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Abstract

Smooth splines on triangulations are the subject of many applications in various fields, among
them approximation theory, computer-aided geometric design, entertainment industry, etc.
Smooth spline spaces with a lower degree are the classical choice, which is extremely difficult
to achieve in arbitrary triangulations. An alternative is to use macro elements of lower degree
that split each triangle into a number of macro-triangles. In particular, Powell-Sabin (PS-) split
which divides each triangle into six macro-triangles.

In this thesis, we deal with the approximation by quartic PS-splines. Namely, we start by
solving a Hermite interpolation problem in the space of C' quartic PS-splines and providing
several local quasi-interpolation schemes reproducing quartic polynomials and not requiring the
resolution of any linear system. The provided schemes are constructed with the help of Marsden’s
identity. Then, we address the geometric characterization of Powell-Sabin triangulations allowing
the construction of bivariate quartic splines of class C2.

Quasi-interpolation in a space of sextic PS-splines has also been considered. These spline
functions are C? continuous on the whole domain but fourth-order regularity is required at
vertices and C® smoothness conditions are imposed across the edges of the refined triangulation
and also at the interior point chosen to define the refinement. An algorithm is proposed to define
the Powell-Sabin triangles with small area and diameter needed to construct a normalized basis.
Quasi-interpolation operators which reproduce sextic polynomials are constructed after deriving
Marsden’s identity from a more explicit version of the control polynomials introduced some years
ago in the literature.

Examining the applicability of PS-splines the numerical quadratures, we have proved that
any Gaussian quadrature formula exact on the space of quadratic polynomials defined on a
triangle T' endowed with a specific PS-refinement integrates also the functions in the space of
C*' quadratic PS-splines defined on 7. This extends the existing results in the literature, where
the inner split point Z chosen to define the split had to lie on a very specific subset of the T
Now Z can be freely chosen inside 7T'.

Sometimes, when dealing with Digital Elevation Models in engineering, the construction of
normalized basis functions could be extremely expensive regarding time and memory needed,
which is caused by the treatment of big data. To avoid this problem, we provide quasi-
interpolation schemes defined on a uniform triangulation of type-1 endowed with a PS-split.
The spline schemes are generated by setting their Bézier ordinates to suitable combinations of
the given data values.

Inspiring from bivariate PS-splines theory, we define a family of univariate many knot spline
spaces of arbitrary degree defined on an initial partition that is refined by adding a point in
each sub-interval. For an arbitrary smoothness r, splines of degrees 2r and 2r + 1 are consid-
ered by imposing additional regularity when necessary. For an arbitrary degree, a B-spline-like
basis is constructed by using the Bernstein-Bézier representation. Blossoming is then used to
establish a Marsden’s identity from which several quasi-interpolation operators having optimal
approximation orders are defined.

Finally, we address the approximation by C? cubic splines via two approaches. In the first
one, we discuss the construction of C? cubic spline quasi-interpolation schemes defined on a
refined partition. These schemes are reduced in terms of the degree of freedom compared to
those existing in the literature. Namely, we provide a recipe for reducing the degree of freedom
by imposing super-smoothing conditions while preserving full smoothness and cubic precision.
In addition, we provide subdivision rules by means of blossoming. The derived rules are designed
to express the B-spline coefficients associated with a finer partition from those associated with
the former one. While in the second approach, we construct a novel normalized B-spline-like
representation for C? continuous cubic spline space defined on an initial partition refined by
inserting two new points inside each sub-interval. Thus, we derive several families of super-
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convergent quasi-interpolation operators.

Keywords: Powell-Sabin split, Bernstein-Bézier form, Quasi-interpolation schemes, Hermite
interpolation, Marsden’s identity, many knot spline spaces, Normalized representation.
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Resumen: Aproximacion mediante
funciones spline sobre
triangulaciones de tipo Powell-Sabin.

Las funciones spline bivariadas definidas sobre una triangulaciéon han sido consideradas como
objetos fundamentales en una gran cantidad de ambitos, entre los que se encuentran la Teoria
de Aproximacién, el Diseio Geométrico Asistido por Ordenador y la resolucién de problemas
relativos a ecuaciones en derivadas parciales.

La utilizacion de este tipo de funciones exige el cédlculo de la dimensién del espacio de fun-
ciones spline, lo que es extremadamente dificil, pues depende de la interaccién entre Geometria,
Combinatoria y Topologia.

El estudio de los espacios de funciones spline continuas es simple, pero dar un paso hacia
una regularidad de orden mas elevado conduce a problemas de dificil solucién, que en muchos
casos siguen abiertos. Para los espacios polindmicos a trozos de grados suficientemente elevados
en relacion con la regularidad exigida, la determinacién de las correspondientes dimensiones ha
sido llevada a cabo por P. Alfeld y L. L. Schumaker en [9, 10]. Sin embargo, el problema general
estd lejos de ser definitivamente resuelto.

Teniendo en cuenta la utilizacién de estos espacios en la resolucion numérica de diversos
problemas de interés practico, es natural elegir el grado més bajo que permita conseguir funciones
spline con la regularidad necesaria. Con este objetivo, la triangulacién sobre la cual se define el
espacio de funciones spline es refinada, es decir, cada tridngulo de la particién es descompuesto
en micro-triangulos. Las estructuras refinadas mas populares son las de Clough-Tocher y Powell-
Sabin.

Dada una triangulacién conforme, A, de un dominio poligonal del plano, 2, un refinamiento
de Powell-Sabin Apg de A se obtiene al dividir cada macro-tridngulo 7 en seis micro-tridngulos
de la siguiente forma:

(i) Se elige un punto de ruptura Z; en el interior de cada tridngulo 7}. Si dos triangulos T; y T
tienen una arista comun, la linea que une los puntos Z; y Z; intercepta dicha arista comin
en un punto interior R; ;. En general, se suele elegir cada punto Z como el baricentro de
cada tridngulo.

(ii) Se une cada punto Z; con los vértices del triangulo T;.
(iii) Para todo triangulo T de A,

e si T es adyyacente a un tridngulo T3, se unen Z; y R; j;

e si Tj es un tridngulo de frontera, se une Z; con un punto arbitrario del lado que yace
en la frontera, por ejemplo, el punto medio.

La Figura 1 muestra el resultado del procedimiento anterior descrito para la triangulacion
dada.



Figura 1: Triangulacién de tipo Powell-Sabin.

M. Powell y M. Sabin fueron los primeros autores en estudiar splines sobre triangulacio-
nes dotadas de un refinamiento de tipo Powell-Sabin [18]. Demostraron que una funcién spline
cuadrética de clase C! definida sobre una triangulacién refinada estd univocamente determinada
por sus valores y sus gradientes en los vértices de la triangulacién inicial. En [23], P. Dierckx
obtuvo mediante un procedimiento puramente geométrico una representacion de tales splines
cuadréticos de clase C! a partir de una base normalizada de B-splines, es decir, formada por
funciones que disfrutan de las siguientes propiedades: son de soporte compacto, no negativas y
forman una particion convexa de la unidad. Tras la introduccién de estos espacios, numerosos
autores han dedicado una atencién particular a este tipo de funciones spline. M. J. Lai y L.
L. Schumaker estudiaron en [30] un espacio spline especifico definido anadiendo un condicién
adicional de regularidad en ciertos vértices y en lineas interiores. El espacio resultante se deno-
mina espacio de super-splines. También se encuentran en la literatura espacios de super-splines
ctibicos de clase C*.

De manera natural, la construccién de splines de clase C? ha sido objeto de una intensa
investigacién [25, 32] y se pretende hacer aportaciones en este ambito.

Polinomios definidos sobre triangulos

En esta seccién recordamos algunos conceptos generales de los polinomios sobre tridngulos
en su representacion de Bernstein-Bézier.
Coordenadas baricéntricas

Las coordenadas baricéntricas son una herramienta elegante para trabajar con puntos en un
triangulo. Considera un tridngulo T' de vértices V; := (x;,¥;), 7 = 1,2, 3, entonces cualquier punto

3
V = (z,y) en T puede ser representado como V = Z 7; Vi, donde las coordenadas (71, T2, 73)
i=1
3
se denominan baricéntricas y cumplen que 1 = Z T, T >0,1=1,2,3.
i=1

Estas coordenadas también se llaman coordenadas areales, porque las coordenadas baricéntri-
cas del punto V con respecto al tridngulo T' son proporcionales a las areas de los subtriangulos
t1 (V, Vo, V3), ta(V, V3, V1) y t3(V,V1,Va), ver (Figura 2). Precisamente, las coordenadas ba-
ricéntricas de V con respecto a T estan dadas por

Il

= ,=1,2,3.
TZ ‘T|7 ? =

|A| representado el drea del tridngulo A.
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Figura 2: Coordenadas baricéntricas de un punto V respeto del triangulo T

Representacion de Bernstein-Bézier

A lo largo de esta seccién consideremos que T es un tridngulo fijo. Sean (71, 72, 73) las
coordenadas baricéntricas de un punto V € R? con respecto a T'. La identidad

d!
1:(T1—|—7’2+T3)d= Z ETB,
|Bl=d "

donde 8 = (B1,52,83) € N3, |B] = Zﬁi, B! = 6116283 and 7F = HTfi, conduce a los

1
polinomios de Bernstein-Bézier de grado d

Satisfacen las siguientes propiedades:
e Son linealmente independientes.

e Forman una particiéon de la unidad, es decir

1=Y B4 ,(1).

|8|=d

e Son no negativas.

Como los polinomios de Bernstein-Bézier forman una base del espacio P; de polinomios de
grado menor o igual que d, toda superficie polinémica p(V') tiene una tnica representacién de
Bernstein-Bézier,

— d
p(V)=b(r):= > bsBf 7 (r),
|B]=d
Los coeficientes bg se denominan puntos de Bézier de p y b(7) se llama representaciéon de

Bernstein-Bézier (BB-representacién) de p. Los puntos de Bézier determinan la malla de Bézier
de b (7) sobre el tridngulo T' (ver la Figura 3).

El algoritmo de De Casteljau

La funcién b(r) = Z b %%’T (1) se puede evaluar facilmente usando una generalizacion

|8|=d
del algoritmo de De Casteljau univariado.
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Figura 3: La malla de Bézier de una superficie cuadratica.

La funcién b (1) evaluada en el punto 7 = (71, 72, 73) tiene como valor

p(r) = b?o,o,o) (1),
donde
b (r) =bs(r), |8]=4d,
b (1) leg__lel + 7'252__162 + 73bl L Bl =d—7r, andr=1,...,d.

B—es’
Los puntos intermedios bg del algoritmo de De Casteljau, en su ordenacién candnica, forman un
esquema tetraédrico. Si 7 yace en un tridngulo 7', entonces todos los pasos del algoritmo de De
Casteljau son combinaciones convexas, lo cual garantiza su estabilidad numérica.

Los splines de tipo Powell-Sabin

Los splines Powell-Sabin son polinomios cuadréticos a trozos con una continuidad global C*.
El espacio lineal de polinomios cuadraticos a trozos sobre A se define como sigue

S3(A)={seC"(Q): sirPy for all T € A}
El siguiente problema de interpolacién es considerado: dado un conjunto de triples (f;, f7, f7),
i=1,...,nv, find s(z,y) € S3 (A) tal que,

s (Vi) = fi, (Vi) = fi" and == (V;) = f} (1)

ox
El niimero nv indica el niimero de vértices en A. El problema (1) exige la imposicién de nueve
parametros para definir el polinomio cuadratico en cada tridngulo, mientras que sélo hay seis
coeficientes disponibles, vea la Figura (3). A fin de conseguir una solucién al problema de inter-
polacién (1), una alternativa es la solucién propuesta por Powell y Sabin en [18] se basa en la
subdivisién de cada tridngulo en seis microtridngulos (PS-split), vea la Figura 1.

Las ordenadas de Bézier en las abscisas e estan determinadas por las condiciones de interpo-
lacién en los vértices, las ordenadas denotadas por o estan dadas por las condiciones de conexion
C"' alo largo de las aristas de subdivisién, vea la Figura 4.

El problema de interpolacién (1) es muy ttil para construir una base local para S3 (A). En
[23], P. Dierckx obtuvo mediante un procedimiento puramente geométrico una representaciéon de



Figura 4: Ordenadas de Bézier de la subdivision de Powell-Sabin

tales splines cuadraticos de clase C' a partir de una base normalizada de B-splines. Asf, cualquier
spline de Powell- Sabin se puede representar como

nv 3
s(x,y) = Z Z ci jBij(z,y),

i=1 j=1

donde las funciones B;; se llaman Powell-Sabin B-splines y ¢; ; son los coeficientes de la re-
presentacion. Para obtener las funciones de base B; ;, primero asociamos a cada vértice V; de
la triangulacién tres tripletas linealmente independientes (o j, 5 j,7i,5), J = 1,2,3. El procedi-
miento propuesto por P. Dierckx [23] para determinar estas tripletas se resume como sigue:

e Para cada vértice V; de A, hallar los correspondientes PS-puntos de dicho vértice. Estos
puntos son los puntos de dominio Bézier inmediatamente circundantes de V; en Apg. El
propio vértice V; también se considera un PS-punto.

e Para cada vértice V;, encontrar un tridngulo ¢; (Q; 1, Qi 2, Qi 3) que contiene todos los PS-
puntos correspondientes a V;. Este triangulo t¢; se llama PS-tridngulo asociado a V. Las
coordenadas cartesianas de los vértices @Q); j, j = 1, 2,3, se denotan por (X ;,Y; ;).

e Las tres tripletas linealmente independientes («; j, 3 ,7ij), J = 1,2, 3, se definen como
sigue:

o oy = (@1, 2, 3) son las coordenadas baricéntricas de V; con respecto a t;.

o Bi = (Bix, Bi2: Big) ¥y v = (%i,1,%,2,7%i,3) estdn dadas por

1 Xio X3 X1 1 X3 Xip Xig 1
0 Yo Yi3 Yiir 0 Y3 Yii Yis O
3 0 1 1 3 1 0 1 3 1 1 0
i1 = y Big= y Big=
' Xip Xio Xi3 ’ Xi1 Xio Xi3 ’ Xip Xio Xi3
Yii Yio Y3 Yii Yio Yi3 Yii Yio Y3
1 1 1 1 1 1 1 1 1
0 Xio X3 Xi1 0 X3 Xi1 Xi2 O
1 Yo Y3 Yiir 1 Y3 Yiin Yiz 1
0 1 1 1 0 1 1 1 0
Vil = s Yi2 = Yy 73 =
' Xi1 Xip X3 ’ Xi1 Xip Xigs ' Xi1 Xig Xig
Yii Yo Yis Yii Yo Yis Yiir Yio Yis
1 1 1 1 1 1 1 1 1

El B-spline de Powell-Sabin B;; se define como la tnica solucién del problema de in-
terpolacién (1) con todos los valores ( fres fE fg) nulas excepto para k = ¢, en cuyo caso

(fi,ffvff}) = (ai,jaﬁi,ja%‘,j)-



Descripciéon de la tesis

El objetivo general de esta tesis es la construcciéon de espacios de funciones spline sobre
particiones de Powell-Sabin, tanto en un sentido clasico como en una situacién univariada. Mas
especificamente, los temas que se abordan son los siguientes.

En primer lugar, se construye una base de B-splines del espacio de splines cuérticos de
clase C! sobre una particién de Powell-Sabin a partir la resolucién de ciertos problemas de
interpolacién de Hermite. Con ayuda de la identidad de Marsden se definirdn operadores de
quasi-interpolacién exactos sobre el espacio de polinomios cudrticos.

A continuacion, a partir del espacio cuértico de clase C* introducido en [32], se construye un
subespacio spline reforzando la regularidad en algunas de las aristas interiores de la triangulacion
refinada, para estudiar bajo qué condiciones geométricas de la triangulaciéon considerada el
espacio de super-splines es de clase C2.

El espacio de splines cudrticos de Powell-Sabin estd definido como en [32]:

Si (Aps) = {S S Cl (Q) DS e Py, Vit e Aps}

En [32] se considera un subespacio particular de super splines de Si (Apg). Si V := {V;}I,,

Z = {Z3",, & = {e}°, v £ son, respectivamente, los subconjuntos de vértices en A, de
puntos de divisién, de aristas de A y de aristas que unen un punto de divisién Z; con un punto
R; j y nv, nt y ne representan el nimero de vértices, tridngulos y aristas de A, respectivamente,

entonces el subespacio
Sy%(Aps) i={s € S{(Aps): s€ C2(VU ZU E U EY}

tiene dimensién 6nv + 3ne.
. . o . 1,2
En esta memoria se considera el siguiente subespacio de S;"“(Apg):

Sy (Aps) = {s € 5, (Aps): s € C? (5*)}

Se obtienen condiciones geométricas que caractericen la clase C? de las funciones de este
espacio.

Seguidamente, se estudian splines de Powell-Sabin de grado 6 imponiendo condiciones adi-
cionales de regularidad en puntos interiores de la triangulacién y también en ciertas aristas
de la triangulacién refinada. Cada spline queda determinado univocamente por sus valores en
los vértices de la triangulacién inicial y en los puntos interiores, asi como los de sus derivadas
parciales hasta el cuarto orden en los vértices.

El espacio de funciones séxticas a trozos sobre la particién Apg con continuidad global C?
serd

Sg (Aps) = {S S CQ (Q) DSt ePg Vt € APS} .

Se considera el siguiente subespacio de S2 (Apg):

Set? (Aps) = {s € S2(2, Aps):s€ C1(V), s€ C*(2UEY)}.

Se construye una base normalizada de S§’4’3 (Apg) y se establece la identidad de Marsden
relativa a S§’4’3 (Apg) y, a partir de ella una familia de operadores de quasi-interpolacién.

En [45] se da una contribucidn relativa a la cuadratura gausiana mediantes splines de Powell-
Sabin cuadraticos definidos sobre un unico tridngulo. La disponibilidad de otras cuadraturas y
la generalizacion de estas reglas para pasar de un solo macro-triangulo a una malla triangular es
un problema delicado. En este contexto, se demuestra que una formula de cuadratura gausiana
6ptima de 3-nodos puede ser extendida al espacio de los splines cuadréticos de clase C! sobre
una triangulacion de tipo-1.



En quinto lugar, presentamos esquemas de cuasi interpolacién que se definen en una trian-
gulacién uniforme de tipo-1 dotada de la particiéon de Powell-Sabin proporcionada por las bari-
centras de sus triangulos. A diferencia de la construcciéon habitual de quasi-interpolantes splines
sobre la 6-split, el enfoque adoptada no requiere la construccién de un conjunto de funciones
de base apropiadas. En concreto, los quasi-interpolantes se definen sus ordenadas de Bézier en
cada triangulo combinaciones adecuadas de los valores dados. Los esquemas propuestos son de
clase C! y reproducen polinomios cuadréticos.

Tras los resultados sobre aproximacion spline en triangulaciones de Powell-Sabin, se utilizan
los procedimiento desarrollados para definir una familia de funciones spline univariadas de grado
arbitrario definidas sobre una particién dada, que es refinada incluyendo en cada subintervalo
un punto interior a semejanza de lo que se hace en el caso bidimensional. Haciendo uso de la
representacién de Bernstein-Bézier, se construye una base de B-splines que forman una particién
convexa de la unidad. Mediante formas polares, se establece una identidad de Marsden a partir
de la cual se definan operadores de quasi-interpolacién con érdenes de aproximacion éptimos.

También, se discute la construccién de esquemas de cuasi-interpolacién de splines ctibicos de
clase C? definidos en una particién refinada. Estos esquemas son reducidos en lo que respecta
al grado de libertad en comparacién con los que existen en la literatura. En particular, se da
una receta para reducir el grado de libertad imponiendo condiciones de super-suavidad a la
vez que se preserva la suavidad completa y la precisién cubica. Por otra parte, se obtienen
reglas de subdivisién mediante blossoming. Las reglas derivadas estan disenadas para expresar
los coeficientes de los B-spline asociados a una particion més fina a partir de los asociados a la
anterior.

Finalmente, como complement de lo antes, se da una nueva representacion normalizada tipo
B-spline para el espacio de splines cibicos de clase C? definidos sobre una particién inicial
refinada mediante la inserciéon de dos nuevos puntos dentro de cada sub-intervalo. Las funciones
base se construyen de forma geométrica son no negativas, soporte compacto y forman una
particién convexa de la unidad. Mediante la teoria de los polinomios de control introducida en
este memoria, se deriva la identidad de Marsden, a partir de la cual se definen varias familias
de quasi-interpolantes super-convergentes.



General introduction

Approximation methods are today a common tool which is, so to say, just a click away from
the user. Interpolation and quasi-interpolation are particular and important approximation
methods, which are widely used to address the solution of theoretical problems and show their
full potential to numerically solve problems that occur in many different branches of science,
chemistry, biology, engineering and economics.

Originally, the computation of functions on a computer was a field of application of approx-
imation, but now the approximation methods are very helpful for ordinary and partial linear
and non-linear differential equations, integral equations, and more general functional equations
since they frequently appear in applications. But in general, the approximation problems that
arise in applications are much more difficult than the problems considered in classical theory;
the difficulties come mainly from the fact that multivariate approximation, singularities, free
boundaries, etc, occur.

When we do not know enough about the type of the function wanted, then it is natural to
approximate the function by polynomials, and if we expect that the value of the function varies
strongly, we can divide the domain under consideration into small pieces and we obtain an
approximation by splines. Therefore, polynomial and spline approximations are very important
for applications.

Spline approximation is a reference choice when the approximation of functions or data is
crucial, since they are much less affected by the large oscillations that are typical of high degree
polynomials, and the frequent overshoots are reduced.

Spline theory in its present form first appeared in two papers by Schoenberg (1946) [1,
2]. Since its introduction, univariate splines approximation has been the subject of thousand
research papers and a number of books. Its fast development was largely over by the year
1980. This rapidity is mainly due to their great utility in applications. Indeed, spline functions
provide many desirable properties as well as good approximation power. Since they are easy to
manipulate and store on a digital computer, univariate splines have become an indispensable
tool in a wide variety of application domains.

The univariate spline approximation can be easily extended to two-dimensional case by
means of a tensor product representation [3]. Namely, the tensor product splines have been
widely recognized as very powerful tools for surface fitting, because of its compact represen-
tation, flexibility, easy implementation and the ability to preserve the same nice properties of
univariate splines. A definite drawback, however, is that they are restricted to rectangular
meshes or domains which can easily be transformed to a rectangle. In addition, shape preser-
vation constraints, such as convexity or monotonicity, are not easy to implement either. Splines
defined on triangulations are then considered as an attractive alternative.

The polynomial spline functions defined on triangulations are tools widely used in many
different fields, both theoretical and applied. The book by Lai and Schumaker [97] presents
an in-depth study of this type of functions, focusing mainly on the theoretical aspects. This
kind of spline spaces is useful if a suitable set of basis functions is well constructed and studied.
Although this requires the computation of their dimensions, which is extremely difficult, since
it depends on an interplay between geometry, combinatorics and topology. Lower bounds to
the dimension are given in [5, 6] and upper bounds in [7, 8]. There are some exact results



for particular choices of polynomial degree and smoothness [9, 10, 11, 12], and for particular
constrained triangulations [13]. Yet, in general and especially for low degree polynomials the
problem remains open.

As shown in [14], regularity C™ on an arbitrary triangulation of a polygonal domain is
obtained if all derivatives up to order 2m at the vertices of the triangles are given. In particular,
to get C! triangular splines on an arbitrary triangulation the values of the derivatives of order
less than or equal to 2 at the vertices and the lowest degree is equal to 5 (see [14, Thm. 2] and
the references therein). However, in practice, high smoothness with low degree is the commonly
chosen option.

In order to reduce the degree of the spline, it was proposed in [15] to refine each triangle by
joining its vertices to an interior point. The Clough-Tocher refinement thus obtained allows to
determine a C* spline of degree 3 and also a macro-triangle whose nodal parameters yield a ct
piecewise polynomial of degree 4 (see [54] and the references therein). Introduced more than
50 years ago, C' cubic splines on Clough-Tocher partitions are still a subject of interest. For
example, in [17] Gaussian quadrature for C! cubic Clough-Tocher macro-triangles is studied.

In [18], Powell and Sabin introduced a new refinement with the specific objective of contour
plotting, managing to define a C! piecewise quadratic function from the values at the nodes
of the function to be approximated and its gradient. The first subdivision into six triangles is
achieved by selecting an inner point in every triangle and connecting it with similar points in
the adjacent triangles as well as with the three vertices. The inner point of a boundary triangle
is joined to a point over a boundary edge when no adjacent triangle is available. From this
Powell-Sabin (PS) 6-split a PS12-split is easily derived by joining in every triangle the three
points lying on the edges of the triangle that the previous construction produces [19].

Powell-Sabin refinement has been extended to trivariate case in [20], where each tetrahedron
is divided into 24 sub-tetrahedra. These results have been generalized to multivariate case in
[21] and profoundly analyzed by T. Sorokina and Worsey in [22]. Each simplex in R is then
divided into (s + 1)! smaller sub-simplices. The construction of C' smooth quadratic splines
over such a refined tessellation is still a challenging task for s > 2. This is because certain
geometric constraints on the positions of the split points must be fulfilled. These geometric
constraints are definitely satisfied if s = 1,2, but it remains an open question whether they can
be satisfied for an arbitrary tessellation when s > 2.

Application of spline in numerical analysis often requires the use of non-negative basis with
local supports. To the best of our knowledge, on an arbitrary triangulation, the only recognized
normalized bases are constructed by means of Powell-Sabin refinement. Any surface represented
as a linear combination of non-negative, locally supported basis functions that form a partition
of the unity, can be locally controlled and edited in a predictable way. The normalized B-spline
representation of bivariate C'! quadratic splines achieved by Dierckx [23] was essential in the
development of spline spaces on Powell-Sabin partitions and applications. The method proposed
by P. Dierckx is completely geometrical, it is reduced to finding a set of Powell-Sabin triangles
that must contain a number of specified points. Linear and quadratic programming problems
are the standard methods proposed by many authors in the literature [23, 24, 25, 26] to define
such triangles.

The study of spline function spaces on Powell-Sabin partitions obtained by refinement into 6
sub-triangles has attracted great interest in the scientific community since its introduction. The
cubic case has been considered in [24, 27, 28, 29]. Spaces of quintic splines have been analyzed in
[30] and more recently in [25, 31], among others. In [26] and [29], normalized bases for PS-splines
of degree 3r — 1 are defined and super-splines of arbitrary degree are given, respectively. After
the latter, the paper [32] was published, where only almost C? quartic Powell-Sabin splines are
considered.

Quasi-interpolation over Powell-Sabin triangulations for specific spaces have been also stud-
ied in depth [31, 33, 50, 35], as well as for a family of spaces [36]. The construction of such



operators is based on establishing Marsden’s identity. It is a powerful tool that allows to write
the monomials in terms of the corresponding B-spline-like functions.

In contrast to classical approximants, spline quasi-interpolants do not require the solution
of linear systems, so they are very convenient in practice. In general, a quasi-interpolant for a
given function is obtained as a linear combination of some elements of a suitable set of basis
functions. In order to ensure both numerical stability and local control of the constructed
approximant, these basis functions are required to be positive, to form a convex partition of
the unity and to possess a small local support. The coefficients of the linear combination are
given by linear functionals depending on the function to be approximated and/or its derivatives.
There are many applications of quasi-interpolation operators, in particular, they are used for
the numerical computation of integrals or, the numerical solution of integral equations, see e.g.
[37, 38, 39, 40].

Recently, a new approach based on polar forms has emerged from the work of Ramshaw
[41]. This approach has allowed to revisit the theory of univariate B-splines and has yielded a
powerful tool for understanding the relationship between the coefficients and the spline curves.
Polar forms provide a rich and robust theory to understand splines. They can be applied to
express the values of the coefficients of a spline, the derivatives, the smoothness conditions, etc.

In this thesis, we have used some powerful properties of polar forms in approximation by
univariate and bivariate spline functions. In particular, we have devoted some parts of this
thesis to the construction of quasi-interpolants (abbreviated as QIs) that have become popular
and occupy an advanced position in approximation theory.

Outlined of the thesis

This thesis consists of two parts. In the first part, we deal with bivariate spline functions
defined on triangulations endowed with Powell-Sabin splits. We consider various spaces with
different degree and smoothness, and their applications to quasi-interpolation and Gaussian
quadrature rules. The second part is devoted to deal with univariate splines defined on partition
with a Powell-Sabin refinement, which means that a refinement is produced by inserting one split
point inside each macro-interval.

The thesis is organized as follows. First, we start by recalling some facts about triangles and
triangulations, Bernstein-Bézier form, De Casteljau algorithm and polar forms theory. Thus, we
introduce the Powell-Sabin split.

Chapter 2 is divided into two parts. In the first one, we consider a Hermite interpolation
problem in spaces of C! quartic Powell-Sabin splines. Thus, we construct from Marsden’s
identity a family of quasi-interpolation operators yielding the optimal approximation power.
The second part deals with the characterization of Powell-Sabin triangulations allowing the
construction of bivariate quartic splines of class C2. The result is established by relating the
triangle and edge split points provided by the refinement of each triangle. For a triangulation
fulfilling the characterization obtained, a normalized representation of the splines in the C?
space is given.

In Chapter 3, we revise a subspace of C? sextic Powell-Sabin splines obtained by imposing
additional smoothness requirements at the interior points of the triangulation chosen to construct
the sub-triangulation and also across some edges of the refined triangulation. This subspace of
super-splines was studied in [42], where it is shown that every spline is uniquely determined
by its values at the vertices of the initial triangulation and the interior points and those of
its partial derivatives up to the fourth order at the vertices. In addition, the construction of
normalized basis reduced to determine a set of small triangles that contain a sets of points.
The main idea of existing methods is to minimize the area of a triangle without imposing any
condition concerning the diameter of the sought triangles, and somtimes triangles with small
areas are obtained but having large diameter. In order to avoid this limitations, we will present



an algorithm that aims to produce PS6-triangles with small area and diameter, and compare
it with the one proposed in [43]. Thus, quasi-interpolation operators which reproduce sextic
polynomials are constructed after deriving Marsden’s identity from a more explicit version of
the control polynomials introduced some years ago in the literature. Finally, some tests show
the good performance of these operators.

The quadrature rule of Stroud and Hammer for cubic polynomials [68] has been recently
shown to integrate exactly also C'* continuous quadratic Powell-Sabin 6-split splines over macro-
triangles if the inner split point is the barycenter and the edge split points are the centers of the
macro-edges [45]. It has been further shown numerically that if the inner split point is not the
barycenter of the macro-triangle, there exist 3-point micro-edge quadratures that admit exact
integration of the associated spline space, however, the inner split-point is constrained to lie
within a specific sub-region of the macro-triangle. In Chapter 4, we show that for Ceva’s variant
of the segmentation of the macro-triangle, one can exactly integrate Powell-Sabin splines using
a polynomial 3-point micro-edge quadrature for an arbitrary inner split point.

Chapter 5 deals with the construction of quasi-interpolation schemes defined on a uniform
triangulation of type-1 endowed with a Powell-Sabin split. In contrast to the usual construction
of quasi interpolation splines on the 6-split, the approach described in this chapter does not
require the construction of a set of appropriate basis functions. Namely, the spline schemes
are generated by setting their Bézier (B-) ordinates to suitable combinations of the given data
values. The proposed schemes are C'! continuous and reproduce quadratic polynomials. Some
numerical tests are illustrated to confirm the theoretical results.

In Chapter 6, we define a family of univariate many knot spline spaces of arbitrary degree
defined on an initial partition that is refined by adding a point in each sub-interval. For an
arbitrary smoothness r, splines of degrees 2r and 2r 4+ 1 are considered by imposing additional
regularity when necessary. For an arbitrary degree, a B-spline-like basis is constructed by
using the Bernstein-Bézier representation. Blossoming is then used to establish a Marsden’s
identity from which several quasi-interpolation operators having optimal approximation orders
are defined.

Chapter 7 is divided into two parts. In the first one, we discuss the construction of C?
cubic spline quasi-interpolation schemes defined on a refined partition. These schemes are re-
duced in terms of the degree of freedom compared to those existing in the literature. Namely,
we provide a recipe for reducing the degree of freedom by imposing super-smoothing condi-
tions while preserving full smoothness and cubic precision. In addition, we provide subdivision
rules by means of blossoming. The derived rules are designed to express the B-spline coeffi-
cients associated with a finer partition from those associated with the former one. The second
part is devoted to construct a novel normalized B-spline-like representation for C?-continuous
cubic spline space defined on an initial partition refined by inserting two new points inside
each sub-interval. The basis functions are compactly supported non-negative functions that are
geometrically constructed and form a convex partition of unity. With the help of the control
polynomial theory introduced herein, a Marsden’s identity is derived, from which several families
of super-convergent quasi-interpolation operators are defined.

We conclude with a summary of the contributions, conclusions and proposals for possible
future research.



Chapter 1

Preliminaries

In this chapter, we discuss bivariate polynomials on triangles, polar forms, and some results

on control polynomials. Given a positive integer d, the dimension of the linear space Py of
1

polynomials of total degree less than or equal to d is equal to B (d+1)(d+ 2). Next, we recall

some useful results on representing the polynomials in this space.

1.1 Triangulation

In what follows, we briefly review some facts about triangles and triangulations. Consider
three non-collinear points V; := (z;, y;), ¢ = 1,2,3. The convex hull of these points form the
triangle T' := (V4, V3, V3). The points V;, i = 1,2, 3, are called the vertices of T, and the three
edges of T are denoted by (Vi, Va), (Va, V3) and (V3, V;). The signed area of T' is given by

1 1 1 1
A(T):i r1 T2 X3,
Y1 Y2 Y3
where, |.| stands for determinant.
Let Q be a polygonal domain in R?. A collection of triangles A = {Ty, Ty, ..., T),,} of
triangles is called a triangulation of = U]_; T; provided that if a pair of triangles in A

intersect, then their intersection is either a common vertex or a common edge.

This definition allows quite general triangulations. For example, A can be formed by two
separate triangles, or it can be formed by two triangles touching each other only at one vertex.
In addition, the definition allows triangulations of domains (2 with one or more holes. This
kind of triangulations arise often in the finite element method for solving partial differential
equations.

1.2 Bernstein-Bézier representation

Consider the non-degenerated triangle T'. It is well-known that every point V := (z, 3) € R?
can be uniquely expressed as

3
V:ZT,'V;, T+ T+ 13 =1,
i=1
where the barycentric coordinates 7 := (11, T2, 73) with respect to T" are the unique solution of
system
1 T2 I3 T1

Y Y2 Y3 T2 | =
1 1 1 T3

—_< 8

12



CHAPTER 1. PRELIMINARIES

A
3 K

Figure 1.1: Top: examples of two sets of triangles that do not form a triangulation. Bottom:
Examples of triangulations: (left) triangulation with a hole, (right) triangulation without any
holes.

Any bivariate polynomial p € Py has a unique representation in barycentric coordinates

p(V)=0b(r):= ) b3%Bf (1), (1.1)
|8l=d

where 3 := (61, B2, f3) € N® are multi-indices of length |3| := |B81| + |B2| + | B3] and

d! d!
d o B8 _ B1 B2 B
%B,T(T) = IB!T AT T Ty Ty

are the Bernstein-Bézier polynomials of degree d with respect to T'. The coefficients bg are called
the Bézier (B-) ordinates or Bernstein-Bézier (BB-) coefficients of p with respect to T', and b (1)
is said to be the Bernstein-Bézier (BB-) form or Bernstein-Bézier (BB-) representation of p. It
may be represented by associating each coefficient bg with the domain points £z determined
B B By
d’ d’ d
(&3, bg) € R? are the control points of the so called B-net for the surface of equation z = p (z, 7).
This surface is tangent at the vertices of T' to the linear piecewise function defined by the B-net.
The graph of the surface is contained in the convex hull of the control points and p can be easily
bounded from them.

by the barycentric coordinates ( ) with respect to T (see Figure 1.2). The points

Figure 1.2: Schematic representation of the BB-coefficients of a quadratic bivariate polynomial.

Hereafter, D, (V1) will denote the disk of radius r around the vertex V; of a triangle T' =
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(Vi,Va, V3). It is the subset of domain points &g defined as
D, (V1) :=={&s, B =d—r}.

Figure 1.3 shows the typical plots of some Bernstein-Bézier basis functions of degree 4.
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Figure %.3: The Bernstein-Bézier basis functions %?47070)’% %?2,270),T and %?2,171)7T (from left
to right).

In general, the evaluation of a polynomial of high degree is computationally expensive and,
moreover, is often subjected to numerical instabilities. De Casteljau’s algorithm [46] is a recursive
procedure reduces the complexity and constitutes an indispensable tool to evaluate a polynomial
at a fixed point.

The algorithm is based on the simple recurrence relation

d d— d— d—
BE 7 (1) =BG, p+ 1B, r+ B
where e; = (1,0,0), e2 = (0,1,0) and e3 = (0,0,1). It is an immediate consequence of the
definition of BY 7.

Theorem 1.2.1. The value at T = (11,72, 73) of the polynomial p in (1.1) is given by

p(r) = bt(io,o,()) (1),

where

b (1) =bs(r), 18]=d.
b (1) = legilel +72bg_,162 +Tgbg_,163, IBl=d—r, andr=1,...,d.

The intermediate values bg are called De Casteljau ordinates.

The smoothness conditions between adjacent polynomial patches are easily expressed in
terms of the BB-coefficients relative to the triangles. Let T:= (Vy, Va, V3) be an adjacent triangle
to T and p a polynomial of total degree d defined on T. Assume that Vj has 7 := (71, 72,73) as
vector of barycentric coordinates with respect to 7. Then the function defined by assembling p
and p is of class C" across the edge (Va, V3) if the B-ordinates l;ﬁj of p satisfy for 8, =0, ..., r
and By + B3 = d — r the conditions

BT Z ba+52€2+5363,T%g,T (7), (1.2)
la]=51

>

The conversion of the Bézier form to a different triangle can be neatly expressed in terms
of polar form [41, 47]. In the next section, we briefly review some facts about polar forms or
blossoming.

1.3 Polar forms

The construction of spline functions on triangulations greatly benefits from the use of blos-
soming or polarisation. In the following, we recall some basic properties of the polar forms of a
polynomial.

The blossom or polar forms B [py] of a bivariate polynomial py : R? — R of degree d is the

unique function B[py] : (RQ)d — R satisfying the following properties:
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1. B [pg] is symmetric, i.e. for any permutation o of integers 1,..., d it holds
B [pa] (A1,..., Aq) = Bpa] (As1)s---» Ao(a)) -

2. B[pg] is multi-affine, i.e.

B[pd](Al,...,aB—l-bC,...,Ad) = aB[pd](Al,...,B,...,Ad)—i-bB[pd](Al,...,C,...,Ad)

when a +b = 1.

3. Bpg] is diagonal, i.e. B[pg] (4,..., A) = pg(A).

The B-ordinates of p with respect to T'in (1.1) can be expressed in terms of polar forms. It
holds

bg = Bp] (V1[B1], Valf2], V5[Bs]) ,
where V' [¢] means that the point V' is repeated ¢ times as an argument of the polar forms,
omitting the term [¢] when ¢ = 1.

Moreover, the blossom of a product of linear polynomials can be expressed in terms of
blossoms of its factors. More precisely, the following result holds [33].

Lemma 1.3.1. Let gy be the set of all permutations of integers 1,...,d, and p; be polynomials
in P1. Then,

B

d d
Hpi] (uy,..., ug) = % Z Hpi (uw(i)) :

i=1 TEeETg i=1

Some results concerning a connection between polar forms and directional derivatives are
given here. For every polynomial p € Py, the ¢! directional derivative of p with respect to
vectors &1, ..., §; € R? is given by

Dy (1) = Bl (uld =gl €1, ). (13)

Let us recall the following restricted version of Lemma 4.1 given in [33] for further use.

Lemma 1.3.2. Let di and dy be two positive integers, with do < di. Then, for any polynomial

p € Pg, and any points Vi, ..., Vg _a, in R2, function
q(X):=B[p|(V1,..., Va,—q,, X[do]), (1.4)
s a polynomial of degree < da. Moreover, for any points Wh,..., Wy, in R2, it holds

Blg (Wh,..., Wa,) =Bp|(V1,..., Vay—dy, Wi,..., Wa,).

Finding suitable transformations between different polynomial or spline bases is useful for
solving some interpolation and quasi-interpolation problems coming from applications, partic-
ularly Computer Aided Geometric Design. Marsden’s identity is a powerful tool that allows
writing the monomials in terms of the corresponding B-splines.

In the following, we introduce the notion of control polynomials, which is the main tool
to establish Marsden’s identity for Powell-Sabin spline spaces. The controlled spline function’s
behavior at a vertex can be derived from one of the control polynomials at the same vertex. We

a+b
Dz dyb (P) of f(x,y) at the point P.

use the notation 9, f (P) for the partial derivative
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Proposition 1.3.1. Let d; and da be two positive integers, with do < di. Let p € Py, and
Vi € R%. For any real number 0, the polynomial q of degree dy defined by

q(X) := Blp] (Vi[d1 — da], (X + (1 —0)V1)[da]), (1.5)

satisfies

aa,bp(‘/i) = ga+b ([ do aa,b q(V1)

forall0 <a+b<ds.

Proof. We prove the result by induction on ds. As blossoming is multi-affine, the polynomial
function ¢ can also be written as

da
d2\ pi —i . .
00 =3 ()6 - 0" B (alas - 1, X
i=0
From Lemma 1.3.2, g is a polynomial of degree < ds. Define the polynomial ¢; of degree i as
¢ (X) := B[p] (Vi[d1 —i], X[i]),

and let & := (1,0) and & := (0,1).
Since ¢; € P;, we consider only the case when a + b < ¢ to derive the equality

2!

Dapqi (V1) = G—a—b)! B [q] (Vi[i —a — 1], &ia], &[0])
— B P Al -t Glal. 1)
Then,
dz do! ; do—i .
dapa(Vi) = Y (=) (i—a—0b) 0" (1—0)=" Blp] (Vili —a —b], &[a], &[b])
i=a+b
ket do! ath do—a—b—j
= X G et =0 T T BRI (Vild: - a =¥, Gilal, &[b)
=0
= 0 T Bl (il — 0~ &), D).
and the proof is complete. ]

d
When 0 := d—l, q is called control polynomial of degree dy at vertex V; of polynomial p.
2

1.4 Powell-Sabin partition

A Powell-Sabin (PS-) 6-split Apg of A is a refinement of A obtained by splitting every
triangle of A into six micro-triangles in the following way [18]:

1. In each triangle T}, choose an interior point Z; such that for every two neighboring triangles
T; and T} the line joining Z; and Z; intersects the common edge. Denote this intersection
point R; ; and include it to the list of vertices.

2. For each Z;, connect it by a line with all vertices of 7T} and include Z; to the list of vertices.
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Figure 1.5: Powell-Sabin split of a single triangle 7" (Vy, Va, V3).

3. For each edge of the triangle 7T; which

(a) is common to a triangle Tj, join Z; to R;;

(b) is an edge of the boundary 0f2, join Z; to an arbitrary interior point on that edge.

An example of a PS 6-split of a triangle is shown in Figurel.4.
Figure 1.5 shows a 6-split of a single triangle, and we assume that the points indicated in
the figure have the following barycentric coordinates:

‘/’1 = (17070)7 ‘/2 = (07 170)7 ‘/3 = (0)07 ]-)7 Z = (21722723)7
Ri2 = (A12,A21,0), Rz = (0, A23,A32), R31 = (A13,0, A31).

Define,
SH(A) = {se ct(Q) s;p € Py for all T € A}

as the linear space of piecewise quadratic polynomials on A. The following interpolation problem
is considered: given any set of triples (fi, £, f{), i = 1,...,nv, find s(z,y) € S3 (A) such that,

% =g anad 22y = g7, (1.6

It is clear that such a problem has no solution in general: in fact, problem (1.6) requires the
imposition of nine parameters to define the quadratic polynomial on each triangle, while only
six coefficients are available (see equation (1.1)).

In order to achieve a solution to the interpolation problem (1.6), one alternative is to inter-
polate in a different spaces as proposed by Powell and Sabin in [18], based on the subdivision of
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each triangle into six smaller triangles (PS-split). Hence, the conditions in (1.6) are imposed only
on the vertices of the original triangulation, while in the other added nodes only C!' smoothness
conditions of the interpolating function are imposed. More details can be found in [18].

Each element S3 (Apg) is uniquely defined by its values and derivatives at the vertices of
A, thus the functional space Si (Aps) has dimension 3nv. P. Dierckx [23] presented an elegant
geometric method to construct a normalized basis for the spline space S3 (Apg). Every Powell-
Sabin spline can then be represented as

nv

3
s(z,y) = Z Z ci i Bij(x,y),

i=1 j=1

where the functions B; ; are called Powell-Sabin B-splines and c¢;; are the coefficients of the
representation. To obtain the basis functions B;j, we first associate with each vertex V; in
the triangulation three linearly independent triplets (o j, 5ij,7i,), 7 = 1,2,3. The procedure
proposed by P. Dierckx [23] to determine these triplets is highlighted as follows:

1. For each vertex V; in A, find the corresponding PS-points of the vertex. These points are
the immediately surrounding Bézier domain points of V; in Apg. The vertex V; itself is
also considered a PS-point.

2. For each vertex V;, find a triangle ¢; (Q; 1, Qi 2, Qi 3) that contains all the PS-points cor-
responding to V;. This triangle ¢; is called PS-triangle associated with V;. The Cartesian

coordinates of the vertices @;;, j = 1,2,3, are denoted in the rest of this report by
(Xij, Yij)-

3. The three linearly independent triplets (a; j, 5j,7i;), j = 1,2,3, are obtained from the
PS-triangle ¢; corresponding to V; as follows:
o a; = ((v1,q52,;3) are the barycentric coordinates of V; with respect to ;.

o B = (Bi1,Biz2: Pi3) and v = (Vi1,7,2,%,3) are the unit barycentric directions with
respect to t¢;, in the z- and y-direction respectively. They can be given as follows.

1 Xio Xi3 Xip 1 X3 Xip Xio 1
0 Yio Yis Yiir 0 Yis Yiir Yiz O
3 0 1 1 s 1 0 1 4 B 1 1 0
1= , Big= an 3 =
’ Xi1 Xio Xi3 ’ Xin Xig Xi3 ’ Xi1 Xio X3
Yii Yo Yis Yiin Yio Yis Yii1 Yio Yis
1 1 1 1 1 1 1 1 1
0 Xi2 Xi3 Xip 0 Xi3 Xi1 X2 O
1 Yie Yis Yiin. 1 Yis Yiin. Yig 1
0 1 1 1 0 1 d 1 1 0
Vi1 = , Yie = and ;3 =
’ Xi1 Xip Xigs ’ Xi1 Xip Xigs ‘ Xi1 Xig X3
Yii Yo Yis Yi1 Yo Yis Yii Yo Yis
1 1 1 1 1 1 1 1 1

The Powell-Sabin B-spline B; ; is defined as the unique solution of the interpolation problem
(1.6) with all (f, f¢, f{) = (0,0,0) except for k =i, where (fi, £, f}) = (v j, Bij, Vij)-

The Powell-Sabin B-splines fulfil some useful properties in the context of finite element
methods. These properties are listed as follows.

e Local support: each Powell-Sabin B-spline B; ; has a local support. It is zero outside the
union of all triangles in A that contain the vertex V;.
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-
(b) (c) )

Figure 1.6: (a) A given triangulation with PS-split. (b)-(d) The three Powell-Sabin B-splines
B;j, j =1,2,3, corresponding to the central vertex V; and its PS-triangle.

e Non-negativity and convex partition of unity, i.e.,

nv 3
Bi,j (Q?,y) > 0 and ZZBZ,] (:I:7y) = ]-7

i=1 j=1
for all (z,y) € Q.
e Powell-Sabin control triangles, i.e., defining the Powell-Sabin control points as c¢;; :=

(Qij,cij), lead to Powell-Sabin control triangles t; (c;1,¢;2,¢;3), which are tangent to
the spline surface z = s(x,y) at the vertices Vj.

e The Powell-Sabin spline basis is stable [48] for the max-norms ||C|lcc = max; ;
1S]l0,00 = mazals(z,y)|

For all choices of the coefficient vector C, it has been proved in [48] that
Keo[|Clloo < 151000 < [[Clloos

where K., depends only on the smallest angle 6 in the triangulation A and on the size
of the PS-triangles. Moreover, the smaller the PS-triangles the better (the larger) the
stability constant.

¢ j| and

e Approximation order: Let f be a function in the Sobolev space WEt! = { follf ||w’,§+1 < oo}
endowed with the usual semi-norm and norm, i.e.,

1/p 1/p

flwsn = 2 IDEDJf@ L, | and [flwser = | 2 1flhye
at+B=k+1 r<k

For every 0 < k <2 and 0 < a+ 3 <k, there exists a spline sy € S% (Apg) such that
IDED(f = sp)le < KalAF2 |l

The approximation constant K, is independent of f and the mesh size |A|.



Chapter 2

Approximation by quartic
Powell-Sabin splines

Quartic Powell-Sabin splines have not received the same consideration in the literature as
quadratic, cubic and quintic splines. C' quartic splines have been treated in [32]. Formally
the constructed splines are C'-continuous, although they are of class C? everywhere except
across some edges of the refinement. They could be very useful in dealing with Digital Elevation
Models in engineering as they provide global class approximations that allow important terrain
details to be captured without smoothing them out too much and all this achieving the optimal
approximation order.

In this chapter, we deal with approximation by quartic PS-splines. It is divided into two
parts. The first one is devoted to solving a Hermite interpolation problem in the space of
C'-quartic PS-splines. Hermite interpolation is then easily computed by means of explicit
formulas. In order to reach the C'! continuity, high-dimensional systems of linear equations are
not required to be solved, but only such ones of order six. Thus, several local quasi-interpolation
schemes reproducing quartic polynomials and not requiring the resolution of any linear system
are constructed. The primary tool used is Marsden’s identity, established using the notion of
control polynomials.

The main objectif of the second part is to characterize the geometry of Powell-Sabin trian-
gulations that allows C? class bivariate quartic splines to be defined.

2.1 Quartic Powell-Sabin splines

One of the difficulties of bivariate interpolation (and, in general, multivariate interpolation)
is that the insolvency of the problem depends on the geometry of the interpolation nodes. Thus,
for insolvent problems it is difficult to express the solution by simple formulas. Chung and
Yao’s geometric characterization plays a fundamental role (see [49]). In view of such difficulties,
splines over triangulations have been developed, in particular Powell-Sabin (PS-) splines.

2.1.1 The PS4-spline space

We are interested in the quartic PS-spline space and we recall some results from [32]. Let
Q be a polygonal domain in R? and let A := {Tl}ﬁ1 be a regular triangulation of ). Denote
by V; := (s, yi)T, 1 =1,..., nv, the vertices of the given triangulation, and let Apg be a PS-
refinement of A, which divides each macro triangle 7; € A into six micro-triangles (see Figure
1.4).

As in [32], the quartic Powell-Sabin spline space is defined as

Si(A):={se€ C' (Q): sy € Pyforallt € Apg}.

20



CHAPTER 2. APPROXIMATION BY QUARTIC POWELL-5SABIN SPLINES 21

Consider the subspace
Si(Aps) == {s € S}(Aps): s€ C2(VU ZUEUEY}.

Its dimension is equal to 6nv + 3ne, and we can consider the following unisolvent Hermite
interpolation problem:

Find s e Sy (Apg)

such that 0gps(Vi) = fiap, t=1,...,n0, a>0,b>0, a+b<2, (2.1)
D, s(Ry) = 5, 0<a <2

being w; ; unit directions parallel to (Zj, R;;).

2.1.2 Normalized B-spline-like representation

Hereafter, we consider multi-indices & € N3 and @ € N?. Each spline s € S (Apg) can be

represented as
nv ne
s=3 > aBlat Y D dabia (2.2)

i=1 |a|=2 k=1 |a|=2

where B}i o and Bz,a are B-splines-like functions with respect to vertices and edges, respectively,
such that they are non-negative, have local support, form a partition of unity, and yield a stable
basis to Sy (Apg).

Regarding the vertices, the B-spline-like B; , is defined as the solution of interpolation prob-
lem given by ( 2.1) with f;qp =7 ’OIZ, the remaining values f, 45 are equal to zero and all g =0
except for any k such that V; is an end point of the edge ¢, in which case gy = Bj; 5. 7-values
and S-values will be specified later.

Without loss of generality, we construct here only Bf ,. Because of the C2-smoothness at ver-
tex Vi, the Bézier ordinates in the 2-disk around V; are completely determined by the value

{yi’g, a>0,b>0,a+b< 2}. The Bézier ordinates in the 2-disk around Z; are computed by

defining a quadratic polynomial p5 on the triangle with vertices

Vit 24

W; - 5

1=1,2,3. (2.3)
The ordinates of this polynomial are

booo =dr, be=0forall ac N*\{(2,0,0)},|a| =2,
dlfs = A12d$7 qu = A%zd”, dgo = /\13d$, d51 = >\%3dv)

2
d1212 = Zld?, d12}3 = )\12Z1d$, d12)4 = )quldg, d§5 = Zldg.

Note that the B-ordinates ds, dig and di1 can be considered as B-ordinates after subdivision of
a quadratic polynomial p§ defined on the edge <%, w> This polynomial of degree 2
has the value ds, 0 and 0 as its three B-ordinates. A similar reasoning holds for the B-ordinates
dﬁ, d12 and d131

dqfo = )\12dgv d1111 = /\§2d”, dlfz = >\12dg’ difs = A%zdv7
diy = Aisd§,  dis = Nady,  dig = Msdg, di; = Azdg.
We define 3 5 = diy, By q = di3 and 57 5 = di.

Now, consider an edge. The corresponding B-spline-like B,i’d is defined as the solution of
interpolation problem given by ( 2.1) where all f,, 5 are equal to zero, as well as all g;,, except
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dy d3 5 10 11 0 0 0

Figure 2.1: B-ordinates of a B-spline with respect to vertex V.

Figure 2.2: A vertex B-spline in a different molecules.
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Figure 2.3: B-ordinates of B-spline-like function with respect to e; := (Vi, Va).

for any m = k where g = fj ;. The B-values are given in (2.5).
Using the fact that the spline is C2-smooth across (Z1, Ri2), then, the B-ordinates di, d2 and d3
can be regarded as B-ordinates after subdivision of a univariate quadratic polynomial p§ defined

on the segment <V1+TR12, VQ‘*'TR”> This polynomial is chosen to have 0, ,6’2@ and 0 as its three

B-ordinates, for some parameter 5,37@. The same idea is used to compute dy4, ds and dg, but this

time with other parameter noted ﬂ,i?a. By C?-smoothness around Zi, the ordinates dr, ..., dis
can be determined. To this end, we define a quadratic polynomial over the triangle with the
vertices defined in (2.3) in such a way that it has the following B-ordinates:

b20,0 =0, bo2,0=0, boo2=0, by10= 5;3@, bo11 =0, b11=0.
Then, the B-ordinates are given by
df = o1 Bl g, d5 =2M12001 Blas d5 = M2 Blas di = A1 Bhas di = 2M12X01 Bl 4,

1 2 2 2 2
dg = M2 Brar d7 = M2 Bra, d§ = 2M2221 B 55 d5 = M2 B 5y dio = 22 B 4

e 2 e 2 e 2 e 2 e 2
diy = (22A12 + 21221) Bi as dia = 21 Bi 5> dis = 22013 Bray iy = 22122 B 5, dis = 21023 By 4

In order to ensure non-negativity, it suffices to impose that all B-ordinates of the B-spline-like
Bj; 5 are non-negative. This is the case when

Bea =0 forall a=0,1,2. (2.4)

Then, we need to choose the triplets of parameters Sy, (2,0) := <ﬁ27(270), Bli,(zo)? Bi7(270)> s Bry,1) o=

(62,(1,1)7 5]1’(171), B£7(171)> and Bk,(O,Z) = (627(072), BI%,(O,Q)’ ,8]37(072)> Satisfying the condition in
(2.4) in order to define three non-negative basis functions related to the edge ¢;. Depending on
the type of the edge ¢x, we choose these parameters as follows:
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Figure 2.4: The three Edge B-splines with respect to an edge.

e If ¢ is an interior edge, so that there is another adjacent macro-triangle 7" and the line
through the split points Z; and Z, intersects the edge in R12, then

3 _ (HRm — 2ol ||Ri2 — Zo]| 1)
O\ Nz - 22 20— 22 )
5 _ (2HR12 — Z1|||[Ra2 — Zo|| || R12 — 21| 0>
kLD | 202> 2 -2 )
|R12 — Z1|)?
= (22 A 6 ). 2.5
5k,(0,2) ( 12, — ZQH2 » ( )

e If ¢ is a boundary edge, then By, (20) := (0,0, 1), By 1,1) := (0, 1, 0) and By, (o2 := (1,0,0).

Figure 2.4 shows the plots of the three B-splines-like functions with respect to an edge.

2.1.3 A geometric approach to form a convex partition of unity

Now we recall a geometric approach to form a convex partition of unity [32]. Following
the same arguments as for quadratic Powell-Sabin B-splines [23], we define the PS4-points and
PS4-triangles as follows: for each vertex V; in A, the PS4-points are

1 1
Vi, Si,Zzi(Vi‘FZ) and Sig:§(‘/;+Rig).

For each V; € M, (i.e. the union of all the triangles in A having V; as a vertex) and for
each split point Z of Tz, where V; is a vertex of T, determine a triangle ti< i1y Qi as :’3>
containing all PS4-points. This triangle is called PS4-triangle.

The following result holds (see [32] and references therein).

Theorem 2.1.1. The B-splines-like B;, and B,f;,@ are nonnegative and form a convex partition
of unity if the parameters 'yZi’, i=1,...,nv,a € N3 |a|=2,a>0,b>0,a+b<2, and Bras
k=1,...,nea € N?, |a| =2, a =0,1,2, defining them are given by ygf; = Oup B2 (V;), B2
being a quadratic Bernstein-Bézier polynomial defined on t;, and B,‘j,a being the values given in

(2.5).

Note that each B-spline-like B; , is related to a quadratic Bernstein basis. Then, the coeffi-
cient ¢; , in (2.2) can be represented schematically as in Figure 2.5 with respect to a PS4-triangle.
We can consider this coefficients as B-ordinates of a control polynomial of degree 2 defined on
t; with respect to a vertex V;. The control or tangent polynomial is noted 7;(x,y) and satisfies

2 a+b 12
a“’bs(vi):<4> G—a=b)B-a—p i)




CHAPTER 2. APPROXIMATION BY QUARTIC POWELL-5SABIN SPLINES 25

N .
, N , Y
Q' N Qry

v ) v
€i.(200) < (110) €i,(020)

(

o> |al = 2 with respect to

Figure 2.5: Schematic representation of the B-spline coefficients ¢
the PS4-triangle t; = (Q;'1, Q7 2, Q7 3)-

2.2 Interpolation with quartic Powell-Sabin splines

This section is devoted to derive explicit expressions for the PS4-spline coefficients in the
B-spline representation (2.2) to satisfy the conditions in the interpolation problem given by
(2.1).

Firstly, we consider the interpolation problem with respect to partial derivatives at vertices
that appear in (2.1). Then, we will deal with conditions regarding directional derivatives at R;;
points.

2.2.1 Interpolation at a vertex

As mentioned above, the coefficients c; , can be seen as B-ordinates defined on PS4-triangles.
We make use of a function G; (P, Q) with points P = (xp,yp) and Q = (z4,y4) as arguments. It
is defined as

G (P,Q)=fi+ % ((xp — i) + (2g — 1)) fino + % ((yp — i) + (yg — wi)) fion
1
+ 3 ((xp — i) (Yg — yi) + (g — 25) (Yp — ¥i)) finn
+ é (zp — xi) (Tg — 3) fiz0 + % (Yp — i) (Yq — ¥i) fio2-

Then, the following result holds.

Theorem 2.2.1. If a spline s € Sy (Aps) has B-ordinates
CZ(QOQ) = Gi(Q;},lv Qzl)7 62(110) = G’L(Q;},h Q52)7 62(020) = G’L(Q;},% QXQ)v
i o1y = Gi(Qi2, Qi 3), ¢ 002) = Gi(Qi3, Qi 3), ¢ oy = Gi(Qi 1, Q5 3),

then, it satisfies the interpolation conditions at vertex V; given in (2.1).

2.2.2 Interpolation across an edge

Let T be the triangle with vertices Vi, S12 = = (Vi1 + Ri2) and Sz = = (Vi + Z).

N |

1
2
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® dy

& dy ds dag dag dso dis dys dio

Figure 2.6: Schematic representation of the B-ordinates of PS4-spline.

Figure 2.7: B-ordinates of a B-spline-like with respect to a vertex. B-ordinates that are known
to be zero are indicated by open bullets o. The remaining ones are indicated by filled bullets e.
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Define the tangent polynomial Tj (z,y) defined on 7 by the ordinates e q, |a| = 2 (see
Figure 2.8 ). By blossoming,

d1 = ey, (200) = B[T] (I'', "), dz = e1,(110) = B[T] (', %), ds = ey 101y = B[T] (I'', %) |
ds = e1,(020) = B[T] (I'*, %), dg = e1,011) = B[T] (I*, %), d7 = ey, 002) = B[T] (I, T?),

where T'! = (I'},T3,T}), T? = (T%,13,T%) and I'® = (I'},T5,T3) are the barycentric coordinates
of V1, Si2 and S z with respect to PS4-triangle ¢, respectively. Analogously, the remaining
ordinates d;, 1 < i < 27, are derived.

Let us consider parameters 81 and (o defined as follows:

e If ¢4 is a boundary edge, then
/81 = 02737 62 = 6272-
e [f £ is an interior edge, then

pr = 519;,(20)02,1 + 52,(11)02,2 + ﬁlg,(OQ)Cz,S’ P = Bi,(%)cz,l + 5é7(11)cz72 + 5117(02)02,3-

By C2-regularity across (Z , R12) the B-ordinates das, ..., dss can be obtained. For, dag, dag
and dsp, define (Pj, P,), with P; = %(VZ + Ri2), 7 = 1,2, the polynomial function P; with
B-ordinates ds, 51 and dig. Then,

dog = Mi2ds + 21 i, d3o = A2 1 + 21 dig, dog = A12dag + Aa1 d3p.

Now, for dsi, d3z and d33, we define on <p1, ﬁ2>, with P, = %(21/; + 7+ Ry2),i = 1,2, the
polynomial ]52 with B-ordinates dg, 82 and dy7. Then

d31 = M2 de + A21 P, d33 = A2 B2 + 21 di7, d3z = A2d31 + Ao1dss.

Similar expressions can be obtained for dsq4, ..., d45. Finally, the B-ordinates dyg, . . ., dg1 can be
computed by exploiting the C2-smoothness at the split point Z. They can be seen as ordinates
after subdivision of a quadratic polynomial p defined on the triangle defined by the points
P, = % (Vi+ Z),1=1,2,3. The B- ordinates of this quadratic polynomial p are

b20,0 = d7, bo20 = die, dooz2 = das, b1,10="C51, bro1=¢51, doa1 = ;.

Therefore,
dae = Mad7 + Aa1c5 4, da7 = M2dss + Ao1dag,
dsg = M2csq + Aaidi, dss = z1d7 + 29¢5 1 + 2365 1,
dse = A2dss5 + Ao1ds7, ds7 = 21651 + zodi6 + 237 1,

dsg = 2151 + 22011 + 23d2s5, de1 = z1d55 + z2ds7 + 23d59.

Similar expressions are obtained for the remaining B-ordinates.
The B-coefficients cz’j, j =1,2,3, with respect to the edge e := (V41, V2) have the following
expressions:

o If £ is a boundary edge, then

—d7 A}y — digA3; — 9(1),2 + 29%,2 + 9%,2

_ 2.6
k.1 2X 1201 (26)
S —dgAYy — dirA3; + 655 + 91

k2= 2X 1221 7

. —dsAYy — digA3; + 9?,2
8 21201 '
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Vi e1,1000) €1,(110) €1,(020) P

v }
L1 12

Figure 2.8: A PS4-triangle 1 = (QY 1, Q7 2, Q7 3) of vertex Vi containing the PS4-points V3, S12
and S; 7, together with the schematic representation of the Bézier ordinates e o, |a| = 2, of
the subdivided tangent polynomial 7} (z,y) onto the triangle with Vi as vertex.

e If ¢4 is an interior edge, then

d7 X3y + digA3 + 9V 2 — 2910 — 91

k1 = 2X 12221 ’
. (d7Aly + di6A3) + 952 — 291 5 — 91 ) [1R12 — Za|| + (| Z2 — Z1|| (—d6ATy — diz A3, + 902 + 91 5)
k,2 — )
2M12A21||R12 — Z1||
(2.7)
1
Ck,3 (=222 — Z1|| (—de ATy — di7 A3y + 975 + g1 2) | Riz — Zo|

© 2X\12001||Rie — Z4 2
— (dr A3y + d1A3) + 950 — 2910 — 912) |1R12 — Zo|* + (|1 Z2 — Z1||* (—ds ATy — disA3y + 91.)) -

2.3 Marsden’s identity

In order to represent the monomial basis in terms of the B-splines, we use Marsden’s identity.
Let @ ; be the vertices of PS4-triangle ¢;, and define :
0 =2Q0; — Vi, i=1,...,n,j=1,2,3,
Q5 =2Q5,; — Ry, k=1,...,nej=1,2.

QZJ, j = 1,2, belong to a straight line <Z,Z> where Z and Z are the split points of two

adjacent macro-triangles.

Theorem 2.3.1. Let Qp be the spline defined as

op:=Y" 3" Bl (Vil2l Qulu), @ialeal, Qfsls]) B

i=1 |o|=2

+> > B (Vk,la Vi2, Qfalai], sz[o_@]) By, -

k=1 |a|=2

Then, Op =p for allp € Py.
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Proof. 1t is clear that Qp = p for all p € P4 if and only if
8a,pr(‘/i): a,bp(‘/i)v 2.:17-'-7'”@’ GZO,bZO,CH-bS?a

and
Dy, Op(Rij) = Dy, p(Rij), 0<a<2,

¥

where w; ; is a unit direction parallel to (Zj, R;;).

Since
op (Vi) = Y Blp| (Vil2), @flaul, Qfalazl. Qslas]) B (Vi)
|a|=2
define . B B
a(x) = 3" Bl (Vil2), @2fon], Qialaz), Qslas]) Ba(X).
|a|=2
Then,
a+b 4
Ousa(Vi) = (;) Ea;b; >~ Bl (Vil2l, @il Qfslas), Qfslas]) B2 (V).
a+b/ |a|=2

Let ¢(X) := Bp] (Vig, (2X — VZ')Q) It is a polynomial in Py. On a PS4-triangle ¢;, ¢ can be
written as

§(X) = B [q] (@} 1]a1], @slee], QFslas]) BE , (X)

= > Bl (Vil2), @} [), Qlalaz), Qlslas)) B2, (X).

Thus,

a+b 4
0 (V)= (5) E;g 7(V) = 8, (Vi) = 0,49 (V).
a+

Now, it suffices to prove that Dﬁ)ij Qp (Rij) = D&ijp(Rij), 0 <a <2 Fora=0, we have
Op(Ri2) = E1 + B2+ q12 (X), with

== Y Bl (Vil2,QFaln). Qf plo), QFslas]))Bi o (Ru).

|a|=2

2i= Y Blal (V21 @31 l0a). Q3 alan), @ slas]) B, (Fra)

|a|=2

a2 (X) = Y Bl (Vi Ve, Qfla], Q5 lae]) B o (R).

=2

(1]

For the two first expressions, we have

- - - 1 .
=1 =2 (00) + Do (V) + 5D i (1)) = MaB ] (12, Ral2)
and

- - - 1 -
H2 = A3 (q (V2) + Driy—1,q (V2) + §D?z12_v2q (V2)> = A51Bq] (V[2], R12(2)).
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Regarding the third term, it holds Bj 5 (R12) = 2A12A\01 ‘Bé (R12), where ‘B% is the quadratic
Bernstein polynomial of order & defined over (Qf ; Qf 5).
Then,

q12(Ri2) = 2A12221 Y Bp] (Vh V2, QF [au), Qiz[@ﬂ) B2 (Ri2) -

|al=2

Now, let us consider the quadratic bivariate polynomial
q1,2 (X) := 2 12221 B [p] (V1, V2, (2X — R12)[2]) .

Over the segment <Qil, Q32>, ¢1,2 can be written as

G2 (X) = Y Bl@ia] (Qf1[n] Qf 2las]) B2 (X)

|a|=2
=21 Y Bl (Vi V. Qfy[en), Q5 alael) B2 (X).
|lal=2
Then,
G2 (R12) = q1.2 (R12) = 2M12221B [p] (V1, Va2, R12[2]),
and the claim for a = 0 is complete. When a = 1 or a = 2, we proceed in the same way. O

2.4 A method for constructing quasi-interpolants based on PS4-
splines

In this section, we use Marsden’s identity [35, 50] to define such quasi-interpolants in such a
way that quartic polynomials are reproduced. They have the form

Qf=> 3 Na(H)Bla+D D tha (f)Bia (2.8)
i=1 |a|=2 k=1 |a|=2

where A; , and py ; and linear functionals such that
Q' f=f forall f € P, r=0,1,..., 4. (2.9)
We have the following result.

Theorem 2.4.1. For each 1 < i < nv and |a| = 2 (resp. 1 < k < ne ), let I ,(f) (resp.
ka(f)) be the polynomial defined in a neighbourhood of support of By, (resp. Bj 5 ) that
interpolates or approzimates some scattered data values and derivatives of f and such that for
all p € P, it holds

I} ,(p) =p, (resp Iy 5(p) = p) -
Then,

o f( Z (1)) (Vil2l, @3], @falana), @fglas]) B y)

.
[

\M?f

3
®

+ B0 (] (Vi Viz, Qfalen), @falaz]) Biale,y).
k=1 |a|=

[\

is a quasi-interpolant of the form ( 2.8) which satisfies ( 2.9).
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Proof. Let p. € P,. By the exactness of I} , on P, we have

BT, (p,)] (Vil2], @fifen), @lalaz), Qfalas]) = Blpe] (Vil2l, @ffen], @lalas), Qfslas])

for all i = 1, ...,ny, and |a| = 2. By the exactness of Jj ; on PP, we have also

B[J} a(pr)] <Vk,17Vk,27 @2,1[071], Qz,z[@ﬂ) = B[p,] (Vk,h Vi.,2, Qz,l[@l]7 Qi,z[%])
for all k =1, ... ,n¢, and |&| = 2. Then, from Theorem 2.3.1, it follows that

Q" f(x,y)=f, forall f € P., r=0,1,2,3,4.

2.4.1 Quasi-interpolation based on Taylor approximation

We will use Taylor approximation to define differential quasi-interpolants in Sj.
Let f € C*(Q) and L] = (Lix, Lg7y>, i=1,...,nv, j = 1,...,6, be some fixed points
lying in the union of all triangles in A having V; as a vertex. Let us suppose that they form an

unisolvent scheme in P4. Let p} be the Taylor polynomial of f of degree 4 at L7, i.e.,

Py =Y ﬁauf (L{) (x - Lix)k (y - Liy)z. (2.10)

0<k+£<4

For a € N? with |a| = 2, let Pk, be the Taylor polynomial of degree 4 at the point Ly 5 in the
support of By, ;. Define

0r=3"Y B v] (Vil2], @281, Q3alBe], Q185 Bl

i=1 |p|=2

+ 32> Blpral (Vir Ve, Ohalan], O las]) B (2.11)

k=1 |a|=2

Theorem 2.4.2. Let Q*f be defined by (2.11) and (2.10). Then, the quasi-interpolation oper-
ator Q% : C*(Q) — Sy (Aps) is evact on Py, i.e. Q* (p) =p for all p € Py.

Next, we will consider a relation between polar forms and differentiation to be used to
construct a quasi-interpolant to solve the main Hermite interpolation problem in this paper.
Some results concerning a connection between polar forms and directional derivatives are given
here (for more details see [47] and references therein). For every polynomial p € P, the ¢
directional derivative of p with respect to vectors &1, ..., & € R? is given by

n!

Bl a6 6.

DEL ---,fq p (u)

Proposition 2.4.1. Let u, v1 and vy be three points in R?. Then for each p € Py, we have

1
4

1

1
Blp](u, u,v1,v2) = 5 Derg, plu) + De, p(u) + p(u),

where & :=v; —u, 1 =1,2.
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From Proposition 2.4.1, we introduce the functional

FI v 02) = %Delszf(U)Jr%

to define a quartic Powell-Sabin quasi-interpolation operator.

Theorem 2.4.3. Let us define the coefficients

1

Dflf(u)+4

De, f(u) + f (u) (2.12)

Mo (£) = F ) (Vil2), @filau], Qfalaz], Qfslas]) . lal =2, i =1, ..., nv,
piha (F) 1= F U] (Virs Ve, Qfalan], Qfalaa]) 6l =2, k=1, ., me, 2 i= (Vi Via)

Then, the corresponding operator o* defined in (2.8) is exact on Py.
Proof. From Propositions (2.4.1) and (2.12), it is clear that

FI) (Vil2l, @ilon], Qilas), Qfslas]) = B, ()] (Vil2), @7 [n), Qfalaz), Qlafos))

FIF) (Ve Vi, Qfa[n), @ alaia] ) = BIE a(F)] (Vi Vi, Qfa[aa), @ ofeia]) -
From Theorem 2.4.1, it follows that Q*p = p for all p € Py. O

We will use again the notation f; .5 = 0apf (Vi) and DfUm_ f (Rij) = gi; introduced before
and consider the values f; 44, =1, ..., nv, a, b >0, a+b < 2, at vertices and ggj, 0<a<?2,
for edges. Let us consider two points P; := (p;1,pi2), ¢ = 1,2, in R?, and define vectors as

Then, the first two terms in expression (2.12) for functional F can be expressed as

1
1

((pj1 — i) fino+ Pj2 — i) fio1)

Wl N~

(((pj1 — @) (Pr2 — wi) + (Pea — =) (Pj2 — wi)) fina
+ (pj1 — i) (k1 — @) fizo + (Pj2 — ¥i) (P2 — ¥i) fioz2) -
Note that QY; — Vi =2 (Q}; — Vi).
In order to interpolate the given data across each edge, let us consider the following notations
and, without loss generality, the edge ¢j, := (V1, V).
e If ¢4 is a boundary edge, let
1

Ly 0,2)f = o (9 2 = AT [f] (Vi, Rig, Ri2) A3, F [f] (Va, Riz, Ri2))
1
Lranf = gy (012 + 92 = ALF 1 (Vi Riz, 2) = 3 F [f] (Va, Rz, 2))
1
['k,(2,0)f = m (9%,2 + 9%,2 - 29?,2 - /\%2]:[f] W, 2,2) - A%lf[f] Ve, 2, Z)) .

e If ¢4 is an interior edge, let
FIAWVL,Z,Z2) My + F[f] (Va, Z, Z) A5, +g?,2 — 2915 — 9%,2
21221 ’
(FI10A, 2, 2) Mo+ FUf] (Va, Z,Z) A3, "‘9?,2 - 29%,2 - 9%,2) x

Ly, 20f=—
B 1

© 2X12A01 ||Ri2 — Zi|
|R12 — Za|| 4+ 122 — Z1|| (= F[f] (Vi, Ri2, Z) A3y — F [f] (Va, R12, Z) A5 + 9 0 + 912)) »

1
Ly 0,2 f =
©2 2X12221 ||Ri2 — Z1||2

+9(1J,2 +9%,2) |Ri2 — Za| — (]: 11,2, 7) )‘%2 + Flf1(Va, Z,Z) )‘31 +9(1J,2 - 29%,2 - 9%2) X
|R1z — Zo|” + | Z2 — Zu|| | (—=F [f] (Vi, Ru2, Ri2) A}y — F [f] (Va, Ri2, Ri2) M}y + g15)) -

Lyanf

(=222 = Z1|| (=F [f] (V1 R, Z) My — F [f] (Va, Ruz, Z) Ay
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Using the above notations and definitions, we get a new quasi-interpolant that allows us to
solve the Hermite interpolation problem given by ( 2.1).

Theorem 2.4.4. Let us define,
Mo (F) = F U] (Vil2l, Qffou], Q2aloz] Qislasl) s lal =2, i =1, ..., nw,
/’Li,& (f) = ‘ck‘,&f? k= 1; vy Ney E = <Vk’,17 Vk‘,2> .

Then, the following quasi-interpolant provides the unique element in Sy which interpolates the
data in ( 2.1):

QMY =" > No(NBla+ D D pha(f)Bis
i=1 |a|=2 k=1 |a|=2

Proof. There exists a unique spline s € Sy (Q, Apsg) satisfying conditions ( 2.1). We can compute
in a stable way the BB-coefficients ¢}, and ¢}, 5 in representation ( 2.2). From Theorem 2.2.1,
we have

[0}

o= F 11 (Vi Vis Q1 [a], Qfal0a], Qlsfes))
Consider again the edge e, = (V1, V2). From equations (2.6)-(2.7), we calculate the functionls
Ly 2,005 Lr,a,1)f and Ly, (o2)f. For example, if &5 is a boundary edge, then
S —dsAYy — digA3; + 99,2
w3 2X12A21 ’

where, d5 = F[f] (V1, Ri2, R12) and dig = F [f] (Va, R12, R12). The other coefficients are ob-
tained in the same way, which completes the proof. O

2.4.2 Quasi-interpolation based on point values

For each vertex V;, consider a P4-unisolvent set {Zﬁa, =1, ..., 15} of points in R? (i.e.

satisfying the Geometric Configuration, see [49]). The fifteen points are chosen in a neighbour-
hood of the union M,, of all triangles in A having V; as a vertex. Then, there exists a unique

2,00

polynomial that interpolates the value f (Zﬁa) at at every point Z¢,, 1 <i < 15, and it can be

written as

15
Ii,af = Z f (Zﬁa) Lf,oﬁ

(=1
where the fundamental polynomial Lf,a fulfills the conditions ija <Z5a) = O, k, 0 =1,...,15,

and 0 stands for the Kroneckers’s delta. Moreover, let W,f@, {=1,...,5, be five distinct points
in the line <QZ71, Qz72> with respect to the edge ¢k, and Lﬁﬂ be the corresponding fundamental

5
polynomials. Then the unique polynomial of degree 4 that interpolates f at points {Wlf’o_‘}e .
is given by -

5
jk,o_z f (l’,y) = Z f (Wlf,c_v) Lﬁ,& (JI,y)
=1

The following result follows from Theorem 2.4.1.

Proposition 2.4.2. The quasi-interpolation operator Q° having the form (2.8) with

15
Nof = F(2l,)B L, (Vi2), @file), Qfalaz), Qslas))
/=1
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and .
2& Z [ fa} (Vk,l, Vi.2, @271[@1}, Qi,z [%])
=1
is exact on Py.

From Lemma 1.3.1, we easily compute B [Lﬁa} <Vi[2], ijl[oq], QfQ[ag] Qfg[ag}) and B [Lf@} (Vk,l: Vi,

Recall that the fundamental polynomials Lf,a associated with points Z; o L =1,...,15, can be
written as 0 s s 4
Lé (x y) o R'L:a (:1:7 y) Ri:a (‘,1:7 y) Rz ,Q (‘T y) Rz:a (:‘U7 y)
ha\d) = T ) 03 2,4 )
Ri,a(Zie,a) Ri,a(Zﬁa) Ri,a(Zz{a) Ri,a(Zﬁa)
where RZ o1 =1,2,3,4, are four lines containing Zija ,7=1,..., 15, with j # /.

Next, we propose a way to minimize the number of needed point evaluations with respect to
a vertex (see Figure 2.9).

Proposition 2.4.3. For eachi=1, . m) assume that the points ZZ wtl=1 , 15, satisfy
the GC' condition and that the poz’nts { =1, , 5, are collinear with V; and Q7

1,2,3. Then, it holds

’LOU zn}n_

B [Lf,a} (%[2],52%’,1[041], Qf alea], ng[ag]) =0, (=6, ..., 15. (2.13)

Proof. For each i = 1,...,nv and a € {(2,0,0),(0,2,0),(0,0,2)}, assume that Z m, =
1,...,15,is aumsolvent set. If Zfa ,£=1, ..., 5, are collinear with V; and Q7 ,,, n = 1,2, 3, then
for { =6,...,15, one of the lines R 7 =1,2,3,4, is the line <VZ,Qla> where @} (2,0,0) = =Qy 1,

i.00

Q00,20 = Qé,z and @y 0.2) = Qr3- Then, (2 13) follows from Lemma 1.3.1.

We can choose the interpolation points as indicated in the following result.

Theorem 2.4.5. For each i =1, ..., nv, let Z; o, = { m,ﬁ =1,. 15} be the set defined as
follows for indices k, m, n such that k +m +n = 4:
kVi+mQ“1+nA71) if @ =(2,0,0),
EVi +mQy 5 + nAZ’g) , if a=(0,2,0),
Zly = ’

EVi+m@Qjy +nQiy), if a=(1,1,0),

1,

)

g I N S I SN I S SN TN

(
(
(KVi +mQys +nAis), if a=/(0,0,2),
(
(
(

)
kVi+m@Q} | +nQi3), if a = (1,0,1),
kVi + mQ; 2+nQ ) if a=(0,1,1),

where A;j,j = 1,2,3, are three auziliary points such that V;, Qj ; and A;j are distinct points.
Then, Z; o satisfies the GC condition and the condition in Proposition 2.4.5.

The functionals \; , have been computed by using the softawate Mathematica and the first
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Figure 2.9: Position of interpolation points.

two of them are given by the following expressions:

74 35 272, (3Vi+ Q 116 , (2V; + 20;
Ai200) = o f (Vi) + ?f(gi,l) - —f (Q1> == f (Q1>

9 1 I
176 , (Vi +3Qi1
i),
155 136 , (3Vi+ Q; 136 3V, + O
Mo = g PR = (@) - 0 g (HE S - ()
2Vi +29; 2V, +209; Vi + 39,
(i 5 () 8 (1

V+3Qz2 Qzl+3Qz2 16 Q22+3Qz1
() e (Basin) X, (Ba e

20,1+ 29; Vi+39Q; 2V; i i
4f(Q,1lL Q,2>f< +4Q1)+32f< +Q1+Q2)

Vi+20i1+ Qi2 Vi+ Qi1 +2Q;2
() - S ().

The other ones have similar structures. Analogously, for each edge ¢, we choose 5 collinear
points in the lines (Qf 1, Qf2)-

2.4.3 Discrete quasi-interpolants by polarization

Polarisation can be use to define a quasi-interpolant whose coefficients are linear combina-
tions of point values. The polarisation identity

B (p) (u1,u2,us, ug) = i Z (—1 4 k K p ( Z uz>

sC{1,2,3,4} (ASK]
k=|s|

has 15 terms and allows to define an operator M as follows:

1 _ 1
M [f] (u1,u2,uz,us) = By E (—1)4 K k4f <k‘ E uz> .
sC{1,2,3,4} ics
k=|s|

From Marsden’s identity, we have the following result.
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Theorem 2.4.6. The quasi-interpolation operator defined as

Of =Y > Xia (N Bio + D D ra () Bigs

i=1 |a|=2 k=1 |al=2

with M (£) = M) (Vil2), @2lon], Qlalao], Qlalos]) and pe (F) = MIF) (Vir, Vi,

Qz,l[dl]a Qz,z[@ﬂ), is exact on Py.

2.5 Numerical tests

This section aims to test the approximation power of the proposed quasi-interpolation opera-
tors. To this end, their performance will be examined using the well-known Franke and Nielson’s
functions [51, 52|, given respectively by

£ (z,y) = 0.75¢— 1((97=2)*+(9y=2)%) | ( 75025 9+1)—15(9y+1)
4 0.5e 1 (2= +(9y=3)") | (j 9= (92-4)"~(9-7)°

and
fo(z,y) = %0034 (4 (x2 +y— 1)) ,

whose plots appear in Figure 2.10.

Figure 2.10: Plots of the tests functions: Franke (left) and Nielson (right).

We consider the domain € = [0, 1] x [0, 1]. The tests are carried out for a sequence of uniform
1
meshes A, with vertices (ih, jh), i,7 =0,..., n, where h := —.
n
The quasi-interpolation error is estimated as max lf (v) = Qf (v)].
ve

The estimated errors and experimental decay for the functions f; and f5 are shown in Tables
2.1 and 2.2, respectively. They confirm the theoretical results.

Figure 2.11 shows the three meshes used to define quasi-interpolants for the test functions f;
and fy. Figure 2.12 shows the plots of the splines Qf; and Qfs for the finer mesh (i.e. n = 6).

The considered splines are C'-continuous, although they are of class C? everywhere except
across some edges of the refinement. In the next section, we will deal with the characterization
of Powell-Sabin triangulations allowing the construction of C? continuous quartic splines.

2.6 Full C? quartic Powell-Sabin splines

The construction of C? PS-splines needs to consider a degree equal to five. In [25], normalized
bases are constructed for these spaces, and polar forms are used in [31] to construct discrete
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Table 2.1: Estimated errors for Franke’s function and numerical convergence order with n =
3,...

Table 2.2: Estimated errors for Nielson’s function and numerical convergence order with n =
5, ...

, 8.

, 8.

n | nv | QI Theorem 2.4.3 | Decay exp | QI Proposition 2.4.2 | Decay exp
3] 16 0.20 - == 0.24 - ——

41 25 0.052 4.68 0.096 3.18

51 30 0.018 4.75 0.040 3.92

6 | 49 0.007 5.18 0.020 3.80

7| 64 0.003 5.49 0.010 4.49

8 | 81 0.00151 5.14 0.0052 4.89

n | nv | QI Theorem 2.4.3 | Decay exp | QI Proposition 2.4.2 | Decay exp
5| 30 0.0413 - — = 0.1210 - — =

6 | 49 0.0207 3.97 0.0612 3.73

7| 64 0.0105 4.49 0.0324 4.11

8 | 81 0.0057 5.19 0.0166 5.02

Figure 2.11: Meshes for n = 2,4,6 (from left to right).
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(b) QI Proposition 2.4.2

QI Theorem 2.4.3

(a)

(d) QI Proposition 2.4.2

(¢) QI Theorem 2.4.3

Figure 2.12: Quasi-interpolants for Franke’s function (top) and Nielson’s function (bottom).
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and differential quasi-interpolants reproducing quintic polynomials. Interpolation with quintic
PS-splines are addressed in [53].

The construction of C? quartic PS-splines has only been studied very recently, using the
idea proposed in [27, 98] to deal with the cubic case, namely to impose additional smoothness
conditions at the nodes or inside each triangle.

In [32], this strategy is adopted to construct PS-splines that are almost C* continuous.
Actually, the resulting functions are only C' continuous, although they are of class C? except
across some edges of the refinement.

In some sense, the characterization obtained here can be seen as a continuation of the work
[57]. Indeed, in [57] C? quartic splines on a modified Morgan-Scott refinement is discussed. The
linear functionals involved in the Hermite interpolation problems in [57] and in this paper are
the same, only the refinements are different. Unfortunately, the space developed in [57] is only
defined under specific geometrical conditions. When the three inner points used to define the
refinement collapse, this space is not defined, and this is the starting point for the work done
in this paper. The construction of C? quartic splines over refined triangulations with modified
Morgan-Scott split is also studied in [58] (see [59] in the case of C' quadratic splines). The
authors in [58], first, they analysed the construction of C? quartic splines on a single macro-
triangle endowed with a modified Morgan-Scott split. Then, they examined the problem of
how to join the local C? interpolating splines on macro-triangles to a quartic spline that is C?
continuous everywhere. Unfortunately, this results in a global system of linear equations, whose
solvability, in general, is very difficult to analyse theoretically. This is because, the linear system
depends on the positions of the triangle split points and the edge split points that determine the
modified Morgan-Scott split. The relationship between the triangle split points and the edge
split points involved in [57] can be viewed as a special case where this linear system has a unique
solution.

Several families of PS-super splines of arbitrary degree (and corresponding regularity) have
been introduced in the literature [26, 42], and also quasi-interpolation operators based on PS-
splines of arbitrary class r and degree 3r — 1 have been defined [36].

The main objective of this section is to characterize the geometry of Powell-Sabin triangu-
lations that allows C? class bivariate quartic splines to be defined.

In [32], a normalized basis of the subspace

S1? (Aps) = {s € 5} (Apg): s€ C2(VUZUEUEN}.

of S} (Apg) is constructed. Its dimension is equal to 6nv + 3ne. The splines in this subspace are
C? continuous everywhere except across the edges that connect the split points and the vertices.
We consider the following subspace of S i’z (Aps):

SE23 (Apg) = {s € SM? (Apg):se €3 (5*)}. (2.14)

Here, C®(£*) means that for any edge ¢ € £* the polynomials over the two micro-triangles
sharing ¢ have common derivatives up to order three along e. Splines in 51’2’3 (Apg) are c3
continuous at the set of edge split points and C? at the set of triangle split points.

This is not a classical super spline space because additional continuity has been imposed
across certain, but not all, interior edges of Apg.

A spline s € 541’2’3 (Apg) can be defined by means of the following Hermite interpolation
problem.

Theorem 2.6.1. There exists a unique spline s € Si’2’3 (A ps) solving the interpolation problem

DDV s (Vi) = f0, i=1,...,nv, a>0,b>0, a+b<2, (2.15)

)

D? $(Rmn) =9gmn forall Rypn € R, Rppn € (Vin, Vi),

Wm,n,q
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Figure 2.13: The subset Dy 7 relative to a macro-triangle 7' of Apg. The B-ordinates of the
restriction to T of a spline s € S i’2’3 (Apg) are determined for the specified subsets of domain
points from the interpolation conditions at the vertices and the regularity of s.

for given values fi“’b and gmmn, Wmnq being a unit direction parallel to (R, n, Zq), where Zg is
the triangle split point of a triangle T, having (Vy,, Vy,) as an edge.

Proof. The proof will be done on a single macro-triangle. Its extension to the whole triangulation
is deduced from Theorem 1 in [32]. To prove the insolvency of the interpolation problem on a
macro-triangle 7', we only need to determine the BB-coefficients on T' of a spline s satisfying
(2.15). For the sake of simplicity, and without loss of generality, consider a single macro-
triangle T (Vi, Vo, V3). On each micro-triangle in T, the spline s is a quartic polynomial (see
Figure 2.13). We will show how the BB-coefficients of s are uniquely determined by conditions
(2.15) and the smoothness requirements.

Since the spline s is C? continuous at vertices Vi, i = 1,2, 3, then the values and derivatives
up to order 2 at each vertex in (2.15) are uniquely determined by the BB-coefficients relative to
the domain points lying in the disks of radius 2 associated with the vertices of T', i.e. the subsets
each consisting of the nine domain points lying in each of the coloured neighbouring regions of
the vertices shown in Figure 2.13, and which are represented by the symbols e and o.

To deal with C? smoothness at triangle split point Z, we define the triangle with vertices

Vit Z

Wi 5

, 1=1,2,3. (2.16)
The BB-coefficients relative to the domain points in this triangle are computed by our construc-
tion. Also the BB-coefficients marked with B are determined from the second derivative of s in
the specified direction given in (2.15), to give six independent constraints that yield a quadratic
polynomial py in T (W1, Wa, W3) from which the BB-coefficients related to the domain points
ordinates indicated by U in Figure 2.13 are determined.

The remaining BB-coeflicients, indicated by A, and placed in the Oth and 1st rows parallel
to edge (Vi,V;) are computed from C® smoothness conditions along (R; ;, Z). For £ = 0, let b},
k =1,...,7, be the seven central BB-coefficients placed on Oth row parallel to edge (V;, V}).
They can be considered as the BB-coefficients of the univariate cubic polynomial pg defined on

the segment [VV&,WSA with

WY, =2

1 ~ 3
ij Z‘/l + ZR’L’J and Wl?] :

1
=Vit B

having BB-coefficients b, b9, b2 and b9 (see Figure 2.14). After subdivision, b3, b} and b2 result.
This construction ensures that the spline is C* at R;;. To determine the BB-coefficients by,
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Figure 2.14: The seven central BB-coefficients placed on ¢th (¢ = 0,1) row parallel to edge
(V1,V2).

k=1,...,7, associated with the domain points lying on the 1st row parallel to edge (V;,V;), a
similar approach is applied, by considering the points

j~ 3 1 - 3 1
VVzlg = ZVZ + EZ and Wllj = ZVJ + sz

and the polynomial pé defined on [Wzlj, Wzlj} with BB-coeflicients b%, b%, bé and b%. The BB-

coeflicients bf, bg, bg and b% , £ = 0,1, have been already determined by the interpolation con-
ditions (2.15) at V; and V;. This construction ensures that the spline is C* across the edge
<Ri,j7 Z >
The construction above is carried out on a the macro-triangle 7. The rest of the proof runs
as in [32, Thm. 1].
O

In what follows, we divide the work into two parts. In the first one, we discuss the space of
quartic Powell-Sabin splines on a single macro-triangle T', wherein we investigate the necessary
and sufficient conditions to achieve global C? smoothness on 7. The second part is devoted to
extend the results obtained for a macro-triangle to the whole triangulation.

2.6.1 The Powell-Sabin space on a single triangle

As mentioned earlier, we are looking for geometrical conditions ensuring that Si’2’3 (Apg)
becomes of C? continuity. To do that, we start by analysing the Powell-Sabin space relative to
a single triangle by defining an appropriate basis for it, then, we will generalize the obtained
results on the whole triangulation.

Consider the macro-triangle T' (V1, Vo, V3), with Vi = (x1,y1), Vo = (22, y2) and V3 = (x3,y3)
(see Figure 1.5). The barycentric coordinates of the vertices V1, Vo and V3 w.r.t. T are (1,0,0),
(0,1,0) and (0,0,1), respectively. Suppose that the barycentric coordinates of Z = (z,,¥,)
are (21,22,23), and let (A1 2,X21,0), (0,A23,A32) and (A13,0,31) be coordinates of Rio =
(z1,2,Y1,2), Ra3 = (223,923) and R31 = (231,93,1), respectively. Moreover, we can write

Rio =ma1Votm1Ros+71314, Rog = TioV3+moR31+73274, R31 = T13Vi+To3Ri2+7337,
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Figure 2.15: The B-ordinates relative to micro-triangles ' and t® sharing vertex V; are shown.
The other follow cyclically. The control net triangles involved in the C' continuity conditions
between s and s® are shown in blue.

where
Mpz3 +A32 (Ao1 +21— 1) Ai2zz A
(Tl,la 72,1 T3,1) = s 3 )
A3,221 A3 221 21
—2z3M23 + A3222 — A31 (22 — A23)  A2321 Ao
(T1,2, To2, T32) = ( ( )7— ; ; (2.17)
A1,3%2 A3z 2o
A3,1 (22 — A21 A3,122 A3l
(71,3, T2,3, 13,3) = <¥ +1, - — .
>\2,123 )\2,12:3 23
Let us suppose that T is decomposed into the following micro-triangles ¢/, £ =1, ..., 6:

t' (Vi, Ri2, Z) ,t* (R12, V2, Z) ,t* (Va, Ro 3, Z) ,t* (Ro 3, V3, Z) ,t° (V3, R31, Z) ,1° (R31, V1, Z) .

Let s* be the restriction of s to t’, and sﬁj’k, i+ j + k =4, be its BB-coeflicients.
The continuity of s on T is easily expressed in terms of the BB-coefficients. For instance,
the continuity across the micro-edge (Z,V}) is equivalent to the fulfillment of conditions

1 _ .6 s
S1-4,0.j = 04— J =05, 4.

The conditions yielding the continuity across (Z, R12), (Z,Va), (Z, R23), (Z,V3) and (Z, R3 1)
are similar and involve the BB-coefficients of {51, 52}, {52, 53}, {53, 54}, {84, 35} and {85, 36},
respectively (see Figure 2.15).

We also recall that the C' continuity of s across (Z,V;) is expressed as

6 _ 1 1 1 s
S13-jj = T1,354—j0; T T2,353_j1; + ™353 50,41, J=0,1,2,3,

where the barycentric coordinates (713, 72,3, T3.3) of Rz 1 with respect to t! (Vi, R12, Z) are
given in (4.2). Similar expressions are obtained for the C'' continuity across the micro-edges
(Z,R12), (Z,Va), (Z, Ra3), (Z,V3) and (Z, R3 1) that use the barycentric coordinates of V5, R 3,
V3, R31 and Vi w.r.t. t1, ¢2, 43, t* and t°, respectively.
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Definition 2.6.2. Let C1, Co and C3 be the unique solutions given by Theorem 2.6.1 associated
with the interpolation data f?’b =0,9=1,2,3,a,b>0,a+b<2, and

24X 2021

ST e P
24)\2,3)\3’2

923 = 7 ZRyg2? 2T 917 0,
2403113

g12=923=0,

Pz = Ra?
respectively. We call Cp, £ = 1,2,3, the blending functions of the first kind relative to V.

The f—values yielding the blending functions above are all equal to zero. New blending

functions results when all g—values are zero.

Definition 2.6.3. Let Dy be the unique solution given by Theorem 2.6.1 associated with the
values g12 = g23 = g31 =0, f;’b = fga’b =0 fora,b>0anda+b<2, f{)’o =0, and

10 4

1 = E (yl - yz) )
4
A= F (21 —x2),
2.0 12
20 = 5 =) Quann + (L4 o) v — 2010)
1
11 12
fi7 = 72 (—x2 (>\1,2 (Y= —y1) = 2y- + 1 + y1.2)
1
+x1 (—)\Lle — )\2713/;; + yr) + T, (yl - yz)) 5
12
ff’Q = ) (1 — x) ()\1,2561 +(1+ )\2,1) Tz — 2.%172) )
1

with
Fri=a. (yi2—y) + 21 (= —yr) + 212 (Y1 —92) -

We call Dy the blending function of the second kind relative to V.

For vertices V5 and V3, the blending functions of the second kind Dy and D3 are defined re-
spectively as solutions of the Hermite interpolation problem in Theorem 2.6.1 with the following

datasets:

1. g12 = 923 = g3,1 :0, f{b’b = f;’b:() for CL,bZ 0 and a+b§ 2, f;),O :0, and

10_ 4
2 = Fz (y2 - yZ) )
4
0
f2’l = —E (72 —z2),
12
30 = 23 (2 =) gz + (14 Aa) v — 2023)
2
11 12
B'=2 (=22 (M2 (Y — y2) — 2y. + y2 + y2,3)
2
+z2 (=A1202 — A2.1Y: + Y2,3) + 723 (y2 — ¥2))
12
fg’2 = ﬁ (552 — xz) ()\1,21“2 + (1 + >\2,1) Lz — 2$2,3) )
2

with Iy :=x, (y2,3 — y2) + @2 (Y= — y2.3) + 223 (Y2 — ¥2) -
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Figure 2.16: Bernstein-Bézier coefficients of blending function C;.

2. gi,2 = 92,3 = 93,1 :0, ff’b:fg’b:Ofor a,bz()and a+b§ 2, f??’o :O7 and

10_ 4
3 = Fg(yg_yZ)’
f' = —;3 (23 — ),
3= 22 (ys = y2) (Arays + (L4 A21) = = 245.),
f;’l _ 11722 (—z, (M2 Yz —y3) — 2y + Y3 +y3,1)
+a3 (—A12y3 — A21yz +y31) 231 (Y3 — ¥2))
797 = o s =) Oams (1 do) = 203,

with Fy =z (y3,1 — ¥3) + 23 (Y- — y3.1) + 3,1 (¥3 — ¥2)-

On each micro-triangle t‘, 0 =1,...,6, the splines C; and Dy, are quartic polynomials that
can be represented according to (1.1). The corresponding BB-coefficients are schematically
represented in Figures 2.16 and 2.17, respectively. They are given by

di = X1, d5 = Ai2, d3 = 22, df = A 222+ A2121, d5 = 21, df = A1 322, d5 = 21A23, dg = 22122,
and

v v v 2 v 3 v v v 2 v 3
dy =1, dy = Ao, d3 =X, dy = XN g, d5 =723, dg =Tog M3, d7y =Ta3A(3, dg =Ta3A73.

Figure 2.18 shows the typical plots of blending functions.
S i’2’3 (T') is a linear space with dimension equal to 21 and its subspace P4 has dimension 15,
so we can think of extending a basis for P4 to one for S i’2’3 (T).

Proposition 2.6.4. It holds that

Si,273 (T) — P4 S span {D17D27D37C17C2)C3}’
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Figure 2.17: Bernstein-Bézier coefficients of blending function D;.

=

=
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Figure 2.18: (Top) Blending functions C; and (bottom) D;.
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Proof. As all functions Dy and Cy are in Si’2’3 (T), it only remains to show that no non-trivial
linear combination of those functions is in P4. Assume that there exist non-zero coeflicients d;
and ¢; such that

P:=diDi +doDy + d3D3 + ¢1C1 + c2Cy + ¢c3C3 € Py.
Then, in particular, P is of C* continuity across (Z, R12), (Z,Ra3) and (Z, R31), so that
_ dl)‘iQ daz3A12
>\§171 21221032
A3 (32103 5 + d2zad1 303 )
0= 1
221,373 9
d12’2>\i3 + d323)\2,1>\32,,1

23A2,1 )\371

)

The determinant of this system of linear equations is equal to

(1—=221) (1 —A32)

a )\§2+b A32+c),
L, )

where
a=—2X3,031 +2X31703 1 — A3 1 + 203 1 ho1 — A3,
bi=203 103 —4ho1 A3 + 203,
ct—A5 A5 +2X01A5 ) — A3
The discriminant of equation a )\:2;,72 +b A32 +c=0is given by
A=—4(1-X21)%A5, (1= Ag1) %73,

so that it is negative. Therefore, the unique solution is di = dy = d3 = 0.
Taking into account the latter, the polynomial function P can be rewritten as

P=c1C; + c2Co + c3Cs.
The C* smoothness of C; across (Vi, Z), (Va, Z) and (V3, Z) yields
0— 2)\31 (2’3 ()\371 (6222 + c3 (—2’2 + 23+ 1)) — 20323) “+ 129 (42’3 - (—32’2 + 23+ 3) )\371))

25 ’
1
0=7 (=275 (—er21 (22 + 223 — 2) Aot + 22) + 23 (c2 (22 + 423 — 4) Aoyt + 322) — €321M12)))
1
1
0= ng (—2)\373 (012’122/\273 + c321 (—323)\2,3 + 4,22)\3,2) + co29 (23 — (2,22 + 2:3) )\372))) .

This linear system has the following determinant

32(Xgq — 1) 3)\31 (A32—1)3

a+bra1),
zgzg’ (z2+23—1)3 (a + 2’1)
where,
a:= 29 (—2A31 + 23 (—A31) + 222731 + 323) (223A3,2 + 32232 — 223) ,
b= —2Z3Z%)\3,1 — 52’32,22/\3’1 + 82322)\371 -3 (23 — 1) z3 ()\3,2 — 1) ((23 + 2) )\3,1 — 32’3)

— 32%22 + 323}\371)\372 + 52’32’%)\372 +3 (323 — 4) Z%)\g’l)\gg + 23 (1723 — 14) 22)\ng
— 12232031732 + 922A3 1A3.2.
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R3

Figure 2.19: BB-coefficients involved in the C* and C? continuity conditions between the re-
strictions of the spline to the micro-triangles ¢! and 5.

S| Rl

The determinant is equal to zero if and only if A1 = — Since A2 is in (0, 1), the value

a
of = must be in (—1, 0) for all possible values of parameters za, z3, A32 and A3, which is

not true (for instance, for zp = 0.802, z3 = 0.493, A\32 = 0.293 and A3; = 0.45 it holds
& —1.07038 ¢ (—1, 0)). Then, it follows that ¢; = ¢a = ¢3 = 0. The proof is complete. O

S

In general, the functions in Si’2’3 (T) are not in C? (T) [32]. Therefore, it is reasonable to
study under which conditions on the Powell-Sabin refinement of 7" the splines in S 41’2’3 (T') are
C? continuous.

In order to achieve completely C? quartic Powell-Sabin splines, the blending functions need to
be C? continuous across the micro-edges (Z, V1), (Z, V3) and (Z, V3). We start by analyzing under
what conditions the C? continuity of blending functions D;, i = 1,2, 3, is achieved. Then we will
extract the relations between the first kind blending functions under the achieved configuration
so that the spline becomes C? continuous.

In Figure 2.19, a schematic representation of BB-coeficients involved in the C? smoothness
across the edge (Z, V1) is done.

Proposition 2.6.5. Blending functions of the second kind are C* continuous on T (V1,Va,V3)

if and only if o . .
Ao = ; A3l = , A3 =
1-— z3 1-— V)

1—21'

Proof. Consider D; and the structure shown in Figure 2.19. It is a C? continuous function across
(V1 ,Z) if and only if
Si2 = Tazsan + 2723713 850.

Note that s?,Q = T23\13 3%70 and 5%71 = A2 3%,0' That gives

A13— 2713
A2

)

Tos = (2.18)

Analogously, Dy and D3 are C? continuous functions across (Va, Z) and (Va, Z), respectively, if

and only if
A3 — 2719

. A3 — 2713
92 = — .
’ A3,1

2.19
Mo (2.19)

and T3 =
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Equations (2.18) and (2.19) can be reformulated as

A3122 + A1 (A31 (22 + 23 — 2) + 23)

= O,
A1,2A2,123
39 (A o1 — 2 — (A Azo—1
32(A21+ (A21—2)22) — (A21 +A32 — 1) 23 — 0, (2.20)
A2,3A3221
Aziza+ Ao (M31(z2+23—2)+23) 0
A1,2A2,123 .

The unique solution of (2.20) provides the values in the claim.

Conditions in Proposition 2.6.5 can be geometrically interpreted as follows.

Proposition 2.6.6. Functions D;, i = 1,2,3, are C* continuous if and only if the points in
each of subsets {V1,Z, Ra3}, {Va,Z,R31} and {V3,Z, R12} are collinear.

Proof. First, let us prove that the conditions are necessary. Without loss of generality, let us
consider the third of the subsets. We have to prove that V3, Z and R;2 are collinear. By
Proposition 2.6.5, the barycentric coordinates of Ry w.r.t. T are

1—20— 2z z z z
(A1,2,221,0) = (1 = Ao1, A01) = < E 2 0) = ( ! 7270>-

1—23 '1—2z3 1—23"1—23

Then,
L

Rio =
1,2 1— 23 1— 23

)

Va.

Moreover, Z = z1 V1 + 29V5 + z3V3. Taking into account the Cartesian coordinates of Z and the
vertices, we get

Rip— 7 = (2121 + 202 + (23 — 1) 23, 2191 + 2292 + (23 — 1) y3) .

1—23

Therefore, the slope of the straight line determined by Z and R is equal to

21y1 + 22y2 + (23 — 1) y3
21@1 + 2oma + (23 — 1) 23

ml’g =
On the other hand, the straight line determined by Z and V3 has the direction of vector

Z—Vs=zVi+2Vo+ (23— 1)V = (2121 + 2222 + (23 — 1) 23, 2191 + 2292 + (23 — 1) y3) ,

so that its slope is also equal to m; 2. Consequently, both the straight lines defined by {Z, R; 2}
and {Z, V3} have the same slope and pass through the Z point, and V3, Z and R; 2 are collinear.

Conversely, suppose that V3, Z and R; o are collinear. As proved above, the slope of the
straight line determined by V3 and Z is equal to m 2, so that its equation is y = my 22 + nq 2,
where n1 2 is computed by imposing that the line passes through V3 to get

y3 (2121 + 2292) — 3 (2191 + 22¥2)
2121 + 22m9 + (23 — 1) 23

nig =

Since Ry 2 = A12V1 + A2,1 V2 can be written in Cartesian coordinates as
(A2x1 + X222, Aoyt + A21y2) = (M 2zt + (1 — A 2) 22, Aioy1 + (1 — A 2) y2),
it must be fulfilled that

mi2 (A1221 + (1 — A12) 22) + 112 = A1oy1 + (1 — Ar2) vo.
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A straightforward calculation gives

The proof is complete.

O]

Once C? continuity of blending functions of the second kind has been characterized, we need
now to get C? continuity for the spline on 7. To this end, we should derive the C? smoothness
relations between the three blending functions of the first kind which are defined on a split
triangle that meets the conditions in Proposition 2.6.5.

Theorem 2.6.7. Assume that the PS-split Tpg of T meets the conditions in Proposition 2.6.5.

3
Then, the spline s = py + Z (diD; + ¢;Ci) ,ps € Py (T), in Si’z’g (T) is fully C? continuous on
=1
T if and only if
C122 = C3%3, Co23 = C1%1, C3zZ1 — C2%9. (2.21)

Proof. The C%-smoothness conditions across the edge (V1, Z) gives the equality

2
0 =735 (c122 + c323) + 273 3T2,3C1 A2,1.-

o . . 1 1—2=z z
Substituting 73 3, 793 and Ao 1 respectively by their values , 3, and 2 , we get
’ ’ ’ 1-— z9 1-— Z9 1-— z3
C122 = C323.
The other two conditions are derived similarly.
O

Under the hypothesis in Proposition 2.6.5, the general solution of system (2.21) depends on
one parameter o € R and can be written as (c1, ¢2, ¢3) = a (23, 21, 22), so that any C? continuous
: 1,2,3
spline s € S, (T') can be expressed as

3
s=pi+ > dDi+ab,
=1

where B := 23C; + 21Ca + 22C3 is a C? (T') continuous function associated to triangle 7' which
will be called blending function of the third kind. The condition imposed on the Powell-Sabin
refinement of T results in a lower dimension to S;*° (T'), 19 instead of 21.

The B-ordinates of B are given by

dy = 23A21, ds = 221A23A32, dg = 22A371, diz = 221 (A2,323 + A3222) ,
dy = 2z3XM12X21, de = 2123, dig = 22322, dig = 22129,

d3 = 2312, d7 = 2213, din =223 (A1222 + A2121), dis = 222 (A\1323 + A3,121)
dy = 21232, dg = 229X1 3731, di2 = 22123, dig = 6212223.

They are shown in Figure 2.20. The typical plot of a function B! is shown in Figure 2.21.

We have just proved that every spline s € Si’Q’?’ (T) is C? continuous on a triangle T for
which its PS-split meets the condition in Proposition 2.6.5. When the refinement of T" satisfies
the conditions of Proposition 2.6.5, the dimension of Si’2’3 (T') diminishes from 21 to 19, since
three B-splines of the first kind give rise to a single B-spline of the third kind, 5.

Now, it remains to prove that the spline s is also C? continuous over the whole triangulation
A if the split point of each macro-element of A satisfies the conditions in Proposition 2.6.5 and
the edge split points produced on common sides of two triangles coincide, i.e. if the opposite
vertices of each pair of triangles sharing an edge are aligned with the corresponding triangle split
points. Denote by Kps this kind of triangulation. Figure 2.22 shows a triangulation satisfying

these requirements.
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Figure 2.21: Blending function B’.

2.6.2 The Powell-Sabin space on the whole triangulation

This section aims to prove that each quartic spline space over EPS is C? continuous every-
where and C? at the edge split points. To this end, we will provide a general representation
of Si’2’3 (Apg) over an arbitrary PS-split Apg of A, and then we will prove that the provided
representation is totally C? continuous over lps. Moreover, the B-spline-like functions to be
constructed in this section will enjoy the usual properties required when dealing with the con-
struction of bases of spline function spaces. They will be non-negative, locally supported and
form a unit partition. Furthermore, any spline represented in these bases have a meaningful
geometric interpretation, can be locally controlled and evaluated in a stable way.

Since the dimension of Si’m (Apg) equals 6nv + ne, then such a representation will be

obtained by defining six B-spline-like functions B;,, |a| = 2 associated with each vertex and

7,00
another one, B, for each edge. The B-spline-likes B;, and Bj are called B-spline-likes with re-
spect to vertices and edges, respectively. The procedure to construct them follows the technique

in [27, 25, 32, 42, 55].
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Figure 2.22: Powell-Sabin triangulation satisfying conditions in Proposition 2.6.5.

B-spline-like function with respect to vertex

We outline the construction of B, in the spirit of [32]. For every vertex V;, let M; :=
Urea vier T be the molecule relative to V;, i.e. the union of all triangles in A containing V;.
For all vertex V; lying on the boundary of M; and for all T; C M;, let

1 1
Sie=5(Vit Riy) and  Lij = 5(Vi+ Z;),
Points Vj, S;, and L; ; are said to be PS4-points associated with V;. Let t; := (Q;.1, Qi2, Qi3)

be a triangle containing the PS4-points of V;. It will be called PS4-triangle. Denote by %i,a’
|a| = 2, the Bernstein polynomials of degree 2 with respect to ¢;, and define the values

b 12 1 a+b
yb = T G el (2) 20bB} (Vi) foralla>0,b>0,0<a+b<2. (222)
They are used to define the B-spline-like B}, as follows.

Without loss of generality, consider the vertex V1. BY , is defined as the unique solution of the

a,b

Hermite interpolation problem ( 2.15) with all f- and g-values equal to zero except f; b= Voo

g12 = By and g31 = B3, where the 3-values are chosen as follows.

Let T (V1, Va, V3) be a triangle included in the molecule M;. In each of the six micro-triangles
of T, Bf , is a quartic polynomial. The B-ordinates in its Bernstein-Bézier representation are
shown in Figure 2.23. Many of them are null. The non-zero B-ordinates are determined from
the given data and the smoothness conditions. Note that

12 12
Yy = —— (df; — 2d{5 + d} and (3% = ————— (dYs — 2d}, + db) .
B2 1Z = Rial? (di; i3 +djg) and f5,; 1Z = Ra? (dis 17 +d3)
The B-ordinates df,...,dg are computed from the chosen parameters 'yla:g, a>0,b>00<
a + b < 2. The ordinates dig, ..., dy5 are computed from C? smoothness at the triangle split

point Z. Let ps be the quadratic polynomial defined on the triangle (W7, Wy, W3) with vertices
W, = 3 (Vi + Z) in such a way that all B-ordinates are equal to zero except b oo = dy. Then,

by subdivision, the following relationships result:

18 = A2dy, dig = )‘%2 2 20 = )\%3 2 51 = >\213 2
92 = 21dy,  dyzy = Mazidy, dyy = Mzzidy, dyy = zidy.
The B-ordinates Y, . . . , d}; are computed from C3-smothness across (R 2, Z) and (R3 1, Z).
. . . . SVi+R SVa+ R
Let us define the univariate cubic polynomials, pg and pé, on the lines < ! 1 1,2 , 2 1 12 >
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%1

Figure 2.23: B-ordinates of a B-spline-like with respect to vertex Vj.

2+ R Z 2Vo+ R Z
and < 1tz 4 2t izt >, respectively, having B-ordinates

4 ’ 4
d¥ — A\ odb ~
by = ds, by, = 5T]1L?2 =:dj, b, =0, by =0,
and
de— Npady -
bo=dj, by, — 6T123 =:dy, bl,=0, bh3=0.
Then, after subdivision,
dip = A%,zdg +2X\1 200,142, djy = )\:1)),20”2) + 2)\%,2)‘2,1(?5
and . .
diy = A%,zdg + 2A1,2A2,1dg, diz = A?,zdg + 2)\%,2/\2,1658'
Similarly, . 3
T4 = AT adi + 2M1,303,1d8, t5 = AT 5di + 207 3Aa.1d3,
and ) .
dis = AT 3d5 + 2M\1 3A3,14g, diy = A} 3d5 4 207 303,148,
- d¥ — \q ad¥ ~ dy — M.3d}
where dg = 28— 21378 and dg = 29— 71374
A31 A3,1

The restriction of Bf , on T' can be written in terms of D;, i = 1,2,3, and B!. Then, Bi
is C? continuous on T, if and only if Tpg meets the conditions in Proposition 2.6.5. In what
follows, we will confirm this result.

The BB-coefficients involved in C? continuity conditions between the restrictions of By,
to the micro-triangles ¢! and t® are divided into three categories. The BB-coefficients lying
in the area in light red color satisfy the C? smoothness because they are computed from the
derivative values up to order two of By ,. The BB-coefficients lying in the area in blue color
also satisfy the C? smoothness. By construction, they are computed throughout the values of a
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Figure 2.24: B-ordinates of a B-spline-like Bf on the four micro triangles that have (V1, R 2)
or (V, Ry 2) as an edge.

quadratic polynomial defined on the triangle with vertices W; in (2.16). It remains to check the
C? smoothness conditions between the BB-coefficients lying in the area in green color. Using
equation (1.2), the remaining C? condition between the BB-coefficients lying in the area in green
color is given by

dis = 73 3dVy + 272,373 3ds + 75 3d89 + 273,371 3d% + L 3d4 + 271 372,34

By substituting the relevant BB-coefficients by their values, it is verified that the condition is
fulfilled. By Theorem 2.6.1, it follows that By , is globally C? continuous over Apg.

B-spline-like function with respect to edge

Let T (V4, Vo, V3) and T (V1, Va, Vi) be two triangles sharing the common edge ¢; = (Vi, Va).
Let B be the B-spline-like with respect to the edge ¢;. It is defined as the unique solution of the
Hermite interpolation problem (2.15) with all f- and g-values equal to zero except g12 = S 2.

Z—R
£ b2 (see Theorem 2.6.1). The [S-values can
12 = Rz

be chosen as in Definition 2.6.2. For instance we consider an arbitrary value for 3 .

For the sake of simplicity, we chose wp, n,q =

Let Z be the inner spilt point of T. The BB-coefficients of Bf on T are computed in a
similar way to those of C;. Now we deal only with the BB-coefficients associated with the
domain points located in the four micro-triangles that have (V1, Ry 2) or (Va, R1,2> as an edge.
They are schematically presented in Figure 2.24. In order to prove that Bf is C? continuous
across (V1, V4), we need to provide the value of df, d5, d5, cf, ¢5 and ¢§. The first ones are
B1,2 B1,2 B1,2

1Z = Rial?,  d§=

dé = =
2 12 24A172 3 24)\2,1

|1Z — Ripl?, df =

1Z — Rial>.

HRio=AZ+(1-]) Z, then, for the remaining ones we have

A2 A AN
6= (125) GIz-ral. d=(125) stz 6= (125) gatlz-mal®

1-A 12 1—=X) 24X 1—=X) 24X

The C? smoothness conditions across (V;, Va) are

€ )\ 2 e € )\ ? (& (& A ? (&
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The conditions are all fulfilled, which confirms that B¢ is C? continuous across (Vi, Va).
The value of 812 must be fixed in order to ensure that the B-splines form a partition of
24)\172/\271
12— Rial?
The blending function of the third kind B" associated with T is written as a convex combina-
tion of B-spline-like functions with respect to the edges of T' with a suitable choice of coefficients

unity. To this end, it suffices to chose 312 =

249 3
which guarantees that it is C? continuous on T'. Indeed, if we chose 923 = B3 = LMQ
1Z — R s
2431\
and g31 = (3,1 = ﬁ for the other two edges, then B! = z23B] + 2185 + 2285, and the
— 1131

C? smoothness is ensured.

Hence, it is stated that the B-spline-like functions with respect to the vertices and the
blending functions of the third kind are all c? everywhere. Furthermore, each quartic spline
defined on Apg is C? continuous everywhere and C? at the edge split points, so that it would

be appropriate to write SZ’S (Aps> for the spline space. Its dimension is reduced to 6nv + nt

because of the conditions imposed on Apg, which on a single triangle give way to a blending
function on the third kind B' instead of three B-spline-likes with respect to edges.

2.7 Conclusions and discussions

This chapter was divided into two parts. The considered splines in the first part are C'-
continuous, although they are of class C? everywhere except across some edges of the refinement.
In the second part, we dealt with the characterization of Powell-Sabin triangulations allowing
the construction of C? continuous quartic splines. Indeed, we have proved that under certain
geometrical conditions regarding the triangle and edge split points associated with an arbitrary
triangulation of a polygonal domain €2, the space of almost C? () continuous Powell-Sabin
splines introduced in [32] becomes a subspace of a C? (2). This has been done by constructing
for an arbitrary triangle T' endowed with a Powell-Sabin refinement a specific basis and deriving
the conditions that must be verified for the global regularity to be C? instead of C'. For a
triangulation whose triangles satisfy those conditions, the dimension of the corresponding space
of C? quartic splines is reduced.

Except in exceptional cases (including type-1 and criss-cross triangulations), the sub-trian-
gulation obtained by connecting the opposite vertices of each pair of triangles sharing an edge
of the triangulation does not satisfy the conditions in Proposition 2.6.5, which characterizes
C? continuity. In some cases it will be possible, resulting in a Powell-Sabin sub-triangulation
such that for each triangle the interior edges intersect at a point, as shown in Figure 2.22. In
other cases, Morgan-Scott sub-triangulations will be obtained, which easily give rise to modified
Morgan-Scott sub-triangulations [57]. In other cases, mixed sub-triangulations will appear, as
Figure 2.25 shows.

It has been proved that, when the triangulation fulfills the conditions of Proposition 2.6.5, it
is possible to construct C? quartic splines. If a Morgan-Scott sub-triangulation is obtained, then
it is also possible to construct such splines on the corresponding modified Morgan-Scott sub-
triangulation (see [57]). Otherwise, a mixed refinement will result. The work in progress deals
with the geometrical construction of a B-spline-like basis for the space of quartic splines that can
be defined over this sub-triangulation in order to get a normalized B-spline-like representation,
whose coefficients will be expressed in terms of polar forms.
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Figure 2.25: Example of a mixed triangulation arising when the procedure to get a Powell-Sabin
sub-triangulation allowing C2-quartic splines is applied.



Chapter 3

Quasi-interpolation in a space of C?
sextic super-splines over
Powell-Sabin triangulations

The application of splines in various fields requires efficient algorithms for constructing locally
supported bases for the spline spaces. The B-spline representation of bivariate C'' quadratic
splines achieved by Dierckx [23] was essential in the development of spline spaces on PS partitions
and applications. The method proposed by P. Dierckx is completely geometrical, it is reduced
to finding a set of PS2-triangles that must contain a number of specified points. Linear and
quadratic programming problems are the standard methods proposed by many authors in the
literature [23, 24, 25, 26]. The main idea of both methods is to minimize the area of a triangle
without imposing any condition concerning the diameter of the sought triangles. Moreover, the
quadratic problem only provides local maxima. In order to avoid this limitation, we will present
an algorithm that aims to produce PS6-triangles with small area and diameter, and compare it
with the one proposed in [43].

The study of spline function spaces on Powell-Sabin partitions obtained by refinement into 6
sub-triangles has attracted great interest in the scientific community since its introduction. The
cubic case has been considered in [24, 27, 28, 29]. Spaces of quintic splines have been analyzed in
[30] and more recently in [25, 31], among others. In [26] and [29], normalized bases for PS-splines
of degree 3r — 1 are defined and super-splines of arbitrary degree are given, respectively. After
the later, the paper [32] was published, where only almost C? quartic Powell-Sabin splines are
considered.

Quasi-interpolation over Powell-Sabin triangulations for specific spaces has been also studied
in depth [33, 31, 35, 50], as well as for a family of spaces [36]. The construction of such
operators is based on establishing Marsden’s identity. It is a powerful tool that allows to write
the monomials in terms of the corresponding B-splines. In this view, we will establish a general
Marsden’s identity in subspace of sextic super-splines from an easy approach based on a version
of the control polynomials different from the one used in [26].

In this chapter, we revise a subspace of C? sextic PS6 splines obtained by imposing additional
smoothness requirements at the interior points of the triangulation chosen to construct the sub-
triangulation and also across some edges of the refined triangulation. This subspace of super-
splines was studied in [42], where it is shown that every spline is uniquely determined by its
values at the vertices of the initial triangulation and the interior points and those of its partial
derivatives up to the fourth order at the vertices.

o6
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3.1 Explicit construction of a B-spline basis for a subspace of
Powell-Sabin super splines

Let Q be a polygonal domain in R?, and let A be a regular triangulation of Q. Let Apg be
the Powell-Sabin 6-split of A.
The space of sextic piecewise polynomials on Apg with global C'?-continuity is defined as

Sg (Aps) = {S € C2 (Q) D S) € Pg forallt € Aps}.

We now consider a particular super spline subspace of Sg (Q, Apg) introduced in [42]. As usual
V, Z, E*, nv and nt are respectively the subsets of vertices in A, split points in Apg, edges in
Apg that connect a split point Z; to a point R; ;, the number of vertices and triangles in A. As
given in [42], the space of PS super-splines is defined as

Set (Aps) == {s € SZ(Aps) :s€ CH(V), se C3(2UEM)}.

Each C? (Q)-function s is of class C* at any vertex in V and of class C* at any split point in
Z and across any edge in £*. In [42], by using minimal determining sets it was proved that

for given values fia’b, 1 =1,...,nv, and g;, k = 1,...,nt, there exists a unique PS6 spline
s € 85’4’3 (Apg) such that
Oups (Vi) = ff’b, 0<a+b<4, and s(Z;)= g. (3.1)

Therefore, the dimension of the space 85’4’3 (Apg) is equal to 15nv + nt.

A procedure for the construction of a normalized basis for the space Sg A3 (Apg) is then based
on the solution of the above Hermite interpolation problem for appropriate values f;" b and Gk
(see [42]). Non-negative and locally supported basis functions B ; and Bj, with respect to vertices
and triangles, respectively, that form a partition of unity are deﬁned, and any s € S5 24,3 (Apg)
can be represented as

nv nt
S_ZZ DB+ > B (3.2)
i=1 j=1 k=1
In what follows, we give a fully elaborate construction of such a normalized basis [25, 26, 42].
For every vertex V;, let M; := Urea v,eT T be the molecule of vertex V;, i.e. the union of all
triangles in A containing V;. For all vertices V;, ¢ € A;, (where A; is the set of indices for the
vertices that form an edge in A with V;) lying on the boundary of M;, let
Si = Vit Vi
The points V; and S, £ € A;, are said to be PS6-points associated with the vertex V;. Let
ti = (Qin, Qip2, Qi3) be atriangle containing the PS6-points of V;. It will be called PS6-triangle.
Denote by ‘Bfmmnb m+n+ ¢ = 4, the Bernstein polynomials of degree 4 with respect to t;, and
define, for all 0 < a + b < 4, the values

ab 4 ab 4 ab 4

&1 = Lap 8a,b%ti,4oo Vi), Q; o = Lap 8a,b %thgm(vz'); Q3 1= a,baa,b %ttho(Vi);
ab 4 ab 4 ab 4

Qg = Lad Da bgBti 130(Vi), Q5 = ab8 b%t- 040(‘/%)7 Qg = a,baa,b 53@-,031(%)7

(Vi)
(Vi)
a?jb i=Cap Oa b%t 022(Va), 0‘?&? i=CapOa bth 013(Vi), q’b i= Co,p0a bstfl- 00a(Vi),  (3.3)
(Vi)
Vi), a

a,b a,b
@; 10 = Lab 8a,b‘BtiJoa Vi), Oéz 11 = Cabaab%t 202(‘/;) a; 12 =C, baab%t 301(Vi),
a,b
;93 = Lapb 8a,b %i,zn Vi) aQ; 14 =Cq baab%t 121(Vz) o 15 =C, baa b%t 112(Vz‘):
30 9 a+b
ith Cg,p := - .
With Tab (6—a—b)(5—a—b)<3>

They are used to define the B-spline-like functions B} ; and BZ as follows.
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Figure 3.1: Representation of the Bézier ordinates of a B-spline relative to a vertex. The B-
coeflicients that are known to be zero are indicated by open o.

3.1.1 Vertex B-spline-like
v
2,77
of a particular Hermite interpolation with conditions given by (3.1). Firstly, all f; b are equal to

Every B-spline-like B, ;, 1 < j < 15, relative to the vertex V; is defined as the unique solution

zero except for £ = i, and fia’b = oz?j’. Moreover, if V; is a vertex of a triangle T} := (Vi, Va, V3),
then g; is equal to a value B,ﬁ ; to be precise later and the remaining g—values are all equal to
zero. The spline defined in this way is zero outside the molecule M; of vertex V;. Next, we shall
compute the BB-coefficients of B} ; relative to the triangles determining its support. For the
sake of simplicity, we compute only the BB-coefficients of the B-spline By ; relative to the vertex
V1 of a triangle 7). The corresponding Bézier ordinates are schematically represented in Figure
3.1.

From the definition of Bij, many BB-coefficients are equal to zero. Figure 1.4 shows the
refinement of 7, and we assume that the points indicated in the figure have the following
barycentric coordinates:

‘/1 = (17070)7 ‘/2 = (O> 170)7 ‘/3 - (O)O) ]-)7 Z = (21722723)7
Ri2 = (A12, A21,0), Rz = (0, A23,A32), R31 = (A13,0, A31).

Because of the C*-smoothness of the spline at Vj, the ordinates ci, ca, ..., co5 are uniquely
determined by the values a?’?, 0 < a+b < 4. The ordinates cgg, ..., c34 are obtained by the

C3-smoothness across the edge (Rya, Z).

Let us define three univariate cubic polynomial functions pg, pé and pg on the segments

<V1+2R12 ’ V2+2R12 >’ <3V1-|—261;%12-1—Z7 3V2+2é%12+Z> and <3V1+1%12+2Z7 3V2+}%12+2Z >’ respectively. Be-
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fore subdivision, their BB-coefficients were
0 0 A 0 0
bgg = c10, by =¢c17, by =0, b3 =0,

1 1 . 1 1
byg =c11, by =c1s, b =0, by =0,

b%O = C12, b%l = C19, b%2 =Y bgi’) =0,
respectively, where
by = c1y — )\12610, trs = c18 — )\12011, Gro = c19 — >\12612.
A1 o1 21

Therefore, we get

o6 = Mz2(e17 + A21é17),  car = Ay(cir + 2Aa1é17),  ca8 = Noéir,
29 = Mi2(c1s + A21618), €30 = Aip(cis + 2A21618), €31 = Aoéis,
32 = Ai2(c19 + A21619),  c33 = Aip(cig + 2A21¢10), €34 = A{plio.
The values css, ..., c43 are determined using a similar method. They are given by the fol-
lowing expressions:
car = M13(cas + A31625), €36 = Ai3(cas + 2\31é05),  c35 = Ai3éas,
ca0 = M3(c2s + A31624), €39 = Aig(c2a + 2X31804), C33 = Al3Cau,
c13 = M3(cos + A3123), a2 = Nig(cas + 2X31603),  ca1 = Aigéas,
with

) C25 — A13C16 . Co4 — A13C15 . C23 — A13C14
Cog = ————, (= ——""— == _———
A31

a1 a1 T
The remaining Bézier ordinates must be chosen in such a way that the B-spline is C3-continuous
at the split point Z. Therefore, let us first define the points

_Vi+~Z
=5
and let p3 € P3 be the polynomial of degree 3 defined over the triangle T (Wy, Wo, W3) with
ordinates

Wi -

i=1,2 3, (3.4)

b3po = €13, b210 = C20, b2o1 = €22, b120 = bo30 = bo21 = bo12 = boo3 = b1o2 = b111 = 0,

where
. c20 — A12€13 6 €22 — A13C13

Co0 = Mot ; 22 = a1 (3.5)

Following a method analogous to that used in [25] for the quintic splines, we get

cas = Ngc1s + 2M12A01800, ca5 = 12X0%ci3 + 3T A\01800, a6 = Aloéo0,

car =0, cas =0, cag = 0, c50 = A{3éa2, c51 = Afzc13 + 3AT3A31602,

csa = Agc13 + 2M13A31602, 53 = 21A12€13 + (2212 + 21A21)é20 + 23\ 12602,

c5a = 2105013 + (22015 + 210M12021)é20 + 23NT922, €55 = 1221620,

cs6 =0, cs7 =0, c53 =0, c59 = Mi3z1622, Co = 21AT5C13 + 22AT3800 + (23773 + 221 A13A31)E22,

co1 = 21\13€13 + 22M13C20 + (2313 + 21031)é22, Coa = 27c13 + 22129820 + 22123802,

cos = ziM2c13 + (22122012 + 25 Aa1) G20 + 22123\ 12602, Coa = 2720 + 22123602,

Cos = 23 Aa3C20 + 21 A32622, Co6 = 23C22, Cor = 21 M13C13 + 22122\13¢20 + (22123013 + 21 A31) a2,

Ces = Z%CB + 32’%2’2620 + 3Z%Z3622.
The choice ij = cgg provides the values needed to completely define the B-spline B ;.

Figure 3.2 shows typical plots of the fifteen C? sextic B-splines associated with a vertex of
the triangulation.
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Figure 3.2: B-splines relative to a vertex.

3.1.2 Triangle B-spline-like

For the sake of simplicity, we denote by by the B-ordinates with respect to a triangle (see
Figure 3.3). The B-spline-like B, with respect to the triangle T}, is defined as the spline satisfying
conditions (3.1) with all f;" b equal to zero, g = f; and the remaining g—values equal to zero.
It vanishes outside T;. In order to specify the value of B, we look at the Bernstein-Bézier
representation of the B-spline BL. We consider again the macro-triangle Ty, = (Vi, Va, V3), as
above.

Let us define again a polynomial ps € P3 of degree 3 defined on the triangle T' (W7, Wa, W3),
where W; are defined in ( 3.4), and having the following B-ordinates:

b3oo = b210 = b2o1 = b120 = bo30 = bo21 = bo12 = boo3 = b1p2 = 0, b111 = 1.
Also as in the above subsection, we get

b1 = A2123, b2 = 2X19A0123, b3 = A1223, bs = A3221, b5 = 2233221, bg = Ao321,
b7 = M1322, bg = 2A13)A3122, bg = A3122, big = 22223, b11 = 223(A1222 + A2121), (3.6)
bia = 22123, b1z = 221( 2323 + A3222), bia = 22921, bis = 222(A3121 + A1323), big = 6212223.

From the construction, it is clear that all the Bézier ordinates are nonnegative. Then, the
B-spline-like Bi is nonnegative. We can choose 8 = 6z12923.

For each vertex V; and each triangle T}, we define points Q; g = (X;3, Yig), with g :=
(B1, B2, B3), |B| :=B1+ Po+ 3 =4, and Q}, := (X,tc, th) in such a way that the reproduction
of the monomials x and y holds, i.e.

nv nt
Yo > XigBilg(ey) + Y XpBi(z.y) ==, (3.7)
=1 |B|=4 k=1

nv nt

SN VipBlg(ay) + Y VB (zy) =v. (3.8)
=1 |B|=4 k=1

Proposition 3.1.1. Let Q; (4.0,0); Qi (04,00 and Q; (0,0,4) be the three vertices of a triangle t;. If
the remaining points are defined by

1
Qip = Z(ﬂlQi,u,o,O) + B2Qi0,4,0) + B3Q4,(0,0,4))
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Figure 3.3: Schematic representation of the Bézier ordinates of a B-spline with respect to
triangle. The B-coefficients that are known to be zero are indicated by an open o.



CHAPTER 3. C° SEXTIC POWELL-SABIN SPLINES

Figure 3.4: B-spline relative to a triangle.

d
o VtVat Vs Z
G=""% T3
then (3.7) and (3.8) hold.
Proof. For all (z,y) € t;, we have
— B B2 B3 Dk
l‘—z [](Q ,(4,0,0)? Q(040 Q(004) ti,ﬁ($ay)' (3'9)

|8]=4

Using (3.3) and (3.9), we get (3.7). Now, to prove (3.8), we need to show that

3
Z Z XipBjg(r,y) + XL B (z,y) = 2121 + 222 + 2373. (3.10)
=1 |B|=4

Recall that, in the construction of B-splines in the above section, the value of a PS6-spline at a
split point Z is computed through a particular cubic polynomial evaluated at the split point. We
consider again the macro-triangle T, = (V1, Vo, V3). The two cubic polynomials corresponding
to the two PS6 splines in the equations (3.7) and (3.8) are denoted by p, 3 (1) and py 3 (7). They
are defined on the triangle with the vertices given in (3.4). The Bézier ordinates of p, 3 are given
by the following expressions:

1 1

b300 = 571 + 2(ZlfUl + 22m2 + 2373), b319 = 3 300 T bo30a 201 = b300 + 5003»
1 1 1

boso = 572 +5 (21331 + 222 + 2373), bigg = 3 300 + b030, 021 = 3 030 T+ 5003»

1

1 1
bEos = %3 + 5(7:11’1 + 2x9 + 2373), bigy = 3 300 3b0037 012 = 3 030 + 36003

By the definition of Q%, it holds
t 1 T T T
by = Xj = g( 300 1 b0 + b6os)-
Therefore, it is clear that p, 3(7) = 7153 + T2b330 + 36503, and (3.10) follows. Hence, (3.7) is

proved. Equality (3.8) can be proved in a similar way.
O

Figure 3.4 shows the plot of the C? sextic B-spline associated with a triangle of the triangu-
lation Aps.

3.2 Nearly optimal PS6 triangles

The construction of a normalized PS6 basis of 52 43(Q, Apg) is reduced to finding a set of
PS6 triangles that must contain a number of spec1ﬁed points. The set of PS6 triangles is not
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uniquely defined for a given refinement [62]. One possibility for their construction is to calcu-
late triangles of minimal area, the so-called optimal PS triangles introduced by P. Dierckx [23].
Computationally, this problem leads to a quadratic programming problem. From a practical
point of view, other choices may be more appropriate. An alternative (and easier to imple-
ment) solution is given in [62], where the sides of the PS triangle are obtained by connecting
neighbouring PS-points in a suitable way. This technique was adopted and improved in [43]. A
particular choice of the PS6 triangles can also simplify the treatment of boundary conditions
[61]. For quasi-interpolation (see [50]) the corners of each PS6 triangle are preferred to be chosen
on edges of the triangulation.

We will recall the standard method proposed in literature [23, 24, 25, 26] to construct PS6
triangles, and then we will introduce a novel procedure.

3.2.1 Quadratic programming problem

Consider points Q; ; = (X;;, Yi;), j = 1,2,3, yielding a PS6-triangle relative to the vertex
Vi = (i, y;) and triplets (I’M, r? Fvg’j), j=1,2,3, satisfying the following equality:

9,7
Fipn T2 Tug\ [(Xin Yii 1 i yi 1
i1 iy Tig| | X2 Yig 1] =1 0 0f. (3.11)
Ty, TY, T{3) \Xiz Viz 1 0 1 0
The area of the PS6 triangle being
-1
X1 Y1 1 Lip Tig TIigs 1

i X X
Xip Yip 11=\131 Iiy Iys = 7 7 R
XZ'73 }/i,?) 1 Fi,l Fi72 ].—‘2-73 3,17 4,2 3,17 4,2

(2
smallest area. Additional constraints are needed to get a PS6 triangle containing all PS6-points

with respect to V.
The classical construction due to Dierckx is then summarized in the next result.

then, maximize the objective function FilFaQ - F@Z{lf 9-”72 is one approach to obtain a triangle of

Proposition 3.2.1. The construction of an optimal PS6 triangle t; with respect to vertexr V; is
equivalent to the following quadratic programming problem: find triplets (Fm, Fij, F%), j =

1,2,3, mazximizing the objective function Fﬁlf% — F?IFﬁQ subject to the constraints

in+Tig+13=
le + F%’:Q + FZ?’ =0

and

ri; >0,

2
Lieg=Tia+ 5 (TZEJ (we — i) + T (ye — yi)) >0,
with j = 1,2,3 and for all vertices Vy = (xy¢, y¢) lying on the boundary of the molecule M; of
Vi, where (I'y1, Ti2, T'i3) and (Lig1, Lir2, Lies) are the barycentric coordinates with respect to
PS6-triangle t; of the PS6 points V; and Sy, respectively.
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Figure 3.5: The seven regions determined by the triangle T}, with associated signs

The objective function of the optimization problem can be written as max 2z Az, where

00 0 00 0
" 00 0 00 -1
#" = (i Tia T T T TY, ) and A= | 00 0 0]
00 0 10 0
00 -100 0

The eigenvalues of the matrix A are —1, —1, 1, 1, 0 and 0, so that A is indefinite. As pointed
out in [23], "since the Hessian matriz of the objective function is not negative (semi-) definite,
appropriate software can only find a local maximum”. Therefore, we cannot guarantee that
the quadratic optimization problem has a unique solution, which leads to a scenario of local
solutions.

The technique for determining PS6 triangles is not unique. An option for construct them
is to calculate a triangle with minimal area. Although the quadratic program of P. Dierckx
[23] produces excellent results, it can also produce PS6-triangle with quite large diameters.
Therefore, in order to overcome the limitation of the above optimization problem, namely, the
appearance of pre-degenerated triangles, i.e. triangles with minimal area and long diameters,
which impact negatively the quality of the approximation, we propose an algorithm yielding a
PS6 triangle with a diameter as small as possible.

3.2.2 Algorithm for determining a triangle containing a set of points

Given a triangle T, let {Qi}?zo be the interiors of the seven regions obtained by extending
the edges of T indefinitely (see Figure 3.5). Then, for each fixed 0 < i < 6, the barycentric
coordinates of all the points in €2; have constant signs. In particular, a point lies in the interior
of T if and only if its barycentric coordinates are positive.

The algorithm proposed here to define a triangle containing the points A;, 1 < i < n, starts

from an initial triangle and builds step by step triangles so that the triangle T); := <AJ , A, A§>,

j > 2, obtained at the j* step of the algorithm contains the points Ai,..., A;_1. Denote by
Qi, k=0,1,2,3, and Qi,k-‘,—l? k = 1,2, 3, the seven regions obtained by dividing the plan through
T; (see Figure 3.5).

More precisely, the procedure described in Algorithm 1 is carried out to determine a triangle
from the previous one.

Figure 3.10 shows the PS6 triangles produced by the algorithm when applied to the PS6
points close to those used in [43]. They have two or three edges in common with the convex hull
of the PS6 points.

Next, we give a result needed to determine triangles having nearly minimal area.
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Algorithm 1 DETERMINING THE TRIANGLE 7)1 FROM T}
Require: compute the barycentric coordinates of A; with respect to 7; and select the region
where A; is located.
if A; € Q) then
Aj is in Tj, do Tj;1 < T} and move to the next point Aj
else if A; € O3, then
1. Let I and J be the intersections of the line passing through A; and parallel to that passing
through {Ag, Ajl} with the lines passing through {Ag, Ajl} and {Ag, Ag}, respectively,
and let le 1 be the triangle with vertices Al T andJ.
2. Let L be the line passing through A; and orthogonal to bisector of angle spanned by the

lines <A§, A{> and <A§, A§> Let I and J be the intersections of L with the lines defined

by {A%, Ajl} and {Ag, Aé}, and define as Tj2+1 the triangle with vertices Ag, I and J.
3. Define T4 as the triangle of minimum area among le 11 and Tfﬂ.
The same process is used if A; belongs to Q1 , or 3 5.
else if A; ¢ Q?,) then
T}+1 = <A317 A%? A]>
The same procedure is applied if A; € Q{ or A; € Q%
end if

Lemma 3.2.2. Let a, A1, Ay, As and Ay be five points in R, Ifa € Tiji := (Aq, Aj, Ay) for
1,5,k =1,2,3,4 and i # j # k, then, a is in the triangle obtained by applying the algorithm
using Ty, and Ay, L # 1 # j # k.

Proof. For the sake of simplicity, consider only one of the four different triangles which can be
obtained from four points. Let T34 := (A1, A3, A4) be a triangle containing a. By applying the
algorithm proposed here to T134 and As, we can distinguish the following scenarios:

o If Ay € T34, then, the resulting triangle will be Ti34 itself.
o If Ay ¢ T34, then the obtained triangle will contain Tjs4.

In both cases the resulting triangle will contain T334, so will contain also a. The proof is
complete. 0

From Lemma 3.2.2, at step j in the algorithm, we use the four triangles obtained by a
permutation of the vertices of T; and A;, and we choose the triangle of small diameter among
the four ones.

Figure 3.6 shows the PS6-triangles provided by the proposed algorithm for the considered
triangulation. It can be noticed that the resulting triangles pass through at least three PS6-
points. They have near minimal areas and smaller diameters.

As said before, the quadratic optimization problem proposed by P. Dierckx [23] can produce
PS6-triangles with quite large diameters, and the algorithm proposed here aims to avoid this
problem even though the resulting triangles have no minimal areas. Figure 3.7 shows the results
provided by Dierckx’s method and the algorithm for minimizing the diameter when a near
degenerate vertex is considered.

Figure 3.8 shows the results obtained when the time of execution of both algorithms is
examined. The time required by Dierckx’ algorithm is more than 30 times longer than that
required by the proposed algorithm.

Other algorithms for determining PS triangles have also been described in the literature.
As said before, in [43], after Proposition 1, the authors outline an algorithm that produces PS
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Figure 3.6: A triangulation of a polygonal domain along with the PS6-triangles obtained by the
proposed algorithm.

A7

Figure 3.7: PS6 triangles associated with a near degenerate vertex obtained by quadratic pro-
gramming (left) and the proposed algorithm (right). The area of the triangle provided by the
Dierckx’s method is equal to 0.2344 cm? and the diameter is equal to 12.7857 cm. The area and
the diameter of the second one are 0.25 cm? and 7.9907 cm, respectively.

PL

Figure 3.8: Results produced by the proposed algorithm (left) and Dierckx’s algorithm (right).
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Figure 3.9: PS points close to those of the ones in [43].

Figure 3.10: Results produced by the proposed algorithm applied to a set of PS6 points close
to the points indicated in Figure 3.9.

triangles sharing two or three edges with the convex hull of the PS points. Next, we compare it
the proposed algorithm.

To do that, we consider PS points like those in Figure 1 in [43]. They are represented in
Figure 3.9.

Algorithm 1 provides the PS6 triangles shown in Figure 3.10. Each of them is produced from
a choice of an initial triangle. On the left side, we show those obtained after three steps starting
from the small dark triangle. We see that these PS triangles share two or three sides with the
convex hull of the PS points. On the right side, we show two other PS triangles produced by
the algorithm after four steps. They also share two or three sides with the convex hull. The
results provided by the algorithm in [43] and Algorithm 1 are similar, although the latter one
does not need to compute the convex hull of the PS points.

3.3 Quasi-interpolation schemes with optimal approximation or-
der

In this section, we give proof of Marsden’s identity for the space S§’4’3 (Apg), expressing
any super spline s in this space as a linear combination of the normalized sextic Powell-Sabin
B-splines defined above. The coefficients in that combination are given in terms of the polar
forms of s. Therefore, Proposition 1.3.1 facilitates the establishment of Marsden’s identity in
comparison with other existing methods (e.g. matrix inverse [24]).

Here, we use the same notation as in Subsection ??7. Let Q;;, j = 1, 2, 3, be the vertices of
a PS6 triangle t; w.r.t V;. Define

~ 1 3 ) .
Qi,j = —5‘/@ + §Qi,j7 1= 1,. .o,nu, = 1, 2, 3.
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We have the following result.

Corollary 3.3.1. For any p € Pg it holds

p=>Y_>Y Blp ( (2], Qia[B1], Qi2lB], Qi3 ﬁ3> vs T Z B [p] (Z[3], Vi1, Via, Vis) By,
i=1|8|=4
(3.12)
where Vi1, Vo and Vis are the vertices of the macro triangle containing Zj.

Proof. Define

s= 57 5 Bl (V2 Gua 1), Qiell, Qual)) Busle] + 3 B o] (Zuf3). Vi, Ve Vi) B
i=1|8|=4 k=1

We will prove that
8(171,8(‘/;) - a,bp(‘/ti)v 7::1,...,”1), 0§a+b§47

and
s(Zy) = p(Zy), k=1,...,nt,

from which the equality s = p will follow.
It is clear that

Z B[p ( ], Qi [B1], QialBo), st[ﬁs]) 5 (Vi)

181=4
Define . ) )
0 (X) = Y Blp| (Vil2), QualBu): Qialel: QialBal) Bl ().
181=4

From (3.3), for all 0 < a + b < 4 it holds

8a,qu (X)

a+b
= (6—a—b§)(()5—a—b) (;l) dap Y Blp < 1, QialB1], Qi2[Bal, @3[53]) tp(X)
181=4

B 6! (a+b)!(4d—a—b) [4\*

- (6—a—b)'(a+b)‘ A1 (6) .

Oup Y Blp] (Vil2), QialBi), QialBe], QuslBs]) B, 5 (X).

181=4

Now, we use the notion of control polynomial developed in [Lemma 1.3.1, Chapter 1]. Let

o =] (Vi) (Gvi+ 3x) )

be the control polynomial of degree 4 of p at the vertex V;. We can write ¢,; on the PS-triangle
t; as

Gvi (X) = Z B [Gui] (Qi1[B1], Qi2[B2], Qi 3[B3]) %iﬁ (X).
|B|=4

According to Lemma 1.3.2,

Qi (X) = > Blp] (Vil2), QialBi), Qialfe], QuslBs]) B, 5 (X).
|B|=4
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Using Proposition 1.3.1, we deduce that

4
6

30 a+b
aa,bp (V;) = ( ) 8a,bdvi (V;,) = aa,qu (%) = aa,bs (VYz) .

(6—a—0b)(5—a—0)

Now, it suffices to prove that s (Z;) = p(Z;). Without loss of generality, we shall prove the
equality only for one triangle in A. Let T' = (V7, V5, V3) be a triangle in A with split point Z;.
Then

s(Z1) = Y Blpl (Vil2l Qualdi], Gralfe), @13l8s]) Bi s (71)

|8]=4

+ ) Blp|(Va[2], Q2.[B1], Q2.2(82], Q2,3(85)) BY 5(Z1)
|B]=4

+ > Bl (V512 QalB). GaalBe), Qaalsl) By 5 (20) + Blpl (Z1[8), Vi, Va, Vo) B (21).
|B]=4

From Section 3, we have

> Bl (112}, Q1181 QralBal, QualBs]) BY 5 (21)
|8|=4

= C68

_ .3 2 ~ 2~

= zjc13 + 32722 C20 + 321 23C22

= 2B p| (VP, Z7) + 321 2B [p] (V, Va, Z3) + 32123B [p] (Vi V3, Z7) .

Similarly,
> Bl (Val2], Quali), @2alB2), QslBs]) Bs s (Z1)
|B]=4
= 22 [ ] (‘/2 aZI) + 32221B [p] (‘/2 ’Vlv Zl) + 3ZQZ3B [p] (‘/'2 aVv?nZl)
Z B [p] (‘/3[2]7Q3,1[51]7Q3,2[/32]7Q3,3[/33]> B3 5 (Z1)
|8]=4
= 2B ] (5, 27) +32521B [p] (Vi Vi, Z7) + 32322B [p] (V4, V2, Z7) ,
and
B [p] (Z1(3), V1, V2, V3) By, (Z1) = 6z12023B [p] (27, V1, V2, V3) -
By taking into account the multi-affine property of the polar form, the claim follows. O

Now, we state the following result, whose proof follows the idea used in [35] in dealing with
quadratic Powell-Sabin splines.

Theorem 3.3.2. For any super spline s € 53’4’3 (Q, Apg), it holds

nt
5= Z > Blsi (V2] QualBi), QialBa], QualBs]) Bia + > B3k (Zl3), Vi, Via, Vs) B
i=1|3|=4 k=1

where s; := S|, stands for the restriction of s to the triangle t; in Apg and S is the restriction
of s to a triangle t, = (Vi1, Via, Viks) containing Zj, .

Proof. Consider a spline s in 52’4’3 (Apg). Let t; be a triangle in Apg having V; as a vertex. Let
s; be the restriction of s to t;, i.e. the sextic polynomial such that

Oups (Vi) = Oapsi (Vi), s(Zx) =3k (Zk), 0<a+b<4
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Let p; be the restriction of s on t;. From Corollary 3.3.1, it is clear that for all (z,y) € Q and
r=1,...,n, it holds

Z > Blp] ( 1, QialB1], Qi2lBal, st[ﬁs) B 5+ Z B [pr] (Z1[3], Vi1, Va2, Vas) Bj..

i=1 |B|=4 k=1
Then,
pr (Vi) = 3 Blp,] (Vil2), QralBi), Qralfel. Qualsl) Bis (V1)
|B|=4
Therefore,
pr (Vi) = 3 Bls,] (Vo2 QualBi], QralB), Qrslfs]) Bl (Vi)
|Bl=4
Define,
Z Z B [s;] ( ], Qin[B1], QizlBol, st[ﬂz’,]) s (z,9)
= i
- Z B [si] (Zk[3], Vit, Vi, Vis) By, (%,y) -
It holds o )
a() =3 Bls] (Vil2), @hi81] QralBa), QralBs]) BLs (Vi)
|8|=4
Then, for all r =1,...,n,, we get

Similarly, we obtain
8a,bQ(Vr) = aa,bpr(vr) = aa,bsr(‘/;") = 8a,b5(vr)7 1<a+b<4,

and
0(Zx) = pu(Zk) = 5x(Zk) = 5(Z).

Since every element in S§’4’3 (Apg) is uniquely determined by its values and derivative values
up to order four at the vertices of A, then the claim follows and the proof is completed. O

Marsden’s identity is a useful tool for constructing quasi-interpolants to enough regular
functions (see [35] and references therein for details). We will use it to define differential quasi-
interpolants in 52’4’3 (Apg). Only an outline of the construction is given here.

Lef f € C%(Q) and L7 := (sz, Lj ), i=1,...,nv, j = 1,...,15, be some fixed points
lying in the union of all triangles in A havmg V; as vertex. Let us suppose that they form an

unisolvent scheme in Pg (R ) and let pl be the Taylor polynomial of f of degree 6 at L
. j j k j ¢
Py = Y. W,ﬁk of (L ) (:c - L,,x) (y - Lw) . (3.13)
0<k-+£<6

Let pi be the Taylor polynomial of degree 6 at the point Lj in the support of BZ,.
Define
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Figure 3.11: Plots of the tests functions: Franke (left) and Nielson (right).

Qf (w,y) :Z Z B [Pf] (‘/;[2]7Qi,l[xgl]yQi,Z[/BZ]in,?)[ﬁS]) B! (z,y) (3.14)
=1 |3=4
+ > Bpi] (Ze[3], Vi, Vi, Vis) B (2, y) -
=1

Let Qf be a quasi-interpolant defined by (3.14) and (3.13). Then, the quasi-interpolation
operator Q : C®(Q) — 52’4’3 (Q, Apg) defined such that Q(f) := Qf is exact on Pg, i.e.
Q(p) = p for all p € Ps. .

Moreover, if each L belongs to a triangle 77 in Apg with V; as a vertex, then Q (s) = s for

. 2,4,3
any spline s € S5 (Aps).

3.3.1 Numerical tests

The aim of this subsection is to test the approximation power of the proposed quasi-
interpolation operator. To this end, we will test its performance using the well-known Franke
and Nielson’s functions [51, 52] (see [Section 2.5, Chapter 2]). Whose plots appear in Figure
3.11.

Let us consider the domain Q = [0,1] x [0,1]. The test is carried out for a sequence of

1
uniform mesh A,, associated with the vertices (ih,jh), i, = 0,, n, where h := —. For each
n

triangulation, we have to compute the B-splines ny ; and B}fc with respect to vertices and split
points respectively, and the corresponding points PS6-triangles according to the minimal area
procedure described in this work.

The quasi-interpolation error is estimated as

Z,kinlz,i.?.{,BO |f (zo,yx) — QF (o, yk)|

where z; and y; are equally spaced points in [0,1]. The numerical convergence order (NCO) is

given by the rate
o E(2n)
NCO = 1Og2 <Ej(n)> N

where E (m) stands for the estimated error associated with A,,.

The estimated errors and NCOs for the functions f; and f; are shown in Table 3.1. They
confirm the theoretical results.

Figure 3.12 shows two of the meshes used to define quasi-interpolants for the test functions

J1 and fo.
Figure 3.13 shows the plots of the splines Qf; and Qfs for the two above meshes.
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Table 3.1: Estimated errors for Franke’s and Nielson’s functions and NCOs with n

1<m<3.

Franke’s function

Nielson’s function

n | nv | Estimated error NCO | Estimated error NCO
219 1.07 x 1071 — 1.50 x 1072 —

4125 | 847x107* 6.98 1.71 x 107* 7.08
8 | 81 7.05 x 1076 6.81 1.09 x 1076 7.20
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Figure 3.12: Meshes for n =2™, 1 < m < 2.

2m

Figure 3.13: Quasi-interpolants for Franke’s function (top) and Nielson’s function (bottom).
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3.4 Conclusion

In this chapter, a fully carried out construction of a normalized basis of the space Sg 43 (Apg)
introduced in [42] has been given and an algorithm has been proposed and compared with two
others in the literature. Also, an efficient manner to establish Marsden’s identity has been
detailed from which quasi-interpolation operators with optimal approximation order are defined.
Some tests show the good performance of these operators.



Chapter 4

Gaussian rules on 6-split

M. Barton and J. Kosinka have recently presented an optimal Gaussian quadrature for C!
quadratic Powell-Sabin 6-split macro-triangles [45]. Quadratic polynomials on triangles can be
integrate exactly by using a 3-point formula, so that the number of nodes is optimal. On the
other hand, on a single macro-triangle T' the space 521 (T) of C' quadratic Powell-Sabin 6-split
splines has dimension equal to 9, so that it is quite natural to ask whether the quadrature
formula exact for quadratic polynomials is also exact on 521 (T'). In the above-mentioned paper,
the authors set up a non-standard basis to Sa (T') in such a way that any of its basis functions is
integrated exactly by the quadrature formula exact on the space Py (T') of quadratic polynomials
onT.

Unfortunately, the existence of these quadrature rules depends on the choice of the inner split
point. More precisely, the authors have shown that the inner split point cannot be arbitrarily
placed inside the triangle but must be located inside a specific locus R (see Figure 4.1).

In order to avoid this limitation, we have studied the existence of micro-edges quadrature
rules in the context of a specific configuration. This configuration allows us to confirm that
micro-edge quadrature rules exist for an arbitrary choice of the inner split point.

2u—1 _‘
3(u=1) < v

|
0 v2-1 1 u 1

Figure 4.1: Two visualisations of the region R of all admissible inner split-points ensuring the
existence of a micro-edge quadrature for PS-splines [45, Fig. 7, page 247].

74
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4.1 Powell-Sabin 6-split

Sea A a triangulation with vertices V := {V;}, <i<nv- Let Apg be the Powell-Sabin 6-split of
A. Tt is well known that there exists a unique spline s € Sa (Apg) such that [18]
DiDb s (V) = f* i=1,...,nw, a,b>0and a+b< 1, (4.1)

(2

for given f-values. That is, given function values and partial derivatives at each vertex of
the original triangulation A, the Hermite interpolation problem (4.1) has a unique solution in
S (Apg) and from that one can also conclude that the dimension of S5 (Apg) equals to 3nwv.

4.2 Splines on a macro-triangle

We now consider the case of a single triangle T" with vertices Vi, Vo and V3 to deal with
S% (T'). Let Ry 3, R31 and R; 2 denote points interior to the edges opposite to the vertices V7,
V5 and V3, respectively.

Definition 4.2.1 (C-refinement). We say that the macro-triangle T' is endowed with a C-
refinement if the linear segments (V1, Ra3), (Va, R31) and (V3, Ry 2) intersect at a point.

Chosen a point Z interior to the triangle T', a C-refinement results if R 3, R1 3 and Ry are
taken, respectively, as the intersections of the lines defined by Z and the vertices Vi, V5 and
V3 with the the opposite edges. Note that, if on each edge of a triangulation an interior point
is chosen and it turns out that all the triangles are equipped with C-refinements, this does not
imply that the resulting sub-triangulation of A is of Powell-Sabin type.

C-refinements are characterized by the well known Ceva’s Theorem, proved by Giovanni
Ceva in 1678 (see [63]) and much earlier, in the 11th century, by Al-Mutaman ibn Hud (see
[64, p. 9]). However, to establish the main contribution in this paper, Ceva’s Theorem will be
characterized in terms of barycentric coordinates. For this aim, let us suppose that Vi = (x1,y1),
Vo = (x9,y2) and V3 = (z3,y3). The barycentric coordinates of vertices Vi, Vo and V3 with
respect to T are (1,0,0), (0,1,0) and (0,0, 1), respectively. Suppose that those of Z = (x,,y.) are
(21, 22,23), and let (A12,A21,0), (0,A23,A32) and (A13,0,A31) be the barycentric coordinates
of Ri2 = (z12,y12), Ro3 = (23,y2,3) and R31 = (23,1,¥31), respectively. It is straightforward
to prove that

Rip =11 Vo + 71 Ro3 + 73172,
Rog = 112V3 + o R31 + 1327,
R31 = 7Ti3Vi + maRig + 1337,

where

(e — A3 (1= A1 —21)  Ai223 Arp
(11,1, T2,1, T3,1) = - ;

) )
3,221 A3221 21
) —23X23 + A3220 — A31 (22 — A23)  A2321 A2
(T1,2, To,2, T32) = N b vvotivall B (4.2)
1,322 1322 22

A - A A A
(11,3, T2,3, T3,3) : (3’1(222’1)_1_1 _A31%2 31>

A2,123 T Xz’ 23
Then the following result holds.

Proposition 4.2.2. The macro-triangle T is endowed of a C-refinement if and only if

22 <1

)\2,1 = )\372 = 1 =3 and /\1,3 =

1— 23’ - 1— 29
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Proof. We prove first the necessity of the condition. Suppose that V3, Z and R; 2 are collinear.
The slope of the straight line determined by V3 and Z is equal to

2191 + 22y2 + (23 — 1) y3
21®1 + zowa + (23 — 1) 23

1,2

Its Cartesian equation is y = mq 2@ + n1 2, where n; 2 is computed by imposing that the line
passes through V3 to get

Y3 (2121 + 2292) — 3 (2191 + 22¥2)
21m1 + 202 + (23 — 1) a3 '

ni2 =

Since Ry 2 = A12V1 + A2,1 V2 can be written in Cartesian coordinates a
(A221 + A2 122, A 2y1 + A21y2) = (A 221 + (1 — A1 2) @2, A2y + (1 — Ai2) v2),
it must be fulfilled that
mi2 (M2z1+ (1 —Ai2)x2) +n12 = A2y1 + (1 — Ai2) yo.

A straightforward calculation gives
21

)\12: .
’ 1—2’173

We turn now to the sufficiency. By hypothesis, the barycentric coordinates of 21 2 with respect
to T are

1— 29— 23 29 Z1 zZ2
A2y Ao1,0) = (1= Aap, Ao, 0) = : )=\ 1=.0)
( 1,2, N\2,1, ) ( 2,1, A2,1 ) ( 1— 23 1— z3 > <1 — 23 1-— Z3 >

Then,
Z1 22

Ri9

)

= + Va.
1—23 ! 1—23 2

Moreover, Z = z1 Vi + 22V + z3V3. Taking into account the Cartesian coordinates of Z and the
vertices, we get

Rip—7Z = (21271 + 2072 + (23 — 1) 23, 2191 + 2292 + (23 — 1) 3) .

%3
1—Z3

Therefore, the slope of the straight line determined by Z and R; 2 is equal to mj 2. On the other
hand, the straight line determined by Z and V3 has the direction of vector

Z—Va=zu0Vi+2Vo+ (23 —1)Vz = (2121 + 2222 + (23 — 1) z3, 2191 + 2292 + (23 — 1) y3) ,

so that its slope is also equal to m; 2. Consequently, both the straight lines defined by {Z, Ry 2}
and {Z,V3} have the same slope and pass through the Z point, so V3, Z and R; 2 are collinear.
O

The rest of this section is will divided into two parts. The first one deals with the case where
Z is the barycenter, while the other situation is addressed in the second part.

4.2.1 Case where the inner split point is the barycenter

Let Cy, Co and Cs be the solutions of the following Hermite interpolation problems: for
1=1,2,3,
Ci(Vj) =0, DyCi(Vj) =0i;85, DyCi(V;)=06ijv, 7=12,3,
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0* *0  0° *0 0*
B 00 00 Bs2 00 00

Figure 4.2: Functions C; are uniquely determined by their values and their first-order partial
derivatives at the vertices of the macro-triangle. For each of them, next to each vertex, the
value at that vertex (top) and those of the first-order partial derivatives (from left to right) are
arranged in a triangular structure.

where § stands for the Kronecker delta function, §; := 3; (a;) and v; := 7, (a;) are defined as

4a1 4&2 4&3

Bri= 7 21 —y2—uy3), Poi= 0 (1 +2y2—93), B3:= - (—y1—y2+2y3),
1T T T
4&1 4a2 40,3

Moo= (F2m @+ as), yei= (00— 2mp +a3), 3= o (21 + a2 — 2a3),
T T T

|T| stands for the area of T', and a1, ag and as are free parameters (see Fig. 4.2).
Note that function C; depends on 3; and ~;, hence on a;, so that the notation C; ,, would be
required. However, where there is no doubt, any reference to such dependence can be omitted.
These functions have been defined in order to extend a basis of the sub-space Py of S3 (T)
to a basis of the whole space. More precisely, we have the following result.

Lemma 4.2.3. Let T be a macro-triangle endowed with a C-refinement. Then,
S3(T) = Py @ span {Cy, Ca, C3} .

Proof. As functions C; are in S3 (T), it only remains to show that no non-trivial linear combi-
nation of those functions is in Ps.
Assume that there exist non-zero real coefficients d; such that

P:=diCqy + doCy + d3C3 € Ps.

Then, in particular, P is of C? continuity across (Z, R12), (Z, Ry 3) and (Z, R3 1), from which it
follows that

2 (aldl + agdg) =0, 2 (a2d2 + a3d3) =0, 2 (aldl + CL3d3) =0.
Therefore di = do = d3 = 0. The proof is complete. O

On each micro-triangle of T, the splines C;, i = 1,2, 3, are quadratic polynomials that can
written in terms of the corresponding Bernstein polynomials according to (1.1). The B-ordinates
are schematically represented in Figure 4.3. Figure 4.4 shows typical plots of C1, C3 and C3, which
are said to be blending functions.

C; is a function depending of parameters 81 and 1, which must be chosen so that / C1 =0,
T

i.e.
6

3 1 1 3
—— | =A = —=A =\ =0
A(T) (2 2,123 + 9 1,273 5 1,322 + 5 3,1Z2> )

and also in such a way that C; vanishes across (V1, Z), (Va, Z) and (V3, Z). Similar constraints
are needed to determine (B32,72) and (f3,73) for Co and Cs, respectively.
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Figure 4.3: From left to right and from top to bottom, schematic representation of B-ordinates
of Cz"l, 1= 1, 2, 3.
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Figure 4.4: From left to right, the graphs of blending functions Cy 1, C2,1 and C3 .

4.2.2 Case where the inner split point is different from the barycenter

In this subsection, we address the general case, where the Z is not the barycenter, i.e.
the barycentric coordinates (z1, 22, z3) of Z are different from (1/3,1/3,1/3). To this end, we

shall use the blending functions C;, with appropriate parameters a;, to build suitable blending
functions in this case.

Definition 4.2.4. When Z is not the barycenter, the modified blending functions D; are defined
as

Dy =Cat+Cats Da=Crp2+Cypz, D3=Cpg3+Cou3+C3u

where . . ) )
a; = (1 — 22) (22 — 21), az = z5 — 23,
1—2’2 zZ3 — 21
a%:( )( ), a%:ZQ—Zg,
2’3—1

1— 2 29+ 1
a?:(1—22)<3—1_2/1—1_z3>, 3
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Figure 4.5: Schematic representation of B-ordinates of D;, i = 1,2, 3.

Also Dy, Dy and D3 can be represented on every micro-triangle of 7' from (1.1). Their non-
zero B-ordinates by, ¢y and dy, respectively, are schematically represented in Fig. 4.5 along with
the remaining ones. The non-zero B-ordinates of D; are

1- - 1- -
br=(1—22)(22—21), ba = 11~ 2) (2 ZI), by = 1= 22) (2~ 2) 2
1-— z3 1-— 21

I

(z3 —21) (1 — 229 — 21 23)

b4:(1—22)(2’3—22), b5:2’§—2’§, b6: ,b7:(2’3—1)(2’2—21).

29— 1
Those of Dy are
(1= 22) (23— 21) (21— 22) (1 — 2120 — 223) -2 B
cr = P ; C2 = (1—2)2 763—1723,04—2’2 Z3,
— 2
%zw, cg = 29 + = +3)2z3—1, ¢7 =23 — 1.
1—2’1 22—1
Finally, the non-zero BB-coefficients of D3 are
1—29 2941
dy = (1- 3— —
=) (32220,
& — (21— 22) (25 — 223 + 320+ (220 — 3) 25 + 3 (22 — 1) %23 — 1)
2 (1—23)2(1 - 21) ’
222 20— 23) (25 + (220 — 1) 2 1-— -
al3='23 Z2,d4=zzfz3,d5=(2 1) (2 + (22 )3)7d6:( )z = )
1—2’3 (1—21)2 1—21
23—21) (22 4+3(23—1)zp +2(23 — 1) 23+ 1 1— 22
d7:ZQ—Z3,d8:(3 1)(2 (3 )2 (3 )3 ),d9:222+32’3+ 22—
(22— 1) (22 + 23) 1—2

It is clear that the blending functions D;, i = 1,2,3, vanish across (Vi, Z), (Va, Z) and
(V3, Z). Moreover, / D; =0.

T
Figure 4.6 shows typical plots of D1, Dy and Ds.
From Lemma 4.2.3, the following result holds, whose proof is trivial.
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Figure 4.6: From left to right, the graphs of blending functions Dy, Dy and Dj.

Lemma 4.2.5. Let T be a macro-triangle endowed with a C-refinement. Then,
S5 (T) = Py @ span {Ds, Dy, Ds}.

In this scenario, every spline s € Sa (T') will be expressed as follows:

3
S:p2+z 6;D;, pQEPQ(T).
=1

Since py is a polynomial function, then, it can be written in Bernstein-Bézier representation
(1.1):
p2 = m1B2,0,0),7 T T2B0,2,0,7 + 73B0,02),7 + T1B1,1,0,7 + ™B0,1,1),7 + T6B1,01),7-

Then s (V;) = fZQ’O, 1 =1,2,3, if and only if m; = in,O.
The remaining interpolation conditions in (4.1) are satisfied if and only if

2 — 2 _
(yTTy 2 0 (yTT, v g (a1) 0 Bs(a3)
2 — 2 —
o) ZWZE o @) a6 o |,
2(ys—vy1)  2(y2—y3) 3 3 5
0 7| T A (al) 62(113) B3 (a3) 6
2(x1 —x 2(xe —x )
W 0 (TTll) v (a%) 0 V3 (aé) 5;
2 — 2 —
(xTT| z2) (xTT| 1) 0 7 (af) 72 (a3) 0 03
2 (33'1 — 1‘3) 2 (1'3 - .’EQ)
0 ‘T’ ‘T’ il (a?) 72 (aQ) 73 (ag)
10 2(¥2—93) .00
1 ‘T’ 1
10 23 —y1) 00
2 |T’ 2
10 2 —92) 00
_ 3 |T’ 3
01 2(x3—x2) .00
1 |T’ 1
01 2(z1—23) .00
f2 |T’ f2
01 2(x2—x1) .00

3 ‘T’ 3
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4.3 Gaussian quadrature rules on a Powell-Sabin 6-split

A quadrature rule is referred to as an m-point rule when m evaluations of a function f are
sufficient to approximate its weighted integral over a triangle 7', and in this case

m

AwfzzpmeRMﬁ:Qm, (4.3)

=1

where w and R,,(f) are a fixed non-negative weight function defined over 7" and the error term
of the rule, respectively. In particular, the error term is required to be zero for a predefined
space L, i.e., Ry, (f) =0 for all f in £. Thus, if m is the minimal number of nodes t;, we refer
to the rule as a Gaussian quadrature rule.

In what follows we deal with Gaussian quadrature rules for the family of C'! continuous
splines on a C-refined macro-triangle 7', having Z as triangle split point. As stated [65, 66, 67],
there exists a quadrature rule

Qm=Zwﬂm2Awf (4.4)

that is exact for each function f in S3 (7).
Once again, we distinguish the two different cases: Z is the barycenter of T' or different from
it. We start by the first case, i.e., 21 = 23 = 23 = 1/3. Each spline s € S5 (T) can be written as

3

s =po+ E G Ci. Then, the rule Q in (4.4) exact for quadratic polynomials is also exact for
1=

splines in Sj (T) if and only if

3 3
Q[ZCZ‘CZ'IZOZZCZ'/CZ'.
i=1 T

i=1

Hammer-Stroud’s micro/macro edge rules [67] are the best known quadrature rules exact for
quadratic polynomials. Their weights and the barycentric coordinates of their nodes are given
next:

: 2 11 1 21 1 1 2
micro . 4 (2 = = to=(=. 2 = ta=|(=. 2. 2 — — =1/3
Q 1 <3, & 6>’ 2 (6’ 3 6>’ 3 (6’ & 3>, w) =wp = w3 =1/3,

11 11 1 1
macro . _ (= = — I — [ = - = = =
Q C ot = (2, 2,0), to (O, 5 2), t3 (2,0, 2), w1 =wy =ws =1/3.

Theorem 4.3.1. Let Z be the barycenter of a C-refined triangle T'. Then, the quadrature rules

Qmicro and Qmacro are exact on 821 (T)

Proof. Since

Qmicro [Cz] _ Qmacro [Cz] —0= / Cz
T
for all blending function, the claim follows. O

We now move on to the more general case of an arbitrary inner split point. The use of
Lemma 4.2.5 allows to deduce that any formula with nodes on the micro-edges joining the vertices
of the C-refined triangle T to the point Z that exactly integrates the quadratic polynomials
defined on T' will also integrate the splines in S2(T). What are these Gaussian micro-edge
quadrature formulae Q7

Given weights wy, £ = 1,2, 3, and nodes written as

te=&Vi+(1—-&)Z, 0<& <1, (4.5)
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let us supppose that the quadrature formula

Of] = wef (t) (4.6)
/=1

is exact on Py (T"). Then, by Lemma 4.2.5 and taking into account that for i« = 1,2, 3 it holds
D; =0and D; (%Vg) =0, ¢=1,2,3, it is straightforward to conclude that (4.6) is also exact
T

on S3 (T)). The weights wy and coefficients & that give rise to the nodes in (4.5) are determined
by solving the 6 x 6 non-linear system

Q[Bs.r] = /T Bsr,| =2,

that express the exactness of Q on Py (T'). Tt is solved numerically by means of the Newton-
1 1
9= wd =ul fmmg?:gg:§§:§.mmm41

Raphson method starting from the values w| = wy = w3 =
shows the results obtained for different choices of the split point.

(21,22, 23) & wy

(1/3,1/4,5/12)

0.46446056322990814
0.4387496113528982
0.7716689650652734

0.36054364215704887
0.4761874546578383
0.16326890318511286

(1/4,1/3,5/12)

0.43874961135289886
0.4644605632299088
0.7716689650652715

0.4761874546578379
0.36054364215704865
0.16326890318511347

(1/12,12/17,43/204)

0.4395544547879028
0.00001901531735184312
0.21527237814336092

0.4928765282876286
—0.38429852259550384
0.8914219943078752

(7/25,8/25,2/5)

0.446539495674249
0.4661563118231906

0.43359783418726155
0.3725344915619362

14
1
2
3
1
2
3
1
2
3
1
2
3

0.68985609875553 0.1938676742508022

Table 4.1: For different split points, weights and parameters defining micro-edge nodes of Gaus-
sian quadrature rules exact on S5 (7).

Theorem 4.3.2. Let Z be an arbitrary internal point of T and let S% (T') by the C-refinement
of Tinduced by Z. Then, any polynomial micro-edge quadrature integrates exactly also S% (7).

4.4 Conclusion

In this chapter, we have proved that any Gaussian quadrature formula exact on the space
of quadratic polynomials defined on a triangle 7" endowed with a C-refinement integrates also
the functions in the space of C! quadratic splines defined on 7. This extend the results in [45],
where the inner split point Z had to lie on a very specific subset of the T'. Now Z can be freely
chosen inside T
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Explicit quasi-interpolating splines
on 6-split

Following the idea used in [69], a new procedure was introduced in [71] and [73] based on the
definition of the Bernstein-Bézier (BB-) coefficients of the spline on each triangle in the uniform
partition. They are set directly from specific point values in a neighbourhood of the triangle so
that C'! continuity is achieved, in addition to the reproduction of the polynomials of a specific
degree.

The aim of the method addressed in [73] is to construct C! quartic splines on a type-1
triangulation in such a way that the cubic polynomials are reproduced. Simple rules to produce
the BB-coefficients of the quasi-interpolant on each triangle of the partition are provided. The
values of the quasi-interpolated function at the domain points of order four relative each triangle
of the triangulation are assumed to be known. For a triangle T (v1,ve,v3) with barycentric

1
coordinates (A1, A2, A3), they are of the form 3 (iv1 + jve + kvs) ,with , j, k non negative integers

such that ¢ + j + k = 3. The splines obtained from these rules interpolate the point values at
vertices.

In [75] a general study of this problem is carried out in order to determine all possible rules
for defining BB-coefficients giving C' continuity and exactness on the space of polynomials of
total degree equal to three. It is shown that there exists a multi-parametric family of rules,
having nineteen degrees of freedom, and then the reduction of the number of evaluations needed
to compute the BB-coefficients is addressed. Moreover, it is proved that there exists a family
of rules based on evaluation at vertices and midpoints of edges of triangles depending on only
three parameters. The resulting quasi-interpolating splines also interpolate the point values at
vertices. Both in [73] and [75] the used rules have symmetries, so the computational cost is
reduced.

A similar methodology is used in [76] to construct C! cubic quasi-interpolants that repro-
duce quadratic polynomials when the values at the vertices and midpoints are known. In this
case, quasi-interpolants do not interpolate the data values at vertices. Moreover, different rules
correspond to different domain points. There are no symmetries applicable. However, there
exists only one solution, i.e. a set of rules that allow the objectives to be met: C' continuity
and reproduction of the quadratic polynomials.

It would be natural, therefore, to construct C* quadratic quasi-interpolants in the same way,
reproducing polynomials of degree 1 at most, but this is not possible. Only constants can be
reproduced. Consequently, we propose to construct quadratic quasi-interpolants on a type 1
triangulation endowed with a Powell-Sabin refinement [?] to achieve the optimal approximation
order.

83



CHAPTER 5. EXPLICIT QUASI-INTERPOLATING SPLINES ON 6-SPLIT

Figure 5.1: 6-split of T} ; and B; ; (left) and domain points associated with the quadratic poly-
nomials on the micro-triangles (right).

5.1 Bernstein-Bézier form of quadratic splines on type-I trian-
gulation

For h > 0, the vectors e; := (h,h) and e := (h,—h) define the lattice V = {v; ;,4,j € Z},
where v; j := ie1 + jea. These vertices define the faces of the lattice, that can be decomposed
into the triangles T’i,j <7}i7j7 Vi+1,j+1, Ui+1,j> and Bi,j <U7;,j, Vit1,5+1, vi,j+1>, so that a type—l trian-
gulation is obtained, namely A := U (T3, U By ;). In general, these triangles will be referred

1,JEL
to as macro-triangles and any one o]f them will be represented by the capital letter T', without
specifying what type it is.

1
Let &€ be the set of edges in A and consider the barycenters ¢; j :== = (v; j + Vit1,j+1 + Vit1,5)

1 3 (
and b; j 1= 3 (vij + Vig1,j41 + Vi jy1) of T; j and B j, respectively. Let Apg denote the Powell-
Sabin (6-) split of A obtained in joining the opposite vertices of every two macro-triangles sharing
an edge. Edge split points result, which are the mid-point of the edges in £. More specifically,
those corresponding to the three edges emanating from the vertex with directions e, es and

1
€3 := e1 + eo can be written as ef”f =3 (vij + Vigk j+e), with k,£ € {0,1} and k+ ¢ # 0 [18].

Each one of the macro-triangles is divided into the six small triangles: for 7; ; they are

+ 1,1 4+ 1,1 + 0,1
ty = Vij, € tm’>a ty =€ Virrj+1, tig ), T3 = (Vit1j+15 €51 55 tig )
+ _ 0,1 + 1,0 + 1,0
ty = €it1,j Vitljs ti,j>, ts = Vit14, €5, tij ), te =€) Vijstij),
and
- 0,1 - 0,1 - 1,0
by = (Vigjs € bi7j>a ty = (€ Vij+1, bi,j>v t3 = (Vij+1> €j415 bi»j>7
- 1,0 - 1,1 - /11
ty = (Cijj+1> Vitlj+ls bm‘>7 ts = (Vit1,5+1, ei,j’bi7j>7 tg = (€ Vigs bz-,j>,

for B;j. They are shown in Figure 5.1(left). In general, the lower case letter ¢ will be used
to represent any of the micro-triangles of Apg. To lighten the notation, any reference to the
subscripts of the macro-triangle has been avoided.

For every vertex v;; € V there are twelve edges emanating from v;; in six independent
directions, so that Apg can be considered as a six directional triangulation.
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Figure 5.2: Domain points forming the subset D; ; corresponding to v; ;.

In this chapter, we consider the space of C' quadratic splines on Apg defined by
521 (Apg) := {s et (Rz) 15y €Py forallt e Apg} ,

where Py denotes the linear space of quadratic polynomials. Since the restriction p = s|; of
s € S3 (Aps) to a triangle ¢ (Vi, Vo, V3) € Apg is a quadratic polynomial function, it can be
represented using the quadratic Bernstein polynomials defined on ¢. Using the multi-index

notations 8 := (B1, B2, B3) € Ng, |B] := B1 + P2 + B3, and B! := B1!62!83!, at any point P € t
they are given by

2 2
2.8 _ B, P2, B3
Bgy (P) = 5!T = /31!52!53!7—1 Ty Ty,
where the triplet (71,72, 73) provides the barycentric coordinates of P with respect to ¢, that is
3 3
to say, the conditions P = Z ;V; and Z 7; = 1 are satisfied. The coordinates 71, 79 and 73
i=1 i=1

are non-negative whenever P belongs to t.
Every polynomial p € Py can be expressed in terms of the quadratic Bernstein polynomials
Bg, |B] =2, i.e. there exist values bg; such that

p(,y) =p(r) =Y b1 Bpy (7).
181=2

They are called Bézier (B-) ordinates or Bernstein-Bézier (BB-) coefficients of p, and are natu-
rally linked to the domain points {g; determined by the barycentric coordinates (le, %, 6;)
with respect to t.

On each micro-triangle, an element s € S3 (Aps) is uniquely determined by six BB-coefficients,
associated with the corresponding domain points. Figure 5.1(right) shows the domain points
lying in the micro-triangles of two macro-triangles sharing an edge. When all macro-triangles
are taken into account, a subset of domain points is obtained, which we will note D. To deter-
mine s, it is necessary to give the BB-coefficients associated with all the points of D. As the
triangulation is uniform, following the approach in [72, 73, 75, 77|, it is sufficient to establish
a partition {D; ;,i,j € Z} of D and provide the BB-coefficients linked to the domain points in
D; ;. Figure 5.2 shows the proposed subset D; ;. It is associated to the vertex v; ;, so all its
points adopt the subscripts of v; ;.

Figure 5.3 shows the domain points lying in the hexagon H;; determined by the triangles
sharing the vertex v; ;. Each of them is associated with one of the vertices in H; ;, and shows
its subscripts.
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—1,-2
Yit1,5+1

1,21
Tit1,5+1 \w+1,j+1

Figure 5.3: BB-coefficientes in the H; ;, which are linked to v;; and to the six vertices deter-
mining the hexagon.

5.2 Quasi-interpolation from point values at vertices and middle
points

Here we aim to construct a quasi-interpolation operator Q : C (RQ) — S (Apg) exact on
Py, that is to say, such that Qf = f for all f € P;. The quasi-interpolant Qf € Si (Apg)
of f will be defined from the values of f at the vertices and the midpoints of the edges by
directly setting its BB-coefficients for all micro-triangles, and then the values at these points are
supposed to be known.

The restriction of Qf to any micro-triangle ¢ will be a linear combination of the Bernstein
polynomials B3 with B-ordinates depending on the values of f at the vertices and mid-points
in a neighbourhood of ¢. For instance, for the micro-triangle tf of T; j, we have

1,1 2,1
wa = c(vi;) SB(2,0,0)@r tc (1‘”) ZB(1,1,0),tjr T (y” ) SB(1,0,1),t1+
1,1 3
e (e]) Boso +0 () B +etis) Boga
where ¢(p) stands for the B-ordinate associated with the domain point p (see Figure 5.4). Similar

expressions are obtained for the restrictions of Qf to the other five micro-triangles of T; ; and
to those of B; ;.

/l]i 7j

Figure 5.4: The micro-triangle ¢ of T; ; and associated domain points.

To define the BB-coefficients involved in the definition of Qf, let Z; ; the subset of R2 formed
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Vi, j-1 €hi-1 Vit1,j

Figure 5.5: The subset Z; ;. The values of f at the domain points in =; ; are used to determine
the BB-coefficients of the restrictions of Qf to the micro-triangles in Apg.

by the vertices and midpoints that are in the hexagon H; ;, i.e.

= . 11 10 01 11 10 01 0,1
=] Ulﬁez]?ezg’ez,] 16—1,-16—1,4> 2]’U1+1J+1’ 2+1J’U1+1J

1,1 . 1,0 o 0,1 11 - 1,0
€ij—1>Vi,j=1,6;_1 ;1 Vi-1,j-1,€;_1 j—15Vi—1,55€;—1 5 Vi,j+1> € j+1 ( -

It is shown in Figure 5.5. The definition of Z; ; shows the ordering of its points. Firstly, the
vertex, then the midpoints around the vertex and finally the twelve remaining points.

The BB-coefficient ¢ (p) of a domain point p will be a linear combination of values of f at
these nineteen points. The coefficients form the mask M (p). It is ordered in the same way as
Ei,j- Therefore,

c(p) = M (p) Hz,g Z M (p \—z,])

where M (p), and f (Z;,;), denote the (-th entries of M (p) and f (Z; ), respectively. Note that
f(Ei) ={f(p): p € Eij}.

To define the quasi-interpolant Qf it is necessary to use masks which produce functions of
class C'' and which give rise to operators exact on Po.

Definition 5.2.1. To determine the B-ordinate of Qf associated with a domain point, identify
the set D; ; to which it belongs. Then,

1. Apply

1 2 22 1 1 1
M ,5) — gy Y oy T gy gy HYH Y, Uy Uy o0y Uy Yy Ty Uy Uy
(vi) (2003 £:5:0,0,0,0,0,-2,0, 2,0 6000>

for vertex v; ;.
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2. For x—points, apply the following masks:

M (z})) = (1 0,0, 1, 2,1,0,0,0,0,0,—1,0,;,0,—1,0,0,0>,
M (a7 = (0,0,0,;,;,;,0,0,0,0,0,—112,0,—é,o,—lg,o,o,o) ,
M (a;};;’) - (i,o,o,g,—g,;,0,0,0,0,0,—;,0,;,0,—12,0,0,()) :
M (af57) = (i,o 0,1,0,0,0,0,0,0,0, — ,0,0,0,0,0,0,0),
M () = (ioooo,moooooooo 000)

3 1 4 111
M(Qal): 30,0,2,-220,0,00,0,——,020-L000).
€ 477737 373777777 12773773777

3. For y—points, use the following masks:

M(y}gl) - <;,0,0,§ ?)) 0,0,0,0,0,0, :1)) 0, é,o,o,o,o,o),
M (g = <;,0,0,0, ;,g,o 0,0,0,0,0, 0 0, ;,0,0,0>,
M (;,2;) = (1,0,0,;1,—2,;,0,0,0,0,0,—;,0,;,0,—(15,0,0,0) :
M (y;j’*?) - <0,0,0,Z,;,0,0,0,0,0,0,—é,o,—é,o,0,0,0,0> ,
M (5 77") = <0,0,0, 0,;,;,0,0,0,0,0,0,0,—é,o,—é,o,o,()) ,
M (y}f) - (1,0,0,2,—2,;1,0,0,0,0,0,—;,0,;,0,—;,0,0,()) .

12’ 24788 2406
1 12 21 1 11 1
M( 170) 7’0’7’77_7’7707070;7;0,_770;7a0 770 0,0
Ci.j 172336 87 676" 24
1 1 221 I 1 [
M( 01) 77070’77_7777770707070, 3077707 7707 70 )
€ij 4 6" 3732 24’77 6 6’8

1244 22 21 2 1 1 1
Mt)={=2=--22 0,0,2,>,-=,——,0,-,0,——,0,0,0
(’L,j) <67979797 3797 9 79797 97 187 767 9 187 ) Yy >
and 12 2 244 1 1 1 21 2
M 77770777_77777>0707070a ,0,*,0,— ' a’a’a
(bi) <69 9’ 3’9’9 18" 776 18 999>
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6. Use the masks

121 1 11
M (t!.) = -z Z -
(i) (6,0,0,0, 3373:0:0,0,0,0,0, 75,0, 4,3,0,0>,
122 1 1 1 1 1 1
M#)=1{-,0,-,5,-1,-,0,0,0,~,—~, ——,0,~,0,——,0,0,0
(l,]) (37 73737 737 Y Y 747 37 127 747 ) 127 ) ) )7
5 1 2 1 11 11 1
M@E)=(=,5,0,5,-1,2 ~,——,0,—=,0,-,0,——
(tld) (127370737 73>O7O737 127()’ 6,07470’ 12a0a070>7
for the domain points around t; ;, and
1 12 1 111
1 pr— —_— _— _— _—— — —_——
M (bi;) <6,0,3,3, 5:0,0,0,0,0, 5, 4,0,12,0,0,0,0,0>,

1 1 2 2 1 1 1 11
2N
M(biJ) - ( 0 07§7_17§7§7070a0a0a_7 077 07_7 _3747()) )

37 1277477 12’
5 1 1 2 1 1 1 1 1
MB)Y==2.20.2.-1.2 L 0.2.0. -0 — il
(b’h]) <12’3’0’37 ’3’()’07070307 127074>O7 6707 1273>7

for those around b; ;.

Figure 5.6 shows the mask relative to vertex v; ;. Note that the B-ordinate ¢ (v; ;) can be
easily computed from the values of f at seven domain points in H; ;:

¢ (vij) = é(?’f (Vi) = f (vij-1) + f (vic15-1) — f(vi—l,j))+§ (f (6231_1) —f (63’_11,]'_1) +f (63’_01,]'» :

In Figure 5.7 the masks corresponding to mid-points eil ’]-1 and eg’;) are shown. The one corre-

) with respect to the segment [v;—1 j—1, Vit1,j+1]-

sponding to ea’jl is the symmetrical of M (ei’](.)

This characteristic of the mid-point masks is also true for the z- and y-points. The hexagonal

representations of M (:czl ’f) and M <xz_ jl’o) show that they produce by symmetry those of
M (a;?jl> and M (ajg’j_l), respectively. No symmetries are involved in the case of M (3:11;)

and M (:z:i_’jl’_1>. Moreover, no more than seven point evaluations are needed to compute the
correspondig BB-coefficients. The case of the y-point masks is slightly different, since they are
pairwise related by symmetry: M (y; jl’l), M (y; ].1’72) and M (yf ]1) are obtained by symmetry
from M (yi’;l), M <y; ]-2’71) and M (yll ’].2), respectively. Also in this case, the B-ordinates are
computed from a maximum of seven point evaluations.
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Figure 5.7: Mask e.

Finally, as regards the masks related to the ¢- and b-points, it should be noted that the latter
are obtained from those of the t-points by symmetry with respect to [vi—1 j—1, Vi1, j+1]-

Once the masks have been defined, the smoothness and exactness of the quasi-interpolant
defined from them must be proved.

Theorem 5.2.2. The quasi-interpolating spline Qf is C* continuous.

Proof. There are three types of edges in Apsg: edges that connect vertices with triangle split
points, edges that connect triangle split points and edge split points and edges that connect
vertices with edge split points. Therefore, we need to check the C'* conditions across one edge
of each kind.

Consider, for instance, the edge (v; j, b; ;) in the micro-triangle t5 of B; ;. The C! conditions
across this edge are

1,0 1,1y 3 [ 21 1 3 T 791
({@J>+c@m)—50@m>—50@m)=0 and C@%)+C@%)—§d%ﬂ—§c@m>:0'

Regarding the remaining two types, they are <bm-, e;’jl> are <U1~,j, ei’j1>. The C! conditions

across them are
1,1 —1,—-1 1,1\ 2,1 —1,-2 3\
c (ac”) +c (:UHLJ-H) — 2c (%j) =0, c <yi’j ) +c <yi+17j+1) — 2c (ti,j) =0,
and
e (v + 12) _ o L) _ (t3)+ (b3)—2 LY _
Yij c\Yi; c\Z; ) =Y, C€\lij) T €9, C\Cj) ="

respectively. Direct substitution of the involved B-ordinates into the above conditions proves
they are fulfilled. C! through the remaining micro-edges is proved in an analogous way. O

The next result states that the quasi-interpolation operator Q reproduces the linear space
of quadratic polynomials.

Lemma 5.2.3. For any p € Ps, it is satisfied that Op = p.

Proof. 1t suffices to prove that QBg, = Bg,, |B| = 2, for all micro-triangle in Apg. We will
give the proof only for 8 = (2,0,0) and the micro-triangle t{ of T; ;. The results in the other
cases are similarly proved.

The B-ordinates of ‘B(Q 0,0),t+ O tf are shown in Figure 5.8.

To compute the B-ordinates of Q%(zoo) o on tf, the values of ‘3(200) o at the domain
points in =; ; are needed. They are listed below:

(1,1/4,1/4,1,9/4,9/4,1,0,0,0,1/4,1,9/4,4,4,4,9/4,1,1/4) .
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1/9
Vit2 41
1/3 16
Vi,j ° Vitd.+3
1 1/2 1/4

Figure 5.8: B-ordinates corresponding to the Bernstein polynomial %5 Bt relative to the micro-
triangle tf of T; ;.

. . . T RS O IS N B 2,1 . .
The domain points relative to ¢ are v; j, L% €5 tigy i and Yiis and their B-ordinates are

easily computed from the masks given in Definition 5.2.1. The following results are obtained:

— 1,1 1,1 - 1
c(vij) = M(vij)- ‘B(z,o,o)ﬁ (Eiy) =1, ¢ (95@]) M (5” ,g) "B(z,o,o)ﬁ (Eij) = 2

1,1 1,1 - 1 3 _ 1
¢ (6 7]) = M (ei7j> ’ %(27070)7t+ (:ZJ) - Z’ ¢ (tz’j) - M ( ) %(27070)35? (:l’J) - 6’
- 1 2,1 - 1
c(tij) = M(ti;)- SB(2,0,0),1t1+ (Eij) = 9 ¢ (-%',j) = M (%,g) sB(2,0,0),t1+ (Eiy) = 3
and the proof is complete in the indicated case.
O

Remark 5.2.4. Using a symbolic computation software it is possible to show that the masks
given in Definition 5.2.1 are the only ones that give rise to a quasi-interpolation operator exact
on Py that produces C' quadratic quasi-interpolants.

The value of the uniform norm of @ is easily deduced taken into account that

191l < max [|M (p)];

=N

and the [1-norms of the masks in Definition 5.2.1:

1M (vi5)ll, =

o2 (=3, =5 (ff”l)H = 3 (i), = [l (s )Hf% ()], = I (=5 )]), -
Jor (i), = e G, =3 2], = flar (i), = o G =), = e (i), =
oz (et ), = 3o (<25)], ‘HM( )l =

IIM(m)Ill—3 ||M(t1,g)|| = ||M( j)||1—4 12 ()], = 5

1M (b i)l = (J)Hl_ (2,J)H1 ( )”1_1?

Moreover, quasi-interpolation error estimates are found using a standard procedure.

Proposition 5.2.5. The following results hold.

1. The uniform norm of Q is equal to 6.

2. There exists an absolute constant K such that for every f € C™1 (RQ), 0<m<2,

D7 (f = Qf) oo < KR =PI D ] (5.1)

OO,QT ’

for all 0 < || <1, v = (71,72), with Qp denoting the union of the triangles in A having
a non-empty intersection with T .
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5.3 Numerical tests

In order to illustrate the performance of the quasi-interpolating spline we have defined, we
consider three test functions defined on the unit square:

3 (921 —2) (922 —2)*\ 3 (921 + 1) 9zy +1
S, wg) = 7 exp <_ i1 A T R T
1 (921 —7)% (929 — 3)* 1 5 ,
—|—§exp (— 1 - 1 — j xp (— (921 —4)" — (922 — 7) ),

f2 (@1, 32) = %6084 (427 + 22— 1)).

They are the Franke and Nielson functions [51, 52], respectively.
The quasi-interpolation error is estimated as

L max 1Qf (xk,ye) — f (wr, ye)l 5

L=1,...

where xp and y, are equally spaced points in [0, 1]. The numerical convergence order (NCO) is

given by the rate
E(h2)> (h2>
NCO :=lo log| — |,
g (E(hl) /log 3

where E (h) marks the estimated error associated with the step-length h.
Figure 5.9 shows the quasi-interpolant Qf together with the functions f; and fs for a step-
length equals 0.00625.

Figure 5.9: Functions fi, f2 (green) and their quasi-interpolant Qf (blue) for h = 0.00625, i.e.,
(left) f1, (right) fo.

The quasi-interpolation errors are estimated for different values of the step-length h and the
NCO are calculated. The results are shown in Table 5.1. They confirm the theoretical ones.

5.4 Quasi-interpolation from point values at vertices

In [77] new approximating splines were constructed by application of a preprocessing to the
quasi-interpolating splines defined in [75] from the values at vertices and midpoints: firstly, the
values of the given function f at e-points are replaced by the ones obtained after one step of
a subdivision algorithm suitable for type-1 triangulated data, and then the resulting values are
used jointly with the values f (v; ;) to get a quasi-interpolant whose BB-coefficients only involve
values at the vertices.
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fi fo
n | estimated error | NCO estimated error | NCO
20 | 1.42759 x 102 — 1.58082 x 102 —

40 | 1.78419 x 1073 | 3.00024 | 2.25332 x 1073 | 2.81055
80 | 2.18182 x 1074 | 3.03167 | 2.93772 x 10~* | 2.93928
160 | 2.71191 x 1072 | 3.00815 | 3.72658 x 107° | 2.97877

Table 5.1: Errors and NCOs for the functions f; and fo with h = 1/n, n = 20,40, 80, 160.

The aim of this section is similar, i.e. the construction of quasi-interpolants 0 f from values
at the vertices, but without preprocessing the values of f at the midpoints. Only the values at
the points in

@i,j = ('Ui,ja Vit+1,j4+1, Vi+1,5, Vij—1, Vi—1,j—1, Vi—1,5, Vi j+1, Vi42 j+2, Vi+2,5—-1, Vi+2 5,

Vi1 j—1s Vij—2, Vie1,j—2, Vie1,j—25 Vim2 j—1,Vi—2js Vi1 j+1, Vit1,j+25 Vit1,j+2) »

will be used to define the BB-coefficients of the restriction of Q f to each micro-triangle. The
graphical representation of the nineteen points in ©; ; would result in an hexagonal structure:
at the centre, the vertex v; j, surrounded by vertices vt jy¢, —1 < k.0 < 1, k + £ # 0, which
determine an hexagon; and the remaining twelve ones form a new hexagon. Now, for each
domain point p € D; ; we will look for a mask M such that its B-ordinate is computed as

(=1

Similar notations are used as in Section 5.2. There we provided the unique C' quadratic quasi-
interpolant exact in Ps whose BB-coefficients in the micro-triangles of each macro-triangle are
linear combinations of values of the approximate function at vertices and midpoints of the
containing hexagon. When only the values at the vertices of the function being approximated
are known, imposing the required regularity and exactness does not result in a unique quasi-
interpolant. In fact, using the symbolic computation facilities of the Mathematica software is
tis possible to prove that there exist a 9-parametric family of masks that give rise to quasi-
interpolants with the required characteristics. Similar properties to those of Q hold for the
operator 0. Given f, the spline 8) fis C' continuous. Regarding the quasi-interpolation error,
estimate (5.1) is applicable but a larger neighbourhood Qy is involved.

In order to reduce the number of parameters, we will take into account the symmetries and
patterns of zeros presented by the masks of Section 5.2. More precisely, we will first impose that

the masks associated with the BB-coeflicients of the domain points adt g0t b 2l sl

igr Vig o Yig o YigoYig
e? jl, bi j, bz1 49 bf JYy bl- j are symmetric with respect to the segment defined by the vertices v;_2 j_o
1,0 10 -1 12  —1,-2 1,2 .
and v;42 j42 of ;% Sy s Y Yig s ”, tigs tijs Lij ¥ t” , respectively. Second, we
require that the mask of v;; be symmetric with respect to that segment. Furthermore, the
entries in positions 2,3,7,8,9, 10, 18 and 19 of the masks of v; ;, xilj’}, x;jl’_l 1’J0, yi] 1, Yii s
x?’j_ and yl 12 are null.
The followmg result is also proved.

Proposition 5.4.1. There exists a 3-parametric family of masks that satisfy the above require-
ments and provide C*-continuous quasi-interpolants that reproduce polynomials of total degree

two. If a, b and c denote the values of the first, second and third entries of the mask of e”,
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then the vertex mask is

— 1 1
M (v;j) = <2(2a + 106+ 8¢ —3),0,0, 7 (5 — 4a — 4b),5 — 16b — 16¢,

1

4
1 1

5—a—13b— 12¢, 7 (4a + 68b + 64c — 25), (5 — 160 — 16c),o,o,0> .

1 1
(5~ 4a — 4b),0,0,0,0,0, - (5 — 160 — 16¢), - (da + 68b + 6dc — 25),

Those of x—points are obtained from

— 1 1
M (:ﬁj) - (2a +8b+8c—3,0,0, 5 (—4a — 4b — dc +5), ~24b — 2 + T, 3 (—4a — 4b — 4c +5),

1 1
0,0,0,0,0, £(~3)(16b + 16¢ — 5),2(a + 13b + 13¢ — 5), 7 (~8a — 80b — 80c + 33),

1
2(a+ 13b+ 13¢ — 5), £ (=3)(16 + 16¢ — 5),0,0, 0) :

— 1 1
M (xm.l’ 1) - <2b,0,0, 2¢,~8b— 8¢ +3,2¢,0,0,0,0,0, =(~16b — 16¢ +5), = (165 + 12¢ — 5),

1 1 1
1 (724 = 16¢+7), 5 (16D + 12¢ — 5), £ (~16b — 16¢ + 5),0,0, 0) :

— 1 |
M (a;};j@) - (4(6@ +26b + 24c — 9),0,0, 5(9 — 12 + 125 + 16¢), ~2(10b + 10¢ — 3),

1 1 1
(21— 12— 36D — 320),0,0,0,0,0, 5(5 — 16b — 16¢), (120 + 196 + 192¢ — 73),

1

1 1
o (53 — 12 — 132 — 128¢),  (12a + 148 + 144 — 57), (5 — 16b — 16¢), o,o,o) ,

M (x;]1’°> - (i(m +14b + 8¢ — 3),0,0, é(n — da — 28b — 16¢), —4(3b + 3¢ — 1),
é(—éla +20b + 32¢ — 1),0,0,0,0,0,0, é(éla + 76b + 64c — 27),
%(27 — da — 76b — 64c), é(éla 124 + 112¢ — 43), é(—S)(le +16¢ — 5),0,0, 0) .
y—points masks comme from
M (yj;j‘l) - (;(m +10b + 8¢ — 3),0,0, %(1 ~ da+12b+ 16¢),5 — 16b — 16¢,
%(9 — 4a — 20b — 16¢),0,0,0,0,0, %(5 — 16b — 16¢), 11—2(12(1 + 252b + 240¢ — 91),
5—a—13b— 12c, 1—12(12a +156b + 144¢ — 59), 0,0, 0, 0) ,
1\7(;1/};].2) = (2a+8b+ 8¢ — 3,0,0,3 — 2a — 4b — 4, T — 24b — 24c, —2(a — 1),0,0,0,0,0,

2 1
(5~ 16D — 16¢),  (3a + 36D + 36c — 14), 7 (33 — 8a — 80b — 80c),

WD | =

1
(3a + 42b + 42¢ — 16), 5(5 — 16b — 160),0,0,0) ,

~/ _q_ 1 1 1
3 (%) = (25,0,0, 5 (4 8¢~ 1),3 — 86— 8c, (1~ 4b),0,0,0,0,0, (5 — 166 — 160),

1 1 1
(600 + 48¢ — 19), 2 (7 — 24b — 16¢), < (36b + 24c — 11),0,0,0,o> ,
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and those e—points are given by

_ 1
M (el{’}) - (a, b, —a+ 3b+ 2, £ (~120b — 112¢ + 35), —a + 3b+ 2¢,¢,0,0,0,

1 3 1
16 (7160 = 16¢ + 5), = (16b + 16¢ — 5), 0+ 13b + 13¢ — 5, (33 — 8a — 80b — 80c),

3
a+13b+ 13c — 5, ——(16b + 16¢ — 5),

G 15— 166 — 16¢),0, o)

16

— 1 1 1
M (el{f) (16(8a + 720+ 80c —19),0, £ (20 + 140 + 8¢ — 3), 7-(41 — 120 — 84b — 80c),

1
16(5+4a—36b 48c) (9—3a—21b—20c) 0.0,0,0, - (11 — 4a — 28b — 16¢),

16 L dati12o-7), (4a + 60b + 6de — 23), - L (53— 124 — 132 — 1280),

E(12a + 148b + 144c¢ — 57) (5 — 16b — 16¢), 0, 0, 0> .
Finally, the t—points masks are

2 1 1
M(tm)z<12(4a+12b+16c+1) a-+Tb+8c —2), 7(23 — 12a — 36b — 48¢),

33(

—_
—_

(6a — 54b — 48¢ + 7), = (11 — 6a — 18b — 24c), =(1 — 4b), 0,0, 0,

M\HQA"&\H
|

1
7 —2a — 18b — 16¢), — (12a + 60b 4 48¢ — 29), §(3a + 45b + 48¢ — 17),
1
(33 8a — 80b — 80c), = (3a + 36b + 36¢ — 14), E(5 — 16b — 16¢), 0,0, 0> :
—~ 1 1
M (t;;) = <2(a+7b+8c— 2),0,0, (7 2a—18b—16c) (11—366—480),
1
§(13 — 4a — 20b — 16¢), b,0,0,0,0,0, ﬂ(12a + 156b + 144c — 59),
1 1 1 1
—(5—a—13b—12c), —(6a + 90b + 96¢ — 35), = (1 — 3b — 6¢), —(1 — 4b),0,0 ) ,
2 12 3 4
1 1 1
i) = g(4a + 44b + 48¢ — 11), 0, Z(2a +10b 4 8¢ — 3), 5(—2& —16b — 16¢ + 7),

1

1
57 (120 —36b —48c —7),

24

—~

1
~da — 24b — 24¢ +11),0,0,0,0, o (~4a — 20b — 16¢ +9),

12a + 60b + 48¢ — 29

)

1
(8a.+45b + 48¢ — 17), £ (~8a — 80b — 80c + 33),

[N

24(

§(3a + 36b + 36¢ — 14), —(—16b — 16¢ + 5),0,0,0) :

HOO‘}—‘ ~—

1
M (8;) = <a b, (4 + 8c — 1), — (=120 + 60b + 48¢ — 7), (35 — 1206 — 112c),
i(7—12 +128), 2(1 = 45),0,0,0, (5 — 166 — 16¢), ~(5 — 16b — 16¢)
12 a 4 g C 1 c),

1 1
5 (30 +42b + 42¢ — 16), (33 — 8a — 80b — 80¢),

1
(5~ 160 16c),0,0,0> .

1
§(3a + 360 + 36¢ — 14),

Once all the conditions from the structure of the masks found in Section 5.2 are imposed
when vertex and point values are known, it is possible to reduce the number of parameters.
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1 1
—(@4a+12b-7) —(-4a-28b-16c+11) 0
16 16 60
i
1 1 1
—(4a+60b+64c-23) —(-12a-84b-80c+41) —(2a+14b+8c-3) 0
8 16 8
1 1 1
—(-12a-132b~-128¢c+53) —(4a-36b-48c+5) —(B8a+72b+80c-19) 0 0
16 16 16
1 1
—(12a+148b + 144 ¢ - 57) —(-3a-21b-20c+9) 0 0
16 4
1
—(-16b-16¢+5) 0 0
16
1,0

Figure 5.10: Mask of point € It depends on the three parameters.

Note the mask of eil ’]Q in Figure 5.10. A feature shared by all Section 5.2 masks is that the 13th
and 15th entries are equal to zero. We therefore choose to impose these restrictions on the mask
of eil ’]Q, and the foloowing conditions must be satisfied:

2
a—i—15b—|—160:Z3 and 3a+37b—|—3602¥.

Consequently,
3 1
b= 5—2(7 —4a) and c= 5—2(1 + 8a).
Finally, these values are applied to the masks and the selection of the parameter a is carried
out by minimizing the infinity norm of the associated quasi-interpolation operator, Q,, which,
after simplication, is the maximum of the following functions:

12[3a—2|  3[4a—7| 3|16a—15] 5
. + + + =

13 26 104 8
, 5Ma—7  [16a—15] 3[16a+37] 57—4a| |47—Gda| 5
52 208 208 52 208 16
, ABa—2  3[16a—15] [18a+1] [24a—29] 2 2] + 19— 22a| |29 — 24a|
39 52 13 13 13 52
, 151160 —15|  [18a+1] |24a—29] |20 - 2da]
52 13 13 52
 4Ba—2  [8a—1] 3[16a—15  [24a+23  2[11—10a|
13 52 26 52 13
,OBa—2  2(7a—9] [Sa—1]  3[16a—15 [24a+23|
13 13 52 26 52
. 2[3a—2  4[10a—11] 5[160—15] 3|32 +9] |7—da| |23 —28a]
13 13 104 104 26 26
,13e—2 3[a—7 [6a—17| [Sa—1]  [32a+35 |23l [17—Ga| |1—Sa|
13 52 78 104 104 39 26 104

1 1
=124 — 5|+ —.
156 | 12051+ 5
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2.7+

26

251

2.4

e
0.95 1.00 1.05 1.10

Figure 5.11: Plot of the objetive function.

212a+3| 8[3a—2| |16a—15] [32a+35| [36a—37| [288a —361] |7 — 4d
. + + + + + + +

13 117 156 156 234 468 26
[1—8a| |20 —24a|  [61—72  [109—144a| 1
156 156 117 234 36"
2a+3|  10[3a-2 3J4a—7| [Sa—1]  [16a—15]  |40a—31]
[ ] .
13 13 26 13 52 52
L 8Ba-2  3l4a—7 2[8a—1]  [16a—15 |40a— 31|
13 26 13 52 52
,130=2  [at19] [16a—15] [2a+23] [36a—37  |420—67]  |2—3a]
39 6 104 104 156 78 13
11— 10a| |20 —2da| [23—28a| 1
26 104 52 24"
al+ 20+3] 430—2| 34a—7| [16a—15| [136a—147] |23 |29 —2da|
® a
39 52 26 104 39 104
53 — 60a| , |77 — 96al
39 8
. lal+ 3l4a—7| , [Sa—1] , [16a—15|  [136a —147| |20 —2da| , |61 - 720
a .
52 26 26 104 104 26

The objective function is convex, so that its absolute minimum is attained at least at a point.
Its plot is shown in Figure 5.11. In fact, the minimum is reached at the points of the interval
15
—,1].
16
A priori, there is no privileged choice in this interval of the parameter value a, but inspection
15
of the masks when a = — allows us to observe that the number of zero entries in the masks is

increased, which implies a lower computational cost. They are shown next.

5.5 Conclusion

In this chapter, we have introduced two kinds of quasi-interpolation schemes. Both kinds
are generated by setting their B-ordinates to suitable combinations of the given data values,
instead of being defined as linear combinations of a set of bivariate functions and they do not
require derivative values. The first kind involves the values at the vertices and middle points
of the original vertices. While, the second one is restricted to the values prescribed at the set
of vertices. The presented schemes are C'! continuous, and the numerical tests show that they
yield the optimal approximation power.
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® | =

@ =

©| =

® | =

@] =

0 0 0 0 0 0
Vij
4
- - 0 0 0 0 0 0
8 8
7 1 1 1
0 - 0 0o - - 0
8 8 2 8
1 1
- - 0 0 0 0 0 0
8 8
0 0 0 0 0 0
0 0 0 0 0 0
Url
5 3 1 1
- - 0 0 - - 0 0
24 8 4 4
7 1 1
0 - 0 0o - - . 0
8 8 2
1 1 1 1
~— - 0 0 - - 0 0
24 8 4 4
0 0 0 0 0 0
0 0 0 0 0 0
Uij
1 1 1 1
—— - 0 0 0 - 0
24 8 8 8
1 3 15 3
0 - 0 0o — - — =
8 16 16 16 16
5 1 1
~— Z 0 0 0 - 0
24 8 8
0 0 0 0 0 0

Figure 5.12: Hexagonal representations of masks.

- 0 0 o 0 0 0
16 €
1 5 1
0 — 0 0 ~— 0 0
4 16 16
1 1 1
- — 0 0 — -—— - 0
4 16 4 4
1 1 5
0 ~— 0 0 0 = — 0
16 4 16
1
0 0 0 ~— 0 0
16
0 0 0 N 0 0 0
Xii
1 1 7
- - 0 0 -— - 0 0
24 8 24 8
1 1" 1 1
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Figure 5.13: Hexagonal representations of masks (cont’d)
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Figure 5.14: Hexagonal representations of masks (cont’d)
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Figure 5.15: Hexagonal representations
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Chapter 6

Family of many knot spline spaces

Spline functions play an essential role in interpolating or approximating functions or data
from their values or that of some of their derivatives at a given set of points. Generally, the cal-
culation of the interpolant requires solving a system of equations, and in addition, in many cases
only noisy data are available. Therefore, since its introduction in [1], spline quasi-interpolation
has been an increasingly used method to obtain approximating splines efficiently and a low
computational cost. The introduction of the de Boor-Cox recurrence formula to evaluate the B-
splines from which the interpolant and quasi-interpolant can be expressed allowed extensive use
of spline functions in multiple fields and made the B-splines a central tool in both approximation
theory and applications.

Given a partition X,, := {z;,0 <7 < n} of an interval I := [a,b] into sub-intervals I; :=
[2;,2i41], 0 <1 <n—1, and real values f/, 0<i<n,0<j<k—1, k> 2, the Hermite spline
interpolation problem consisting of finding a C¥~! piecewise poynomial function s of degree 2k—1
such that s¥/) (z;) = ff admits a unique solution. An explicit formula for the coefficients of the
B-spline representation of s has been derived in [78], and a simpler proof based on blossoming
has been given in [79, 80].

A refinement of the initial partition X,, is defined by taking an interior point &; in each
sub-interval ;. It is the extension of Powell-Sabin split to the univariate case [22, 85]. With
¢ :={&,0 <i<n-—1}, a Hermite spline interpolation problem in a spline space of degree d > 2
and class |d/2] on the refined partition X' := X,, U ¢ will be stated and analyzed. As usual,
|-] stands for the integer part of a real number. When d = 2r + 1, the class C™*! is imposed at
the added points to get a super-spline space. The solution of the interpolation problem will be
explicitly determined by means of a local construction. Since the spline space is characterized
by an interpolation problem, a basis is obtained as dual of the basis of the dual space given by
the interpolation functionals.

In this chapter, each spline is uniquely determined by its values and those of its derivatives up
to the order |d/2] at each knot of the initial partition, and its values and those of its derivatives
up to the order |d/2] — 2 if d is even and |d/2] — 1 otherwise at the additional split points.

The idea of adding a split knot was introduced firstly in [81] to deal with the quadratic
case. Following the same approach, C! quadratic and C? cubic many knot spline interpolation
with sharp parameters is studied in [82], and C! cubic Hermite splines with minimal derivative
oscillation are constructed in [83] and [84]. In all these works, the bases used do not necessarily
benefit from the properties usually requested, such as the non-negativity of the basis functions
and the fact of forming a partition of unity. Moreover, it is proved in [85] that a C! quadratic
univariate spline on such a kind of refined partition is uniquely determined by the values of the
spline and its first derivative at the knots of the initial partition, and that the data specified at
each knot affect only the values of the spline on the sub-intervals sharing that particular knot.

Refinement of a given partition is widely used in multivariate approximation by splines. In
fact, for constructing smooth splines with a low degree, a given partition is refined to get a

100
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number of smaller simplices [15, 18, 22]. For bivariate splines, Clough-Tocher split (into three
sub-triangles) and Powell-Sabin split (into six sub-triangles) are commonly used divisions. For
instance, a normalized B-spline representation for bivariate Powell-Sabin splines with higher
degree and smoothness is discussed in [42, 26]. With the help of Marsden’s identity, various
families of smooth quasi-interpolation schemes involving values and/or derivatives of a given
function have been constructed in [36]. This construction has been generalized to the multivari-
ate case, and specialized to the one-dimensional case for quadratic splines [85]. The procedure
used in constructing bivariate splines on Powell-Sabin and Clough-Tocher triangulations, based
on the Bernstein-Bézier representation and blossoming inspires the study in this work, and stable
bases consisting of non-negative compactly supported functions that form partitions of unity are
defined through a geometrical approach for the family of super-spline spaces described above.
General Marsden’s identities are derived and used to define quasi-interpolating splines in those
spaces.

Bearing in mind that for any spline space defined on an arbitrary partition of an interval
it is possible to define a basis of B-splines from an extended partition, that the coefficients of
the representation in this basis of any spline of this space can be expressed via polar forms
and that it is also possible to construct quasi-interpolants of different types in a general way,
it must be explained what is the interest in constructing a new basis, which is the main goal
of this chapter along with its application to quasi-interpolation. Consider the case d = 2r. An

extended partition to define a basis of B-splines to S5, (X ref) is

n

{wo [2r + 1], &0 [r], 21 [r], Eur] o s xn—1 [r], §n—n [7], @0 [27 + 1]},

where the notation p[¢] is used to indicate that the point p is repeated ¢ > 2 times. The
multiplicity will be omitted when ¢ = 1. Since the B-splines are defined from divided differences
with 2r + 2 knots of the truncated power (- — m)?:, they are compactly supported piecewise
polynomial functions of class C" whose supports are made up of one, two or three micro-intervals
induced by Xflef. More precisely, for each boundary value zg = @ and z,, = b there are r boundary
B-splines supported on on [zg, &y] and [§,—1, zy], respectively. The B-splines given by the knots
{zo[r+1],&[r], 21} and {zp—1,&—1 [r], 2y [r + 1]} are supported on [z, 1] = [0, 1] U [€1, 21]
and [xn—1,2Zn] = [Tn—1,&—1] U [{n—1, Zn], respectively. The supports of those associated with
{zi[r], &[], zit1[2]},i=0,...,n—1, are [z;, xiy1] = [x;, &) U [&, xiv1]. Finally, the remaining
B-splines are defined from {x;, & [r] , xit1 [r], &1} or {&, xiv1 [1], &g [1], Tig2}, i =0,... ,n—2,
so that their supports are equal to [x;,&;11] and [§;, zi42]. A somewhat more complex situation
arises in the case d = 2r 4+ 1 because the additional C"*' continuity at breakpoints &, i =
0,...,n — 1, makes these points appear repeated r — 1 times in the extended partition instead
of r times.

Although the evaluation of any spline of the considered spaces can be performed by evaluating
the involved B-splines by means of the Cox-de Boor’s recursion formula [97], the construction
of an alternative basis whose elements can be calculated explicitly would be useful if they enjoy
properties similar to those of the B-splines. Moreover, these functions will have more uniform
supports, in the sense that those of the boundary B-spline-like functions will consist of a single
macro-interval and the remaining ones will have two.

Inserting additional knots is often used to incorporate shape parameters in order to construct
approximating splines that preserve convexity or monotony to given data [81]. Shape-preserving
properties for the spline spaces proposed in this work can be achieved by imposing conditions on
the location of the new knots to achieve simpler results than those available when using spaces
without split points. Inserting new knots is used also in the bivariate case to preserve convexity
[86].

The proposed B-spline-like functions could be used in a natural way to define shape-preseving
approximating splines.
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6.1 Preliminaries

The construction of the bases that will be used to define quasi-interpolating splines makes
extensive use of the Bernstein-Bézier representation and the notion of polar form or blossom.

Recall that I = [a,b]. Each point z € R can be written as z = (1 — t) a +t b, and the vector
(1 —t,t) provides the barycentric coordinates of  with respect to I, from which the Bernstein
polynomials of degree d > 0 relative to I are defined as

d!
B

is the local variable, 5 := (B1, f2), B! := p1!62! and |B| := B1 + B2 = d. They

—a
form a basis of the space Py of polynomials of degree less than or equal to d.

For all ¢t € R, it holds
Z %Cﬂl,f(t) = 17
|8|=d

B (1) : (1—t)% ¢72,

—a

x
where t ;=

and each Bernstein polynomial ‘Bé 7 (t) is non-negative whenever 0 <t <1, i.e. when z € I.
Moreover, for each p; € P; there are coefficients {bg}‘ g|=q Such that

pa(x) =Y bgB§ () :=1ba(t), (6.1)
|B|=d
The restriction of p; to I is a convex combination of the coefficients {bg}‘ =g~ Equality (6.1)
is said to be the Bernstein-Bézier (BB-) representation of pg, and those coefficients are called
BB-coefficients or Bézier (B-) ordinates of p; with respect to I.

The smoothing conditions of two adjacent polynomial patches can be easily described in
terms of BB-coefficients with respect to the intervals. Let I} = [a,c] and Is = [c¢,b] be two
adjacent intervals, and let p; and po be two polynomials of degree d defined on I; and I,
respectively. Let by g and by g the BB-coefficients of p; and po, respectively. Assume that

7 := (71, 72) are the barycentric coordinates of b with respect to I;. Then, the piecewise
function defined as p; on I1 and ps on I is of class C" at cif, for 8, =0, ..., r,and By = n—r,
it holds

bag = Z b17a+ﬁ262%2,h (7).,
lo|=51
where ey = (0,1).
The smoothness conditions can be determined by using the De Casteljau’s algorithm, that
is, by making only convex linear combinations:

_ L8
b25 = b1 (0,6
where
b[l?]ﬁ = by g, for |B|=n,
oy = b+ Rl for [Bl=n—¢ ande=1,...,4d,

with e; := (1,0).

Blossoming is the other tool to be extensively used through the manuscript. It allows to
determine the BB-representation of a polynomial on an interval. If p; € Py and (1 — 7,7) are
the barycentric coordinates relative to I, then its restriction to I can be written as

pa(z)= ) Blpd(alb], b[B]) BE (1), w €1,
|B|=n

where the polar form B [pg] of the polynomial p, is the unique function provided by the following
result [41]:
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Theorem 6.1.1. Given a nonnegative integer d, for each bivariate polynomial pg € Py there
exists a unique blossom or polar form B[pg] : R?Y — R of py satisfying the following properties:

e Bip,y| is symmetric, i.e. for any permutation I1 of integers 1,..., d it holds
B [pd] (A1,..., Aa) = Blpd] (Anqy. -, Ana) -
e Bipy| is multi-affine, i.e. for values a and b such that a +b =1 it is fulfilled that

B[Pd] (AlaaB+bC)"'a Ad) = aB[pd] (Al,B""a Ad) + bB(pd) (Alac)"' ) Ad)

e Bipy| is diagonali.e. it holds

B pdl (A,...; A) = pa(A).

We will write indistinctly B [pg] (A1, ..., Aq) and B [p4] (7’1, cee Td>, where 7% := <7’f, Té‘:)
stands for the barycentric coordinates of Ay.

Also the De Casteljau’s algorithm is used to calculate the blossom in a stable way. Once
again, only convex combinations are produced:

d
B [pd] (T17 ceey Td) = b[(O],O)7
where
by = b, for |5 =d,
b =7l + bl for 1Bl =d—r, andr=1,..., d.
As an example, let d =2, 7" := (7,75 ), r = 1,2. Then, the blossom of the polynomial

ba (t) = bao %%2,0),1 (t) + b1 %(21,1),1 () + bo,2 %%0,2),1 (t), telo, 1],

is computed as follows:

o _ o o _
1. b(z,o) = b2, b(1,1) =b1,1, b(0,2) = bo,2.

1] _ _14[0] 12[0] 1] _ _14]0] 1,[0]
2. b(l,O) = 7'1 b(270) + 7—2 b(l,l)’ b(071) = 7'1 b(lvl) + 7—2 b(072).
3. Then,

1 1
B [p2] (Tlv 7'2) = 7'126[(1},0) + 7'22[3E()],1)

=77 (7'115270 + 7'2151,1) + 7 (T11b171 + T21b072)
_ 1.2 1.2 21 1.2
=TyT1 b2 + (Tl TS + Tq 72) b1,1 + 15715 bo 2.
Another very utility practical of polar forms is the computation of the BB-coefficients of
the restriction of a polynomial p; to a subinterval of I from the ones of py relative to I. For a

subinterval I = [¢1, ¢o] of I, with ¢; and ¢ having barycentric coordinates pt = (pl, pb), i=1,2,
with respect to I, then the BB-coefficients bg of pg on I can be determined in the following form:

bs = B [pa] ('3, 12[B2]) , 18] =d. (6.2)
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6.2 A family of many knot spline spaces

Let X, and X;ef be the subsets defined in the introduction, which define a partition of I
and a refinement of it, respectively. The sub-intervals induced by X,I;ef are denoted by I™. For

a given integer r > 1, we consider the two following spline spaces defined over the partition
induced by X'e':

e (X:ff) = {s € C"(I) : syt € Py for all Iref}, (6.3)
S;;lel <Xﬁef) = {s € C"(I) : sjpret € Poypq for all It and s € C"L(€) } . (6.4)

Here, C"! (¢) means that the polynomials on subintervals sharing a split point have common
derivatives up to order r + 1 at that split point. Splines s; € S5, (Xfff) and sg € S;;f:ll (X ref)

n

can be provided as solutions of the following Hermite interpolation problem.

Theorem 6.2.1. Given values fiq, 0<i<nand 0 < q < r, and gg, 0<k<n-1
and 0 < q < r — 2, there exists a unique spline s; € Sy, (Xm) satisfying the interpolation

n

conditions:
qu)(xl): iq7 fOriZO,...,TL,OngT‘, (653)
sgq)(fk):gg,forkzO,...,n—l,qugr—Q. (6.5b)

Analogously, for values fiq,Ogignandquﬁr, and gZ,OSkSn—l and 0 < qg<r-—1,

there exists a unique spline s € Sg;ﬁ:rll <X,Cef> such that

séq) (zi) = fl, fori=0,...,n,0<q<r, (6.6a)
s (&) == gf, fork=0,...,n—1,0<qg<r—1 (6.6b)

Proof. Functions s1 € S5, (X}fff> and s9 € S;;:rll (Xfff) satisfying respectively (6.5) and (6.6)
will be determined via the Bernstein-Bézier representation.
Consider the interval I; := [z, z;4+1], that is divided into two sub-intervals I; 1 := [z, &]

and I = [, 2i41]). Let bt and b52 0 < s < 27, be the BB-coefficients of s; on

2r—s,s? 2r—s,s?
Ii1 and I, respectively. Thoses in DNEM (z;) := {bz’l 0<s< r} and D" (z;,,) =

2r—s,s?
{bz‘,z

g5 <8< 2r} are provided by interpolation conditions at the knots x; and ;41 (6.5a),
respectively (see Fig. 6.1).

Now, interpolation conditions (6.5b) at & allow to compute the BB-coefficients of s; in
et (&) = {bg’j_sys,r +2<s< Qr} and ’Drif}; (&) = {bi’l 0<s<r— 2}.

r 2r—s,s?

Only the BB-coefficients bi’iu 41 and bf;—?—l,r—l remain to be determined. They are obtained
by imposing the C" condition at the split point &;. By assembling the splines constructed on
intervals I;, the unique spline s; € S, (I:ff ) solving the Hermite interpolation problem (6.5)
results.

The same approach is used to prove the existence and uniqueness of so. In this case, its BB-
coefficients in ﬁfght (x;) == {béﬂH_S’S,O <s< r} and 51,8& (ig1) = {bé’fﬂ_s,s,r +1<s<2r+ 1}
are determined from interpolation conditions (6.6a) at x; and x;41, respectively, and those in
ﬁlreftl (&) = {b;’gﬂ_s,s,r +2<s<2r+ 1} and 7?5? (&) = {b;’fﬂ_&s,o <s<r-— 1} are
obtained by applying the interpolation conditions at & (6.6b) (see Fig. 6.2). The remaining two
BB-coefficients are computed by imposing the C"*! conditions at &;. 0
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i1 i1 i,1 1 44,1 i,1 i1 i1
bzr,o b2r71,1 br+1,r71 bz br 1 7‘+1br72,r+2 b1,2r71 b(),2r
Tiw . . . . . £
g i) t 1
DI (2:) O, (&)
i,2 ,2 . 9 i,2 2 7,2 i,2 1,2
boro  bar_1a b:»+2 P 1bi 0 b1 91 b2y
iy R S M
ht lef
055 (&) 0,7 (it1)

Figure 6.1: BB-coefficients of s; relative to the subintervals [x;,&] and [&;, zi41].

i1 i1 i1 i1 i1 i1 i1 i1
b2r+1,0 b2r,1 T br+2,r lbr+1 r b'r‘ 41 brfl,r+2 T b1,2r b0,2r+1
i — M S —
—right fleft
©r (xi) r 1 (fl)
i,2 i,2 . i,2 i,2 i,2 i,2 7,2
b2r+1,0 b2r,1 br+2 r—1 br+1 rbr 41 br—l,r+2 e b1727« bO,2T+1
fi}r . x . 2 . . 2Tit1
rlght —left
1 (&) D, (i)

Figure 6.2: BB-coefficients of s relative to the sub-intervals [z;,&;] and [&;, zi41].

The dimensions of spaces S, (Xfff> and Syt (X ref) follow from Theorem 6.2.1.

Corollary 6.2.2. It holds that dim S5, (X,:ef> = (2n+1)r +1 and dim Sy ! (Xfff) = (2n +
1)r+n+1.

6.3 B-spline-like bases

To ensure an adequate representation of the functions in the spline space we will look for a
basis formed by non-negative locally supported splines forming a partition of unity. For each

knot z;, 0 <1i < n, we will construct functions Bkn te sy <X7rff> (resp. ka € Sg::ll (X,’;ef>)
£+ m = r, and for each split point &, 0 < k < n — 1, we will define basis functions BSp’
Sy (X;ef> {+m =r—2 (resp. D, p7 € S;::ll (Xflef) ¢+ m = r — 1), so that any splines

s1 € 53, (Xfff> and sg € S;;Tfll (Xﬁef) can be written in the form

kn,i knz Sp,k 12sp,k
w=Y Y dus +Z D B

=0 l+m=r k=0 £+m=r—2

~knz knz ~sp,k 4~sp,k

w=Y Y 4 +Z > % Do
1=0 {+m=r k=0 l+m=r—1

These basis functions B o and Dkn ‘ (resp. BZ%‘: and DZT;’:) will be called B-splines with respect
to the knots (resp. the spht pomts)

The main tool to construct the B-splines is interpolation problem (6.5)-(6.6) by choosing f-
and g-values that guarantee that the resulting functions will form a basis of the spline space,
are non-negative and locally supported, and constitute a partition of unity.
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6.3.1 A basis for 55, (Xref)

Let x; be an interior knot. Function Bifl;r’f will be constructed as the solution of a Hermite
interpolation problem by specifying appropriate values f1,0<q<r, and ng 0<g<sr—2.
Regarding the f-values, let %J x>, J +Fk = r, be the r + 1 Bernstein polynomials of degree r
relative to the interval [S; 1, .S; 2] given by

Ti+ Ti—1 Xt X

Szl = —— and SiQ:

> 2= T (6.7)

Define

<)q DEB (), 0<g<r (6.8)

Definition 6.3.1 (B-splines for an interior knot). The B-spline Bkm associated with the interior
point x; is the unique solution of the Hermite spline interpolation pr’oblem (6.5) with the following
data:

o fl=0 forallk#i, and f} = aé , 0 <q <, with the a-values are given by (6.8).

e gl=0forallk#i—1,i,g! | = *yz’_ml’q and gi = 'yzm,o < q < r—2, where the values ’yg
are given next in (6.9).

Let blg?;f’l, { + m = 2r, be the BB-coeflicients of Bifl;,’j relative to the subinterval [x;, &].
bkn,z,l

.y byy"" are completely de-

Since Bifr;r’f is a C" function at x;, its BB-coefficients blgf’é’l, .

termined by the values a;’%. Similarly, the BB-coefficients blgl;;f’Q, £+ m = 2r, relative to the

kn,z‘,2 kn,7,2
b ) bO 2r

are all equal to zero (see Fig. 6.3). Let pen " be the polynomial of degree r defined on the interval
i+ & Tip1+&
2 2

subinterval [§;, ;1] are determined by the interpolation conditions at 41, and

having BB-coefficients bl;fj:i’l, 0,...,0. Then, we define

2
Vo = <<Z>> <;>q D pyy (&), (6.9)

These values can be computed from the BB-coefficients obtained by subdivision of pllffn’i by means
of De Casteljau’s algorithm (6.2).

kn,i,1 kn,i,1 kn,i,1

b27‘ 0 b2r 1,1 br,'r

7 Tt Z
2

kn,7,2 kn,:,2 e kn,,,2 kn,i,2

br,r - Obr 1,r+1 — =0 b1,27“71 - G)O,Qr =0
& Titl TS Tit1
2

Figure 6.3: BB-coefficients of B-spline B * relative to the sub-intervals [z;, &) and [&;, z441] for
an interior point x;.
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Once the B-splines associated with the knots have been defined, it is time to define those
corresponding to the split points. For each &, let %Zm the r+1 Bernstein polynomials of degree
TE+ &k Tre1 + &k

2 2

r defined on the segment [ ] . For all 0 < ¢ <r — 2, define

<2T>

gha.— A4 1) DI gk (¢ 6.10

ij " (T) 2 z Pr—1—i, r—1—j k) ( : )
q

Definition 6.3.2 (B-splines for a split point). The B-spline Bfo associated with the split point
&k is the unique solution of the Hermite spline interpolation problem (6.5) such that fl-q =0,
0<qg<r, foralli=0,...,n, g! =0 wheni#k, andggzﬁf’gw 0<qg<r-2.

6.3.2 A basis for S (Xr°)

n

A similar method is used also in this case. For each interior knot x;, define the

rxT; + (T+ 1)%1‘_1
2r+1

ra;+ (r+ 1)z

N;q:=
i 2r + 1

: (6.11)

and Nijg =

and consider the r + 1 Bernstein polynomials of degree r defined on the segment W; determined
by N;1 and N;2. Then, for 0 < a <r set

<27’+1>
a
ayy = a < ! ) DEBL . (2) (6.12)

r 2r+1
a

Definition 6.3.3 (B-splines for an interior knot). The B-spline Df"’i associated with the interior

m
point x; is the unique solution of the following Hermite spline interpolation problem (6.6) with

the following data:
o fi =0 forall k # i, and f]' = aé’fn, 0 < a <r, with the a-values given in (6.12).

e gp =0 forallk #i—1,4, g | = fyé;nl’a and gi = 72;,0 < a < r—1, where the values

Yye are given next in (6.13).

Let blgr;’f’l, £+ m = 2r + 1, be the BB-coefficients of B?n’i relative to the subinterval [z;, &].

,m

. kn,i . . . . kn,7,1 kn,i,1 .
Since By, is a C" function at x;, its BB-coefficients by} , . . ., b, 1, are completely determined
n

by the a-values aé’z. Now, let blgr;,’f’Q, {+m = 2r+1, be the BB-coefficients of Bif " with respect

m
to [&, zi+1]- They are determined by the interpolation conditions at z;41, and bl;r:,ﬁ, ey blgg’ﬁl
are all equal to zero (see Fig. 6.4).

(r+Dzi+r& r&G+r+1) a4

)

Let plgflnf € Py, 11 be the polynomial defined on the interval [

2r+1 2r+1
having BB-coefficients blf,iii, 0,...,0. Then, we define
<27‘ + 1>
k, a r+1\
Voo = <2T mn 1) D3 p(&k)- (6.13)

(o)
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sp,i,1 sp,t,1 sp,?,1 sp,?,1 sp,%,1
b2r+1 1 b2r 1 b2r 1,1 br+2 r—1 br+1 r
2r 4+ 1
Sp,i,2 __ Sp,i,2 Sp,i,2
br,r+l_0 b12'r =0 b02r+1—0
& ) ) &+ (r+ Dai ; Tiy1
2r+1

Figure 6.4: BB-coefficients of B-spline Bz% relative to the sub-intervals [x;, ;] and [§;, zi41] for
an interior point x;.

Also in this case, the y-values can be computed from the BB-coefficients obtained by subdivision
of pgn " by means of the De Casteljau’s algorithm (6.2).
For each split point &, consider the r 4+ 2 Bernstein polynomials of degree r + 1 defined on
1 1
(r+ )xk+r§k, (r+ D)@ +7& . For 0 <a <r —1, define
2r+1 2r+1

the segment

(27" + 1)

a 1\ e

ﬁﬁ; = <T‘T‘1> (27;0_:_ 1> 537]? i, r—j (ék) : (614)
a

Definition 6.3.4 (B-splines for a split point). The B-spline D, p’ associated with the split point
& is the unique solution of the Hermite spline interpolation pmblem (6.6) such that fi* = 0,
0<a<r, foralli=0,...,n, g =0 when i # k, and gj, —B&m, 0 <a<r—1, where the
B-values are given in (6.14).

Figures 6.5 shows the quartic B-splines associated with the points 9o = 0 and z, = 1 of a
partition of the interval [0, 1], as well as the B-splines relative to the point 1/2. Figure 6.6 shows
similar B-splines in the cubic case.

Remark 6.3.5. Boundary B-splines basis for S5, (X,:ef> and Sgrjll <X:;ef) are constructed

according to the same procedure outlined in Subsections 6.3.1 and 6.53.2, respectively. For
Soy (X;;ef>, the B-spline with respect to vertexr xo (resp. ) is constructed according to the

procedure in Subsection 6.3.1 with a particular choice of points in (6.7), namely Sp1 = xo and
Spo = Ty + X1 Tp—1+ Tp

B-splines in S;;Tll <Xref>. Now, the boundary points in (6.11) are No1 =z and Np o = .

n

(resp. Spi = and Sp2 = x,). The same procedure is used for the

6.4 Marsden’s identity

Any B-spline B, ki and Dkn ' 04+m = r, with respect to a knot z; is related to some Bernstein
polynomials of degree r, as shown in (6.8) and (6.12). Furthermore, the spline coefficients
clgr;nl, {+ m = r, corresponding to Bkn " or Dkn " can be considered as the BB- coefficientes of a
polynomlal of degree r defined over the mterval [Si1, Si2]. This control polynomial with respect

to the knot z; is then defined as

T7(z) = > el By, (), € [Si1,Sial. (6.15)
l+m=r
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Figure 6.5: Quartic B-splines associated with the boundary points g = 0 (top, left) and z,, = 1
(top, right), B-splines relative to the interior point 1/2 (bottom)
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Figure 6.6: Cubic B-splines associated with the boundary points xg = 0 (top, left) and x,, = 1
(top, right), B-splines relative to the interior point 1/2 (bottom, left) and B-spline with respect
to the split point 1/2 (bottom, right)
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Taking into account the definitions given in (6.8) for s € S5, and 0 < a < r it holds

a _ kn,i
D¢ s(x;) = szo‘em
l+m=r

()
- (5) X o
< +m=r

Q

2r
- ( <) DET! (z;). (6.16)

(%)

Analogously, by (6.12), if s € S;;Tll, then

o + 1
D2 (1) = ) (557) DET7 (o,

r 2r+1
a

Since s (z;) =T} (z;) and D, s(x;) = D, T} (x;), we have the following result.

Q03

Theorem 6.4.1. The curve of the control polynomial T] is tangent to the curve of s at the
vertexr ;.

In order to get an overview of the definition of many knot B-splines-like defined here, the
following result is first considered. The m-order directional derivative of a polynomial p € Py
with respect to the unit barycentric directions d;, ¢ = 1,..., m, related to the interval I can be
briefly expressed as follows [41, 47]:

d!
50 D7) = (g BIP (d =], 61, 6. (617)

If b; j, i +j = d, denote the BB-coefficients of p, then

m
D617

ceey

d

B [p] (Tl,---,fd)z PRI | Ky (6.18)
1

iti=d  mend, l=

where ng stands for the set of permutations of (1[i], 2[7]).

Theorem 6.4.2. Let p1 be a polynomial of degree di defined on the interval [z1, x2|, and pa be
a polynomial of degree dy and defined on the interval [x1, y1], where do < dy and

Y1 1= (1—9)$1+9$2,

where 0 € R.
Denote by b; ;, i+ j = di, the BB-coefficients of p1, and d; ;, i+ j = dg, those of pa.. Then,

()
Dgpi(z1) = <CZ>9“ Dg pa (), (6.19)
a

for all 0 <a < p with 0 < p < dy if and only if
bay —ptij = ddo—ptijs (6.20)

for all (i,5) € N? with i +j = p.
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Proof. Let p and g be the unit barycentric directions with respect to the intervals [z1, x2] and
[z1, y1], respectively. In view of the definition of the intervals, it is clear that

fo=np.

y (6.17), we have
dy!
(di —a)!

From the relation between p and g, we deduce that

Dy pr (1) = B [p1] (e1[dy — al, pla]).

© s (1) = — 2 Bpa] (ex[ds — al, ola]) = — 2 =B [py] (e1]dz — ), pla]).
b (@ —a) @)l b
In light of (6.19), for all 0 < a < pu it follows that

i Bl (el =l eal — al pla)

d
<> 0 B (e

- <622> (ds — a)!

B [pi] (e1[d1 — pl, ex[p — a], pla]) = B [po] (ex]d2 — ], er[p —a], pla]),
and, by (6.18), for all 0 < a < p it holds

dy — pl; exp — al, plal),

then

7 7

Z bd1 — 41,7 Z Helw H pT((l - Z ddz —u+i,7 Z Helw H pT((l)‘

i+j = neH“, = l=p—a+1 i+ =n neH”, = I=p—a+1

There are p + 1 linearly independent constraints that only involve the BB-coefficients bg, ;44 ;
and dg, ;44 j, for i 4+ j = p. Then, this linear system implies (6.20). O

Next result concerns the representation the splines in the spaces analysed above. It is the
main tool to construct differential and integral quasi-interpolants.

Theorem 6.4.3 (Marsden’s identity). Each splines s1 € S5, (X;e) and sy € S;::ll <X£ef>

can be represented as

-1
:Z > C%Bf%ﬂLnZ: DI ad < (6.21)

=0 l+m=r k=0 f+m=r—2
) n—1
= Z Yooamoii >y oy, (6.22)
=0 Lrm=r k=0 {+m=r—1
where
kn,i
Ce,nml = 51|[w1,52] (93% B ], zz[ ])
7k yp—

¥ = B (5100 (€], @rlr — 1 — €, @pgalr — 1 —m))

EZTLWZ = 52|[1‘1 51 j| l'l T+ 1 [E] NZ,Q[m]> ;

~spk

sz)m =B [52\[%751@1] (&[], oplr — £, 2pqa[r — m]),
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with Sw = 25;; —x; and, for j =1,2,

- r r
Nij = (1+r+1) Nij = 7%

being S;; and N; ; the points given in (6.7) and (6.11), respectively.

Proof. Here, we give only the proof in the case where s € S5, (X,I;ef) A similar approach can

be followed in the other case. Let T} be the control polynomial (6.15) of a spline s € S, (X ,rff>
at z;. Then, by Theorem 6.4.2,

forall 0 < pu <rand 0 <a <y, if and only if

bar—pptij = dr—pptiss
for all (i,7) € N? with i + j = u, where bij, i + j = 2r, are the BB-coefficients of s, and
d; j, i+ j =r, are the BB-coefficients of T}". This equivalent to the condition
B[T]] (7'1 - ,TT) =B [51‘[%&.]} (e1[r], T[r]) (6.23)

for any set of barycentric coordinates 71, ..., 7". It is known that

it = BII7] (Siall), Sialm]) = B [Ty, .| (716 ealm))

l,m 7

- .1 1 5 . .
where S;1 =71 x;+ 71y Sig, 7y + 7" =1, and S;2 = 0z; + S 2. One can easily verify that

il il A
S@l =T X+ Ty Tipa and S@Q = 0x; + xiy1.

By (6.23), it follows that

Clg,nT;: =B [T;I[Imsi,ﬂ} (Ti71[€]7 62[m]) =B [81\[961‘,%“]] (61[7“}, Ti’l[ﬂ? eQ[m])
=B [81\[mi,zi+1]] (5%'[7“], Sialel, g@,Q[mD
which concludes the proof. O

Regarding the points S’M, S”i,g, ]Vi,l and ﬁiﬂ involved in Theorem 6.4.3, note that by (6.7)
and (6.11), we get

Sin =281 —x;=xi—1 and Sjo=2S;2—x; = Tiy1,

as well as
oo 2r+1 r

2r +1 r
J— - .= )
2,1 r+1 ,1 T+1Z

1T T e

zi—1 and N;o =

For boundary knots, we have So1 = xo and N,, 2 = . Then, 5’0,1 =z and Nng = T,.
Next, we define points that will allow to express the monomial of the first degree in the
bases of S5, (X ref) and S;;f:ll (Xflef) as a direct application of Theorem 6.4.3. For i =0,...,n,

n

k=0,....n—1,04+m=1r—2,
14

T

m ; l m
S@l + 75,'72, PZS,de = ;Ni,1 + 7Ni72, (6.24)

Pi,even e
lm -
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and, for i =0,...,n, k=0,....,.n—1,L+m=r—2, {*+m*=r—1,
r =0~ rT—m

k,even r—1-4¢ r—1-—-m k,odd
3 = V V ’ = V V N 625
Q/m . k1t , k2 Qum r 1 et T ke (6.25)

where S; 1, Si2, N;1 and N; o are defined in (6.7) and (6.11),

xi + & _ T+ & (r+Dazi+r& = (r+ Dz +ré

Vi = DTS d Vi = .

g Vi 2 i1 or+1 e e 2 + 1

Theorem 6.4.4. Let Pz’ﬁm, Pg’%dd, koeven o nd ng,;dd be the points defined in (6.24) and

lm
(6.25). Then,

Vigp =

_ Z Z Pgi::rzjenBj’nz + Z Z Qk eUenBsp, ( )7 (626)

=0 f+m=r k=0 {+m=r—2
n
i,0dd knz k,odd sp7
SY Y R S Y ahmot . (6.27)
=0 f+m=r k=0 {+m=r—1

Proof. Let s1(x) = x be the spline in the left-hand side in (6.26). Applying Theorem 6.4.3, we
can write

st=2 > Blsyp.e] @lrl, zia[l, zigam]) B

=0 {+m=r
n—1

+3° Y Bsued] &Il alr — 1= 4, mp[r — 1= m)) BEF
k=0 f+m=r—2

Using Proposition 6.5.1, and for £ +m = r, we have

1
B [51)13,,¢) (xi[r], zic1[0], zis1[m]) = s1(2) + > (0 Dz, —;s1(x:) +m Dy —a;51(24))

= i+ o (Uxio1 = 20) + (i1 — 20)),
_ 1 fxi + i1 n mwi + Tit1 ,
T 2 2
P’L ,even
- 4m
Similarly, we get the expression of the remind points. O

6.4.1 Some properties of the B-splines

kn ) sp,k kn,i
Bf,m ’ Df,m

supported functions. More precisely, B;;n’ and Dif?;: are supported on the interval [x;_1, z;+1],

The construction of the B-splines B, and D;F;f shows that they are compactly

while the supports of Bzrzf and DZI;;ZC are the interval [z, Tg4+1]-

As said before, an essential prc;perty in many fields is that the elements at the basis of the
space of spline functions form a convex partition of unity. This property is stated and proved
in the following two results.

Theorem 6.4.5. It holds that

1= By + Z >oooBrk. (6.28)

=0 {+m = k=0 {+m=r—2
and
n n—1
o kn,i sp,k
1= Dy + > Y., DR (6.29)
=0 L+m=r k=0 f+m=r—1
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Proof. As the constant 1 is an element of S5, (X ref) and Syt (X ref) by (6.21) it can be

n n
written as a linear combination of the basis in each space with coeflicients given by the polar
forms of its restrictions to the subintervals [z;, ;] and [£;, z;41]. Since the blossom of 1 is equal
to one irrespectively of the arguments, all coefficients are equal to one. O

Theorem 6.4.6. All the B-splines Bf%, B+ ka nd D p’ are non-negative.

lm

Proof. 1t is enough to prove that the BB- coefﬁcients of the B-splines are non-negative on a
single interval [z;, z;11]. For each B-spline B " with respect to the knot x;, its BB-coefficients

in @f}ght (x;) can be seen after subdivision as BB coeflicients of a Bernstein polynomial defined
on [S;1, Si2]. Note that the domain points associated with D8 () lie in [S; 1, ;2. Hence,
the barycentric coordinates of these points with respect to [S; 1, S; 2] are non-negative.

On the other hand, the BB-coefficients in the subset ©,(§;) given by the union without
repetition of DM (&) and DX (¢;) can also be seen after subdivision as BB-coefficients of a
i+ & S+ Ty

2 2

polynomial of degree r defined on ] . Let b; j, i+7 = r, be the BB-coefficients

2,1
T

of this polynomial. Only the BB-coefficient in D, ,le. brg = by

nt, Ti + & left  Li 1 &i
rig ( ? 5 z) — Qoet(%)
is non null (see Fig. 6.1). However, this non-zero BB-coefficient is uniquely derived from the
values a7 . which implies that all the BB-coefficients in ©,.(¢;) are also non-negative.

The BB-coefficients in ®, (§) of B-spline ijr;f can be seen after subdivision as BB-coefficients

T+ &k §k+$k+1] and

of the Bernstein basis BF 5 5

r—1—i,r—1—j

of degree r defined on {
Da%r 1—i,r—1—j (karl):O

for all 0 < a < r and I = 0,1, which implies that the BB-coefficients in @}?ft (W) and

. T
@ilght <k+12+§k are all equal to zero.

From the non-negativity of the Bernstein polynomials on their domain interval, we conclude
that the considered BB-coefficients are non-negative. O

6.5 Quasi-interpolation schemes

In this section, Marsden’s identity will allow to introduce some methods for constructing
quasi-interpolants of the form

. Z Z knz knz iy Z Z V;%lk (f) BZ%C’ (6.30)

=0 {+m=r k=0 £+m=r—2

. ~kn, z kn i ~Sp,k sp,k
=Y Y +Z > i (DD
=0 [+m=r k=0 {+m=r—1

and satisfying Q"p = p for all p € Py, and Q"p = p for all p € Py, being ,ug o VZI;’I , ,ulgr;nz and

;p’k suitable linear functionals.

6.5.1 Differential quasi-interpolation operator

Firstly, we recall a result that shows a connection between blossoming and directional deriva-
tives [47].
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Proposition 6.5.1. Let u, v;, i =1, ..., £, be some points in R. For any polynomial p € Py,
we have

4 .
Bl (uld— £, v, ..o ve) = > (d_;“)! S Dsplu).

=0 ' SC{o1 -+, 80}

|S|=¢—i
where §; ;= v; — u.
From the functional defined as
¢ .
d—1F0+1)
NI (ld—f oo = 30 S pgp() (6:31)

i=0 ' SC{1,3¢}

|S|=L—i

we define linear functionals providing quasi-interpolation operators.

Theorem 6.5.2. Let us define

pemt (f) = N/ (@ilr), zia [0, zialm]),

VZSZ;}L (f) == N[f1 (&[], axlr =1 =4, Tpa[r =1 —m]),
Fom (F) = N[f] (xilr + 1], @i [, 2iga[m])

PR (f) == N[f] (&lr], zplr — 0], @pga[r —m)).

Then, the operators Q" and Q" defined by (6.30) are exact on Po, and Py, 1, respectively.
Proof. From Proposition 6.5.1 and (6.31), it is easy to see that
N [p] (zi[r], zia[f], zisa[m]) = B [p] (zi[r], 2ia[l], iga[m])
and
N [p] (&klr], xrlr =1 = 4], xppa[r — 1 —m]) = B p] (&[r], zk[r — 1 = 4], 2p4a[r — 1 —m])
for all p € Py,.. Applying Theorem 6.4.3, we get
O"p = p, for all p € Py,.

The same approach is used to prove that the proposed operator is exact on Pay, . O

6.5.2 Discrete quasi-interpolation operator

Polarization with constant coefficients can be used to obtain functions in the form of a linear
combination of discrete values. According to [87, Section 8.7, p.17], the following polarization
identity is obtained:

1 _
Bpl (ur, s ug) = > ()" * kp (i > uz) : (6.32)
T Sc{1, -, d} ieS
k=|9|

Let us define the operator

M[f](ul,...,ud):% 3 (—1)dkkdf<}€zui>.

T sc{1,--,d} i€S
k=S|

From Marsden’s identity, we have the following result.
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Theorem 6.5.3. Let

() = MUS) (], 2ieall), @igalm)),

viPE (f) = Mf] (&lr], ol — 1= €], 2 [r — 1 = m)),
gt () == MUS) (alr + 1, 2ica[d), migalm))

TR (f) = M) (Glr), ol — €], 2p[r — m)) -

Then, the operators Q" and Q" defined by (6.30) are exact on Py, and Pay41, respectively.

Proof. 1t is clear that
M [p] (@i[r], ia[f), zipa[m]) = B [p] (zilr], ziall], zipa[m])
and
M [p] (&[r], wilr — 1 = 4], apia[r — 1 = ml) = Bp] (&klr], zelr — 1 = €], ppa[r — 1 —m])
for all p € Py,.. Then, by applying Theorem 6.4.3, one can obtains
Q"p = p, for all p € Py,.

The same approach is used to prove that the operator Q" is exact on Poyyq. O

6.6 Explicit examples of spline quasi-interpolants for r» =1

In this section, we provide discrete quasi-interpolation operators for r = 1 that reproduce Py
and P3. The linear functionals are defined by

Ny Ny

kn,i o kn,i kn,i sp,k o sp,k sp,k
Hgm (1) = D G (Zj,e,m>v Vo (1) = D @ (Zj,z,m> (6.33)
j=1 j=1
and
Ny Ny
~kn,i o ~kn,i kn,i ~Sp,k o ~sp,k sp,k
figm (F) =D Gy (Zj,m)v Tom (1) =D G f (Zj,&m), (6.34)
j=1 j=1
h kn,i sp,k  ~kn,i d ~sp,k 1 fficient an,i Zsp,k R d >1
where q; ' @G Qg 804 G, are real coeflicients, 7, . Z. ) € R and n, > 1.

6.6.1 Discrete spline quasi-interpolation operator associated with S, (X;ef)

When a uniform partition of step size h is considered, from (6.30) and (6.33) the following
quasi-interpolation operator that reproduces Py, results:

O =Y X B

=0 {+m=1

Hll{%l’l (f) = _;f<$i_32> +Zf<$i_2> —;f<a:i+2>,

ngﬂl’i’l (f) = _;f<xi—;l> +Zf<9€z‘+;l> _;f(l'i‘i‘?;h).

Notice that these coefficients are the same as those in [88].

where
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6.6.2 Discrete spline quasi-interpolation operator associated with 831’2 (X,‘fbef)

Now, we are looking for a discrete quasi-interpolation operator of the form (6.30) and (6.34)
which reproduces Ps, i.e.

n n—1
S ~k 4,1 k ) ” 7k71 7k
Q=2 > gy (DB + > 5 (HBE,
1=0 {+m=1 k=0

and Q'p = p for all p € P3. In this case, the following coefficients are obtained:

i 1 3h 7 5 h 1 h
:‘111{,0”1 (f) = 6f<37z‘—2> _9f($i_h)+3f<$i—2> —18f<x,-+2>,
ﬂl(illm%f) = éf(ﬁfz—i-:;) —;f(xi—i—h)—i—gf(:ci—i-Z) —118f(aci—2),

f

7S =

6.7 Conclusion

We have defined and analyzed a family of many knot spline spaces with smoothness |d/2]
and degree d. They are defined on a refined partition, obtained by inserting a split knot in each
interval. We have provided B-spline-like bases for these spaces when d = 2r and d = 2r + 1.
Also, Marsden’s identities have been established and used to construct various families of quasi-
interpolation operators having optimal approximation orders.



Chapter 7

On C? cubic quasi-interpolating
splines and their computation by
subdivision via blossoming

Given a partition X,, :={z; :a =29 < 21 <--- < z, = b} of a bounded interval I := [a, b],
C? (I)-continuous cubic splines can be constructed by decomposing each interval I; := [z, zj11],
0 < i <n—1, into three micro-intervals after inserting two new knots [89]. More recently, the
same idea has been used in [82, 90] to addressing the problem of Hermite interpolation with
cubic splines of class C?. In both papers, the constructed spline is expressed in each subinterval
I; in terms of function and derivative values up to order two at the knots x; and z; 1. The spline
is written as a linear combination of a set of basis functions. In [82], the considered basis is a
classical Hermite basis, which means that the basis functions are not all non-negative. While, the
authors in [90] have been provided a strategy to construct normalized B-splines-like basis, i.e.,
the basis function form a partition of unity, are compactly supported and are all non-negative.
These properties ensure both numerical stability and local control of the constructed spline.
This strategy is somewhat complicated and may be seen as a special case of the approach used
in this chapter.

We consider a space of C'! continuous cubic splines on a sample-refined partition with C?
super-smoothness conditions at the set of split points recently introduced in [91]. Also, a general
framework of quasi-interpolation methods based on the cubic B-splines has been developed in
[91]. The provided quasi-interpolating splines are C* continuous on I, and C? at the set of split
points. The main goal here is to provide a recipe that will enforce the C? smoothness conditions
at the set of vertices, and later, on the whole domain. Thus, we develop a subdivision rule by
blossoming which provides the coefficients of the B-spline-like representation on a finer parti-
tion (simple-split) written as convex combinations of the B-spline-like coefficients on the former
partition (twice-split). The convexity property is useful because it allows to get a stable compu-
tation and makes the subdivision geometrically intuitive. By means of the derived subdivision
rule, we can provide a C? quasi-interpolating spline defined on the twice-refined partition like
those splines in [82, 90] but with small set of functional data.

This chapter can be divided into two parts. Firstly, we have reduced the computational cost,
by considering a simple refinement of X, obtained by introducing a single split point in each
element of X,,. Then, a reduced space of C? cubic splines is defined from function values and
first derivative values at the grid points and from function values at the inserted split points.
In summary, full smoothness is preserved and the number of degree freedom is reduced, so
that the computational cost diminish. In the second part, we construct a novel normalized
B-spline-like representation for C2-continuous cubic spline space defined on an initial partition
refined by inserting two new points inside each sub-interval. The basis functions are non-
negative, compactly supported, forming a convex partition of unity and that are geometrically

118
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constructed. With the help of the control polynomial theory introduced herein, a Marsden
identity is derived, from which several families of super-convergent quasi-interpolation operators
are defined.

7.1 Reduced C? cubic splines space

In what follows, we start from a space of C'' cubic splines and then a recipe to achieve C?
regularity on an arbitrary partition is given.

7.1.1 C' cubic splines

Let )Z'n be the refinement of X,, obtained by inserting in I; a split point &. We focus on
the subspace S§’2 (Xn) of S3 (Xn) resulting when C? smoothness at the inserted knots [91] is
required, i.e.

S§’2 ()?n> = {s c Si ()?n) cse C? (f)},

where £ := {fi}?:_l is the set of the inserted split points. A spline s € S;’z ()?n> can be uniquely

characterized by specifying two particular values for each knot of X,,, and another one for each
interval induced by X,,.

Theorem 7.1.1. Given values f;, and f; ., 0 < i < n, and g;, 0 < i < n — 1, there exists a
unique spline s € 5’;’2 <)?n> such that

s(@i) = fi, ' (@)= fix (7.1)

for every knot x; of X,, and
B [8):,61] (& [3) = 9i (7.2)

for every interval I;.

Proof. 1t suffices to show how the B-ordinates of the solution s € S; 2 ()?n) of this non standard

interpolation problem are obtained for all macro-interval I;.

On each of the two micro-intervals J;1 = [2;,&] and J;2 := [&,2i41] the spline s is a
polynomial of degree 3, which can be represented from its B-ordinates. They are shown in
Figure 7.1.

The B-ordinates dy, di, d2 and ds indicated by (e) are provided by the values of the spline
and its first derivative at knots z; and z;11 (7.1).

The interpolation condition ( 7.2) at &; allows to compute the B-ordinate d4 indicated by
(A). The remaining B-ordinates ds and dg, indicated by (o), are computed from C* smoothness
at &;. More precisely, they are given as follows

ds := T 1d1 + T 2d4, de := T;1d4 + T 2d2,
where 7;1 and 7;2 = 1 — 71 are the barycentric coordinates of & with respect to ;. O
do dl d5 d4 d6 d2 dd

° ° A ° °
Tk & Th+1

Figure 7.1: A schematic representation of the domain points involved in Theorem 7.1.1.
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Having proved the unisolvency of the interpolation problem, we consider how to represent
its unique solution. To do so, we construct B-spline-like functions (B-splines for short) D (Lm)

and ka in order to express any spline s € SS’ ()?n> is the form

n—1
5= Z > ) Dty + D XD (7.3)
1=0 [+m=1 k=0

We now show how to construct suitable B-splines Dl (L) and DZP for the knot z; and the
interval Iy, respectively. The construction used herein is entlrely based on the choice of a single
interval W; := [W; 1, W 2] for every knot x; in X,,. It must contain z; and some specific points
in a neighbourhood of x;, namely

—T; + g{i—l and P2 := qu;+ g&

Py =
LR 3

Equipped with W, we introduce four parameters associated with x;. Let (a (1,0)> ?7(071)> be
the barycentric coordinates of x; with respect to W;. This is the unique duplet satisfying

0 0 0 0
o a,oWit + a0 yWiz =2, a; o)+ 0501 =1

Furthermore, let (O‘z{(l,ﬁ)’ 042-1,(071)> be the directional barycentric coordinates of the vector 7
with respect to W;. This is the unique duplet satisfying

1 1 1 1
aiv(lvo)Wi’l + ai?(ovl)Wi’Q - 1’ a7/7(170) + ai?(ovl) - 0

We define the B-spline basis for S§’2 (Xn> in terms of conditions (7.1) and (7.2) provided in
Theorem 7.1.1. The definition of the B-splines Dkr(leym), {4+ m =1, corresponding to the knot x;

are based on ag(&m) and ail’(e’m): at x; we set

/
Dk?ﬂ,m) (wl) - Oé ,(¢ym)» (Dk?&m)> (wl) = ai{(@,m)’

and ,
Dz ,(¢,m) ( ) =0, (Dir(lﬁ,m)) (.7)]) =0

at any knot x; of X, different from x;. Moreover, if 7;;1 and 7;2 are convex weights such that
& = Ti1%; + TiaTiq1, then we set the values in condition (7.2) to zero except

& — i
B |: i (gm } (éz[ ]) =T 1 <O‘?’(Z’m) + 042-17(67m) 3>

and ¢
i—1 — L5
B { 1(€m} (&-1[3) =712 <0<?,(e,m) + Q5 (4, m) 3> :

Similarly, we define the B-spline DZP corresponding to I by the setting all values in (7.1) and
(7.2) to zero, except the following one:

B D] (&k[3]) = 275,17k 2-

Once constructed the B-splines as solutions of the corresponding interpolation problems,
one needs to give the explicit expressions of coefficients c (é m) and czp in the BB-representation
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(7.3) of s € S; )2 ()N(n> This is achieved by means of polar forms of restrictions of s to specific
intervals of X,,. To be precise, for any interval J; of X,, with an end-point at z;, it holds

oy = B [s1] (2i[2), 2im1[0), ziga[m]) . (7.4)

Note that the above blossom value can be evaluated in terms of s and its first derivative at the

knot z;, namely
2
55' (i) (Tit1 — 33)

This confirms that the value of ci-‘f(l&m) is independent of the choice of J;. Regarding the coefficient

B [s;,] (xi[2], wiy1) = s (i) +

ch corresponding to I, it is satisfied that

&l =B [s15.) (@r, Ty, &) - (7.5)

To understand the super-smoothness condition C? at the vertices in X,, for C' cubic splines
that we will explore later, we now review the Bernstein-Bézier representation of s restricted to
an interval induced by X,,. Let J;1 = [z;, &] be the left sub-interval of I;. The blossom value
giving the B-ordinate of 5|, , corresponding to the knot z; is given by

B[sw ] = D em lem

l+m=1

The B-ordinate associated with the domain point %l’l + %fi is equal to

§i — T n
B [lei,l} (@2, &)= ) <@?,(€,m) + ail,(f,m)3> i om)y- (7.6)

l+m=1

2 1
Note that the weights in (7.6) are the barycentric coordinates of the §w, + 5& with respect to
Wi.
Furthermore, the B-ordinate corresponding to the split point &; is

[S\Jl 1} (&3) =718 [S\Ji,l} (w5, & [2]) + 7758 [3|Ji72} (zit1, & [2]) +2mama )y,

where J; 2 = [&, ®it1].
The B-ordinate corresponding to the domain pomt 3:16, %&‘ is a convex combination of
certain B-ordinates associated with the domain points 3:& %Ei and &;. Indeed, it is given by

B {Sm,l} (i, & [2]) = 7B [S\JM} (i [2], &) + Tipc)®

Remark 7.1.2. Boundary B-splines-like basis for S§’2 are constructed according to the same
procedure outlined for interior points. The B-spline-like with respect to verter a = xy (resp.
b = x,) is constructed with a particular choice of the interval Wy (resp. Wy, ). Namely, Wy must

contains Po1 = xo and Py = §x0+ &o. The interval Wy, also must contain P, 1 = an §n 1

and P2 = xp,.

7.1.2 Recipe to achieve C? smoothness at the set of vertices

Consider a linear operator Q of the form

Z > itm () DY, )+Z¢ (7.7)

=0 {+m=1
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which associates with a given function f a spline in Sé’z ()N(n> It is based on the choice of linear

functionals ¢ and pr corresponding to vertices and intervals, respecively. Motivated by

(¢:m)

(7.4) and (7.5), we consider the linear functionals Qj)ff(l&m) and ¢}’ given by

Ulymy (F) = BTyt | (@i12), @it [0), @i [m])
VP (f) = B[LP f] (wk, rg1s &)

for some linear operators Ik(
and Z,” f.

In what follows, we provide an approach that enables us to get C? smoothness at the vertices
in X,,. We start by observing from (7.4) and (7.7) that

B [Izk,r(lé,m)f\li,l] (zi [2], i1 [4], Tig1 [m]) = [QfUL 1} (z; 2], zic1 [€], zig1 [m]),
B [Ipruk,l} (T, Tht1, &) = B {quk,l} (Tk, Trg1, &k) -

m) and Z,;” that map a function f to cubic polynomials I%f&m) f

As the following result shows, C? smoothness can be achieved by specifying a cubic polynomial
that connect the local operators acting in the closest neighbourhood of the knot.

Theorem 7.1.3. Let Qf be defined by (7.7), and let x; be a knot of X,,. Assume that there
exists a polynomial p € P3 such that the following requirements are met:

e The operator Ii]f?&’m), {+m =1, corresponding to x; satisfies
Ikn N . Ikn ! N o ) 78
i,(g,m)f(xZ) = p(;), i’(g,m)f (z5) = p' (). (7.8)

e The operators ;" | and I;" corresponding to the intervals I;_y and I; with an end-point at
x; satisfy the conditions

BZP f] (zi,xi-1,&-1) = Blp| (x4, zi-1,&-1) and BL f] (x4, 21, &) = Bp] (6, 241, &) -
(7.9)
Then, Of is C?-continuous at T;.

Proof. We need to prove that (Qf)" (z;) = p” (x;). Recall that,
D?_,, Qfis, (@) = 6B[Qfis,, | (i, (& — w)[2)
=6 (=28 [Qfjs,,] @l2, &) + B[, | (w1 &[2) + B[Qfis,,] (il3])) -
More precisely, we need to prove that

Df s, Qfis (x1) = 6 (=2B[p] (x:[2), &) + Blp] (x4, &[2)) + B [p] (2:[3]))

where the blossom values of p are all independent of J; 1. To his end, we consider the blossom
values

B Q.| (@il2l, &) and B[Qfis,, | (zi.&[2)

which will help us to express the second order derivative of Qf|;, , at z;.

e The blossom value B [qum} (z:[2],&) is the B-ordinate of Qf|;, , on J;1 corresponding
to the domain point 2z; + & (7.6), i.e

B [Qf|Ji,1] (,Z‘Z[Z], 51) = Z <a?,(€,’m) + a%,(@ﬂn)gi;xi) B |:Izk,r(ll,7n)f:| ('TZ[2}7 xi—lw]a xi+1[m]) .

{+m=1
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The weights ag(&m) + %a;(&m) (& — x;) are the barycentric coordinates of the point %xl
+ %{i with respect to W;, which implies that they are also the barycentric coordinates of
the point & with respect to the interval [z;_1, x;4+1]. Hence, throughout multi-affinity of
the blossom and by (7.8), one can obtains

B[Qfis, ) @il2), &) = BTty ] (wi[2), &) = Blp) (z:[2], ).

e Considering the B-ordinate of Qf)s,, corresponding to the domain point %xz + %fi, it
holds

B|Qfis,] @i &l2) = maB Q| @il2], &) + 7B [y, | (@iv wis, &)
From (7.9), we get

B [qui,l} (i, &[2]) = 1B [p] (%:[2], &) + 7i2B [p] (05 Ti1, &)
= Bp] (zi, &[2])
This confirms that (Qf)" (z;) = p” ().
O

Next, we provide a recipe to choose the operators Izk?f m) and IZP in such a way that the

conditions in Theorem 7.1.3 are fulfilled.
Let Qf be defined by (7.7).

e For every knot z;, take Izk’&m)f =TFf (+m=1.
o Take I," f = T f, where T f is associated with zy, which is an end-point of Ij.

These choices ensure that Qf € Sg ()A(:n)

Finally, we proved that with an appropriate choice of certain interpolation operators the C!
cubic splines space defined on a refined partition are C? everywhere.

7.1.3 Numerical results

This section provides some numerical results to illustrate the performance of the above
quasi-interpolation operators. To this end, we will use the test functions

fi(z) = %672(9172)2 - }e’(9$’7)2’(91’4)2 + }67(99077)27&(9%3)2 + 36%(79%1)7%(9“1)2

4 ) 2 4 ’
fo(z) = %x cos* (4 (z* +z - 1)),

whose plots appear in Figure 7.10. Let us consider the interval I = [0,1]. The tests are carried
out for a sequence of uniform mesh X, associated with the break-points x; = ih, i = 0,..., n,
where h = % The inserted split points are chosen as the middle points of the macro-intervals,
e, &= (i+3)h i=0,...,n—1

For each © = 0,..., n, we choose Ilkn as Lagrange interpolation operator. More precisely,
T f (y) is the Lagrangian interpolation polynomial of f at points x;_1, ;, & and ;1. From
this choice, the linear functionals lﬁf(}e,m) and ¢;” will be given by the following expressions:

1

Uit = 5 <f(h(z’— 1))+ 30f (hi) + 3f (h (i + 1)) — 16f (h (”i))) :

o (1 = 55 (=F =0+ of7 i) =3 i+ ) +107 (n i+ 5) ) ).

=

o7 (=g (~r k0 - s+ vy ss (n (k4 3))).

(=)
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Figure 7.2: Plots of tests functions: fi (left) and fo (right).
The boundary functionals are given as follows:
(1){2170)f = f(20),
h 2,/(3h 1
Ve o () =2f () + *f <2> — f(h) - §2f(0)7
1
=g (s7(3) - rm-10).
And
2 1 2 3
Wihof = ~fhin=1) = 5 m)+2f (1 (n=3))+ 57 (n(n=3)).
iy (F) = f(hm)
1 1
6 =g (<10 =) - gy 457 (n (- 3))).
The quasi-interpolation error is estimated as
& (1) = max, 10f ()~ f (o)l (7.10)

where z4, £ =0, ...,
order (NCO) is given by the rate

200, are equally spaced points in I. The estimated numerical convergence

log (5 )
NCO := —>"27

log (771)
n En(f1) NCO En (f2) NCO
16 | 9.1296537835926 x 10~ 2 —— 1.260787334071 x 1073 ——
32 | 6.1127061602148 x 107° | 3.900677028041 | 8.145770956876 x 10~° | 3.952129887220
64 | 3.7983549236761 x 107% | 4.008364593575 | 5.299660586700 x 10~°¢ | 3.942079377867
128 | 1.9959603911938 x 1077 | 4.250219722727 | 3.515981562213 x 107 | 3.913900556044
256 | 1.5928529425907 x 1078 | 3.647398107630 | 2.129053828850 x 1078 | 4.045643174010

Table 7.1: Estimated errors for functions f; and fo, and NCOs with different values of n.

In Table 7.1, the estimated quasi-interpolation errors and NCOs for functions f; and fy are

shown.
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7.1.4 Spline spaces on twice-refined partitions

In the previous section a C cubic quasi-interpolant on a refinement )?n of the initial partition
X, by adding an additional knot at each macro-interval has been defined. That quasi-interpolant
is written in terms of B-spline-like functions D?’?@,m), 0<i<n,l+m=1andD;",0 <k <n—1.
The computation of such a spline by refinement of the original refined partition, while retaining
the cubic precision, is considered in this section. For this purpose, we consider a refinement
Xn o of the refined partition Xn 1:= X Each micro—interval I induced by Xn 1 is decomposed
into two sub-intervals by inserting points &1 and &; 2 into 1'271 = [z4, &) and 1172 = [&, xit1],
respectively. For the sake of simplicity, we note by 294 and 21V = & the old knots in X,
and the inserted split points in )?n,l, which means that the new chosen points are the inserted
split points in the first refinement. A schematic representation of the two levels of refinement is
depicted in Figure 7.3.

L,

Ty &1 z; & Tit1
IQn

x;}idl fz— nfw 51—1,2 :Z:;)ld 5171 x;ww §i72 rLOJlrdl

Figure 7.3: A schematic representation for the first (top) and second refinement (bottom) levels.

The spline space Sg (Xn 1) is considered since we are interested in refining C? cubic func-
tions, namely the quasi-interpolants constructed in the previous section. The space 83 ( n 2)

is also involved. A spline s € 53 ()N(n1> is also an element of the finer space S3 ( n 2) and we

look for expressing the coefficients in (7.3) associated with second level partition Xmg in terms
of those corresponding to the first level refinement X, ;.

Le us suppose that the spline s € S§ ()N(RQ) is expressed as

—_

n
S:Z 2 : ckl(l old kn old +Z 2 : kn new kn new + (sp, ,Dsp, ZP’QD]SCP’Q)y

i=0 {+m=1 i=0 {+m=1 k=0
(7.11)
where ckr(lg old - kn, new cSp " and cSp’2 are the coefficients associated with points 299, zV, &
m) Z?(va) ’ 7 5
and & 2, respectively.
We will start by providing the expressions of the spline coefficients associated with a uniform
partition, where the inserted split points in each level are the mid-points. Later on, we will prove
subdivision rules for the case of non-uniform partitions.

3

7.1.4.1 Subdivision rules for uniform partitions

Consider the uniform case, with x; = a+1th, i =0,...,n, h being the step-size. In this case,
the inserted split points in the ﬁrst level are & = ({L‘@ + :L'l+1) and those corresponding to the
second level refinement are & ;1 = 4:@ + xz+1 and §Z72 = 4ac, + %xiﬂ.

The following results show the relationship between old and new coefficients for vertices.

Proposition 7.1.4. The coefficients ckT(LeOld) {+m = 1, corresponding to the knot x"ld are

expressed as

kn, old 3 1 ohn kn, old 1 g 3 &
Ci1,00 = 2% (1 0)+4 ,(0,1) Gi01) = Zci,T(Ll,O)"i_ 1750 1)
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Proof. Note that z;V =¢; = 4.%1 4x7;+2. Then, using the multi-affinity of blossoms and (7.4),
we have

,(1,0)

3 1
=515 (w112, §icr + o)

CL.(H’ old —B [S] (m?ld [2] ’ x?ﬁ\f)

= 38181 @ [2), 1) + 3B1s) (w21, i),
and,
o = Bls] (o5 2], w35y
=B [S] (a:z [2] R il‘i_l + in+1>
= JBI51(@ 2], 7i0) + SB1s] (i [2), o),
The proof is complete. ]

kn,new

i, (6m) ¢+ m = 1, corresponding to the knot x“" are

Proposition 7.1.5. The coefficients ¢
expressed as

kn, new 1 k 3 kn 1 sp kn, new 3 k; 1 1 sp

Ci1,0) — gci,T(Ll,O) T gC0) T % €i0,1) = glitL(0 T 801+1 (01 T 5% -
Proof. Again, we use the multi-affinity of blossoms and (7.4)-(7.5) to get
Bls] (a1 (2], 2
1 new (o} neW O. O.
= 3815 (1, a9 2]) + 5B1s] (w1, 2P, 2k
1
2

(B0 21, ima) + 3500 @[22 ) + B8] (6 i i)

kn, new
1,(1,0)

The same technique is used to get the expression of Ckr(lo Ill(;w O

Similar results are given next for split points.

Proposition 7.1.6. The coefficients cSp’ and cSP2

respectively, are given by

associated with the split points §1 and & 2,

sp,1 3 kn 9 kn 1 s cSp2 9 Im 3 kn 1C§p

" = 1500 T 1gon T 74 : 16°+1.00) T g%non T 1%

Proof. Using (7.5), we can write

1
c?p, = [ ] (51 1, X (')ld; ?ew) .
By definition, &1 = 5 Old + ; 2% and

w11d11d11d31d
;' :2f+§§)+1_4?1+433?+1

Then, by multi-affinity of blossoms, we have

&P = 2B1s] (2912, 21) + 2B[s] (a9, 21 2])

)
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Taking into account that

and
1
MQ@WJPWszMQ@WM e) 4 B5] (2, agld, o)
Jn 3. 1
Ci1,0) F Cz<01>+4 o

p,1

the claim follows for cS . The same approach is used to prove the expression for cSp’Q. ]

7.1.4.2 Subdivision rules for non-uniform partition

Now, we consider the case of non-uniform partitions. Let

B [a,b, c] = (") (b— 2 <_c(5 a)"

1

be the ith Bernstein basis function of degree n in Cartesian coordinates with respect to [a, b].
The following results are obtained.

e Subdivision rules for the coefficients associated with the set of old vertices: for £ +m =1,

ciq(leomk)i = Bls] 2o [r+ 1], 27 [4], v [m]) ,

l m
_ 0 old old new m old old new
- Z Z IB%j [xi—17$1+17 } B |: Li_1,Ti41, L5 } X

1d 1d 1d

Bls] (29[ +1),08 [+ K], o5 [r = — H]) |

l m
_ 0 old old new m old old new | kn
= Z Z B; [$i717$1+17 } By { Li—1) Lig15 Ly }Ci,(j—i-k,r—j—k)'

e Subdivision rules for the coefficients associated with the set of new vertices:

— For /=1 and m =0,

i,(1,0)
_ ml old ,.old new new _.old
- BO |:$z 7xz+17 x; B [S] (:Bz » Ly [2])
1 old ,.old new new _.old old
+ By {331 1 T 15 &y } Bs] (‘rz yTi s xi+1> )

1
_ ml old ,old new 1 old old new | kn
=By [% » Lip1s Ly } E :Bj [xz 1 L1, L5 } Ci(j,1—7)

1 old ,.old new | Sp
+ By |:xz 1 Lig1s T }C' :
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— For /=0 and m =1,
o = Bls] (e 21,25 ).

1,(0,1)
old ,.old new | Sp
= IB30 [ 1 Liy1s T4 ] G

1 old old phew 1 old old new kn
+ By {xz Tit1, %5 ]§ B; [z Lit2,T }02‘4_1,(]‘71_]‘)-

e Subdivision rules for the coefficients associated with the set of split points (we consider
only the subdivision rule associated with &; 1, the case of &; 2 being similar): it holds

,1 1
Czs'p =B [S] <€l 17$?d’x?ew) )
1

_ ZB [ old. new’&’l} B[s]( o] 4 4], abev [2—j]),

Jj=0
old phew 1 old phew -
= BO |: , Ly g :| =1+ B |: y Ly 7&,1} =2,

where

L”

1
old .old new | Sp 1 old old new old old new | _kn
IB%o[ » Tig 1, Lj } ¢ +B; [fﬂz Lit1, L ]ZB [z 1 Tit1> Lg Ci(q,1—q)
q=0

and
1
= . 1 old _old new | kn
o 1= E Bq |:xi717 Lit1, Ly :|Ci,(q71—Q)‘

7.1.5 Numerical examples
Define the control points as
k o k k o k Sp L __ 5
ci,r(ll,O) = (Wi,lv Cz‘,r(l1,0)) ) Ci,?O,l) = (Wi,% Ci,r(lo,l)) ) CZP = (fkv czp) :

Consider the curve associated with the function f3 (z) = sin (57x). Its plot is shown in Figure
7.4 (left). Figures 7.5 and 7.6 show an example of the polygon of control associated with the set
of control points with different level of refinement.

10 05
r 0.4
05
0.3
[ o! a o! 8 1.0

Figure 7.4: Plots of f3 and f; (from left to right).

0.2 0.4 0.6 0.8 1.0

Thus, we consider the polygon control depicted in Figure 7.4 (right) associated with the

function fy (x) = %1’ cos (47T (ZE2 +x— 1))4. Figure 7.6 shows the control polygons associated
with several levels of refinement.

After applying one or more subdivision steps, the sequence of approximate control polygons
converges to the original one.
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P P P P P P P P P
L 0] 4 0) 8 1.0 L 0] 4 0) 8 1.0

05 0.5

-1.0F -1.0-

Figure 7.5: From top to bottom and from left to right, plots of control polygons given by levels
X190, X209, X40 and Xgg in red color and the original one in blue color.

0.5

7.2 A new approach to deal with C? cubic splines and its appli-
cation to super-convergent quasi-interpolation

As shown in [82], C*-continuous cubic splines on a partition endowed with a specific refine-
ment are obtained if all values and derivative values up to order 2 at the break-points of the
initial partition are given. More specifically, to get globally C? cubic splines, the initial partition
should be refined by inserting two new knots inside each sub-interval induced by the primary
partition (for the general case, see [89]).

The idea of introducing a split knot was introduced for the first time by L. L. Schumaker
in [81] to address the case of quadratic splines. Adopting the same procedure, C. Manni in [94]
has investigated interpolation by means of C' quadratic and C? cubic many-knots splines with
shape parameters. More recently, the same idea has been used in [82, 90] when addressing the
problem of Hermite interpolation with C? cubic splines with the aid of blossoming. Unfortu-
nately, the strategies outlined in those last papers have some drawbacks. In fact, the B-spline
bases constructed in [82] are non-positives, while the strategy developed in [90] is somewhat
complicated, which may be seen as a special case of the approach that will be proposed here.

As mentioned above, in this section we consider a refinement of the initial partition by
inserting two split knots inside each initial sub-interval and define a space of C? cubic splines.
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Figure 7.6: From top to bottom and from left to right, plots of control polygons given by levels
X50, X100, X200 and X499 in red color and the original one in blue color.

Every spline in this space is uniquely determined by its value and that of its derivatives up to
order 2 at each knot of the initial partition. Since the C? cubic spline space is characterized by
an interpolation problem, then a B-spline basis is constructed by defining its basis functions as
duals of the interpolation functionals. This will be done in a completely geometric form in order
to get compactly supported non-negative B-spline functions forming a convex partition of unity.

The solution of a Hermite interpolation problem in this space gives rise to a many knot spline,
which can be considered as a differential quasi-interpolant. Therefore, the notion of control
polynomial allows us to obtain a Marsden identity from which we define quasi-interpolants that
reproduce the cubic polynomials.

Super-convergence is a phenomenon that appears when the order of convergence at some
particular points is higher than the order of convergence over the whole domain of definition
[92, 93, 96]. Super-convergence is an advantageous theoretical property that can be exploited
successfully in practice. The theory of control polynomials used here allows to define a family
of super-convergent quasi-interpolation operators.
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7.2.1 A space of C* many-knot splines

For a given n > 2, let X, := {xg < x1 < ... < x,} be a subset of knots providing a partition
of I into subintervals I; := [z;,2;11], 0 < i < n — 1. A refinement X}"Lef of the initial partition
X, is defined by inserting two split points &1 = %(Zml + 1) and &9 = é(wl +2x41) in
each macro-element I; that define the micro-intervals I; 1 = [z4,&.1], Li2 == [&i1,& 2] and
Iz = [& 2, wiga].

Here, we focus on the spline space

s2 (X;ff> — {secz(I):sum €Ps, j=1,2,3, Ogign—l}.

A spline s € 5’% (Xfff) can be uniquely characterized by three specific values at each knot
x; (see [89]).
Theorem 7.2.1. Given values fio, fi1, fi2, 0 < i < n, there exists a unique spline s €
S2 (X,gef> such that
s(zi) = fio, S(xi)=fir, (@)= fia (7.12)
Figure 7.7 shows a graphical representation relative to Theorem 7.2.1. The B-ordinates of s
corresponding to z; and its neighboring domain points depicted by dark bullets () are computed

from interpolation conditions (7.12). The remaining B-ordinates are determined from the C?
smoothness conditions at the inserted split points.

Ti—1 -1 &i—1,2 T4 i &io Tit1

Figure 7.7: Schematic representation of domain points corresponding to the BB-representation
of a C? cubic spline. The points depicted by (e) represent the degree of freedom, while, the
points represented by (o) mark the B-ordinates computed from imposed C? smoothness at the
inserted split points.

In what follows, we will look for a normalized representation of the spline s € S§ (Xfff) of
the form .
s(@) =" " ciaBialx), (7.13)
=0 |a|=2
in which the basis functions B; , are non-negative, have a local supports and form partition of
unity.

7.2.1.1 Construction of normalized B-spline-like representation

This subsection is devoted to construct suitable B-spline-like functions B; ., i = 0,...,n,
la| = 2, for which (7.13) holds of a spline s € S2 (Xfff>.

The construction used herein is entirely geometric. For every break-point z;, 0 < ¢ < n,
define

4 1 4 1
Wi = §§i71,2 — 3% Wi = gfi,l — 3% (7.14)
and the interval W; := [W; 1, W;2]. From W; we introduce nine parameters relative to x;. Let

%%Vi’m || = 2, denote the Bernstein polynomials of degree 2 with respect to W;, and define,
for 0 < 7 <2 and a given integer m > 3, the values

")

. 2\7 .
Vo= () D’ %%/i/i,a(xi)‘ (7.15)

(5) "
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The B-spline for S3 (Xfff> are defined in terms of conditions (7.12) provided in Theorem 7.2.1.
The construction of the B-splines B; o, |a| = 2, corresponding to the break-point z; is based
entirely on parameters fyf 0 0<7 <2, |a| = 2. Indeed, B, is the unique function in S§ (X;Lef>
such that

Bia(@i) = Vo Biol@) =70 Bla(®) =0
and B; o(z¢) = B; ,(z¢) = By, (z¢) = 0 at any knot z different from ;.

Ti-1 §i-11 §i—1,2 T i i Tit1

Figure 7.8: B-ordinates of the B-spline B; , associated with the break-point z;.

A schematic representation of the B-ordinates corresponding to the B-spline B; ., associated
with the break-point x; of X,, is depicted in Figure 7.8. By definition, the B-ordinates at the
domain points in a neighbourhood of z;_; and x;,; are equal to zero. Because of C? smoothness
at x;, B-ordinates d_o, d_1, dy, di and do are completely determined by the value 'yf o They
are given explicitly as follows: 7

Lo Lo )2
do =700, di =700+ %{aigl’lg B dy =0+ 20k A ; LR (G c =)
) _ oy ) _ . . _ )2
Aot =0y 4 ST gy a0, ) S12 T8 p (Gia )
) ) 3 y ) 3 ) 6
The B—spline B’i,a is C2—continu0us at 517171, 5171’2, fi71 and &72, then
1 1 1 1
dy = 2 (Tdy = 2d1) , dy = 5 (4dz = 2d1) , d5 = 5 (2d2 — ) , dg = 5 (2d> — )
1 1 1 1
dg =g (Tdy—2d_1), doy = 5 (4dg —2d_1), d_s = 5 (2d2 —d_1), dog = ¢ (242 — d_)

Remark 7.2.2. Boundary B-spline-like functions for S% (X;ff> are constructed according to the
same procedure highlighted in Subsection (7.2.1.1), with a particular choice of points in (7.14),
namely Wo 1 1= xg (resp. Wy :=xy).

Figure 7.9 shows the graphs of the vertex B-spline-like functions for interior and boundaries
vertices.

7.2.1.2 Properties of B-splines

In many practical applications, especially in the area of computer aided geometric design,
bases that are non-negative, locally supported and form a partition of unity are desired. In what
follows, we are going to prove that the B-splines constructed here accomplish these properties.
Property 7.2.3. The B-splines Bi o, i =0,...,n, |a| =2, form a partition of unity, i.e.,

n

1=>")" Bia

Proof. It follows from the definition of the B-splines that only three basis functions have function
and derivative values at x; that are not all zero. Moreover, the Bernstein polynomials in (7.15)
form a partition of unity on W;. Then, it claims that:

YoWa=1L D Aa=D Na=0 (7.16)
|or|=2 |or|=2 |o|=2

The proof is completed by considering interpolation problem (7.12) and (7.16). O
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(a) B-spline-like functions with respect to vertex (b) B-spline-like functions with respect to vertex
zo. Tn.

o.sf
o.3f

01f

—

(c) B-spline-like functions with respect to an in-
terior vertex.

Figure 7.9: Knot B-spline-like functions for interior and boundaries knots.

Property 7.2.4. The B-splines B; o, are non-negative.

Proof. It suffices to prove that the B-ordinates of B; , are all non-negative. Let

Yy i1 — T
&1 — il
A quadratic polynomial p defined on the interval [Py, P»], where,

1 2
P=x, P= 3T + gfz‘,la

has B-ordinates dy, di and do, if and only if

p(x;) = Bjo(z;) = do

12 1 dy — dy

52 Dup(@i) = 5 DuBia(wi) = -

53 Dup(i) = 3 (i) €1~
1/2\? 1 do — 2d1 + dy
~-(2) D? i) = fDQBia )= ——

From (7.15) it follows that p must be equal to a certain Bernstein polynomial of degree 2 with
respect to W;.
Since Py, P, can be written as

1 1
P=mz, P=gzi+ ;Wi
It follows that P; and P» are situated inside W;. Which means that the barycentric coordinates

of P, and P, with respect to W; are non-negative. Let o' = (a%, 0’%), o? = (a%, 03) be the
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barycentric coordinates of P; and P, with respect to W, respectively. Then, we get,
do = Blp| (Ul, 01) , di =Bjp (01, 02) , da=B]p] (02, 02) .
By multi-affinity of blossoms, we obtain that:

1 1
dg = 6(2d2 —d1) = gB[P] (20° — o', 0?),

the barycentric coordinates (202 - 01) correspond to the point W o, since

4 1
Wiza = g&,l — 3% = 2P — Py.
Then, it follows that 2ds — d; > 0, therefore, ds, d4, d5 > 0. O]

Any B-spline-like B; , with respect to a knot z; is related to a Bernstein basis polynomials of
degree 2. Furthermore, the spline coefficients ¢; o, || = 2, corresponding to B; o are considered
as the B-ordinates of a polynomial of degree 2 defined on the interval W;. This polynomial
function is called control polynomial with respect to the break-point z; and is defined as

Ti(x) := Z Cia %%i7a(x), xeW,. (7.17)
|a|=2

Property 7.2.5. T; is tangent to the spline s € S3 (X;ef> at x;.

Proof. For s € S% (X,fbef>, and a = 0, 1, it holds
V(@)= Y ciala= D cia DB, o) = T (@),
|a|=2 |a|=2

and the proof is complete. O

7.2.1.3 B-splines representation

This subsection aims to derive the coefficients of (7.13) for an interpolation spline.
Suppose that s € S3 (beef> is determined by the Hermite interpolation problem (7.12). The

evaluation of sU ), 0 <j <2, at x; yields the linear system

0 0 0

Ti(2.0) %:1«1,1) %1,(0,2) Ci (2,0) fio
Yoy Yian Yoz | |G | = fia
Yi2,00 Yi1,1) Vi (02) €i,(0,2) fiz

The definition of the parameters fyf o in (7.15) includes the values and derivative values of
Bernstein basis polynomials. Since they are linear independent, the solution of the linear system
is then unique. It is given by

m
Ci2,0) = fio + fin (Wix — ;) + mfm Wiy — )
1 m
¢i1) = fip+ §fi,1 (Wii 4+ Wia —2x;) + mfm (Win — ;) (Wig — ;)

m

2
A(m — 1)fi,2 (Wi —x)”.

ci0,2) = fio+ fir (Wig —x;) +
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We can simplify the expressions of the coefficients ¢; . Define h;—1 = x; — x;—1, hy = zip1 —
then, one can obtains

4 m
i hi—1 | =9f; —hi—1f
i,(2,0) = fo+81 < ir+ —— 1f72>

4m

81(m —1)
i,(0,2) = f10+84 <9f11+ hfm)

61,1 = fio+ fz (hi = hi—1) — hi—1hifio

Each cubic spline s € S2 (Xfff> can be uniquely expressed in the form (7.13). Thus, in the

Bernstein-Bézier representation of a polynomial p, the coefficients ¢; o of s can be expressed in
terms of polar form values of a polynomial obtained by restricting s to a specific sub-interval.

Proposition 7.2.6. For m = 3, let s € S% (X,:ef>. Denote by S|z, ¢, ) the restriction of s to

the interval [z;,&1]. Then, the coefficients ¢; o in the B-splines representatwn (7.13) of s can
be expressed as

Ci,(2,0) = B [5|[xi,gi,1]} (fb“z', Wi,b Wi,l) y o Gi(1,1) = B [S\[mi,gi,l]} (l‘i,Wi,l, Wz’,2> )
V.. — 3. 1. V.o — 3T, 1.
where Wi 1 = §Wi1 — 5x; and Wy = §W; 2 — 515,

Proof. The values of the above blossoms are expressed in terms of the function values and
derivative values up to order 2 of s at x; as,

B |:8|[$17£l’1}1| ('1:747 V‘i/l,ly W’L,l)

3 3
=B [S\[mi,ﬁi,l]} <93i, 5 (Win — i) + ay, 3 (Wix — ;) + $z>

= ZB |:5|[:1:¢,£i 1]} (zi, Win — i, Win — ;) + 3B [Suxi,gi,l]} (zi, Win — i, ;)
+ B [s,6.0| (201, 1)
= 2 DRy, ays() + iy as(ai) + ().
Which concludes the proof. O

Every spline s € S5 (X;ef> can be compactly expressed as

Z Z B [3\ [z &1] ( (1], Wia[aa], Wi,2[a2]> B;o(x). (7.18)

=0 |a|=2

7.2.2 Super-convergent quasi-interpolation operators

In what follows, we aim to construct some super-convergent quasi-interpolation operators
that map an element of the linear space of polynomials of degree less or equal to m > 3 to an
element of S3 (Xflef).
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Define

My i 0=1,2,

m
Qiv=Wie+(1- 5

2
for all m > 3. Then, we have the following result.

Theorem 7.2.7. Let m be an integer > 3. Let Q. p be a quasi-interpolation operator of the
form

Qmp(x) = > Bp|(wi[m—2],Qirla], Qizles]) Bialx). (7.19)

i=0 |a|=2
It holds Qmp € 5’% (X;;ef) for all p € Pp,. Moreover,
Qsp=p, forall pePs.
Proof. We will prove that:

D) Qup(xi) = DV p(x;), i=0,...,n, 0<j<2 forall peP,.

We have
Qup(zi) = > Blpl(wilm — 2], Qix[au], Qialaa]) Bialw:).
|a|=2
Define
Go,(z) = Y Bp] (w:lm — 2], Qir[an], Qialas]) Bialw).
|a|=2
Then,

Digs o) = (2) ) S~ B (aylm — 20, Qualon]. Qualos]) By, (1),

m) () i

Using Proposition 1.3.1, we define

m

a(x) = Bp] (wilm - 2, (%x +(1- 5) z) [2])
¢(z) written in W; as follows,

g(x) =Y Bg (Winrloa], Wialaa]) Biy, o(z)

|ar|=2
= > Byl (wilm — 2], Qialou], Qizlaz]) Biy, o(2).
|o|=2
Therefore, o
: 2\ (1) - . :
Dlp(azi) = ( — ) FED7q(xi) = DY qu (i) = D? Qu p(ai),
m/ o (3)
which completes the proof. O

Remark 7.2.8. Note the fact that to get the expression of VT/M, {=1,2, it suffices to choose
m = 3.
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Error estimate of super-convergent quasi-interpolation operators

Consider a function f in C*([a,b]). The operators Q,,, m > 3, reproduce the linear space
of polynomial function of degree less than or equal to three, then, it follows that, there exist a
non-negative constant C, independent of m, such that

1OW f — B oty < CRTFNFA o fans

where, ||.||oo, (4,4 Stands for the infinity norm on the interval [a, b], and h = maxh; is the
(2

maximum step size in X,,.
The following result claims the super-convergence of Q,,,, m > 3, at the break-points of X,,.

Proposition 7.2.9. For alli=0,..., n, and for any function f in C™* ([a,b]), there hold

QW f (i) — fP@)| = 0 (R"17H) k=012

7.2.3 Various family of super-convergent quasi-interpolation operators

This section aims to define such quasi-interpolants of the form

n

Qnf =D D> pinlf) Bialo). (7.20)

where 177, is a linear functional such that
Onf € 82 (X;ff) for all f € By, m > 3. (7.21)

Differential quasi-interpolation operator

Let u, v, w be three points in R. Consider a polynomial p € P,,,, m > 2. By using ( 1.3), we
have

B [p] (ulm — 2, v[1], w[1]) = p(u) + % (Dyup(u) + Du—up(u)) + wD?U_u><w—u>p<U>-
From the functional defined as
N (7] (uf = 2} 0[1 0[1]) = £(0) + - (Do (0) + D (0) + s D,y 0

we define linear functionals providing differential quasi-interpolation operator.

Theorem 7.2.10. Define
i (f) = N[f] (zilm — 2], Qi1 [on], Qi2[az]) - (7.22)
Then, the operator Q, defined by (7.20), satisfies (7.21).
Proof. 1t is enough to notice that
N [p] (zilm — 2], Qi 1[a1], Qi2[az]) = B [p] (zilm — 2], Qi 1[a1], Qi2[az]), forall peP,, m>3.

O
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Quasi-interpolation based on point values

In order to construct a super-convergent discrete quasi-interpolation operator based on point
values, it suffices to take m + 1 distinct points in the support of B; o, 1 =0,...,n, a = (a1, a2)
af = 2.

Let ¢, x, k = 0,...,m be m + 1 distinct points in R. Then, there exist a Lagrange basis
{LWO,..., Wm} suchthathk (
delta. The polynomial

; O”) = 0k, J, k= 0,...,m, and d;, ; stands for Kronecker’s

Zf zak zak (723)

k=0

interpolates f at the points ¢ "ak> £ =0,...,m. In the following theorem, we give an explicit

formula of the coefficients y;7y, (f) in terms of St k)

Theorem 7.2.11. Consider, tgn@o)’k = BZ%Q,O),;CQm—i- (1 — ﬁﬂ270)7k> Zi, t?f(m),k = /31'7"2171)7in,1+

(1 B J(1,1), ) Qz 2, 3 (0 2),k — ,32'7"2072)7in,2+ (1 - BZL(OQ),I{) X, 1= 1, NN k= 0, NN Then,
the quasi- mterpolatwn operator Q,, defined by (7.20) with

i (1) = ainge £ (87 k) (7.24)
k=0
satisfies (7.21), if and only if

ZZ,SQZO (1 B 51',772,0),51) (1 B 5&2,0),52) Hmnzo _Bz‘%,o),n

qm - 1 s1#s2#k n#sy,s9,k
4,(2,0),k — E m
=0 (ﬁ%m,k - 532,0),3')
J#k
1 ZZL,SQ:O (1 B Bz',mu,l),sJ - 521(1,1),52 Hmnzo (51' - 521(1,1),71)
qm _ sl#s2#k n#sy,s9,k
iv(lvl)vk - m(m — 1 m
=1 [T (Btuns — Ban)
J#k
m m
1 251,82:0 (1 - Bir,n(O,Q),sl) (1 B /Bi,m((J,Q),SQ) H n=0 _5@70,2),71
qm _ s1#£s2#k n#s1,s9,k
i,(0,2),6 = - -~ ;
=0 (Bitoma = Blions)
ik

where, x; = B;Qi1 + (1 — Bi)Qi2-
Proof. According to (7.19), we have

tie (f) =B [Ln (f)] (zilm — 2], Qi1[on], Qi2[az]),
_Z f zozk zak’] (mi[m—2],@1"1[041],621-72[(12]).

Then, ¢j% , = B [L] 1] (zilm — 2], Qi1]on], Qizlas]).
By using Proposition 1.3.1, we can get the values of ¢;', ., k¥ = 0,...,m, and the proof is
complete. ]

In what follows, we provide an example of discrete quasi-interpolation operators based on
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evaluated points for a uniform partition.
3
Ho,(2,0) (f) = f (zo0),

W ian (1) = 8 (ha-taw) 21 (5 (ho-+300)) = 1 (5 @2 ot aw) +20)) = 5 a).

W0 (1) = =58 (o-+an) + 37 (3 0+ 300)) + 27 (5@ o -+-aw) +.a0)) = 17 ).

and

a0y (1) = o f (1) + 5 ()

27

_ Qf i + Tip1
27 2

8
> + 2*7f(9€i+1)7

—2 31 2
M?,(l,l) (f) = o5 flwim1) + ﬁf(:zjz) — —f(wi11),

27 27
1 32 i + 4
o) () = =57 (i) + 52 (2> ~ ool i),

Remark 7.2.12. The coefficients of the functional ', associated with the boundary knot x,
are symmetric to those associated with xg.
Discrete quasi-interpolation operator based on polarization

Polarization with constant coefficients can be used to obtain functions in the form of com-
bination of discrete values (for more details see [91] and references therein). The polarization
formula is given as follows,

Bp] (us, ..., tp) = % S (R (;Z u) |

" Ssc{1,...,m} icS
k=I5

Let us consider the operator

M [f] (u1, ...7um):% Z (_1)m—kkmf<;zuz>

CSsc{1,...,m}
k=|S]|

from Marsden’s identity, we have the following result.

Theorem 7.2.13. Let,

pie (f) = M[f] (zi[m — 2], Qi 1][an], Qiza2]). (7.25)

Then, the operator Q,, defined by (7.20) satisfies (7.21).

7.2.4 Numerical tests

This section provides some numerical results to illustrate the performance of the above
quasi-interpolation operators. To this end, we will test its performance using the functions

fi(z) = §€—2(9x—2)2 _ }6—(9x—7)2—(9x—4)2 + }6—(990—7)2—%(990—3)2 + §e%(—9x—1)—$(9x+1)2

4 ) 2 4 ’
fa(x) = e " sin(bmx),

and,
fa(x) = %a: cos® (4 (332 +x— 1))
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Figure 7.10: Plots of the tests functions: f; (left), fo (middle) and f3 (right).

whose plots appear in Figure 7.10.

Let us consider the interval I = [0, 1]. The tests are carried out for a sequence of uniform
mesh J,, associated with the break-points ¢h, ¢ = 0,..., n, where h = %

The quasi-interpolation error is estimated as

Empn = Ognl}ggcoo |Qm f (z¢) — f(zg)|, m=3,4,5,6.
where x4, £ = 0, ..., 200, are equally spaced points in [0, 1]. Eufmn, Edimmn, Edpmmn mark the

estimated error &, , for the differential quasi-interpolant (7.22), the discrete quasi-interpolant
(7.24) and the discrete quasi-interpolant based on polarization (7.25), respectively. The numer-
ical convergence order (NCO) is given by the rate

gm,n
s ()
s (3)

The estimated errors of differential quasi-interpolant (7.22) and NCOs for the functions fi, fo
and f3 are shown in Table 7.2. They confirm the theoretical results. In Table 7.3, we illustrate

NCO =

n Earan(f1) | Earan(f2) Earan(fs) | NCO(f1) | NCO(f2) | NCO(fs)
10 | 3.5239 x 1073 | 1.2861 x 102 | 5.5739 x 103 —— —— ——
20 | 2.8618 x 10™* | 9.5743 x 107° | 4.0099 x 10~* | 3.6222 3.7477 3.7970
30 | 7.1933 x 107° | 1.9565 x 107° | 8.9648 x 107° | 3.4056 3.9163 3.6946
40 | 2.3741 x 1075 | 6.2143 x 107 | 3.2991 x 107° | 3.8533 3.9866 3.4748
50 | 9.7510 x 1075 | 2.5611 x 107 | 1.3853 x 10™° | 3.9876 3.9723 3.8884
60 | 5.0067 x 107¢ | 1.2503 x 107% | 6.6813 x 107° | 3.6560 3.9325 3.9998
70 | 2.7104 x 1075 | 6.6895 x 1077 | 3.7777 x 1076 | 3.9809 | 4.05763 | 3.6989
80 | 1.6092 x 107° | 3.9255 x 1077 | 2.1791 x 107% | 3.9044 3.9919 4.1202
90 | 9.0493 x 1077 | 2.4106 x 1077 | 1.3219 x 1076 | 4.8874 4.1396 4.2438
100 | 6.6818 x 1077 | 1.6277 x 1077 | 9.2262 x 1077 | 2.8786 3.7273 3.4132

Table 7.2: Estimated errors of the differential Q.I. (7.22) for the functions fi, fo and f3 and
NCOs with n =104, £ =1,...,10.

the estimated errors of discrete quasi-interpolant (7.24) and NCOs for the functions f1, fo and

fs.

In Tables 7.4, 7.5 and 7.6, we list the resulting errors and NCOs for the approximation of
the functions f1, fo and f3, respectively, by using the discrete spline quasi-interpolant based on
polarization (7.25) for different values of m.

Tables 7.4, 7.5 and 7.6 show that the numerical convergence orders are in good agreement

with the theoretical ones.
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n Eaizn(f1) | Eaizn(f3) Eaizn(f2) | NCO(f1) | NCO(f3) | NCO(f2)
10 | 1.8646 x 1072 | 2.9778 x 1072 | 5.2251 x 1073 — — ——
20 | 1.1630 x 1073 | 1.9875 x 1072 | 3.2841 x 10~* | 4.0030 3.9052 3.9918
30 |2.3050 x 107* | 3.9273 x 107* | 7.0841 x 107° | 3.9916 3.9991 3.7828
40 | 8.5906 x 1075 | 1.2000 x 1074 | 2.0878 x 107> | 3.4308 4.1211 4.2468
50 | 3.3864 x 107° | 4.5507 x 107° | 8.1204 x 107% | 4.1717 4.3454 4.2319
60 | 1.7205 x 107° | 2.4659 x 107° | 4.1315 x 1076 | 3.7140 3.3605 3.7062
70 | 9.5539 x 1079 | 1.3593 x 107° | 2.2698 x 107 | 3.8160 3.8634 3.8856
80 | 5.3656 x 1079 | 7.3688 x 107° | 1.3000 x 107% | 4.3206 4.5859 4.1737
90 |3.1927 x 107% | 4.9837 x 107% | 8.6994 x 10~7 | 4.4074 3.3203 3.4104
100 | 1.4655 x 1079 | 2.0231 x 1076 | 3.4588 x 10~ | 7.3906 8.5565 8.7539

Table 7.3: Estimated errors of the discret Q.I. (7.24) for the functions fi, fo and f3 and NCOs
withn =104, £ =1,...,10.

n
10
20
30
40
50
60
70
80
90
100

gdp,S,n(fl)
4.2245 x 1073
3.6695 x 10~*
7.9143 x 107°
2.5806 x 107°
1.0717 x 107
5.2073 x 1076
2.8234 x 1076
1.6598 x 1076
1.0383 x 1076
6.8222 x 1077

Eap,an(f1)
6.3612 x 1073
1.4630 x 1074
1.3716 x 107°
2.4968 x 1076
6.6135 x 1077
2.2273 x 1077
8.8626 x 107°
3.9862 x 1078
1.9692 x 1078
1.0476 x 107°

gdp,5,n(f1)
1.9123 x 1073
5.1646 x 107°
6.0072 x 1076
1.1658 x 1076
3.1758 x 1077
1.0855 x 1077
4.3575 x 1078
1.9710 x 1078
9.7747 x 107
5.2145 x 1077

NCOEap,3,n(f1)
3.2213
3.7832
3.8953
3.9380
3.9589
3.9708
3.9781
3.9830
3.9864

NCOEqp4.n(f1)
5.4423
5.8379
5.9216
5.9535
5.9692
5.9781
5.9836
5.9872
5.9898

NCOEqp 5,n(f1)
5.2105
5.3061
5.6989
5.8280
5.8880
5.9210
5.9412
5.9545
5.9638

Table 7.4: Estimated errors of the discret Q.I. (7.25) for the functions f; and NCOs with n = 10¢,
{=1,...,10, and m = 3,4, 5.

n
10
20
30
40
50
60
70
80
90
100

Eap,an(f2)
2.1886 x 1073
1.4931 x 1074
2.9963 x 107°
9.5327 x 1076
3.9145 x 1076
1.8904 x 1076
1.0212 x 1076
5.9895 x 1077
3.7406 x 1077
2.4548 x 1077

5dp,4,n<f2)
5.6590 x 1074
9.3265 x 107°
8.2685 x 1077
1.4766 x 1077
3.8771 x 1078
1.2995 x 1078
5.1563 x 1077
2.3149 x 107
1.1421 x 107°
6.0708 x 10710

Eap,5.n([f2)
2.3397 x 1074
4.4871 x 1076
4.0812 x 1077
7.3529 x 1078
1.9384 x 1078
6.5114 x 107
2.5870 x 107
1.1624 x 107°
5.7384 x 10710
3.0514 x 10710

NCOEap,3,n(f2)
3.8735
3.9610
3.9809
3.9886
3.9924
3.9946
3.9959
3.9968
3.9975

NCOEgp 4,n(f2)
5.9230
5.9758
5.9880
5.9929
5.9952
5.9966
5.9974
5.9980
5.9984

NCOEap,5,n(f2)
5.7043
5.9127
5.9575
5.9747
5.9832
5.9881
5.9911
5.9931
5.9945

Table 7.5: Estimated errors of the discret Q.. (7.25) for the functions fo and NCOs with n = 10¢,
{=1,...,10, and m = 3,4, 5.

7.3 Conclusion

In this chapter, we have shown that the space of C2 cubic splines can be defined on a partition
endowed with a split that divides each interval into just two sub-intervals instead of three sub-
intervals. This is carried out by providing a recipe. The reduced C? cubic space obtained in
this paper have the same order of convergence as those spaces introduced in [82, 90]. Moreover,
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n
10
20
30
40
50
60
70
80
90
100

Eap3n([f3)
2.8071 x 1072
2.0400 x 1074
4.4729 x 107°
1.5111 x 107
6.3742 x 1076
3.1227 x 1076
1.7015 x 1076
1.0035 x 1076
6.2909 x 1077
4.1397 x 1077

gdp,4,n(f3)
5.8048 x 1073
1.5420 x 1074
1.4793 x 107
2.7143 x 1076
7.2158 x 1077
2.4349 x 1077
9.7005 x 1078
4.3664 x 1078
2.1582 x 1078
1.1486 x 1078

Eapsn(f3)
2.3020 x 1073
4.6572 x 107°
6.1440 x 1076
1.2327 x 1076
3.4059 x 1077
1.1728 x 1077
4.7288 x 1078
2.1450 x 1078
1.0658 x 1078
5.6935 x 1077

NCOEgp,3,n(f3)
3.7824
3.7426
3.7722
3.8682
3.9136
3.9388
3.9544
3.9647
3.9718

NCOE&gp 4,n(f3)
5.2343
5.7812
5.8940
5.9372
5.9584
5.9703
5.9778
5.9827
5.9862

NCOE&gp 5,1 (f3)
5.6272
4.9955
5.5833
5.7645
5.8473
5.8925
5.9201
5.9383
5.9508

Table 7.6: Estimated errors of the discret Q.I. (7.25) for the functions f3 and NCOs with n = 10¢,
{=1,...,10, and m = 3,4, 5.

it has the same order of smoothness.

Also, we dealt with the space of C?-continuous cubic splines defined on a partition endowed
with a specific refinement. We have also constructed a B-spline basis, having the usual properties
required for its use in CAGD, and developed a theory of control polynomials which is used to
establish a Marsden identity, from which various families of super-convergent quasi-interpolation
operators have been defined.




Conclusion and perspectives

At the end of this Ph.D. thesis, we should look both forward and backward. Indeed, some
results have been obtained, but many questions remain. We start by outlining the contributions
presented in this thesis and then briefly discuss possible future research lines.

Overview of the contributions

We review the principal outcomes of this thesis.

Full C? smoothness. We have characterized the geometry of Powell-Sabin triangulations that
allows to define bivariate quartic splines of class C?. We have proved that a C? spline space
can be achieved in a general case, if the considered triangulation is divided by mixed refinement
which involves both Powell-Sabin 6-split and modified Morgan-Scott 10-split.

Quasi-interpolantion. Families of quasi-interpolation operators yielding the optimal approx-
imation power for both quartic and sextic over Powell-Sabin 6-split are derived. They are
constructed with the help of Marsden’s identities that are established from a more explicit
version of the control polynomials introduced some years ago in the literature. Moreover, an al-
gorithm is proposed to define the Powell-Sabin triangles with a small area and diameter needed
to construct a normalized basis.

In general, it can be stated that the construction of quasi-interpolation by blossoming is not
only elegant, but also very efficient, especially when the data to be approximated is randomly
arranged. The blossom can also be used to develop quasi-interpolants with parameters that can
be used to preserve the shape or simply to optimize the norms of the quasi-interpolants.

Gaussian rules on Powell-Sabin 6-split. It has been proved that any Gaussian quadrature
formula exact on the space of quadratic polynomials defined on a triangle T endowed with a
C-refinement integrates also the functions in the space of C'' quadratic splines defined on 7.
This extends the existing results, where the inner split point Z had to lie on a very specific
subset of the T. Now Z can be freely chosen inside T'.

Explicit quasi-interpolation schemes on 6-split. Tow kinds of quasi-interpolation schemes
are provided. Both kinds are expressed in Bernstein-Bézier form. They are generated by setting
their B-ordinates to suitable combinations of the given data values, instead of being defined as
linear combinations of a set of bivariate functions and they do not require derivative values. The
first kind involves the values at the vertices and middle points of the original vertices, and the
second one is restricted to use the values prescribed at the set of vertices. The provided schemes
are of class C'!, and they yield the optimal approximation power.

Univariate case. Inspiring from bivariate Powell-Sabin case, we have provided:

143
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e Stable bases consisting of non-negative compactly supported functions that form parti-
tions of unity are defined through a geometrical approach for the family of super-spline
spaces described above. General Marsden’s identities are derived and used to define quasi-
interpolating splines in those spaces.

e A recipe to achieve a space of C? cubic splines defined on a partition endowed with a split
that divides each interval into just two sub-intervals instead of three sub-intervals.

e A novel normalized B-spline-like representation for C-continuous cubic spline space de-
fined on an initial partition refined by inserting two new points inside each sub-interval.
With the help of the control polynomial theory introduced herein, a Marsden identity is
derived, from which several families of super-convergent quasi-interpolation operators are

defined.

Future research suggestions

Some suggestions for further research that are not addressed in this thesis are outlined.

Reduced C? quartic splines on mixed macro-structure. It has been proved that under
certain geometrical conditions regarding the triangle and edge split-points associated with an
arbitrary triangulation of a polygonal domain €2, the space of C (©) continuous quartic splines
can be achieved on Powell-Sabin 6-split and a modified Morgan-Scott 10-split. Unfortunately,
one single kind of refinement cannot be used when dealing with a general triangulation. There-
fore, it will be desirable to give a geometrical construction of a B-spline-like basis for the space
of quartic splines that can be defined over this sub-triangulation in order to get a normalized
B-spline-like representation, whose coefficients will be expressed in terms of polar forms.

Application of explicit quasi-interpolation schemes defined on 6-split in dealing with
Digital Elevation Models in engineering. In engineering, when dealing with a set of large
data, in particular Digital Elevation Models, it will be better use explicit quasi-interpolation
schemes. Namely, the spline schemes should be generated by setting their B-ordinates to suitable
combinations of the given data values instead of constructing a set of appropriate basis functions.

Construction of explicit quasi-interpolation schemes defined on Clough-Tocher 3-
split.
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