivity of 99.6%, and speci-

ficity of 93.3%. Other approached have been proposed in literature by

using features extracted from photographic color images121 and x-ray

images,122 achieving similar results.

The use of these techniques in combination of different data

types for the diagnosis of periodontal diseases has been extensively

explored in literature.123–127 Using SVMs and clinical variables to

detect periodontal diseases, an accuracy of 88.7% was reached in a

10-fold cross-validation (CV) using 300 samples.124 A biomarker com-

parison between gingivitis and periodontitis using salivary gene

expression profiles, reached an accuracy of 78%.127 Other types of

biological or clinical data have been used for the disease detection,

such as rRNA,123 microbial profiles,125 or other clinical features.126

Several approaches have been proposed in literature for oral can-

cer diagnosis128–131 and survival prediction132–135 using ML algo-

rithms. For survival prediction, an accuracy of 76% was achieved

using a decision tree and clinical features for a global, recurrence-free

5-year survival,134 similar to other results.133 Extreme learning

machines and clinical data, achieved a root mean square error (RMSE)

of 22.1 when predicting the survival time.132 Clinical features and

gene expression were combined for prognosis prediction, using the

ElasticNet algorithm.135 For oral cancer classification, WSIs was used

in combination with different algorithms and manually extracted fea-

tures, achieving a high-classification performance.128,130 Another

paper tested different ML algorithms on this task using as input clini-

cal data.130 Interestingly, the use of DNA data from mucosal micro-

biome was explored for this task in combination of a RF, and heeded

great results.131

Predicting the need for dental care was also studied using clinical

features in combination with a regression model with LASSO feature

selection147 and other methods.148,149 For dental care prediction,

eight features were selected, and the most relevant were the follow-

ing: gingival health, demographics, healthcare access, and general

health variables.147 These variables were used as input for different

models, such as logistic regression, SVM, RF, and classification and

regression tree. RF outperformed the other models in terms of accu-

racy (84.1%). In addition, predicting the necessity of tooth extraction

has also been explored in literature by using different types of photo-

graphic images150 or clinical data.24

The prevention of oral diseases based on oral hygiene behavior

has also been reported. A novel method, based on wrist-worn inertial

sensors to detect brushing and flossing behaviors, was proposed.139

Using sensor data, the authors were able to predict if the user was

brushing their teeth and the start and end of the toothbrushing action.

Their brushing model achieved 100% median recall with a false posi-

tive rate of one event for every 9 days of sensor wearing. Dental pain

was estimated using selected pain parameters and naive bayesian

classifier.136 Also, the use of omics information has been explored in

literature for the prediction of oral malodour (using gene expression

data),137 and oral clefts (using single nucleotide polymorphisms

data).138

Further problems have benefit from the use of ML algorithms and

different types of data. Radiographs and SVMs have been used for

dental restoration detection,140 and tooth segmentation and number-

ing.143 Images from CBCT scans have been useful also for tooth seg-

mentation and numbering using RF.144 Cephalometry images in

combination with SVMs have been used for diagnosing

deformities,141 and the task of shade matching has been performed

using RGB images.146 Finally, clinical and SVMs or trees models have

been used for predicting implant bone levels145 and the failure of den-

tal implants using bagging.142

5 | FUZZY LOGIC

FL arose as a way of dealing with uncertainty in the operation and

representation of knowledge.26,186 Fuzzy systems enable a more

approximate human-like information processing than other well-

known computational paradigms for to two main reasons: the core

units of their operation are the fuzzy sets which may correspond to

human-understandable quantifying terms such as high or low for

instance, for a temperature variable in a problem. The solution makes

use of IF-THEN rules, easily interpretable by experts, having fuzzy
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sets in their antecedents and consequent (such as: “IF Temperature is

low THEN Heating should be high”). The design of fuzzy systems can

be driven either by learning from available data on a given problem, or

by expert-provided prior knowledge.

5.1 | Definitions and operation

In FL a truth value can range from 0 to 1, opposite to traditional

(Boolean) logic in which the true or false concepts are strict ones.

More specifically, bringing it to fuzzy set theory, it allows an element

to have a membership value in a specific set that ranges from 0 to

1. This provides a more human-like reasoning and operation in which

one can take complex decisions and perform complex control tasks

based on sometimes imprecise or vague (fuzzy) information.

FL defines the set of operators allowed between fuzzy sets:

Union, Intersection, Negation, among others, and provides the needed

mechanisms for a reasoning engine based on fuzzy rules. These are

IF-THEN rules in which the antecedents and consequents are fuzzy

sets. For instance.

IF temperature is low and humidity is high THEN chances of rain

are high.

IF temperature is high and humidity is low THEN chances of rain

are low.

One of the most best-known successful application areas of FL is

the control system used to control the Sendai Subway since the late

1980s. In this perspective, it is to be mentioned that there are two

main types of fuzzy systems, depending on the consequent side of

the rules: the more interpretable Mamdani systems,187 which use

fuzzy sets as consequents and the Takagi-Sugeno-Kang fuzzy

systems,188 which provide a more powerful way to solve certain prob-

lems requiring numerical precision. However, in the biomedical area, it

is of crucially important its use in computer-aided diagnosis in medi-

cine as it can provide interpretable solutions in which either the

experts can intervene in the design of the rules that bring the solution

to a given question, or the automatic learning from the available data

provides a set of rules which can be easily understood by the experts.

In the basic structure of a fuzzy system, several blocks can be dis-

tinguished (see Figure 7). First, the so-called fuzzification process which

converts the given numbered-valued inputs into fuzzy sets according to

their membership functions, for its later operation using FL. A knowl-

edge database defines the linguistic values of each of the variables con-

sidered in a problem, together with the rules that make up the rule base

of the system. Then the inference engine operates according to the pro-

vided input values and the rule base. This is the core of the fuzzy sys-

tem and resembles the human capability of decision-making. The final

step aggregates the outputs of all the activated rules and converts the

outputs into a single numerical or categorical value.

Fuzzy systems have been researched deeply since their appear-

ance, and it is still one of the main areas of research within intelligent

computing. As mentioned before, their main strength is not so much

the accuracy (or either sensibility of specificity) attained in a given

problem, but the interpretability of the computer-aided solutions they

provide.189,190 Latest research advances include for instance genetic

fuzzy systems191 and other automatic optimization techniques192 of a

fuzzy system from a specific dataset, and type-2 fuzzy systems, which

are providing a more flexible management of the uncertainty in the

data.193

F IGURE 6 (A) Example of a decision tree predicting one class. (B) Example of a random forest method, where each tree predicts a class and
then the overall majority predicted class is taken184
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5.2 | Applications of fuzzy logic in dentistry

A novel framework called dental diagnosis system (DDS) was pro-

posed to assist in the diagnosis of five oral diseases (root fracture,

impacted teeth, caries, missing teeth, and resorption of alveolar bone)

based on 87 radiographs images as inputs.155 Three different steps

were performed in the presented method: segmentation, classifica-

tion, and decision-making. In this work, a semi-supervised fuzzy clus-

tering method was used for the segmentation task. Once this process

was finished, a new graph-based clustering algorithm combining the

dental image dataset with the previously obtained segment's features,

was used for the classification task. The DDS accuracy was 92.7%,

which is better than other methods, such as the fuzzy inference sys-

tem (89.7%), fuzzy k-nearest neighbor (80.1%), Prim spanning tree

(58.5%), Kruskal spanning tree (58.5%), and affinity propagation clus-

tering (90.9%).

One study proposed a hybrid approach combining FL and evolu-

tion strategies for diagnosing periodontal diseases.151 This approach

used as input the disease symptoms gathered by observations and

interviews with experts. The considered symptoms were plaque, gin-

gival inflammation, pain, gingival swelling, easy gingival bleeding,

breath odor, and mobile teeth. The diseases considered were pulpitis,

gingivitis, periodontitis, and advanced periodontitis. The presented

method was named hybrid FIS ES (FIS-Fuzzy inference system, and

ES- evolution strategies), where FL was used to calculate the fitness

of the individual. This method obtained an accuracy value of 82%,

which was higher than the Tsukamoto FIS method (70%) alone.

FL was also used to study the risk factors for oral candidiasis

(OC). One study presented a twofold approach using FL and tradi-

tional statistics on 89 patients microbiologically diagnosed with OC

infection and 98 healthy individuals.152 An adaptive network-based

fuzzy interference system (ANFIS) was used to evaluate the most

significant predisposing factors and their connections with OC. For

the statistical traditional method, the chi-square test was used to

assess statistical differences among categorical variables. The associ-

ation level, the crude odds ratio and the 95% corresponding

test-based confidence interval were calculated. Socio-demographic

variables were also considered, with age, gender and smoking habits

being the most relevant. The following local and systemic

predisposing factors for OC were also investigated: hyposalivation/

xerostomia, denture wearing, antibiotic therapy, local or systemic

corticosteroid therapy, diabetes mellitus, other endocrine disorders,

non-HIV related immunodeficiency (e.g., organ transplants) and pre-

vious malignancy. Significant associations between OC onset and its

chronic maintenance were found for denture wearing and

hyposalivation or xerostomia as local risk factors, and for age and

female gender as socio-demographic variables. Tobacco smoking

was not found to be a risk factor.

Fuzzy techniques have also been used the automatic computation

of mandibular indices in dental panoramic radiographs for early osteo-

porosis detection. A Fuzzy k-means classification algorithm has been

presented for identifying artificial structures.157 Then, different image

preprocessing techniques are used to determine porosities for an

early diagnosis of osteoporosis in significant bone structures. The

study was carried out on a set of 370 dental panoramic digital radio-

graphs with an image resolution of 1536 � 2573. The proposed

method was validated against the criteria of expert dentists and its

validity was verified with statistical studies based on the analysis of

deterioration of bone structures with different levels of osteoporosis.

Other papers on the use of FL technologies include disease iden-

tification using fuzzy rules,156 the prediction of oral squamous cell car-

cinoma through fuzzy decision trees,153 the selection of headgear

types through fuzzy rules,154 and Fuzzy clustering for segmentation

tasks on images.154,158

5.3 | Color naming for automatic dental color
processing

Color perception by the human visual system is eminently fuzzy.194

Color in dentistry is usually represented using the CIELAB color space

(CIE1976).195 However, the association of a specific color (represen-

ted as a single point in this three-dimensional space) to a known color

name as perceived by a human (such as VITA Shades: A2, A3, etc.)

may not always provide a single answer.196,197 The subjectivity of

the human color perception depends both on the observer and on the

F IGURE 7 Structure of a fuzzy system
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environmental conditions (e.g., illuminant and geometry of the

illuminant).

Visual color matching is the most popular dental color assessment

method, and most esthetic dental materials use the VITA shade desig-

nations. However, color assessment and color standardization in den-

tistry face two main problems: first and already commented upon, the

subjectivity of human color perception; and second, that different

manufacturers present material colors that differ from the original

VITA shades.198,199

Initial approaches to solving these issues by means of color nam-

ing processes in which a fuzzy set design was carried out to identify

the dental color space defined by the VITA shades within the CIELAB

color space have been reported.200 By performing psychophysical

experiments, sets of dental materials from different manufacturers

were assessed using the VITA shades. Then, the colorimetric measure-

ments were associated to the VITA shades using fuzzy sets with the

subjective information from the psychophysical experiments. Later

the applicability of the color designation system to clinical dentistry

was verified by using colorimetric measurements of composite resin

samples from two different manufacturers.

A different study aimed to describe the efficacy of a bleaching

treatment using a set of fuzzy rules.28 These rules used VITA shades as

antecedents and consequents, which were obtained through subjective

associations of the objective (spectroradiometer) measurements of

tooth color before and after bleaching to the VITA bleached guide sha-

des. The fuzzy rules provided had the following form: “if the pre-

bleaching shade is SHADE1 then the post-bleaching shade will be

SHADE2,” where SHADE1 and SHADE2 were VITA shades fuzzy sets

obtained as aforementioned. This methodology was able to deal with

the uncertainty of the subjectivity of the color designation of the pre-

and post-bleaching colors, providing different possible post-bleaching

shades and the respective confidence values, while being able to esti-

mate the efficiency of the treatment beforehand.

5.4 | Fuzzy technologies in biomimetic color
analysis and modeling

One important area of implementation of fuzzy technologies is color

processing and analysis in dentistry based on biomimetic principles.

Biomimetic or biomimicry is defined as the examination of nature, its

models, systems, processes, and elements to emulate or take inspira-

tion from nature to solve human problems.201,202 When it comes to

color in dentistry, it is essential to provide answers to the following

questions:

1. What color are the teeth/gingiva and what are their color ranges,

distribution, and age-gender-ethnicity variations?

2. How do we interpret color match/mismatch in dentistry? What are

the visual color discrimination thresholds, starting from the

50:50% acceptability threshold?

3. What is the coverage error ΔECOV of existing shade guides and

corresponding dental materials to the color of human teeth/

healthy gingiva, and how does it compare with respective visual

thresholds?

4. Can the mentioned coverage errors be reduced through colorimet-

ric/spectral computer modeling (fuzzy C-means -FCM-,

optimization)?

Learning from the nature as to what should be mimicked begins

with the creation of databases on the fundamental optical properties of

human teeth (permanent and primary) and gingiva.203–205 The FL and

TSK fuzzy system exhibits great potential for approximating color per-

ception in the calculation of color difference thresholds in the realm of

dentistry. The capability of this type of universal approximators for

regression provided a better fit than previously used S-shaped

approximators for evaluation of color difference formulas206 and the

calculation of visual thresholds for tooth color.159,160,207

Although not related to the fuzzy inference process, the FCM

algorithm, a clustering technique based on fuzzy membership of the

samples available to the cluster centers, has recently been used to

optimize gingiva shade guide models. The spectral modeling and opti-

mization, performed for the first time in this study, aimed at providing

shade guide models with the coverage error to healthy human gingiva

at or below the 50:50% acceptability threshold in two senses: (a) by

assuring a reduced mean color difference of any point to its nearest

shade in the database of human gingiva, that is, the lowest (best) cov-

erage error of the color space of human gingiva, and (b) by confirming

a reduced most considerable difference of any gingiva sample to the

closest shade.161

The obtained results convincingly outperformed corresponding

data on coverage error of some existing gingival shade guides and

gingiva-colored dental materials as compared with healthy human gin-

giva.208 Gingival shade guide models with only four tabs exhibited a

CIEDE2000 coverage error of 2.4 (1.1), which is lower than the

acceptability threshold for gingival color.

(ΔE00),207 and was a 50% reduction as compared with the

corresponding coverage error of 4.8 (1.1), recorded for “pink” shade

guides and dental materials.208 The studies on gingiva provided fur-

ther justification for the biomimetic approach. The spectral modeling

utilizing the FCM algorithm was in essence a continuation and

upgrade of previous work that used hierarchical clustering and

nonlinear constrained optimization for the development of shade

guide models for permanent and primary teeth.209,210

Compared with the traditional empirical methods of developing

dental shade guides and corresponding restorative materials, the

implementation of fuzzy technologies is a large step forward. Their

role in biomimetic color analysis and modeling is significant, and their

importance will only grow in the future.

6 | SOFTWARE INITIATIVES IN
DENTAL CARE

This section presents a quick overview of some of the most popular

dental software within digital dentistry used by dental professionals:
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Digital Smile Design (DSD), 3Shape software (3Shape Design Studio

and 3Shape Implant Studio), Exocad, and Bellus 3D. Their main objec-

tive was treatment predictability and treatment planning using digital

dentistry and communication among different dental professionals.

Although almost no information is available about the functionality of

these software programs, DSD claims to use AI algorithms. While no

information is available for the other software programs, all of them

present segmentation or automatic generation tasks that imply the

use of ML techniques in some way.

DSD in its 2D version uses digital photographs of the patient's

smile, usually combined with visualization tools such as Keynote and

PowerPoint. In the 3D version, photographs, intraoral scans, and com-

puted tomography scans can be used for treatment planning. This

software program allows the manual segmentation and measurement

of teeth, as well as the superposition of the new desired teeth.211 Part

of this workflow can be automated by means of AI techniques, as can

be appreciated in their iPhone app. The automation is mainly focused

on the segmentation and the tooth generation elements. This type of

segmentation can be performed using CNNs trained in a similar way

as in other studies.85 The manual workflow of DSD involves creating

bounding boxes around the teeth so that the manual annotations that

naturally arise in the process can be used as training data for the AI

procedure. Since the prediction is shown as a polygon, the network

can predict the vertices as a whole or one by one using RNNs. Similar

tooth generation may be provided using GANs in a similar way to the

way artifacts are corrected.108 In addition to the automation capabili-

ties, the app has multiple parameters that can be changed by the user

to achieve the final desired result, notably reducing the design time,

and can be used to design a set of teeth according to expectations.

This software has been mentioned several times in the literature,

many claiming that it presents advantages over traditional planning

methods, but it is often not enough for the patient to observe and

understand the proposed changes.212 It is also helpful in the process

of dental rehabilitation.213,214

3Shape has developed multiple specialized software programs

that allow a full digital workflow for treatment and the design of the

prosthetic procedures (3Shape design studio) and implants (3Shape

implant studio), as well as for visualizing the result of the design. In

addition, it allows enough versatility for the dental clinician to make

any changes. These software programs work with digital images and

videos that are obtained using an intraoral digital scanner. The digital

model of the teeth can be easily moved, and its geometry can be mod-

ified by adding or removing part of it. It is also able to automatically

generate an optimal alignment for the teeth from the 3D model, which

can be also manually fine-tuned if necessary. These types of function-

alities can be mimicked using 3D CNNs to obtain an accurate segmen-

tation14,15 and/or GANs108,178 to correct the 3D model and generate

the alignment. Apart from tooth visualization and modification, the

software supports the design of 3D implants with a large built-in vari-

ety of manufacturers and options. It also integrates with some dedi-

cated printers to obtain the desired physical product.

Exocad is a computer-aided design (CAD) software program that

allows a full digital workflow for the design of implants and other

dental applications. Many options are available for building a tooth set

from scratch by importing a single tooth or a full set of teeth from

multiple dental libraries. It can also work using stl 3D files generated

by a 3D scanner. As for 3Shape, the 3D model can be easily modified,

allowing operations such as scaling and displacement or rotation of

the teeth. It also contains some semi-automatic segmentations, such

as the detection of the edge line of the teeth by selecting a point over

it, which can be reproduced using 3D CNNs over the imported model

to add the extra feedback. The software also allows for the design of

implants with an interface that guides the user through the many

advanced options presented in the process.

Bellus 3D Dental Pro Integration can make a 3D scan of the full

face. The main purpose of this software is to integrate the dental

treatment plan with the face configuration, providing a visualization

of the final results in full 3D, shortening the process of patient accep-

tance, and making the treatment easier. Bellus 3D provides automatic

detection of the patient's teeth and their removal, with the possibility

of manually modifying the segmentation. An automatic segmentation

like this one can be done using 3D CNNs as presented in other stud-

ies.15 A new tooth set can be chosen and superposed with the model

in the correct place. This final aligned 3D scan can be imported into

other software programs such as 3Shape software or Exocad.

7 | A GLANCE TO THE FUTURE

7.1 | Technology issues

DL is one of the most revolutionary groups of techniques in the area

of AI in recent decades, and it provides solutions to problems that

were previously thought as unapproachable. As it has been presented

throughout this work, DL techniques have been successfully applied

to dentistry, facilitating arduous tasks such as tooth segmentation,14

or helping clinicians by automatically identifying disease.12 Although

DL techniques have shown outstanding results in a variety of fields, even

surpassing results obtained by humans,215–219 they are still prone to

errors that humans are much less likely to make, such as misclassification

of adversarial examples.220,221 By no means should this diminish the

great accomplishments that have been reached using these techniques,

but they should also guide new efforts toward robustness and interpret-

ability. The cooperation between human experts and computational

models addresses these challenges and, first and foremost, they can

achieve better performance than either individually.222,223

That said, with the rise of dental data gathering, its combination

with DL would enhance in future years the already impressive results

that have been obtained. As previously mentioned, DL requires large

amounts of data to achieve its best performance, and the initiatives to

gather more data are a crucial starting point for the enhancement of

the actual models. Storing data in local servers would not scale once

data size increases, which makes sharing the data a tedious task. A

solution to this problem might be provided by cloud services, which

have been rapidly increasing both among users and providers during

the last decade. Given the costs of maintaining and improving local
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servers and computing platforms once they have become obsolete,

companies have started to migrate their data platforms to cloud com-

puting and storing services. This migration to the cloud opens the

door to a wider range of data analysis and data mining pipelines,

including complex DL approaches to learn specific and very complex

tasks, all also thanks to the use of HPC cloud services.

In addition, thanks to this gathering of data, different sources of

information can be available for the same patient (e.g., x-ray imaging,

clinical information, genomics information). Integrating these sources

into ML algorithms would provide more robust and enhanced predic-

tions than using each source of information separately, as shown for

other biomedical problems.224–226 Having all these sources of informa-

tion and the refinement of the aforementioned techniques would allow

a precision medicine approach to be taken to each patient. For instance,

with genomics information, patients can receive enhanced diagnoses

and monitoring and more personalized treatment. This would reduce

the patients' time of recovery and improve the treatment outcome.

All these advancements can also be extrapolated to color

processing and characterization in esthetic dentistry. Further character-

ization of tooth color should address the characterization of the chro-

matic map, mainly for the labial surface of teeth, for different gradients

and the association of different objective color measurements to sub-

jective assessments. As was the case for DL problems, a complex data

collection first needs to be performed. Once it is completed, colorimet-

ric map modeling using intelligent systems (e.g., diffuse models, CNNs)

needs to be carried out. Then, using a color designation process, it will

be possible to characterize the tooth chromatic map using dental

images. This will allow the development of methodological solutions to

efficiently obtain accurate information from dental restorations,

enhancing communication between dentists and dental laboratory

technicians. Another application of high interest would be obtaining the

necessary chromatic map and thicknesses for restoring a given compos-

ite resin based on one or several images. Since both problems require

dental images, how to obtain them is a crucial factor. As smartphones

with cameras capable of high-quality images are ubiquitous, their use

for obtaining dental images is of great interest. Therefore, providing

tooth color and other parameters from a picture taken from a

smartphone would greatly enhance dentists' restoration processes.

7.2 | Clinical issues

The combination of models that can be generated by AI has the objec-

tive of helping the dental industry and dental care providers. Possible

applications extend from the research and development of new dental

materials based on the biomimetic approach to diagnostic tools

(e.g., to detect caries, periapical lesions, and periodontal disease), to

treatment planning and oral health care delivery, to the post-

treatment monitoring and follow-ups. By analyzing images (photo-

graphs and radiographs), AI allows the building of CAD systems to

help detect certain diseases.

With the current trend and rapid development of AI, a significant

impact on dentistry can be expected shortly, especially on digital

protocols. Three main types of data collection using AI can be used to

improve patient care: pre-appointment (AI Patient Manager, AI Patient

History Analyzer, AI Scientific Data Library), interappointment

(AI Problem Detector, AI Treatment Proposals, AI Instant Feedback),

and post appointment (AI Laboratory Work Designer, AI Patient Data

Library, AI Clinical Evaluation) dental care.44 Before the dental

appointment, the preferences of patients (day and time of appoint-

ments, music, relaxing fragrances, room temperature) should be con-

sidered. Information about the patient (vital signs, allergies, health

condition, current medications, and drug interactions) should be care-

fully evaluated prior to the appointment. During the dental appoint-

ment, the diagnosis and recommendations for treatment are

generated. The final outcomes and treatment prognosis should be

predicted as accurately as possible. After the dental appointment, the

digital workflow is generated, and dental restorations are fabricated

quickly and accurately.44 It needs to be underlined that AI facilitates

but does not substitute for the work of dental professionals. An

increasing number of dental practices use a digital workflow and AI

for diagnosis and treatment planning. Still, there is a relatively low per-

centage of dental practices with fully integrated AI modus operandi,

also referred to as “smart dental clinics.”
The rapid development of 3D imaging in dentistry such as cone beam

computed tomography or intraoral and facial scan, have generated the

development of 3D image-based AI systems. The improvements of these

models could provide an automated, high-quality diagnosis, treatment

planning, and predictable treatment outcomes.41 AI is a science that is

here to stay, and the worldwide interest of the dental industry and profes-

sionals alike demonstrates that it is the present and future of dentistry.
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