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a b s t r a c t 

In this study, three discrete-time multi-state complex systems subject to multiple events are modeled, in a well 

structured form, as Markovian arrival processes with marked arrivals. The systems, ranked by the number of 

events affecting the online unit, have multiple and variable repairpersons, and the online unit are partitioned 

into performance stages. The first system is subject only to internal failures. The second, additionally, considers 

external shocks, which can produce any of three consequences; extreme failure, degradation of the internal per- 

formance of the online unit or cumulative damage. Failure may be repairable or non-repairable. The repair facility 

is composed of an indeterminate number of repairpersons. When a non-repairable failure occurs, the number of 

repairpersons may be modified. Finally, the third system includes preventive maintenance in combination with 

random inspections. Various measures are incorporated, in an algorithmic and computational form, in transient 

and stationary regimes. Costs and rewards are included in the model to optimize the system from different stand- 

points. The results of this study are implemented computationally with Matlab, and a numerical example shows 

the versatility of the modeling. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Serious damage and considerable financial losses are caused when a 

system failure occurs due to poor reliability. To avoid it, several relia- 

bility methodologies are commonly employed such as redundancy and 

maintenance policies. Redundant systems have been proposed in the re- 

liability literature to solve different problems. The literature related to 

cold, warm and k -out-of- n systems is extensive. For example, an opti- 

mization problem was addressed by Levitin et al. [12] , who considered 

cold and warm standby groups. Wells [30] extended known analytic re- 

sults to a case with repairable and non-repairable failures, while Levitin 

et al. [10] presented a method for evaluating the probability of mis- 

sion success for an arbitrary redundancy level in several 1-out-of- n sub- 

systems where the environment is modeled by the Poisson process of 

shocks, by increasing the failure rate. Kim and Kim [9] suggested the 

exact reliability function for a cold standby redundant subsystem with 

an imperfect detector/switch. Recently, the reliability of a parallel sys- 

tem with active multicomponent and a single cold-standby unit has been 

investigated by Yongjin et al. [34] . 

The provision of optimal maintenance is widely recommended as 

an effective way of minimizing system downtime and hence mainte- 
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nance costs. Effective system maintenance improves overall reliability, 

prevents system failures and increases the benefit derived from the sys- 

tem. Several recent papers have made valuable contributions to improv- 

ing the effectiveness of maintenance policies. Thus, Nakagawa [17] has 

discussed standard and advanced problems of maintenance policies for 

system reliability models, Qiu et al. [23] recently studied optimal main- 

tenance policies for a competing-risk repairable system with a working 

state and a general number of failure modes undergoing periodic inspec- 

tions, and Daneshkhah et al. [4] has developed probabilistic sensitivity 

analysis methods to study the sensitivity of optimized preventive main- 

tenance decisions. 

Nowadays, it is well known that the classical binary system of ‘failure 

vs. operational state ’ has been extended by multi-state systems (MMS), a 

concept introduced in the mid-1970s by Murchland [16] . The efficiency 

of a system may vary according to the performance level of interest. 

MMS can have a finite number of performance/degradation stages. This 

approach has been studied using methods such as Markov and semi- 

Markov models, generating functions, Lz-transform and Monte Carlo 

simulations. Markov models have been considered to analyses the be- 

havior of multi-state systems [13,22,31] . Yeh and Fiondella [33] de- 

termined the optimal redundancy allocation such that computer net- 

works reliability is maximized. In this respect, too, Yi and Cui [32] have 
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used Z-transform to analyze repairable aggregated semi-Markov ternary 

systems experiencing degradation and internal shocks, while Lisnianski 

et al. [14] proposed a method based on an Lz-transform of the discrete- 

state continuous time Markov process, and also on Ushakov’s Universal 

Generating Operator, to evaluate the sensitivity of an aging MSS under 

minimal repair. Finally, in this area, Levitin et al. [11] presented a novel 

Markov model of standby systems composed of multi-state elements in 

which, when an operating element fails, the standby element with the 

best technical state is chosen. The present paper describes an iterative 

algorithm to evaluate the reliability of the standby system. 

Most studies of reliability focus on dynamic reliability systems in a 

continuous-time setting, while very few take into account the discrete- 

time case. However, not all systems can be continuously monitored and 

some must be observed at certain times, for reasons such as the internal 

structure of the system or the need for periodic inspections. Thus, War- 

rington and Jones [29] proposed a method that integrates discrete event 

simulation with path sets to achieve a dynamic system. This method was 

applied to the analysis of Tornado aircraft movements. In the software 

reliability engineering literature, studies of the fault debugging envi- 

ronment have been made using discrete-time modeling. A discrete-time 

model suitable for a periodic debugging schedule, describing maximum 

likelihood estimation for the model parameters, was presented by De- 

wanji et al. [6] . Another discrete-time model of software reliability for 

such a scenario of periodic debugging has been developed by Das et al. 

[5] . Discrete-time nonhomogeneous Poisson process-based software re- 

liability models must be developed and formulated taking into account 

the diversity of debugging scenarios. In this respect, Shatnawi [28] pro- 

vides a new insight into the development of discrete-time modeling in 

software reliability engineering. Semi-Markov processes have also been 

considered to model discrete-time reliability systems [2,8] . Also, redun- 

dant Markovian multi-state systems have been studied in discrete time 

[13,27] . Therefore, reliability modelling in discrete time is necessary. 

In this respect, it is important to note that discrete time is not an imme- 

diate consequence of continuous time, and that relatively little research 

has focused on this question. 

Different problems appear when complex reliability systems are 

modelled. The modelling process and the measures associated with the 

model have intractable expressions of highly complex applicability and 

interpretation. Furthermore, a reliability system can be subject to sev- 

eral types of events that can produce failure or degradation. Inter-event 

times are usually considered to be of a renewal type and to be indepen- 

dent and identically distributed. A solution for both these questions is to 

consider phase-type ( PH) distributions and the Markovian Arrival Pro- 

cess (MAP). PH distributions were introduced and described in detail 

by Neuts [19, 20] . Due to their valuable properties, many varieties of 

this class of distributions have been considered, in diverse branches of 

science and engineering, and applied in reliability studies. An interest- 

ing property highlighted by Neuts [20] is that any discrete distribution 

with finite support is a discrete PH distribution with a corresponding 

representation. These characteristics account for the widespread use of 

PH distributions in stochastic modelling. 

On the other hand, the MAP is a well-structured counting process 

that enables reliability modelling to be developed in an algorithmic and 

computational form. This class of process, which is related to PH distri- 

butions, was introduced by Neuts [18] and comprehensively reviewed 

by Artalejo et al. [1] and He [7] . The MAP has attractive properties from 

the viewpoint of stochastic point processes. It is one of the most general 

classes of stochastic counting processes and contains many commonly- 

used arrival processes such as the Poisson process, the PH renewal pro- 

cess and the Markov-modulated Poisson process (MMPP). Moreover, the 

MAP is dense, meaning it can approximate an arbitrary stochastic point 

process to a given degree of accuracy. It has been applied in fields such 

as telecommunication and traffic queuing systems, reliability and indus- 

trial engineering. An extension of this class of process is the MAP with 

marked arrivals (MMAP). This approach is of interest in telecommuni- 

cation, where different types of events are counted. In this respect, ap- 

proaches based on PH and the MAP has been extensively considered in 

reliability studies. Ruiz-Castro [25] modelled redundant complex MSS 

with different types of events, considering PH and MAPs, while Okamura 

et al. [21] addressed a parameter estimation problem of the MAP by 

proposing a numerical procedure for fitting a MAP and a MMPP in order 

to group data with an algorithm based on the expectation-maximization 

(EM) approach. Finally, Buchholz et al. [3] summarized the parame- 

terization of PH distributions and MAPs, and analyzed different means 

of fitting a PH distribution and MMAP, considering the EM algorithm 

among others. 

In reliability literature, complex systems are usually considered to 

be subject to non-repairable failures such that the failed unit is replaced 

by another, identical one. However, in many situations this assump- 

tion is not realistic and, indeed, may not even be necessary while the 

system is operational. Accordingly, Ruiz-Castro [24] and Ruiz-Castro 

and Fernández-Villodre [26] studied different standby complex systems 

with loss of units. The availability of multiple repairpersons is not usu- 

ally assumed in reliability modelling and even less so is that of variable 

multiple repairpersons according to the number of units in the system. 

This paper describes the algorithmic procedure used to model three 

multi-state complex cold standby systems with loss of units and an in- 

determinate and variable number of repairpersons, using MMAP. This 

paper makes two main contributions: on the one hand, we consider the 

loss of units with variable numbers of repairpersons; on the other, com- 

plex MMAPs are used to model complex systems with multiple events, 

after which the stationary distribution is determined. In the first of these 

systems, the online unit is only subject to failure by wear; the second ex- 

tends this by including external shocks with diverse consequences, and 

the third includes inspections, so that the effects of preventive main- 

tenance and of the variable number of repairpersons, depending on the 

number of units present in the system, are analyzed. An optimal mainte- 

nance policy enables policymakers to decide what level of degradation 

should be taken into account for preventive maintenance in response 

to an inspection, whether preventive maintenance is profitable and the 

optimum number of repairpersons at a given time. This study extends 

previous research in this area in the following ways: the online multi- 

state unit passes through an indeterminate level of degradation, external 

shocks can produce several consequences (extreme failure, cumulative 

external damage, aggravation of the internal degradation or internal 

failure), preventive maintenance is performed in response to random in- 

spections, the loss of units is considered (when a non-repairable failure 

occurs, the unit is not replaced while the system is operational), variable 

numbers of repairpersons are considered (the number of repairpersons 

depends on the number of units in the system), rewards and costs are in- 

cluded in the system and an optimizing example is shown and all results 

are expressed in algorithmic form, with PH distributions and Markovian 

arrival processes, with marked arrivals in discrete time (D-MMAP). 

The applications considered range from performance and reliabil- 

ity/availability analyses of different configurations of non-repairable 

and repairable systems, to the development of maintenance strategies 

providing the desired system functioning, to the optimization of sys- 

tem structure, performance and maintenance schedules. In this respect, 

Markopoulos and Platis [15] considered MSS and semi-Markov model- 

ing to restructure an IEEE 6 BUS RBTS energy system in order to en- 

hance its reliability. Real-life systems are modeled in the present pa- 

per. The model presented can be applied in fields such as civil, indus- 

trial and computer engineering. For instance, in computer engineering, 

a computer server with three hard drives, two of which are available 

in cold standby, might be assumed. The online hard drive is periodi- 

cally inspected by an installed monitoring program that analyses logic 

and physics parameters to detect possible errors. In civil engineering a 

fundamental element in well machinery is the drill bit. This is essential 

to advance the construction and it is subject to wear and/or breakage. 

Drill bits are very expensive and so they are regularly inspected and 

preventive maintenance is considered. New drill bits are kept in cold 

standby. 
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The rest of this paper is organized as follows. The systems and the 

state-spaces are detailed in Section 2 . In Section 3 the online unit and the 

repair facility are modeled. The MMAP for each system are developed 

in Section 4 . Measures of the transient and the stationary distributions 

are obtained by considering matrix-analytics methods in Section 5 , after 

which costs and rewards are introduced in Section 6 . A numerical appli- 

cation illustrating the versatility of the model is presented in Section 7 , 

and finally Section 8 presents the main conclusions drawn. 

2. The systems 

Three complex systems are described and modeled. The first is the 

most basic and the last, the most complex. The systems are available in 

cold standby, and the online unit is multi-state and subject to different 

types of events. 

SYSTEM I 

The online unit is multi-state and subject to internal repairable or 

non-repairable failure. The internal performance of the system is com- 

posed of several states which are partitioned into two well-differentiated 

groups: minor and major damage states, which reflect a low and high 

risk of failure, respectively. 

SYSTEM II 

The online unit is multi-state and subject to internal repairable or 

non-repairable failure and external shocks with different consequences, 

such as extreme failure of the online unit (non-repairable), degrada- 

tion of the internal performance of the online unit, caused by a re- 

pairable internal failure, and cumulative external damage where if a 

threshold is reached a non-repairable failure occurs. Each time an ex- 

ternal shock takes place, the cumulative external damage increases by 

passing through an external damage state. These cumulative external 

damage states are also well-differentiated in two groups: minor and ma- 

jor cumulative external damage states. 

SYSTEM III 

Random inspections are added to system II. If a major internal stage 

is reached and/or major external cumulative damage is observed by the 

inspection, the unit is sent to the repair facility for preventive mainte- 

nance. The time distributions for repairable failures and for preventive 

maintenance may be different. 

Three main contributions are incorporated in these systems. The ini- 

tial number of units in the system is general, K , each time that a unit 

undergoes a non-repairable failure is removed and the number of re- 

pairpersons in the repair facility is general and varies each time that a 

non-repairable failure occurs. The system continues working while there 

are units in the system. The number of repairpersons when there k units 

in the system is denoted by R k where 1 ≤ R k ≤ k . 

The systems are modeled and presented sequentially; the state-space, 

the modeling of the online unit, that of the repair facility, the associated 

MMAPs (from the online unit and the repair facility), the measures used 

and the costs produced. Examples are given in the modeling of the repair 

facility to illustrate the algorithmic approach used. 

2.1. Assumptions 

The cumulative assumptions for the systems are the following. 

SYSTEM I 

Assumption 1. The internal operational time of the online unit is PH- 

distributed with representation ( 𝜶, T ). The number of operational states 

is equal to n , and these are partitioned in minors (the first n 1 states) and 

majors states (states n 1 + 1, …, n ). The internal failure is repairable. 

Assumption 2. When an internal failure occurs, it may be repairable or 

non-repairable. The probability of a repairable or non-repairable failure 

occurring depends on the transient states, and is given by the column 

vectors 𝐓 0 
𝑟 

and 𝐓 0 
𝑛𝑟 

, respectively. If the online unit is in the operational 

transient state i then the probability of a repairable or non-repairable 

failure occurring is given by the i th element of the column vectors 𝐓 0 
𝑟 

and 𝐓 0 
𝑛𝑟 

respectively. 

Assumption 3. When the online unit undergoes a non-repairable fail- 

ure then it is removed and the number of the repairpersons is modified. 

Assumption 4. The corrective repair time when the online unit fails is 

PH distributed with representation ( 𝜷1 , S 1 ). The order of this matrix is 

equal to z 1 (number of corrective repair phases). 

Assumption 5. When the system is composed of only one unit and this 

one undergoes a non-repairable failure, the system is replaced by new 

and identical K -units system. 

SYSTEM II 

Assumption 6. External shocks over the online place occur according to 

a phase type renewal process. If the online place is busy, this event pro- 

duces the failure of the unit. The time between two consecutive events 

is PH distributed with representation ( 𝜸, L ). The order of the matrix L 

is equal to t . 

Assumption 7. One external shock can produce external cumulative 

damage, aggravation of the internal degradation where a repairable fail- 

ure can produce or an extreme failure (non-repairable failure). 

Assumption 8. External damage can pass through an indeterminate 

number of external degradation states. The number of external degrada- 

tion states is equal to d , and these are partitioned in minors (the first d 1 
states) and major states (states d 1 + 1,…, d ). If the external degradation 

state is i , then the external shock changes this one to state j with proba- 

bility d ij . These probabilities are contained in the matrix D . A cumulative 

external damage threshold is reached from the external damage states 

after an external shock through the probability column vector D 

0 . If it 

occurs then the unit undergoes a non-repairable failure. Initially, previ- 

ously to an external shock, the unit is in external degradation state 1 (no 

damage due to external shock). The initial distribution for external dam- 

age when one unit occupies the online place initially is 𝝎 = (1,0,…,0) 1x d . 

Assumption 9. One external shock can produce an extreme failure 

(non-repairable failure). It occurs with a probability equal to 𝜔 

0 . 

Assumption 10. One external shock can produce modification in the 

internal degradation state. If the internal degradation state is i , then the 

external shock changes this one to state j with probability w ij . These 

probabilities are given in the matrix W . An internal failure can occur 

due to this fact from any performance state with a probability column 

vector W 

0 . 

Fig. 1 shows a diagram for systems I and II . 

SYSTEM III 

Assumption 11. While the online place is busy, random inspections can 

occur. The time between two consecutive inspections is PH distributed 

with representation ( 𝜼, M ). The order of the matrix M is equal to 𝜀 . 

Assumption 12. When major internal or/and cumulative external dam- 

age is observed then the unit goes to preventive maintenance for preven- 

tive maintenance. Preventive maintenance time is PH distributed with 

representation ( 𝜷2 , S 2 ). The order of this matrix is equal to z 2 (number 

of preventive maintenance states). 

Fig. 2 shows a diagram of system III . 

2.2. The state-space 

The state-space of the system is composed of macro-states. This state- 

space is different according to the systems. 

SYSTEM I 

The state space of the system is composed of two levels of macro- 

states. This state space is denoted by 𝑆 = { 𝐔 

𝐾 , 𝐔 

𝐾−1 , … , 𝐔 

1 } , where U 

k 
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Fig. 1. Diagram of systems I and II. 

is the second level, containing the phases when there are k units in the 

system. These macro-states are composed of the macro-states of the first 

level, 𝐔 

𝑘 = { 𝐄 𝑘 0 , 𝐄 
𝑘 
1 , … , 𝐄 𝑘 

𝑘 
} where 𝐄 𝑘 

𝑠 
contains the phases when there are 

k units in the system and s units are in the repair facility. The phases 

of the system if the online unit is in state i and the units in corrective 

repair, if any, are in states 𝑟 1 , … , 𝑟 min { 𝑠, 𝑅 𝑘 } are for k = 1,…, K and s = 1,…, 

k − 1, 

𝐄 𝑘 0 = { ( 𝑘 ; 𝑖 ) ; 𝑖 = 1 , ..., 𝑛 } ; 𝐄 𝑘 
𝑠 
= 

{ (
𝑘, 𝑠 ; 𝑖, 𝑟 1 , … , 𝑟 min { 𝑠, 𝑅 𝑘 } 

)
; 𝑖 = 1 , ..., 𝑛, 

r ℎ = 1 , ..., 𝑧 1 , ℎ = 1 , … , min 
{
𝑠, 𝑅 𝑘 

}}
𝐄 𝑘 
𝑘 
= 

{ (
𝑘, 𝑘 ; 𝑟 1 , … , 𝑟 min { 𝑠, 𝑅 𝑘 } 

)
; r ℎ = 1 , ..., 𝑧 1 , ℎ = 1 , … , min 

{
𝑠, 𝑅 𝑘 

}} 

SYSTEM II 

The state-space of system II is again composed of two levels, but in 

this case the states of the inspection time, j , and the external cumulative 

damage, u , are included. Then, for k = 1,…, K and s = 1,…, k − 1, 

𝐄 𝑘 0 = { ( 𝑘, 0; 𝑖, 𝑗, 𝑢 ) ; 𝑖 = 1 , ..., 𝑛, 𝑗 = 1 , ..., 𝑡, 𝑢 = 1 , ..., 𝑑 } ; 

𝐄 𝑘 
𝑘 
= 

{ (
𝑘, 𝑠 ; 𝑗, 𝑟 1 , … , 𝑟 min { 𝑠, 𝑅 𝑘 } 

)
; 𝑗 = 1 , ..., 𝑡, r ℎ = 1 , ..., 𝑧 1 , 

ℎ = 1 , … , min 
{
𝑠, 𝑅 𝑘 

}}
𝐄 𝑘 
𝑠 
= 

{ (
𝑘, 𝑠 ; 𝑖, 𝑗, 𝑢, 𝑟 1 , … , 𝑟 min { 𝑠, 𝑅 𝑘 } 

)
; 𝑖 = 1 , ..., 𝑛, 𝑗 = 1 , ..., 𝑡, 𝑢 = 1 , ..., 𝑑, 

r ℎ = 1 , ..., 𝑧 1 , ℎ = 1 , … , min 
{
𝑠, 𝑅 𝑘 

}}

SYSTEM III 

The state space of System III is composed of three levels of macro- 

states. In this case the order of the units in the repair facility has to 

be saved in memory, as there are two types of repair, corrective and 

preventive maintenance. For this reason, the macro-state 𝐄 𝑘 
𝑠 

is composed 

of the first level of macro-states 𝐄 𝑘 
𝑖 1 , …, 𝑖 𝑠 

. These macro-states contain the 

phases when there are k units in the system, with s of them in the repair 

facility, and the type of repair is given by the ordered sequence i 1, …, i s . 

The values of i l are equal to 1 or 2 if the unit is in corrective repair or 

preventive maintenance, respectively. Then, for k = 1, …, K , 

𝐄 𝑘 0 = { ( 𝑘, 0; 𝑖, 𝑗, 𝑢, 𝑚 ) ; 𝑖 = 1 , ..., 𝑛, 𝑗 = 1 , ..., 𝑡, 𝑢 = 1 , ..., 𝑑, 𝑚 = 1 , ..., 𝜀 } 
𝐄 𝑘 
𝑠 
= 

{ 

𝐄 𝑘 
𝑖 1 , …, 𝑖 𝑠 

; 𝑖 𝑙 = 1 , 2; 𝑙 = 1 , ..., 𝑠, 𝑗 = 1 , ..., 𝑠 
} 

for s = 1,…, k where 

𝐄 𝑘 
𝑖 1 , …, 𝑖 𝑠 

= 

{ (
𝑘, 𝑠 ; 𝑖, 𝑗, 𝑢, 𝑚, 𝑟 1 , … , 𝑟 min { 𝑠, 𝑅 𝑘 } 

)
; 𝑖 = 1 , ..., 𝑛, 𝑗 = 1 , ..., 𝑡, 

𝑢 = 1 , ..., 𝑑, 𝑚 = 1 , ..., 𝜀, r ℎ = 1 , ..., 𝑧 𝑖 ℎ , ℎ = 1 , … , min 
{
𝑠, 𝑅 𝑘 

}} 

for s = 1,…, k − 1 and 

𝐄 𝑘 
𝑖 1 , …, 𝑖 𝑘 

= 

{ (
𝑘, 𝑠 ; 𝑗, 𝑟 1 , … , 𝑟 𝑅 𝑘 

)
; 𝑗 = 1 , ..., 𝑡, 𝑟 ℎ = 1 , ..., 𝑧 𝑖 ℎ , ℎ = 1 , … , 𝑅 𝑘 

} 

. 

The phase ( 𝑘, 𝑠 ; 𝑖, 𝑗, 𝑢, 𝑚, 𝑟 1 , … , 𝑟 min { 𝑠, 𝑅 𝑘 } ) indicates that there are k 

units in the system of which s of them are in the repair facility, the in- 

ternal performance is in state i , the external shock time is in state j , the 

cumulative damage undergone by external shocks is given by u, m is the 
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Fig. 2. Diagram of system III. 

phase of the inspection time and r is the corrective repair/preventive 

maintenance phase for the units that are being repaired in the repair 

facility. 

3. Modeling the systems 

The systems are governed by a Markov process vector in discrete time 

with the state space described in Section 2.2 . To model any proposed 

complex system, the behavior of the online unit and of the repair facility 

must be described separately. This section shows the case of System III 

but analogous reasoning can be performed for Systems I and II. The 

corresponding matrices for all systems are given in Appendices A and B . 

3.1. Modeling the online unit 

The online unit of system III can undergo different types of events. 

These ones are partitioned as: 

A 1 : Internal repairable failure due to internal degradation 

A 2 : Internal repairable failure due to external shocks 

B 1 : Major revision for only major internal degradation after inspec- 

tion 

B 2 : Major revision for only major external cumulative damage after 

inspection 

B 3 : Major revision in both cases (internal and external cumulative 

damage) 

C 1 : Non-repairable failure due to internal degradation 

C 2 : Non-repairable failure due to one external shock 

O : No events 

The transition for each event affecting the online unit is obtained as 

follows. The repairable case ( A 1 , A 2 ) is discussed below, and the remain- 

ing cases are shown in Appendix A . Throughout the paper, the column 

vector e denotes a column vector of ones with appropriate order, e a a 

column vector of 1 ′ s with order a , I is the identity matrix with appropri- 

ate order, I {condition} is the indicatory function that it is equal to 1 if the 

condition is true and 0 otherwise and ⊗ is the Kronecker product. An 

internal repairable failure ( A 1 ) can occur due to internal degradation or 

after an external shock. In the first case, the online unit undergoes an 

internal repairable failure and another unit occupies the online place 

( 𝐓 0 
𝑟 
𝛂); an external shock occurs or does not ( L 0 𝜸, L respectively); if it 

does, cumulative damage occurs but there is no non-repairable failure, 

𝐃𝐞𝛚 ( 1 − 𝜔 

0 ) . If an inspection takes place at the same time, the unit un- 

dergoes a repairable failure and the inspection time begins for the new 

online unit ( e ɛ 𝜂). This transitions is governed by 

𝐇 

1 
rep = 

[
𝐓 0 
𝑟 
𝛂⊗ 𝐋 ⊗ 𝐞𝛚 + 𝐓 0 

𝑟 
𝛂⊗ 𝐋 0 𝛄⊗ 𝐃𝐞𝛚 

(
1 − 𝜔 

0 )]⊗ 𝐞 𝜀 𝜂. 

If the online unit is the only operational unit and a repair does not 

occur, then none unit will occupy the online place at the next time. In 

this case, 

𝐇 

′1 
rep = 

[
𝐓 0 
𝑟 
⊗ 𝐋 ⊗ 𝐞 𝑑 + 𝐓 0 

𝑟 
⊗ 𝐋 0 𝛄⊗ 𝐃𝐞 

(
1 − 𝜔 

0 )]⊗ 𝐞 𝜀 . 

A similar reasoning can be applied when an external shock provokes 

an internal repairable failure ( A 2 ). In this case, an external shock oc- 

118 



J.E. Ruiz-Castro et al. Reliability Engineering and System Safety 174 (2018) 114–127 

curs ( L 0 𝜸) and the internal behavior is modified to address the internal 

failure ( 𝐓𝐖 

0 𝛂). This shock does not provoke a non-repairable failure 

( 𝐃𝐞𝛚 ( 1 − 𝜔 

0 ) ). The transition matrix is governed by 

𝐇 

2 
rep = 

[
𝐓𝐖 

0 𝛂⊗ 𝐋 0 𝛄⊗ 𝐃𝐞𝛚 

(
1 − 𝜔 

0 )]⊗ 𝐞 𝜀 𝜂. 

Analogously, if at the next time the online place is empty then 

𝐇 

′2 
rep = 

[
𝐓𝐖 

0 ⊗ 𝐋 0 𝛄⊗ 𝐃𝐞 
(
1 − 𝜔 

0 )]⊗ 𝐞 𝜀 . 

The rest of the matrices are given in Appendix A . 

3.2. Modeling the repair facility 

As mentioned above, the modeling is developed for System III, but 

the method described is valid for Systems I and II if only corrective repair 

and non-repairable failures are considered. The transition matrix for the 

repair facility depends on the number of repairpersons, the number of 

units in the repair facility, the number of units that are successfully 

repaired and the type of failure (if any) of the online unit. The number 

of repairpersons when there are k units in the system, with k ≤ K , is 

given by R k ≤ k and the number of units in the repair facility is denoted 

as l . Let a be the number of units which finish the repair. Let k h be the 

ordinal of the repairpersons who concluded the repair, and let i h and j h 
be the type of repair (corrective, 1, preventive maintenance, 2) for the 

ordered units, after and before the transition, respectively. The online 

unit can undergo two types of events that can require the unit to be sent 

to the repair facility: repairable failure or major inspection. This fact is 

included in the modeling through the variable mr , which is equal to 0 

if the unit does not undergo an event and 1 if a repairable failure or a 

major inspection occurs. The online unit is also subject to non-repairable 

failure. If this occurs, it is denoted by nr = 1, otherwise it is equal to 

0.When a non-repairable failure occurs, the number of repairpersons 

can be modified. In this case, if there are fewer repairpersons after a 

transition than remaining units being repaired, some of these units will 

be returned to the queue in the repair facility. The number of units to 

be returned is denoted by b . This value is given by 

𝑏 = max 
{
min 

{
𝑙, 𝑅 𝑘 

}
− 𝑎 − 𝐼 { 𝑛𝑟 =1 } 𝑅 𝑘 −1 − 𝐼 { 𝑛𝑟 =0 } 𝑅 𝑘 , 0 

}
. 

To model the behavior of the repair facility we define the follow- 
ing matrix function that governs the behavior in one transition of the 
units that are being repaired where the order of the units repaired are 
specified. This function is given by 

𝐶 
(
𝑘, 𝑙, 𝑎, 𝑏 ; 𝑘 1 , … , 𝑘 𝑎 ; 𝑖 1 , … , 𝑖 𝑙− 𝑎 + 𝑚𝑟 ; 𝑗 1 , … , 𝑗 𝑙 

)
= 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝐒 ( 1 ) ⊗⋯ ⊗ 𝐒 

(
min 

{
𝑙, 𝑅 𝑘 

})
; 𝑖 

𝑠 − 
𝑎 ∑

𝑧 =1 
𝐼 { 𝑘 𝑧 <𝑠 } 

= 𝑗 𝑠 ; 𝑠 = 1 , … , 𝑙; 𝑠 ≠ 𝑘 𝑧 , ∀𝑧 

𝟎 ; otherwise 

for k ≤ K , l ≥ 1, a ≥ 1, b ≥ 0, where 

𝑆 ( ℎ ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝐒 0 
𝑗 ℎ 

; ∃𝑧 ∈ { 1 , … , 𝑎 } |ℎ = 𝑘 𝑧 

𝐞 − 𝐒 0 
𝑗 ℎ 

; ℎ is the ordinal of the last 𝑏 units being r epair ed 
without ending 

𝐒 𝑗 ℎ ; otherwise 

. 

If a = 0, then the definition is analogous but we will consider the 

following notation 

𝐶 

(
𝑘, 𝑙, 𝑎 = 0 , 𝑏 ; 𝑖 1 , … , 𝑖 𝑙+ 𝑚𝑟 ; 𝑗 1 , … , 𝑗 𝑙 

)
= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝑆 𝑗 1 
⊗…⊗𝑆 𝑗 min { 𝑙, 𝑅 𝑘 } − 𝑏 

⊗

( 

𝐞 − 𝑆 

0 
𝑗 min { 𝑙, 𝑅 𝑘 } − 𝑏 +1 

) 

; 𝑖 𝑠 = 𝑗 𝑠 ; 1 ≤ 𝑠 ≤ 𝑙 

⊗…⊗

( 

𝐞 − 𝑆 

0 
𝑗 min { 𝑙, 𝑅 𝑘 } 

) 

𝟎 ; otherwise 

If 𝑎 = min { 𝑙, 𝑅 𝑘 } , then the definition is analogous but we will con- 

sider the following notation 

𝐶 

(
𝑘, 𝑙, 𝑎 = min 

{
𝑙, 𝑅 𝑘 

}
, 0; 𝑗 1 , … , 𝑗 𝑙 

)
= 𝑆 

0 
𝑗 1 
⊗…⊗𝑆 

0 
𝑗 min { 𝑙, 𝑅 𝑘 } 

. 

Example 1. For instance, we assume a system composed of 4 repairper- 

sons and 6 units ( k = 6, R 6 = 4), 5 of them in the repair facility ( l = 5; pre- 

ventive maintenance, corrective repair, preventive maintenance, correc- 

tive repair and preventive maintenance respectively). At the next time 

three units that are being repaired finishes the repair, and the online unit 

undergoes a non repairable failure. The number of repairpersons is only 

two when the system is composed of 5 units ( R 5 = 2) and the units in 

the repair facility after non-repairable failure are types corrective repair 

and preventive maintenance respectively. 

In this case the number of units that are devolved to the queue in the 

repair facility is 𝑏 = max { min { 5 , 4 } − 3 − 2 , 0 } = 0 . If the first three units 

are repaired then this transition for the units that was being repaired 

with the established order is 

𝐶 

(
𝑘 = 6 , 𝑙 = 5 , 𝑎 = 3 , 𝑏 = 0; 𝑘 1 = 1 , 𝑘 2 = 2 , 𝑘 3 = 3; 𝑖 1 = 1 , 𝑖 2 = 2; 𝑗 1 = 2 , 𝑗 2 
= 1 , 𝑗 3 = 2 , 𝑗 4 = 1 , 𝑗 5 = 2 

)
= 𝑆 

0 
2 ⊗𝑆 

0 
1 ⊗𝑆 

0 
2 ⊗𝑆 1 . 

From this matrix function the transition probability, if only a is 
known and the order is not specified, is given by 

𝐵 

(
𝑘, 𝑙, 𝑎, 𝑏 ; 𝑖 1 , … , 𝑖 𝑙− 𝑎 + 𝑚𝑟 ; 𝑗 1 , … , 𝑗 𝑙 

)

= 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

𝐶 
(
𝑘, 𝑙, 0 , 𝑏 ; 𝑖 1 , … , 𝑖 𝑙+ 𝑚𝑟 ; 𝑗 1 , … , 𝑗 𝑙 

)
; 𝑎 = 0 , 𝑏 ≥ 0 , 𝑙 > 0 

min { 𝑙, 𝑅 𝑘 } − 𝑎 +1 ∑
𝑘 1 =1 

min { 𝑙, 𝑅 𝑘 } − 𝑎 +2 ∑
𝑘 2 = 𝑘 1 +1 

⋯ 

min { 𝑙, 𝑅 𝑘 } ∑
𝑘 𝑎 = 𝑘 𝑎 −1 +1 

; 𝑎 > 0 , 𝑎 ≠ min 
{
𝑙, 𝑅 𝑘 

}
𝐶 
(
𝑘, 𝑙, 𝑎, 𝑏 ; 𝑘 1 , … , 𝑘 𝑎 ; 𝑖 1 , … , 𝑖 𝑙− 𝑎 + 𝑚𝑟 ; 𝑗 1 , … , 𝑗 𝑙 

)
𝐶 
(
𝑘, 𝑙, 𝑎, 0; 𝑗 1 , … , 𝑗 𝑙 

)
; 𝑎 = min 

{
𝑙, 𝑅 𝑘 

}
, 

1 ; 𝑎 = 0 , 𝑏 = 0 , 𝑙 = 0 

Example 2. If the Example 1 is considered, then transition probabil- 

ity matrix when the order of the units repaired are not specified is 

given by 

𝐵( 𝑘 = 6 , 𝑙 = 5 , 𝑎 = 3 , 𝑏 = 0; 𝑖 1 = 1 , 𝑖 2 = 2; 𝑗 1 = 2 , 𝑗 2 = 1 , 𝑗 3 = 2 , 𝑗 4 
= 1 , 𝑗 5 = 2) = 𝑆 

0 
2 ⊗𝑆 

0 
1 ⊗𝑆 

0 
2 ⊗𝑆 1 + 𝟎 + 𝑆 

0 
2 ⊗𝑆 1 ⊗𝑆 

0 
2 ⊗𝑆 

0 
1 + 𝟎 . 

After one transition, new units that were in queue or not can entry 

in repair. The number of units that will begin the repair at the next time 

is given by 

𝜀 = min 
{
max 

{
0 , 𝑙 − 𝑅 𝑘 

}
+ 𝑚𝑟, 𝐼 { 𝑛𝑟 =1 } 𝑅 𝑘 −1 + 𝐼 { 𝑛𝑟 =0 } 𝑅 𝑘 

− min 
{
min 

{
𝑅 𝑘 , 𝑙 

}
− 𝑎, 𝐼 { 𝑛𝑟 =1 } 𝑅 𝑘 −1 + 𝐼 { 𝑛𝑟 =0 } 𝑅 𝑘 

}}
. 

The matrix function that governs the transition probability of the 

repair facility when a of l units are repaired for l > 0 and a ≠l is 

given by 

𝐸 

(
𝑘, 𝑙, 𝑎, 𝑏 ; 𝑖 1 , … , 𝑖 𝑙− 𝑎 + 𝑚𝑟 ; 𝑗 1 , … , 𝑗 𝑙 ; 𝑚𝑟, 𝑛𝑟 

)

= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝐵 

(
𝑘, 𝑙, 𝑎, 0; 𝑖 1 , … , 𝑖 𝑙− 𝑎 + 𝑚𝑟 ; 𝑗 1 , … , 𝑗 𝑙 

)
⊗ ; 𝜀 > 0 

𝛃𝑖 min ( 𝑙, 𝑅 𝑘 ) − 𝑎 +1 ⊗…⊗ 𝛃𝑖 min ( 𝑙, 𝑅 𝑘 ) − 𝑎 + 𝜀 

𝐵 

(
𝑘, 𝑙, 𝑎, 𝑏 ; 𝑖 1 , … , 𝑖 𝑙− 𝑎 + 𝑚𝑟 ; 𝑗 1 , … , 𝑗 𝑙 

)
; 𝜀 = 0 

𝟎 ; otherwise 

If l = 0 or a = l with l ≤ R k then this function is denoted as 

𝐸 ( 𝑘, 𝑙 = 0 , 𝑎 = 0 , 𝑏 = 0; 𝑚𝑟 = 0 , 𝑛𝑟 = 0 , 1 ) = 1 , 

𝐸 

(
𝑘, 𝑙 = 0 , 𝑎 = 0 , 𝑏 = 0; 𝑖 𝑚𝑟 ; 𝑚𝑟 = 1 , 𝑛𝑟 = 0 

)
= 𝛃𝑖 𝑚𝑟 , 

𝐸 

(
𝑘, 𝑙, 𝑎 = 𝑙, 𝑏 = 0; 𝑗 1 , … , 𝑗 𝑙 ; 𝑚𝑟 = 0 , 𝑛𝑟 = 0 , 1 

)
= 𝐵 

(
𝑘, 𝑙, 𝑙, 0; 𝑗 1 , … , 𝑗 𝑙 

)
, 

𝐸 

(
𝑘, 𝑙, 𝑎 = 𝑙, 𝑏 = 0; 𝑖 𝑚𝑟 ; 𝑗 1 , … , 𝑗 𝑙 ; 𝑚𝑟 = 1 , 𝑛𝑟 = 0 

)
= 𝐵 

(
𝑘, 𝑙, 𝑙, 0; 𝑗 1 , … , 𝑗 𝑙 

)
⊗ 𝛃𝑖 𝑚𝑟 

Example 3. If the Examples 1 and 2 are considered, then 

the number of units that entry in repair is given by 𝜀 = 

min { max { 0 , 1 } + 0 , 2 − min { 4 − 3 , 2 } } = 1 . Therefore, the transition 

probability for the repair facility is given by 

𝐸 

(
𝑘 = 6 , 𝑙 = 5 , 𝑎 = 3 , 𝑏 = 0; 𝑖 1 = 1 , 𝑖 2 = 2; 𝑗 1 = 2 , 𝑗 2 = 1 , 𝑗 3 = 2 , 𝑗 4 = 1 , 

𝑗 5 = 2; 𝑚𝑟 = 0 , 𝑛𝑟 = 1 
)

= 

(
𝑆 

0 
2 ⊗𝑆 

0 
1 ⊗𝑆 

0 
2 ⊗𝑆 1 + 𝑆 

0 
2 ⊗𝑆 1 ⊗𝑆 

0 
2 ⊗𝑆 

0 
1 
)
⊗ 𝛃𝑖 2 =2 
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4. The Markovian arrival processes with marked arrivals 

The systems I, II and III , are modeled by different MMAPs by consid- 

ering the different types of events described in Section 3.1 . The MMAPs 

for the different systems have the following representations, 

Model I: ( 𝐃 

𝑂 , 𝐃 

𝐴 1 , 𝐃 

𝐶 1 , 𝐃 

𝐹 𝐶 1 ) 
Model II: ( 𝐃 

𝑂 , 𝐃 

𝐴 1 , 𝐃 

𝐴 2 , 𝐃 

𝐶 1 , 𝐃 

𝐶 2 , 𝐃 

𝐹 𝐶 1 , 𝐃 

𝐹 𝐶 2 ) 
Model III: ( 𝐃 

𝑂 , 𝐃 

𝐴 1 , 𝐃 

𝐴 2 , 𝐃 

𝐵 1 , 𝐃 

𝐵 2 , 𝐃 

𝐵 3 , 𝐃 

𝐶 1 , 𝐃 

𝐶 2 , 𝐃 

𝐹 𝐶 1 , 𝐃 

𝐹 𝐶 2 ) . 

FC 1 and FC 2 denote the same that C 1 and C 2 respectively when only 

one unit is present in the system. These events will be used to count the 

number of new systems by time. 

The matrix D 

Y contains the transition probabilities when the event 

Y has occurred for Y = O, A 1 , A 2 , B 1 , B 2 , B 3 , C 1 , C 2 , FC 1 , FC 2 . 

The matrix D 

Y is built following three matrix block levels, always 

when the event Y occurs. The third level corresponds to the transitions 

from the macro-state U 

k to U 

k or U 

k − 1 . These matrix blocks are com- 

posed of the matrices 𝐃 

𝑌 ,𝑘 

𝑙ℎ 
which correspond to the transitions between 

the macro-states from 𝐄 𝑘 
𝑙 

to either 𝐄 𝑘 
ℎ 

or 𝐄 𝑘 −1 
ℎ 

(level 2). 

Finally, when preventive maintenance is introduced ( system III ) sev- 

eral types of repairing can be produced. Therefore, the type of failure 

of the units in the repair facility has to be saved in memory. The matri- 

ces 𝐃 

𝑌 ,𝑘 

𝑙ℎ 
are composed of matrix blocks corresponding to the transition 

from the macro-states 𝐄 𝑘 
𝑖 1 , …, 𝑖 𝑙 

to 𝐄 𝑘 
𝑖 1 , …, 𝑖 ℎ 

or 𝐄 𝑘 −1 
𝑖 1 , …, 𝑖 ℎ 

. The matrix block 

𝐃 

𝑌 ,𝑘 

𝑙ℎ 
( 𝑖 1 , … , 𝑖 ℎ ; 𝑗 1 , … , 𝑗 𝑙 ) contains the transition probabilities described 

above where the type of repair in the repair facility is ordered for the 

case before and after transition. These blocks are built by considering the 

matrices H defined in Section 3.1 and developed in Appendix A (level 

1). Next, the case A 1 for the model III, a repairable internal failure oc- 

curs, is described in detail. The rest is given in an algorithmic form in 

Appendix B . 

Building the matrix 𝐃 

𝐴 1 

This matrix 𝐃 

𝐴 1 is a matrix block that governs the transitions when 

an internal repairable failure occurs. Then this matrix is a diagonal 

matrix block 𝐃 

𝐴 1 = 𝑑 𝑖𝑎𝑔( 𝐃 

𝐴 1 ,𝐾 , 𝐃 

𝐴 1 ,𝐾 −1 , 𝐃 

𝐴 1 ,𝐾 −2 , … , 𝐃 

𝐴 1 , 1 ) given that a 

non-repairable failure does not occur. The matrix block 𝐃 

𝐴 𝑖 ,𝑘 contains 

the transitions when this fact occurs with k units in the system. The ele- 

ments of the matrix 𝐃 

𝐴 1 ,𝑘 for k = 1,…, K are matrix blocks by considering 

the number of units in the system, l and h before and after the transition 

respectively. It is given by 

𝐃 

𝐴 1 ,𝑘 = 

(
𝐃 

𝐴 1 ,𝑘 
𝑙ℎ 

)
𝑙,ℎ =0 ,...,𝑘 

where 𝐃 

𝐴 1 ,𝑘 
𝑙ℎ 

= 𝟎 if h > l + 1 or h < l + 1 − min{ l, R ( k )} or l = k . 

Finally, these matrices are again composed of matrix blocks by taking 

into account the order of the units in the repair facility. Thus, if there 

are k units in the system, l of them in the repair facility with ordered 

type of failure ( 𝑗 1 , … , 𝑗 𝑙 ) , a units are repaired and one repairable failure 

occurs then the transition matrix is given by 

𝐃 𝐴 1 ,𝑘 
𝑙,𝑙+1− 𝑎 

(
𝑖 1 , … , 𝑖 𝑙+1− 𝑎 −1 , 1; 𝑗 1 , … , 𝑗 𝑙 

)
= 

(
𝐇 

1 
rep 𝐼 { 𝑙<𝑘 −1 or 𝑎> 0 } + 𝐇 

′1 
rep 𝐼 { 𝑙= 𝑘 −1 and 𝑎 =0 } 

)
⊗𝐸 

(
𝑘, 𝑙, 𝑎, 0; 𝑖 1 , … , 𝑖 𝑙+1− 𝑎 −1 , 1; 𝑗 1 , … , 𝑗 𝑙 ; 1 , 0 

)
, 

for l = 1 ,…, k − 1 ; a = 0, …, min{ l, R k } and k > 1. 

The matrix is obtained according to the following algorithm. 

1. 𝐃 

𝐴 1 = 𝑑 𝑖𝑎𝑔( 𝐃 

𝐴 1 ,𝐾 , 𝐃 

𝐴 1 ,𝐾 −1 , 𝐃 

𝐴 1 ,𝐾 −2 , … , 𝐃 

𝐴 1 , 1 ) 
2. 𝐃 

𝐴 1 ,𝑘 = ( 𝐃 

𝐴 1 ,𝑘 
𝑙ℎ 

) 𝑙,ℎ =0 ,...,𝑘 for k = 1,…, K 

3. Building blocks 𝐃 

𝐴 1 ,𝑘 
𝑙ℎ 

for l + 1 − min{ l, R ( k )} ≤ h ≤ l + 1 and l ≠ k 

3.1 If l = 0 

a. Calculating 𝐃 

𝐴 1 ,𝑘 
01 (1)= ( 𝐇 

1 
rep 𝐼 { 𝑘> 1 } + 𝐇 

′1 
rep 𝐼 { 𝑘 =1 } ) ⊗

𝐸( 𝑘, 0 , 0 , 0; 1; 1 , 0 ) 
a.1. If k > 1 →𝐇 

1 
rep else 𝐇 

′1 
rep 

a.2. Function E ( k , 0, 0, 0; 1; 1, 0) = B ( k , 0, 0, 0; 1) ⊗𝜷1 

a.2.1. Calculating 𝜀 and b (in this case it is equal to one and 

zero respectively) 

a.2.2. Calculating function B ( k , 0, 0, 0; 1) = 1 

3.2. For l = 1 ,…,k − 1 ; a = 0, …, min{ l, R k } with k > 1 
a. Calculating 

𝐃 𝐴 1 ,𝑘 
𝑙,𝑙+1− 𝑎 

(
𝑖 1 , … , 𝑖 𝑙+1− 𝑎 −1 , 1; 𝑗 1 , … , 𝑗 𝑙 

)
= 
(
𝐇 1 rep 𝐼 { 𝑙<𝑘 −1 or 𝑎> 0 } + 𝐇 

′1 
rep 𝐼 { 𝑙= 𝑘 −1 and 𝑎 =0 } 

)
⊗𝐸 

(
𝑘, 𝑙, 𝑎, 0; 𝑖 1 , … , 𝑖 𝑙+1− 𝑎 −1 , 1; 𝑗 1 , … , 𝑗 𝑙 ; 1 , 0 

)
a.1. If 𝑙 < 𝑘 − 1 or 𝑎 > 0 →𝐇 

1 
rep else 𝐇 

′1 
rep 

a.2. Function 𝐸( 𝑘, 𝑙, 𝑎, 0; 𝑖 1 , … , 𝑖 𝑙+1− 𝑎 −1 , 1; 𝑗 1 , … , 𝑗 𝑙 ; 1 , 0 ) 
a.2.1. Calculating 𝜀 and b (in this case b is equal to zero) 

a.2.2. Calculating function 

𝐵 

(
𝑘, 𝑙, 𝑎, 0; 𝑖 1 , … , 𝑖 𝑙− 𝑎 +1−1 , 1; 𝑗 1 , … , 𝑗 𝑙 

)
The rest of matrices are given in Appendix B . 

5. The transient and stationary distribution and measures 

The transient and stationary distributions have been built so as sev- 

eral measures of interest. These measures are developed for the system 

III . The other models can be achieved in a similar way. 

5.1. The transient distribution 

Once built the D-MMAP, the transition probability matrix that gov- 

erns the discrete Markov chain associated to the system III is given 

by 𝐃 = 𝐃 

0 + 𝐃 

𝐴 1 + 𝐃 

𝐴 2 + 𝐃 

𝐵 1 + 𝐃 

𝐵 2 + 𝐃 

𝐵 3 + 𝐃 

𝐶 1 + 𝐃 

𝐶 2 + 𝐃 

𝐹 𝐶 1 + 𝐃 

𝐹 𝐶 2 . 

Given the initial distribution of the system 𝜽, the transient distribution 

is worked out as 𝐩 𝜈 = 𝛉𝐃 

𝜈 . Therefore, the probability of being in the 

macro-state 𝐄 𝑘 
𝑠 

at time 𝜈 is the corresponding part of p 

𝜈 and it is de- 

noted by 𝐩 𝜈
𝐄 𝑘 𝑠 

. 

5.2. Stationary distribution 

The stationary distribution, 𝝅, has been built solving the balance 

equations by applying matrix analytic methods. It is well known that 

the stationary distribution verifies 𝛑𝐃 = 𝛑 and 𝛑𝐞 = 1 . This system has 

been solved for the macro-state E 

k , k units in the system. The stationary 

distribution for this macro-state is denoted by 𝛑𝐄 𝑘 . Then, the station- 

ary distribution is 𝛑 = ( 𝛑𝐄 𝐾 , 𝛑𝐄 𝐾−1 , … , 𝛑𝐄 1 ) . From the MMAP the tran- 

sition probability matrices for the transition from E 

k to E 

k or E 

k − 1 are 

denoted by 

𝐃 𝑘,𝑘 = 𝐃 

𝑂,𝑘 + 𝐃 

𝐴 1 ,𝑘 + 𝐃 

𝐴 2 ,𝑘 + 𝐃 

𝐵 1 ,𝑘 + 𝐃 

𝐵 2 ,𝑘 + 𝐃 

𝐵 3 ,𝑘 ; 𝑘 = 1 , … , 𝐾 

𝐃 𝑘,𝑘 −1 = 𝐃 

𝐶 1 ,𝑘 + 𝐃 

𝐶 2 ,𝑘 ; 𝑘 = 2 , … , 𝐾 

𝐃 1 ,𝐾 = 𝐃 

𝐹 𝐶 1 , 1 + 𝐃 

𝐹 𝐶 2 , 1 

The stationary distribution has been worked out from the balance 

equations. These probabilities are equal to 

𝛑𝐄 𝑘 = 𝛑𝐄 1 𝐑 1 ,𝑘 , for k = 2,…, K , 

being 

𝐑 1 ,𝐾 = 𝐃 1 ,𝐾 
(
𝐈 − 𝐃 𝐾,𝐾 

)−1 
𝐑 1 ,𝑘 = 𝐑 1 ,𝑘 +1 𝐃 𝑘 +1 ,𝑘 

(
𝐈 − 𝐃 𝑘,𝑘 

)−1 
for k = 2,…, K − 1. 

The vector 𝛑𝐄 1 can be expressed as 

𝛑𝐄 1 = ( 1 , 𝟎 ) 
( ( 

𝐈 + 

𝐾 ∑
𝑘 =2 

𝐑 1 ,𝑘 

) 

𝐞 
||||||
[
𝐃 1 , 1 + 𝐑 1 , 2 𝐃 2 , 1 − 𝐈 

]∗ ) −1 

, 

where the matrix A 

∗ is the matrix A without the first column. 

The stationary distribution associated to the macro-state 𝐄 𝑘 
𝑠 

is given 

by the corresponding part of 𝛑𝐄 𝑘 and it id denoted by 𝛑𝐄 𝑘 𝑠 . 

5.3. Measures 

Several interesting reliability measures such as availability, reliabil- 

ity, mean times and mean number of events are calculated in this section 

for the transient and stationary regime. 
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5.3.1. Availability 

The availability is the probability that 

the system is operational at time 𝜈. It is 

given by 

𝐴 ( 𝜈) = 1 − 

𝐾 ∑
𝑘 =1 

𝐩 𝜈
𝐸 𝑘 
𝑘 

⋅ 𝐞 . 

This measure is also calculated in the stationary case and it is equal 

to 𝐴 = 1 − 

∑𝐾 

𝑘 =1 𝛑𝐸 𝑘 
𝑘 

⋅ 𝐞 . 

5.3.2. Reliability 

Two different reliability functions have been built: the time up to 

the first time that the system in non-operational (all units in the repair 

facility) and the time up to the first time that the system is replaced (all 

units have undergone a non-repairable failure). 

In the first case, the probability distribution is given by the phase- 

type distribution with representation ( 𝜽′ , D ′ ) where the vector and the 

matrix are equal to ( 𝜽, D ) restricted to the macro-states 𝐸 

𝑘 
𝑠 

for k = 1,…, 

K and s = 0,…, k − 1. 

In the second case, the time up to the first time that the system 

is replaced by another an identical one is phase-type distributed with 

representation ( 𝜽, D 

∗ ) where the matrix is given by D with the blocks 

𝐃 

𝐹𝐶1 , 1 = 𝐃 

𝐹𝐶2 , 1 = 𝟎 . 

5.3.3. Mean time in each macro-state 

The mean time that the system is in macro-state 𝐄 𝑘 
𝑠 

( k units in the 

system and s of them in the repair facility) up to time 𝜈 is given by 

𝜓 𝑘,𝑠 ( 𝜈) = 

𝜈∑
𝑚 =0 

𝐩 𝑚 
𝐸 𝑘 𝑠 

⋅ 𝐞 . 

From this expression, the mean time in macro state 𝐄 𝑘 ( k units in the 

system) is given by 

𝜓 𝑘 ( 𝜈) = 

𝑘 ∑
𝑠 =0 

𝜓 𝑘,𝑠 ( 𝜈) . 

The corresponding stationary values are 𝜓 𝑘,𝑠 = 

∑𝜈

𝑚 =0 𝛑𝐸 𝑘 𝑠 
⋅ 𝐞 and 𝜓 𝑘 = ∑𝑘 

𝑠 =0 𝜓 𝑘,𝑠 . 

5.3.4. Mean operational time up to time 𝜈

From the measures described above in Section 5.3.3 , the mean time 

that the system is operational up to time 𝜈 can be calculated. It is 

given by 

𝜇𝑜𝑝 ( 𝜈) = 

𝐾 ∑
𝑘 =1 

𝑘 −1 ∑
𝑠 =0 

𝜓 𝑘,𝑠 ( 𝜈) . 

This mean time in stationary regime is the operational time ratio and 

it is 𝜇𝑜𝑝 = 

∑𝐾 

𝑘 =1 
∑𝑘 −1 

𝑠 =0 𝜓 𝑘,𝑠 . 

5.3.5. Mean time that the repairpersons are idle and busy 

The systems proposed in this work have different number of repair- 

persons depending on the number of units in the system. One interesting 

aspect is to analyze the mean cumulative time that the repairpersons are 

idle up to a certain time. This measure is given by 

𝜇𝑖𝑑𝑙𝑒 ( 𝜈) = 

𝐾 ∑
𝑘 =1 

𝑘 −1 ∑
𝑠 =0 

(
𝑅 𝑘 − min 

{
𝑅 𝑘 , 𝑠 

})
⋅ 𝜓 𝑘,𝑠 ( 𝜈) . 

In the stationary regime this measure is the mean number of idle 

repairpersons per unit of time, 

𝜇𝑖𝑑𝑙𝑒 _ 𝑠 = 

𝐾 ∑
𝑘 =1 

𝑘 −1 ∑
𝑠 =0 

(
𝑅 𝑘 − min 

{
𝑅 𝑘 , 𝑠 

})
⋅ 𝜓 𝑘,𝑠 . 

Following a similar reasoning to analyze the number of repairpersons 

that are busy 

𝜇𝑏𝑢𝑠𝑦 ( 𝜈) = 

𝐾 ∑
𝑘 =1 

𝑘 ∑
𝑠 =1 

min 
{
𝑅 𝑘 , 𝑠 

}
⋅ 𝜓 𝑘,𝑠 ( 𝜈) , 

and in the stationary regime 𝜇𝑏𝑢𝑠𝑦 _ 𝑠 = 

∑𝐾 

𝑘 =1 
∑𝑘 

𝑠 =1 min { 𝑅 𝑘 , 𝑠 } ⋅ 𝜓 𝑘,𝑠 . 

5.3.6. Mean time working on corrective and preventive repair 

The repairpersons can be working on corrective repair or preven- 

tive maintenance. The mean time that the repairpersons are working 

on corrective repair and preventive maintenance up to time 𝜈 is given 

respectively by 

𝜇𝑐𝑜𝑟𝑟 ( 𝜈) = 

𝜈∑
𝑚 =0 

𝐾 ∑
𝑘 =1 

𝑘 ∑
𝑠 =1 
𝐩 𝜈
𝐸 𝑘 𝑠 

⋅ 𝐪 𝑘 
𝑠 

(1) 

and 

𝜇𝑝𝑚 ( 𝜈) = 

𝜈∑
𝑚 =0 

𝐾 ∑
𝑘 =1 

𝑘 ∑
𝑠 =1 
𝐩 𝜈
𝐸 𝑘 𝑠 

⋅ 𝐪 𝑘 
𝑠 
, (2) 

where 𝐪 𝑘 
𝑠 
(1) and 𝐪 𝑘 

𝑠 
(2) are column vectors that contains the number of re- 

pairpersons that are working on corrective repair and preventive main- 

tenance respectively according to the macro-state 𝐸 

𝑘 
𝑠 
. These column vec- 

tors are given by 

𝐪 𝑘 
𝑠 
( 1 ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑑 𝑘 
𝑠 
( 1 ) 𝐞 

𝑡 ( 𝑛𝑑𝜀 ) 𝐼 { 𝑠 ≠𝑘 } 𝑧 1 𝑑 
𝑘 
𝑠 ( 1 ) 𝑧 2 

min { 𝑠, 𝑅 𝑘 } − 𝑑 𝑘 𝑠 ( 1 ) 

𝑑 𝑘 
𝑠 
( 2 ) 𝐞 

𝑡 ( 𝑛𝑑𝜀 ) 𝐼 { 𝑠 ≠𝑘 } 𝑧 1 𝑑 
𝑘 
𝑠 ( 2 ) 𝑧 2 

min { 𝑠, 𝑅 𝑘 } − 𝑑 𝑘 𝑠 ( 2 ) 

⋮ 
𝑑 𝑘 
𝑠 

(
𝐼 { 𝑠 = 𝐾 } 2 𝐾−1 + 𝐼 { 𝑠 ≠𝐾 } 2 𝑠 

)
𝐞 
𝑡 ( 𝑛𝑑𝜀 ) 𝐼 { 𝑠 ≠𝑘 } 𝑧 1 𝑑 

𝑘 
𝑠 ( 𝑖 ) 𝑧 2 

min { 𝑠, 𝑅 𝑘 } − 𝑑 𝑘 𝑠 ( 𝑖 ) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

for 

𝐪 𝑘 
𝑠 
( 2 ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑔 𝑘 
𝑠 
( 1 ) 𝐞 

𝑡 ( 𝑛𝑑𝜀 ) 𝐼 { 𝑠 ≠𝑘 } 𝑧 1 min { 𝑠, 𝑅 𝑘 } − 𝑔 𝑘 𝑠 ( 1 ) 𝑧 2 𝑔 
𝑘 
𝑠 ( 1 ) 

𝑔 𝑘 
𝑠 
( 2 ) 𝐞 

𝑡 ( 𝑛𝑑𝜀 ) 𝐼 { 𝑠 ≠𝑘 } 𝑧 1 min { 𝑠, 𝑅 𝑘 } − 𝑔 𝑘 𝑠 ( 2 ) 𝑧 2 𝑔 
𝑘 
𝑠 ( 2 ) 

⋮ 
𝑔 𝑘 
𝑠 

(
𝐼 { 𝑠 = 𝐾 } 2 𝐾−1 + 𝐼 { 𝑠 ≠𝐾 } 2 𝑠 

)
𝐞 
𝑡 ( 𝑛𝑑𝜀 ) 𝐼 { 𝑠 ≠𝑘 } 𝑧 1 min { 𝑠, 𝑅 𝑘 } − 𝑔 𝑘 𝑠 ( 2 ) 𝑧 2 𝑔 

𝑘 
𝑠 ( 2 ) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
being 𝑑 𝑘 

𝑠 
( 𝑖 ) the i th element of the vector 𝐝 𝑘 

𝑠 
= 

( 1 0 ) 
min { 𝑠, 𝑅 𝑘 } 

⊙ ⋯ ⊙
( 1 0 ) ⊗ 𝐞 2 max { 𝑠 − 𝑅 𝑘 , 0 } with 

𝐝 𝑘 
𝑘 
= 𝐼 { 𝑘 = 𝑅 𝑘 } [ ( 

1 
0 ) 

𝑘 − 1 
⊙ ⋯ ⊙

( 1 0 ) + 𝐞 2 𝑘 −1 ] + 

𝐼 { 𝑘> 𝑅 𝑘 } ( 
1 
0 ) 

𝑅 𝑘 

⊙ ⋯ ⊙
( 1 0 ) ⊗ 𝐞 2 𝑘 − 𝑅 𝑘 −1 and 𝑔 𝑘 

𝑠 
( 𝑖 ) the i -th element 

of the vector 𝐠 𝑘 
𝑠 
= ( 0 1 ) 

min { 𝑠, 𝑅 𝑘 } 
⊙ ⋯ ⊙

( 0 1 ) ⊗ 𝐞 2 max { 𝑠 − 𝑅 𝑘 , 0 } and 

𝐠 𝑘 
𝑘 
= 𝐼 { 𝑘 = 𝑅 𝑘 } ( 

0 
1 ) 

𝑘 − 1 
⊙ ⋯ ⊙

( 0 1 ) + 𝐼 { 𝑘> 𝑅 𝑘 } ( 
0 
1 ) 

𝑅 𝑘 

⊙ ⋯ ⊙
( 0 1 ) ⊗ 𝐞 2 𝑘 − 𝑅 𝑘 −1 

for k = 1,…, K and s = 1,…, k where 𝐚 ⊙ 𝐛 = 𝐚 ⊗ 𝐞 𝑚 + 𝐞 𝑛 ⊗ 𝐚 being a and 

b column vectors with order n and m respectively. 

These measures in stationary regime are 𝜇𝑐𝑜𝑟𝑟 _ 𝑠 = ∑𝐾 

𝑘 =1 
∑𝑘 

𝑠 =1 𝛑𝐸 𝑘 𝑠 
⋅ 𝐪 𝑘 

𝑠 
(1) and 𝜇𝑝𝑚 _ 𝑠 = 

∑𝐾 

𝑘 =1 
∑𝑘 

𝑠 =1 𝛑𝐸 𝑘 𝑠 
⋅ 𝐪 𝑘 

𝑠 
(2) respectively. 

5.3.7. Mean number of events 

Thanks to the structure built, the expected number of events up to 

a certain time 𝜈 is worked out. It is given by Λ𝑌 ( 𝜈) = 

∑𝜈

𝑢 =1 𝐩 
𝑢 −1 𝐃 

𝑌 𝐞 , for 

Y = A 1, A 2, B 1, B 2, B 3, C 1, C 2 FC 1, FC 2 . In stationary regime, the mean 

number of events per unit of time is Λ𝑌 = 𝛑𝐃 

𝑌 𝐞 . 

6. Costs and rewards 

Several costs and rewards have been included in the model to study 

the effectiveness of the model from an economic standpoint. Thus, we 

assume that there is a gross profit per unit of time while the system 

is operational equal to B . While the system is operational a mean cost 
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per unit of time depending on the operational phase occurs. This cost is 

given by the vector c 0 . There are two different types of repair, corrective 

repair and preventive maintenance. The mean cost per unit of time when 

a unit is in corrective repair or preventive maintenance depending on 

the repair phase is given by the vectors cr 1 and cr 2 respectively. Also, 

we assume a fixed cost per unit of time for each repairperson equal to H 

and a loss per unit of time while the system is not operational equal to C . 

Finally, each time that the online unit undergoes a repairable failure or a 

major inspection a fixed cost is produced equal to fcr or fpm respectively. 

The mean cost per one new unit is fnu (the cost of a new system is K ⋅fnu ). 

To calculate the total net profit up to time 𝜈 is necessary to build 

the vector cost for the macro-state 𝐸 

𝑘 
𝑠 

and several rewards and costs 

functions. 

6.1. Net profit vector associated to the phases 

When the systems is composed of k units and s of them are in the re- 

pair facility, then the online unit provokes a net reward for the different 

phases of the system given by 

𝐧𝐫 𝑘 
𝑠 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝐵 𝐞 𝑛𝑡𝑑𝜀 − 𝐜 𝟎 ⊗ 𝐞 𝑡𝑑𝜀 ; 𝑠 = 0 
𝐵 𝐞 

𝑛𝑡𝑑𝜀 ⋅2 𝑠 − min { 𝑠, 𝑅 𝑘 } 
2 𝑠 ∑
𝑖 =1 

𝑧 1 
𝑑 𝑘 𝑠 ( 𝑖 ) 𝑧 2 

𝑔 𝑘 𝑠 ( 𝑖 ) 

− 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝐜 0 ⊗ 𝐞 
𝑡𝑑𝜀 2 𝑠 − min { 𝑠, 𝑅 𝑘 } 𝑧 1 𝑑 

𝑘 
𝑠 ( 1 ) 𝑧 2 

𝑔 𝑘 𝑠 ( 1 ) 

𝐜 0 ⊗ 𝐞 
𝑡𝑑𝜀 2 𝑠 − min { 𝑠, 𝑅 𝑘 } 𝑧 1 𝑑 

𝑘 
𝑠 ( 2 ) 𝑧 2 

𝑔 𝑘 𝑠 ( 2 ) 

⋮ 
𝐜 0 ⊗ 𝐞 

𝑡𝑑𝜀 2 𝑠 − min { 𝑠, 𝑅 𝑘 } 𝑧 1 𝑑 
𝑘 
𝑠 ( 2 𝑠 ) 𝑧 2 

𝑔 𝑘 𝑠 ( 2 𝑠 ) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
; 𝑠 = 1 , … , 𝑘 − 1 

− 𝐶 ⋅ 𝐞 
𝑡 ⋅2 

𝑘 − 𝑅 𝑘 − 𝐼 { 𝑠 = 𝐾, 𝑅 𝐾 <𝐾 } 
2 𝑠 − 𝐼 { 𝑠 = 𝐾 } ∑

𝑖 =1 
𝑧 1 

𝑑 𝑘 𝑠 ( 𝑖 ) 𝑧 2 
𝑔 𝑘 𝑠 ( 𝑖 ) 

; 𝑠 = 𝑘 

Then, for the state space it is 

𝐧𝐫 = 

(
𝐧𝐫 𝐾 ′0 , 𝐧𝐫 

𝐾 ′
1 , … , 𝐧𝐫 𝐾 ′

𝐾 
, 𝐧𝐫 𝐾 ′0 , 𝐧𝐫 

𝐾−1 ′
1 , … , 𝐧𝐫 𝐾−1 ′

𝐾−1 , … , 𝐧𝐫 1 ′0 , 𝐧𝐫 
1 ′
1 

)′
. 

If the repair facility is considered, the cost vector per unit of time 

depending on the type of repair associated to the macro-state 𝐸 

𝑘 
𝑠 

for 

s = 1,…, k , is 

𝐧𝐜 𝑘 
𝑠 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

min 
{
𝑠, 𝑅 𝑘 

}
𝐞 
𝑡 ( 𝑛𝑑𝜀 ) 𝐼 { 𝑠 ≠𝑘 } 2 

𝑠 − min { 𝑠, 𝑅 𝑘 } − 𝐼 { 𝑠 = 𝐾, 𝑅 𝐾 ≠𝐾 } 
⊗ 𝐜 𝐫 1 ⊙ 𝐜 𝐫 1 ⊙ ⋯ ⊙ 𝐜 𝐫 1 

𝐞 
𝑡 ( 𝑛𝑑𝜀 ) 𝐼 { 𝑠 ≠𝑘 } 2 

𝑠 − min { 𝑠, 𝑅 𝑘 } − 𝐼 { 𝑠 = 𝐾, 𝑅 𝐾 ≠𝐾 } 
⊗ 𝐜 𝐫 1 ⊙ 𝐜 𝐫 1 ⊙ ⋯ ⊙ 𝐜 𝐫 2 

⋮ 
𝐞 
𝑡 ( 𝑛𝑑𝜀 ) 𝐼 { 𝑠 ≠𝑘 } 2 

𝑠 − min { 𝑠, 𝑅 𝑘 } − 𝐼 { 𝑠 = 𝐾, 𝑅 𝐾 ≠𝐾 } 
⊗ 𝐜 𝐫 2 ⊙ 𝐜 𝐫 2 ⊙ ⋯ ⊙ 𝐜 𝐫 1 

𝐞 
𝑡 ( 𝑛𝑑𝜀 ) 𝐼 { 𝑠 ≠𝑘 } 2 

𝑠 − min { 𝑠, 𝑅 𝑘 } − 𝐼 { 𝑠 = 𝐾, 𝑅 𝐾 ≠𝐾 } 
⊗ 𝐜 𝐫 2 ⊙ 𝐜 𝐫 2 ⊙ ⋯ ⊙ 𝐜 𝐫 2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 𝐧𝐜 𝑘 1 = 𝟎 𝑛𝑡𝑑𝜀 

𝐧𝐜 𝐾 
𝐾 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝐾 

𝐞 𝑡 ⊗ 𝐜 𝐫 1 ⊙ 𝐜 𝐫 1 ⊙ ⋯ ⊙ 𝐜 𝐫 1 ⊙ 𝐜 𝐫 1 
𝐞 𝑡 ⊗ 𝐜 𝐫 1 ⊙ 𝐜 𝐫 1 ⊙ ⋯ ⊙ 𝐜 𝐫 2 ⊙ 𝐜 𝐫 1 

⋮ 
𝐞 𝑡 ⊗ 𝐜 𝐫 2 ⊙ 𝐜 𝐫 2 ⊙ ⋯ ⊙ 𝐜 𝐫 1 ⊙ 𝐜 𝐫 1 
𝐞 𝑡 ⊗ 𝐜 𝐫 2 ⊙ 𝐜 𝐫 2 ⊙ ⋯ ⊙ 𝐜 𝐫 2 ⊙ 𝐜 𝐫 1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
The total vector for the cost due to repair is given by 

𝐧𝐜 = 

(
𝐧𝐜 𝐾 ′0 , 𝐧𝐜 

𝐾 ′
1 , … , 𝐧𝐜 𝐾 ′

𝐾 
, 𝐧𝐜 𝐾 ′0 , 𝐧𝐜 

𝐾−1 ′
1 , … , 𝐧𝐜 𝐾−1 ′

𝐾−1 , … , 𝐧𝐜 1 ′0 , 𝐧𝐜 
1 ′
1 

)′
. 

Thus, the net profit vector associated to the macro-state 𝐸 

𝑘 
𝑠 

is given 

by 𝐜 𝑘 0 = 𝐧𝐫 𝑘 0 , 𝐜 
𝑘 
𝑠 
= 𝐧𝐫 𝑘 

𝑠 
− 𝐧𝐜 𝑘 

𝑠 
for s = 1,…, k. Finally, the net column profit 

vector associated to the macro-state E k is given by 𝐜 𝑘 = ( 𝐜 𝑘 0 , … , 𝐜 𝑘 
𝑘 
) ′ thus 

the global net column profit vector associated to the macro-state E is 

given by 

𝐜 = 𝐧𝐫 − 𝐧𝐜 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝐜 𝐾 
𝐜 𝐾−1 

⋮ 
𝐜 1 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
. 

6.2. Rewards measures 

Several rewards measures have been built in transient and stationary 

regime. 

Mean net profit up to time 𝜈

The mean net profit by considering only the online unit up to time 𝜈

is given by 

Φ𝜈
𝑤 
= 

𝜈∑
𝑚 =0 

𝐩 𝑚 ⋅ 𝐧𝐫 , 

and it is in stationary regime the meat neat profit per unit of time, Φ
𝑤 _ 𝑠 = 

𝛑 ⋅ 𝐧𝐫 . 
Mean cost due to corrective and preventive repair 

The mean cost due to corrective repair and preventive maintenance 

up to time up 𝜈 is given respectively by 

Φ𝜈
𝑐𝑟 
= 

∑𝜈

𝑚 =0 𝐩 
𝑚 ⋅𝐦 𝐜 𝑐𝑟 and Φ𝜈

𝑝𝑚 
= 

∑𝜈

𝑚 =0 𝐩 
𝑚 ⋅𝐦 𝐜 𝑝𝑚 where mc cr is the 

vector nc with 𝐜 𝐫 2 = 𝟎 z 2 and mc pm is the vector nc with 𝐜 𝐫 1 = 𝟎 z 1 , being 

0 a a column vector of zeros with order a . 

These measures in stationary regime, net cost per unit of time due to 

corrective or preventive maintenance, are Φ
𝑐𝑟 _ 𝑠 = 𝛑 ⋅𝐦 𝐜 𝑐𝑟 and Φ

𝑝𝑚 _ 𝑠 = 

𝛑 ⋅𝐦 𝐜 𝑝𝑚 respectively. 

Total net profit 
The total net profit up to time 𝜈 is worked out by adding costs and 

profits produced by the events. If the fixed cost per event is included 
then it is equal to 

Φ𝜈 = Φ𝜈
𝑤 
− Φ𝜈

𝑐𝑟 
− Φ𝜈

𝑝𝑚 
− 
(
1 + Λ𝐹𝐶1 ( 𝜈) + Λ𝐹𝐶2 ( 𝜈) 

)
⋅𝐾 ⋅ 𝑓𝑛𝑢 − 

(
Λ𝐴 1 ( 𝜈) 

+ Λ𝐴 2 ( 𝜈) 
)
⋅ 𝑓𝑐𝑟 − 

(
Λ𝐵1 ( 𝜈) + Λ𝐵2 ( 𝜈) + Λ𝐵3 ( 𝜈) 

)
⋅ 𝑓𝑝𝑚 − 

(
𝜇𝑖𝑑𝑙𝑒 + 𝜇𝑏𝑢𝑠𝑦 

)
⋅𝐻. 

Finally, the total net profit per unit of time (stationary regime) is 

Φ𝑠 = Φ
𝑤 _ 𝑠 − Φ

𝑐𝑟 _ 𝑠 − Φ
𝑝𝑚 _ 𝑠 − 

(
1 + Λ𝐹𝐶1 + Λ𝐹𝐶2 ) ⋅𝐾 ⋅ 𝑓𝑛𝑢 

− 

(
Λ𝐴 1 + Λ𝐴 2 ) ⋅ 𝑓𝑐𝑟 − 

(
Λ𝐵1 + Λ𝐵2 + Λ𝐵3 ) ⋅ 𝑓𝑝𝑚 − 

(
𝜇𝑖𝑑𝑙𝑒 + 𝜇𝑏𝑢𝑠𝑦 

)
⋅𝐻. 

7. A numerical example 

Any facility that requires a reliable electrical supply (such as depart- 

ment stores, hospitals, military installations and hydroelectric plants) 

must have additional generating resources available. When the ordinary 

electricity supply fails, a cold standby generating set comes into action. 

For a large dam, at least two such generating sets must be installed 

in cold standby. The generating set may fail for the same reasons as 

any motor, provoking either a total failure of the motor or a repairable 

failure, and preventive maintenance may be necessary. Therefore, we 

assume a cold standby system composed of three units, as Systems II 

and III. To optimize the system, two questions must be answered. Is 

preventive maintenance profitable? How many repairpersons, depend- 

ing on the number of units in the system, would have to be deployed 

to optimize the profit? In this numerical example, the effectiveness of 

preventive maintenance is analyzed and the optimum number of repair- 

persons is calculated. 
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Fig. 3. Mean operational ratio (first row) and mean number of idle repairpersons per unit of time (second row) with preventive maintenance (first column) and 

without preventive maintenance (second column). 

Table 1 

Internal operational, external shock and inspection time distributions. 

Internal operational time External shock Inspection time 

𝛂 = ( 1 , 0 , 0 , 0 , 0 ) 𝛄 = ( 1 , 0 ) 𝛈 = ( 1 , 0 ) 

𝐓 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 . 99 0 . 002 0 0 0 
0 0 . 9 0 . 001 0 0 
0 0 0 . 9 0 . 002 0 
0 0 0 0 . 6 0 
0 0 0 0 0 . 6 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
𝐋 = 

( 

0 . 89 0 . 1 
0 . 1 0 . 8 

) 

𝐌 = 
( 

0 . 85 0 . 1 
0 . 45 0 . 4 

) 

Mean time: 102.0201 Mean time: 25 Mean time: 15.56 

System times 

The internal behavior of the online unit passes through five perfor- 

mance levels, where the degradation is minor in the first three stages 

and major in the last two. The online unit is also subject to external 

shocks and inspections. The operational time distribution of the online 

unit, the inspection time distribution and the external shock time are 

PH distributed with representation given in Table 1 . 

Each time that the online unit undergoes an external shock, a total 

non-repairable failure occurs with a probability equal to 0.05. If no such 

failure occurs, the internal performance may be degraded according to 

the following probability matrix 

𝐖 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 . 6 0 . 2 0 . 1 0 . 1 0 
0 0 . 6 0 . 2 0 . 1 0 . 1 
0 0 0 . 6 0 . 2 0 . 2 
0 0 0 0 . 5 0 . 3 
0 0 0 0 0 . 4 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
. 

When an external shock takes place, cumulative external damage 

occurs. Four external degradation levels are assumed, the first two of 

which are minor and the last two, major. Changes in the external degra- 

dation levels are governed by the matrix 

𝐃 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
0 0 . 3 0 . 7 0 
0 0 0 . 6 0 . 4 
0 0 0 0 . 5 
0 0 0 0 . 3 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

where initially the external degradation level is the stage 1 (without 

external damage). 

Each time that a repairable failure or a major inspection occurs, the 

online units goes to the repair facility. The corrective repair time and 

the preventive maintenance time distributions are given in Table 2 . 

Performance of the systems according to the number of repairpersons 

As mentioned above, the systems with and without preventive main- 

tenance (Systems III and II, respectively) are compared by considering 

all possibilities for the number of repairpersons. Thus, the system i _ j _ k 

denotes a system with i, j, k repairpersons when there are 1, 2, 3 units 

in the system respectively for i = 1, j = 1, 2, k = 1, 2, 3. In total there are 

12 possible systems, six with preventive maintenance and six without. 

Several measures have been worked out and compared in transient and 

stationary regime. 

Fig. 3 shows the mean operational time and the mean number of 

idle repairpersons per unit of time for Systems II and III . The optimum 

mean operational time ratio is reached for System 1_2_3 when the op- 

erational time ratio in a stationary regime is equal to 0.9467 for the 
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Fig. 4. Mean net profit per unit of time up to time 25,500 and the stationary case for system II (with preventive maintenance) and system III (without preventive 

maintenance). 

Table 2 

Corrective repair and preventive maintenance time distributions. 

Corrective repair time distribution Preventive maintenance time distribution 

𝛃1 = ( 1 , 0 ) 𝛃2 = ( 1 , 0 ) 

𝐒 1 = 
( 

0 . 91 0 . 01 
0 0 . 8 

) 

𝐒 2 = 
( 

0 . 1 0 . 1 
0 0 . 1 

) 

Mean time: 11.67 Mean time: 1.23 

Table 3 

Mean number of events up to time 1500 (without preventive maintenance in parenthesis). 

SYSTEM Λ𝐴 1 ( 1500 ) Λ𝐴 2 ( 1500 ) Λ𝐵 1 ( 1500 ) Λ𝐵 2 ( 1500 ) Λ𝐵 3 ( 1500 ) Λ𝐶 1 ( 1500 ) Λ𝐶 2 ( 1500 ) Λ𝐹 𝐶 1 ( 1500 ) 
+ Λ𝐹 𝐶 2 ( 1500 ) 

Time 1500 1_2_3 21.6051 (22.3598) 0.0160 (0.0158) 0.0741 (–) 12.1965 (–) 0.2521 (–) 3.5750 (3.1678) 5.6187 (8.5369) 4.1283 (5.3222) 

1_2_2 21.6038 (22.3585) 0.0160 (0.0158) 0.0741 (–) 12.1957 (–) 0.2521 (–) 3.5748 (3.1676) 5.6184 (8.5365) 4.1280 (5.3219) 

1_2_1 21.5840 (22.3403) 0.0160 (0.0157) 0.0733 (–) 12.1253 (–) 0.2499 (–) 3.5703 (3.1651) 5.6237 (8.5298) 4.1283 (5.3177) 

1_1_3 21.5328 (22.2864) 0.0159 (0.0157) 0.0738 (–) 12.1531 (–) 0.2512 (–) 3.5634 (3.1577) 5.6012 (8.5098) 4.1136 (5.3037) 

1_1_2 21.5315 (22.2850) 0.0159 (0.0157) 0.0738 (–) 12.1522 (–) 0.2512 (–) 3.5632 (3.1575) 5.6009 (8.5093) 4.1133 (5.3034) 

1_1_1 21.5053 (22.2638) 0.0159 (0.0157) 0.0730 (–) 12.0797 (–) 0.2489 (–) 3.5577 (3.1546) 5.6045 (8.5016) 4.1123 (5.2985) 

system with preventive maintenance and 0.9346 for the case without 

preventive maintenance. This outcome is to expect but as the repairper- 

sons have a cost, it is interesting to analyze the mean number of idle 

repairpersons. In this case, the maximum is reached for System 1_2_3 

with a mean number of idle repairpersons per unit of time in the sta- 

tionary regime equal to 1.8847 and 1.7663 for the systems with and 

without preventive maintenance, respectively. 

Another interesting aspect to study is that of the mean number of 

events up to a certain time. This measure was calculated for every system 

and for several units of time. Table 3 shows the results obtained for 1500 

units of time. 

The number of new systems up to time 1500 is given by the last 

column of the Table 3 . The minimum is reached when always one re- 

pairperson is assumed. 

Analysis of systems when costs and rewards are included 

Rewards and costs have been included in the analysis to optimize 

the model form an economical standpoint. Each time that the system 

is operational a reward equal to B = 100 is produced and a lost with 

the same quantity is considered while the system is not operational. 

The operational cost per unit of time while the online unit is working 

depends on the internal degradation level according to the vector 𝐜 0 = 

( 10 , 20 , 30 , 40 , 50 ) . While the unit is being repaired two different costs per 

unit of time can be produced according if they are corrective repair or 

preventive maintenance. In the first case a cost equal to 5 is given and 
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in the second case 0.5. Finally when a repairable failure occurs a fixed 

cost equal to 20 is produced and if it is a major inspection this cost is 1. 

A new unit of the system costs 200 and any repairperson has a cost of 

one per unit of time. 

The mean net reward has been calculated for any system to achieve 

the more profitable system. Fig. 4 shows them per unit of time for the 

cases with and without preventive maintenance. 

If the mean net profit is observed in stationary regime the most prof- 

itable situation is for system 1_2_1 with preventive maintenance. Ini- 

tially the number of repairpersons should be only one, when the first 

non-repairable failure occurs then one repairperson is added and finally 

only one repairperson should be when another non-repairable failure 

occurs. The optimum mean net profit in this case is equal to 74.0513 in 

stationary regime. 

8. Conclusions 

In this study, three multi-state cold standby systems, evolving in dis- 

crete time, are modeled in an algorithmic and computational form using 

Markovian arrival processes with marked arrivals. The online unit is a 

multi-state device depending on degradation/performance levels. The 

three systems are modeled following similar methods, ranked from sim- 

plest to most complex. The latter includes multiple events: internal fail- 

ure, external shocks with different consequences and inspections. Cor- 

rective repair and preventive maintenance are included as responses to 

a repairable failure and to major damage (internal or external) when 

the unit is inspected, respectively. Non-repairable failures, whether in- 

ternal or due to an external shock, are possible and in this case the unit 

is removed. 

Two interesting contributions are made in the present study. The 

number of repairpersons is indeterminate and variable depending on the 

number of units in the system. A system can be optimized by considering 

two different standpoints: the profitability of preventive maintenance 

and the number of repairpersons present according to the number of 

units in the system. 

This complex system is modeled by a MMAP, which is shown to be 

useful for expressing the modeling and its associated measures in a well- 

structured form. Furthermore, this method makes it possible to deter- 

mine the transient and stationary distributions and measures associated 

with the system in a matrix-algorithmic and computational form. 

Other redundant systems such as warm standby systems and k − out- 

of- n: G systems can be modeled following this algorithmic methodology. 

Also, in a similar way and following this methodology, repairpersons 

could be replaced by repair sources, a situation in which costs and the 

associated repair times need not be the same. 

Several measures, developed in an algorithmic form, are worked out 

in transient and stationary regime in an algorithmic and computational 

way. A numerical example illustrates the versatility of the modeling per- 

formed, and the optimum system is obtained. 
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Appendix A 

MODEL I 

The transition matrices for the online unit for the system I case are, 

O : No events: 𝐇 0 = 𝐓 
A 1 : Repairable internal failure: 𝐇 rep = 𝐓 0 

𝑟 
𝛂; 𝐇 

′
rep = 𝐓 0 

𝑟 

C 1 : Non-repairable failure: 𝐇 nrep = 𝐓 0 
𝑛𝑟 
𝛂; 𝐇 

′
nrep = 𝐓 0 

𝑛𝑟 

MODEL II 

The transition matrices for the online unit for the system II case are, 

O : No events: 𝐇 0 = 𝐓 ⊗ 𝐋 ⊗ 𝐈 + 𝐓𝐖 ⊗ 𝐋 0 𝛄⊗ 𝐃 ( 1 − 𝜔 

0 ) 
A : Repairable internal failure 

A 1 : Repairable internal failure not due to shock: 

𝐇 

1 
rep = 𝐓 0 

𝑟 
𝛂⊗ 𝐋 ⊗ 𝐞𝛚 + 𝐓 0 

𝑟 
𝛂⊗ 𝐋 0 𝛄⊗ 𝐃𝐞𝛚 

(
1 − 𝜔 

0 )
𝐇 

′1 
rep = 𝐓 0 

𝑟 
⊗ 𝐋 ⊗ 𝐞 𝑑 + 𝐓 0 

𝑟 
⊗ 𝐋 0 𝛄⊗ 𝐃𝐞 

(
1 − 𝜔 

0 )
A 2 : Repairable internal failure due to shock: 𝐇 

2 
rep = 𝐓𝐖 

0 𝛂⊗ 𝐋 0 𝛄⊗
𝐃𝐞𝛚 ( 1 − 𝜔 

0 ) 

𝐇 

′2 
rep = 𝐓𝐖 

0 ⊗ 𝐋 0 𝛄⊗ 𝐃𝐞 
(
1 − 𝜔 

0 )
C : Non-repairable failure 

C 1 : Non-repairable internal failure: 𝐇 

1 
nrep = 𝐓 0 

𝑛𝑟 
𝛂⊗ 𝐋 ⊗ 𝐞𝛚 + 𝐓 0 

𝑛𝑟 
𝛂⊗

𝐋 0 𝛄⊗ 𝐃𝐞𝛚 ( 1 − 𝜔 

0 ) 

𝐇 

′1 
nrep = 𝐓 0 

𝑛𝑟 
⊗ 𝐋 ⊗ 𝐞 + 𝐓 0 

𝑛𝑟 
⊗ 𝐋 0 𝛄⊗ 𝐃𝐞 

(
1 − 𝜔 

0 )
C 2 : Non-repairable failure due to shock: 𝐇 

2 
nrep = 𝐞𝛂⊗ 𝐋 0 𝛄⊗

( 𝐞𝛚 𝜔 

0 + 𝐃 

0 𝛚 ( 1 − 𝜔 

0 ) ) 

𝐇 

′2 
nrep = 𝐞 ⊗ 𝐋 0 𝛄⊗

(
𝐞 𝜔 

0 + 𝐃 

0 (1 − 𝜔 

0 ))
MODEL III 

Auxiliary matrices for minor/major inspection 

The matrix U l and V l , for l = 1,2, are square matrices of order n and 

d respectively, whose element ( s, t ) is given by, 

𝑈 1 ( 𝑠, 𝑡 ) = 

{ 

1 ; 1 ≤ 𝑠 = 𝑡 ≤ 𝑛 1 
0 ; otherwise , 𝑈 2 ( 𝑠, 𝑡 ) = 

{ 

1 ; 𝑠 = 𝑡 > 𝑛 1 
0 ; otherwise 

𝑉 1 ( 𝑠, 𝑡 ) = 

{ 

1 ; 1 ≤ 𝑠 = 𝑡 ≤ 𝑑 1 
0 ; otherwise , 𝑉 2 ( 𝑠, 𝑡 ) = 

{ 

1 ; 𝑠 = 𝑡 > 𝑑 1 
0 ; otherwise . 

The matrices U and V will be taken into account when one inspection 

occurs and the internal degradation level and cumulative external dam- 

age are observed respectively. The subscripts 1 and 2 will be considered 

when the damage observed is minor or major respectively. 

O : No events: 

𝐇 0 = 

[
𝐓 ⊗ 𝐋 ⊗ 𝐈 + 𝐓𝐖 ⊗ 𝐋 0 𝛄⊗ 𝐃 

(
1 − 𝜔 

0 )]⊗𝐌 

+ 

[
𝐔 1 𝐓 ⊗ 𝐋 ⊗ 𝐕 1 + 𝐔 1 𝐓𝐖 ⊗ 𝐋 0 𝛄⊗ 𝐕 1 𝐃 

(
1 − 𝜔 

0 )]⊗𝐌 

0 𝜂

𝐇 

′
mr = 

[
𝐔 1 𝐓 ⊗ 𝐋 ⊗ 𝐕 2 𝐈 + 𝐔 2 𝐓 ⊗ 𝐋 ⊗ 𝐈 
+ 𝐔 1 𝐓𝐖 ⊗ 𝐋 0 𝛄⊗ 𝐕 2 𝐃 

(
1 − 𝜔 

0 )
+ 𝐔 2 𝐓𝐖 ⊗ 𝐋 0 𝛄⊗ 𝐃 

(
1 − 𝜔 

0 )]⊗𝐌 

0 𝜂

B : Major revision 

B 1 : Major revision for only internal major damage 

𝐇 

1 
mr = 

[
𝐔 2 

(
𝐞 − 𝐓 0 

)
𝛂⊗ 𝐋 ⊗ 𝐕 1 𝐞𝛚 

+ 𝐔 2 𝐓𝐖𝐞𝛂⊗ 𝐋 0 𝛄⊗ 𝐕 1 𝐃𝐞𝛚 

(
1 − 𝜔 

0 )]⊗𝐌 

0 𝜂

B 2 : Major revision for only external cumulative damage 

𝐇 2 mr = 
[
𝐔 1 

(
𝐞 − 𝐓 0 

)
𝛂⊗ 𝐋 ⊗ 𝐕 2 𝐞𝛚 + 𝐔 1 𝐓𝐖𝐞𝛂⊗ 𝐋 0 𝛄⊗ 𝐕 2 𝐃𝐞𝛚 

(
1 − 𝜔 0 

)]
⊗𝐌 

0 𝜂

B 3 : Major revision for internal and external cumulative damage 

𝐇 3 mr = 
[
𝐔 2 

(
𝐞 − 𝐓 0 

)
𝛂⊗ 𝐋 ⊗ 𝐕 2 𝐞𝛚 + 𝐔 2 𝐓𝐖𝐞𝛂⊗ 𝐋 0 𝛄⊗ 𝐕 2 𝐃𝐞𝛚 

(
1 − 𝜔 0 

)]
⊗𝐌 

0 𝜂

C : Non-repairable failure 

C 1 : Non-repairable internal failure: 

𝐇 

1 
nrep = 𝐓 0 

𝑛𝑟 
𝛂⊗ 𝐋 ⊗ 𝐞𝛚 ⊗ 𝐞𝛈 + 𝐓 0 

𝑛𝑟 
𝛂⊗ 𝐋 0 𝛄⊗ 𝐃𝐞𝛚 

(
1 − 𝜔 

0 )⊗ 𝐞 𝜂
𝐇 

′1 
nrep = 𝐓 0 

𝑛𝑟 
⊗ 𝐋 ⊗ 𝐞 ⊗ 𝐞 + 𝐓 0 

𝑛𝑟 
⊗ 𝐋 0 𝛄⊗ 𝐃𝐞 

(
1 − 𝜔 

0 )⊗ 𝐞 

C 2 : Non-repairable failure due to shock: 𝐇 

2 
nrep = 𝐞𝛂⊗ 𝐋 0 𝛄⊗

( 𝐞𝛚 𝜔 

0 + 𝐃 

0 𝛚 ( 1 − 𝜔 

0 ) ) ⊗ 𝐞 𝜂

𝐇 

′2 
nrep = 𝐞 ⊗ 𝐋 0 𝛄⊗

(
𝐞 𝜔 

0 + 𝐃 

0 (1 − 𝜔 

0 ))⊗ 𝐞 
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Appendix B 

The matrices for the Markovian arrival processes have been devel- 

oped in the following way. 

𝐃 

𝑌 = 𝑑 𝑖𝑎𝑔 
(
𝐃 

𝑌 ,𝐾 , 𝐃 

𝑌 ,𝐾 −1 , 𝐃 

𝑌 ,𝐾 −2 , … , 𝐃 

𝑌 , 1 )
for Y = O, A 1 , A 2 , B 1 , B 2 and 

𝐃 

𝑌 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝟎 𝐃 

𝑌 ,𝐾 

𝟎 𝐃 

𝑌 ,𝐾−1 

⋱ ⋱ 

⋱ 𝐃 

𝑌 , 2 

𝟎 𝟎 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, for 𝑌 = 𝐶 1 , 𝐶 2 and 

𝐃 

𝑌 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝟎 … … 𝟎 
⋮ ⋱ ⋮ 
𝟎 ⋱ ⋮ 
𝐃 

𝑌 , 1 𝟎 … 𝟎 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
for Y = FC 1, FC 2 . 

Matrix 𝐃 

𝑌 ,𝑘 for Y = O, C 1, C 2 , FC 1, FC 2 

The elements of the matrix 𝐃 

𝑌 ,𝑘 for k = 1,…, K and Y = O, C 1, C 2 , 

FC 1, FC 2 , are given by 

𝐃 

𝑌 ,𝑘 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

(
𝐃 

𝑌 ,𝑘 

𝑙ℎ 

)
𝑙,ℎ =0 ,...,𝑘 

; 𝑌 = 𝑂 (
𝐃 

𝑌 ,𝑘 

𝑙ℎ 

)
𝑙=0 ,...,𝑘 
ℎ =0 ,...,𝑘 −1 

; 𝑌 = 𝐶 1 , 𝐶 2 (
𝐃 

𝑌 , 1 
𝑙ℎ 

)
𝑙=0 , 1 
ℎ =0 ,...,𝐾 

𝑌 = 𝐹 𝐶 1 , 𝐹 𝐶 2 ; 𝑘 = 1 

where 𝐃 

𝑂,𝑘 

𝑙ℎ 
= 𝟎 if h > l or h < l − min{ l, R k }, 𝐃 

𝐶 𝑖 ,𝑘 

𝑙ℎ 
= 𝟎 if h > l or 

h < l − min{ l, R k } or l = k and 𝐃 

𝐹 𝐶 𝑖 , 1 
𝑙ℎ 

= 𝟎 for all l and h excepting for the 

case l = h = 0. 

For k = 1,…, K , 

𝐃 

𝑌 ,𝑘 

00 = 

{ 

𝐇 0 + 𝐼 { 𝑘 =1 } 𝐇 

′
mr ; 𝑌 = 𝑂 

𝐇 

𝑡𝑦𝑝𝑒 
nrep ; 𝑌 = 𝐶 𝑡𝑦𝑝𝑒 or 𝑌 = 𝐹 𝐶 𝑡𝑦𝑝𝑒 

, 

For l = 1,…, R k 

𝐃 𝑌 ,𝑘 
𝑙, 0 

(
𝑗 1 , … , 𝑗 𝑙 

)
= 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝐇 0 ⊗𝐸 

(
𝑘, 𝑙, 𝑙, 0; 𝑗 1 , … , 𝑗 𝑙 ; 0 , 0 

)
; 𝑌 = 𝑂 and 𝑙 < 𝑘 

𝐇 𝑡𝑦𝑝𝑒 nrep ⊗𝐸 
(
𝑘, 𝑙, 𝑙, 0; 𝑗 1 , … , 𝑗 𝑙 , 0 , 1 

)
; 𝑌 = 𝐶 𝑡𝑦𝑝𝑒 and 𝑙 < 𝑘 

𝛇⊗𝐸 
(
𝑘, 𝑙, 𝑙, 0; 𝑗 1 , … , 𝑗 𝑙 ; 0 , 0 

)
; 𝑌 = 𝑂 and 𝑙 = 𝑘 

, 

with 𝛇 = 𝛂 for system I , 𝛇 = 𝛂⊗ ( 𝐋 + 𝐋 0 𝛄) for system II and 𝛇 = 𝛂⊗

( 𝐋 + 𝐋 0 𝛄) ⊗ 𝛈⊗ 𝛚 for system III . 
For l = 1 ,…, k − 1 ; a = 0 ,…, min{ R k , l − 1} with k > 1, 

𝐃 𝑌 ,𝑘 
𝑙,𝑙− 𝑎 

(
𝑖 1 , … , 𝑖 𝑙− 𝑎 ; 𝑗 1 , … , 𝑗 𝑙 

)
= 
⎧ ⎪ ⎨ ⎪ ⎩ 
[
𝐇 0 + 𝐼 { 𝑙= 𝑘 −1 and 𝑎 =0 } 𝐇 ′mr 

]
⊗𝐸 

(
𝑘, 𝑙, 𝑎, 0; 𝑖 1 , … , 𝑖 𝑙− 𝑎 ; 𝑗 1 , … , 𝑗 𝑙 ; 0 , 0 

)
; 𝑌 = 𝑂 (

𝐇 𝑡𝑦𝑝𝑒 nrep 𝐼 { 𝑙<𝑘 −1 or 𝑎> 0 } + 𝐇 
′ 𝑡𝑦𝑝𝑒 
nrep 𝐼 { 𝑙= 𝑘 −1 and 𝑎 =0 } 

)
⊗𝐸 

(
𝑘, 𝑙, 𝑎, 𝑏 ; 𝑖 1 , … , 𝑖 𝑙− 𝑎 ; 𝑗 1 , … , 𝑗 𝑙 ; 0 , 1 

)
; 𝑌 = 𝐶 𝑡𝑦𝑝𝑒 

. 

For a = 1,…, min{ R k , k − 1}, 

𝐃 

𝑂,𝑘 

𝑘,𝑘 − 𝑎 ( 𝑖 1 , … , 𝑖 𝑘 − 𝑎 ; 𝑗 1 , … , 𝑗 𝑘 ) = 𝛇⊗𝐸( 𝑘, 𝑘, 𝑎, 0; 𝑖 1 , … , 𝑖 𝑘 − 𝑎 ; 𝑗 1 , … , 𝑗 𝑘 ; 0 , 0 ) , 
with k > 1. 

For k = 1, …, K , 

𝐃 

𝑂,𝑘 

𝑘,𝑘 

(
𝑖 1 , … , 𝑖 𝑘 ; 𝑗 1 , … , 𝑗 𝑘 

)
= 

{ 

𝐸 

(
𝑘, 𝑘, 0 , 0; 𝑖 1 , … , 𝑖 𝑘 ; 𝑗 1 , … , 𝑗 𝑘 ; 0 , 0 

)
; 𝑠𝑦𝑠𝑡𝑒𝑚 𝐼 (

𝐋 + 𝐋 0 𝛄
)
⊗𝐸 

(
𝑘, 𝑘, 0 , 0; 𝑖 1 , … , 𝑖 𝑘 ; 𝑗 1 , … , 𝑗 𝑘 ; 0 , 0 

)
; 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝐼 𝐼 , 𝐼 𝐼 𝐼 

. 

Matrix 𝐃 

𝐴 𝑖 ,𝑘 

The elements of the matrix 𝐃 

𝐴 𝑖 ,𝑘 for i = 1, 2 and for k = 1,…, K are 

given by 

𝐃 

𝐴 𝑖 ,𝑘 = 

(
𝐃 

𝐴 𝑖 ,𝑘 

𝑙ℎ 

)
𝑙,ℎ =0 ,...,𝑘 

where 𝐃 

𝐴 𝑖 ,𝑘 

𝑙ℎ 
= 𝟎 if h > l + 1 or h < l + 1 − min{ l, R ( k )} or l = k . 

For type = 1, 2, then 

𝐃 

𝐴 𝑡𝑦𝑝𝑒 ,𝑘 

01 ( 1 ) = 

(
𝐇 

𝑡𝑦𝑝𝑒 
rep 𝐼 { 𝑘> 1 } + 𝐇 

′𝑡𝑦𝑝𝑒 
rep 𝐼 { 𝑘 =1 } 

)
⊗𝐸 ( 𝑘, 0 , 0 , 0; 1; 1 , 0 ) . 

For l = 1 ,…, k − 1 ; a = 0, …, min{ l, R k } with k > 1 

𝐃 

𝐴 𝑡𝑦𝑝𝑒 ,𝑘 

𝑙 ,𝑙 +1− 𝑎 
(
𝑖 1 , … , 𝑖 𝑙+1− 𝑎 −1 , 1; 𝑗 1 , … , 𝑗 𝑙 

)
= 

(
𝐇 

𝑡𝑦𝑝𝑒 
rep 𝐼 { 𝑙<𝑘 −1 or 𝑎> 0 } + 𝐇 

′𝑡𝑦𝑝𝑒 
rep 𝐼 { 𝑙= 𝑘 −1 and 𝑎 =0 } 

)
⊗ 𝐸 

(
𝑘, 𝑙, 𝑎, 0; 𝑖 1 , … , 𝑖 𝑙+1− 𝑎 −1 , 1; 𝑗 1 , … , 𝑗 𝑙 ; 1 , 0 

)
Matrix 𝐃 

𝐵 𝑖 ,𝑘 

The elements of the matrix 𝐃 

𝐵 𝑖 ,𝑘 for i = 1, 2, 3 and for k = 1,…, K are 

given by 

𝐃 

𝐵 𝑖 ,𝑘 = 

(
𝐃 

𝐵 𝑖 ,𝑘 

𝑙ℎ 

)
𝑙,ℎ =0 ,...,𝑘 

where 𝐃 

𝐴 𝑖 ,𝑘 

𝑙ℎ 
= 𝟎 if h > l + 1 or h < l + 1 − min{ l, R k } or l ≥ k − 1. 

For type = 1, 2, 3 then 

𝐃 

𝐵 𝑡𝑦𝑝𝑒 ,𝑘 

01 ( 2 ) = 𝐇 

𝑡𝑦𝑝𝑒 
mr 𝐼 { 𝑘> 1 } ⊗𝐸 ( 𝑘, 0 , 0 , 0; 2; 1 , 0 ) . 

For l = 1 ,…,k − 2 ; a = 0, …, min{ l, R k } with k > 1 

𝐃 

𝐵 𝑡𝑦𝑝𝑒 ,𝑘 

𝑙 ,𝑙 +1− 𝑎 
(
𝑖 1 , … , 𝑖 𝑙+1− 𝑎 −1 , 2; 𝑗 1 , … , 𝑗 𝑙 

)
= 𝐇 

𝑡𝑦𝑝𝑒 
mr ⊗𝐸 

(
𝑘, 𝑙, 𝑎, 0; 𝑖 1 , … , 𝑖 𝑙+1− 𝑎 −1 , 2; 𝑗 1 , … , 𝑗 𝑙 ; 1 , 0 

)
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