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A B S T R A C T

The demand for energy storage is increasing massively due to the
electrification of transport and the expansion of renewable energies.
Current battery technologies cannot satisfy this growing demand
because they are difficult to recycle, because the necessary raw mate-
rials are mined under precarious conditions, and because the energy
density is insufficient. Metal-air batteries offer a high energy density
because there is only one active mass inside the cell and the cathodic
reaction uses the ambient air. Various metals can be used, but zinc is
very promising because of its disposability, non-toxic behavior, and be-
cause operation as a secondary cell is possible. Typical characteristics
of zinc-air batteries are flat charge and discharge curves. On the one
hand, this is an advantage for the subsequent power electronics, which
can be optimized for smaller and constant voltage ranges. On the other
hand, the state determination of the system becomes more complex,
since the voltage level is not sufficient to determine the state of the
battery. In this context, electrochemical impedance spectroscopy is a
promising candidate since the resulting impedance spectra depend
on the state of charge, working point, state of aging, and tempera-
ture. Therefore, in this thesis, an electrochemical model of the zinc-air
cell is developed and parameterized using measured electrochemi-
cal impedance spectra. The modification of the parameters enables
to successfully determine the state of charge when the cell is being
discharged and provide a charge termination detection. In addition,
electrochemical impedance spectroscopy is combined with various
artificial intelligence techniques to also determine successfully the
state of charge during charging of the cell. Furthermore, an analysis of
the oxygen consumption and the cell performance at different oxygen
concentrations is performed, such that with a control of the electrolyte
management a demonstrator consisting of several zinc-air cells could
be successfully put into operation.
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R E S U M E N

La demanda de almacenamiento de energía está aumentando masiva-
mente debido a la electrificación del transporte y la expansión de las
energías renovables. Las actuales tecnologías de baterías no pueden
satisfacer esta creciente demanda porque son difíciles de reciclar, por-
que las materias primas necesarias se extraen en condiciones precarias
y porque la densidad energética es insuficiente. Las baterías metal-aire
ofrecen una alta densidad energética porque sólo hay una masa activa
dentro de la celda y la reacción catódica utiliza el aire del ambiente. Se
pueden utilizar varios metales, pero el zinc es muy prometedor por su
carácter desechable, su comportamiento no tóxico y porque es posible
su funcionamiento como celda secundaria. Una característica típica de
las baterías de zinc-aire son las curvas planas de carga y descarga. Por
un lado, esto es una ventaja para su uso en electrónica de potencia,
ya que puede optimizarse para rangos de tensión más pequeños y
constantes. Por otro lado, la determinación del estado del sistema se
vuelve más compleja, ya que el nivel de tensión no es suficiente para
determinar el estado de la batería. En este contexto, la espectroscopia
de impedancia electroquímica es un candidato prometedor, ya que los
espectros de impedancia resultantes dependen del estado de carga, el
punto de trabajo, el desgaste acutal y la temperatura. Por lo tanto, en
esta tesis se desarrolla y parametriza un modelo electroquímico de la
celda de zinc-aire utilizando los espectros de impedancia electroquí-
mica medidos. La modificación de los parámetros permite determinar
con éxito el estado de carga cuando la celda se está descargando y
proporcionar una detección de ausencia de carga. Además, la espec-
troscopia de impedancia electroquímica se combina con varias técnicas
de inteligencia artificial para determinar también con éxito el estado
de carga durante la carga de la celda. Asimismo, se realiza un análisis
del consumo de oxígeno y del rendimiento de la celda a diferentes
concentraciones de oxígeno, de manera que, con un control de la
gestión del electrolito, se podría poner en funcionamiento con éxito
un moelo de demostración compuesto por varias celdas de zinc-aire.
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I N T R O D U C T I O N





1
I N T R O D U C T I O N

Renewable energies depend heavily on environmental conditions.
Therefore, the energy storage is a very important topic for the soci-
ety. Due to high environmental impact and costly or rare materials,
current battery technologies reach their limits. A promising future
alternative are zinc-air secondary batteries as the zinc is the 24th most
available element with an expected content of 0.02 % of materials on
earth[33]. Furthermore, a high theoretical energy density of up to
888 W h

kg reinforces the high potential[102]. The two main components
of the galvanic cell are zinc and oxygen which is extracted by the
ambient air.
Metal air batteries provide a high energy density as the cathodic reac-
tion uses the surrounding air. Different metals can be used but zinc is
very promising due to its disposability and nontoxic behavior. Typical
characteristics of zinc-air batteries are flat charging and discharging
curves. On the one hand this is an advantage for the following power
electronics which can be optimized for smaller voltage ranges. On the
other hand, state estimation of the system becomes more complex as
the voltage level is not sufficient to identify the state of the battery. A
critical aspect of a Battery Management System (BMS) is state estima-
tion. In this context, the Electrochemical Impedance Spectroscopy (EIS)
tends to be a promising candidate, as the resulting spectra depend
on the State of Charge (SoC), working point, State of Health (SoH),
temperature and the oxygen content.

1.1 importance of battery technology

Luigi Galvani, an Italian doctor and researcher, started the electricity
revolution around 1780 in his laboratory in Bologna. He experimented
with frogs’ legs and noticed that muscles contract when they come
into contact with copper and iron as long as copper and iron are also
connected. Thus, he created an electric circuit. This consisted of two
metals and the salt water in the frog’s leg which works as electrolyte.
The muscle contractions indicate the electric current. Although the
correlations were still unclear to him, he nevertheless laid the funda-
mentals of the battery with his discovery. Since today, batteries are still
based on the principle of converting chemical energy into electrical
energy using two different electrodes and an electrolyte. Because of
his discovery, this combination is also called a galvanic cell today.
Based on the galvanic cell, the Italian physicist Alessandro Volta devel-
oped his voltaic pile around 1800. Volta realized that the contracting
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frog legs in Galvani’s experiment had a physical basis, he then stud-
ied the contact voltage of various metals and developed the galvanic
voltage series. He stacked several layers of copper and zinc plates on
top of each other, as well as pieces of cardboard or leather soaked in
salt water. The series connection added up the voltages and enabled
real research in electricity through the first continuous current source.
Together with the galvanic cell, the voltaic pile caused a boom around
electricity in chemistry in the 19th century. Thus, for a long time,
battery technology was the only way to perform electrical experiments.
The German physicist Johann Wilhelm Ritter took the voltaic pile as a
basis for his own invention in 1802. He also formed a stack for this
purpose. This consisted of copper and cardboard sheets layered on
top of each other and soaked in salt. This was the first rechargeable
battery, because the device could be charged, discharged and electri-
cally recharged again.
In 1854, Wilhelm Josef Sinsteden developed the first lead acid battery.
Sinsteden placed two large lead plates, not touching each other, in
a container filled with diluted sulfuric acid. By connecting a volt-
age source and frequent discharging and charging of the battery, he
achieved a detectable capacity after a certain time. This process is
called battery formation. Lead dioxide formed on one of the plates,
and pure lead on the other. In 1859, Gaston Planté recognized the
basic requirements for an effective lead-acid battery:

• The insolubility and conductivity of lead dioxide on the positive
electrode, while the deposition of hydrogen on the negative
electrode leaves sponge-like, metallic lead;

• changes in chemistry of the active mass during charging and
discharging[70].

He therefore developed lead acid cells with a new spiral arrangement
of the lead plates. Lead acid batteries are still built according to this
principle in more recent times[71]. Industrial demand for ways to
store electrical energy increased rapidly due to the electric generator
developed by Werner von Siemens in 1866. In 1880, the lead acid
battery was further improved by Camille Alphonse Faure. By coating
the battery with lead powder and sulfur, the lead acid battery reached
a high capacity after only a few charging cycles. This resulted in a
rechargeable battery that was truly suitable for mass use. This was
mainly due to the fact that lead-acid batteries are cheap to produce
and could store a lot of electricity at the same time.
Lead-acid batteries are still widely used. One of the most common
applications is as a vehicle starter battery. They are used for starting,
lighting and ignition of vehicles. However, lead-acid batteries are
also commonly found apart from cars. Figure 1.1 shows the quantity
sold in tons of lead-acid batteries in Germany for the years 2009 to
2019. Applications such as uninterruptible power supplies are also
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Figure 1.1: Sold quantity of lead-acid batteries as device batteries in Ger-
many.[22]

leading to greater demand for battery technologies that are primarily
stationary. Thus, the volume of lead-acid batteries sold has more than
doubled in the last decade.
This was followed by the sealing of the battery, because up to this
point the secondary cells still contained an electrolyte that changed
during operation. The next step was taken by Waldemar Jungner in
1899, who patented the nickel-cadmium battery in that year, moti-
vated by the idea of developing a gas-tight battery. At about the same
time, Thomas Edison was also working on the nickel-cadmium battery,
developing, among other things, the nickel-iron battery. By using
cadmium instead of iron, Jungner was able to increase the energy and
current output of his accumulator compared to Edison’s predecessor.
Since the electrolyte remains unchanged during charging and dis-
charging of the battery, a gas-tight design was possible. Gas-tight cells
ready for series production were available in the 1950s. This opened
up new applications, such as remote controls or cordless telephones,
in comparison with the lead acid battery, since portable operation was
now simplified. By the 1990s, the NiCd battery had become the most
widely used rechargeable battery for end users, as they could often
replace alkaline-manganese primary cells[71].
A major disadvantage of nickel-cadmium batteries is the use of the
toxic metal cadmium. From 1962 to 1982, Stanford Ovshinsky and
Masahiko Oshitani developed the Nickel-Metal Hydride (NiMH) bat-
tery, which does not use toxic metals. This was an important step
because such metals are now banned in most EU countries. As shown
in Figure 1.2, the proportion of nickel-cadmium batteries sold is falling
accordingly. At the same time, the number of NiMH batteries placed
on the market is increasing and was about 200 times higher than
nickel-cadmium batteries in Germany in 2019[50].
The general sales volume of device batteries in Germany for all battery
technologies is shown in Figure 1.3. A rapidly increasing trend can
be seen, the overall numbers are once again significantly higher than
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Figure 1.3: Total sold quantity of device batteries in Germany.[22]

the sum of the technologies presented so far. The reason for this is
lithium-ion batteries, which were first brought to market by Sony in
1991. They offer high energy density and low weight, so lithium-ion
technology currently dominates the market for device batteries. An-
other advantage is durability, as the technology is not based on the
electrode material dissolving chemical reactions, but on the flow of
lithium-ions between the anode and cathode. Lithium-ion batteries ini-
tially powered mainly portable devices with high energy requirements
for which conventional nickel-cadmium or NiMH batteries were too
heavy or too large, such as cell phones, digital cameras, notebooks or
flashlights. They can now be found in almost all areas. They serve as
energy storage for pedelecs, modern electric wheelchairs and Plug-in
Hybrid Electric Vehicle (PHEV). They also established themselves early
on in RC model making.
This trend is not expected to slow down, as topics such as the digitiza-
tion of industry, ubiquitous computing and the Internet of Things (IoT)
are only on the rise. Industry 4.0 is the name given to a future project
for the comprehensive digitization of industrial production. With its
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help, largely self-organized production is to become possible where
people, machines, plants, logistics and products communicate and
cooperate directly with each other in the Fourth Industrial Revolution.
Networking will make it possible to optimize not just one production
step, but an entire value chain. The network should also include
all phases of the product life cycle, i.e. from the idea of a product
through development, production, use and maintenance to recycling.
Depending on the size, location and type of production facility, the
requirements may only be possible with the help of battery-powered
sensors and devices as well as with energy-autonomous systems that
require a buffer battery. For example, it can be problematic to supply
necessary sensor technology with power via cables because the dis-
tance is too great, because the sensor technology has no fixed location
or because one would like to avoid wiring for aesthetic reasons. If
necessary, an energy-autonomous setup can be made here, in which
the energy is generated by solar panels or by pressure and heat differ-
ences. This often provides sufficient energy, but there are also times
when the sun is not shining or the heating is switched off. Buffer
batteries are therefore necessary to store the energy temporarily and
still be able to work in these phases.
But digitization is also taking place in areas outside industry. As an
example, Figure 1.4 shows the constantly growing number of smart-
phone users in Germany. Meanwhile, the use of smartphones is also
increasing among older people and teenagers. The smartphone en-
ables people to connect on the move and digitally. A similar trend can
also be found in the digitization of things. In the IoT, objects are given
a unique identity and can communicate with each other or accept
commands. With the IoT, applications can be automated and tasks can
be completed without outside intervention. Numerous applications of
the IoT exist. In the private sector, the technology is used for building
automation and the smart home, for example. Typical examples of
applications include lighting control, alarm systems and remote mon-
itoring, automatic heating and climate control, and smart electricity
meters. Overall, the demand for battery capacity is therefore also
growing outside industry.
However, Battery Electric Vehicle (BEV)s are the largest growth market
for rechargeable batteries. Currently, the transportation sector within
the EU is still largely based on fossil fuels and is responsible for more
than 25% of Europe’s greenhouse gas emissions. Excluding the Corona
crisis, this share is even growing[93]. According to climate research,
global warming is expected to cause sea ice and glacier melting, sea
level rise, permafrost melting with the release of methane hydrate,
growing drought zones, and increasing weather extremes. To some
extent, the consequences are already being observed. According to
current estimates, the current extinction rate of species caused by
human activity exceeds the natural rate by a factor of 100 to 1000[113].
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Figure 1.4: Smartphone user in Germany.[132]

In addition to global warming, vehicles with combustion engines also
form a significant part contributing to air pollution. In particular, the
proportion of particulate matter and nitrogen dioxide increases as
a result of combustion engines[93]. As a result, driving restrictions
have been imposed on high-polluting vehicles in numerous European
cities[2].
Electrified or partially electrified vehicles can help here. In the case
of electric cars, CO2 emissions do not occur in the car itself, but in
the generation of electricity and in the production of the BEV (the
battery in particular). The level of greenhouse gas emissions over the
entire vehicle life cycle therefore also depends to a large extent on
the CO2 balance of the generated electricity. Even with the current
electricity mix within the EU, electric cars including batteries perform
better than vehicles with internal combustion engines in terms of both
energy consumption and greenhouse gas emissions when considering
the entire product life cycle[93]. In addition, the climate advantage
of electric cars will improve even further in the future with the ex-
pected decrease in emissions of electricity generation, so that in the
future even the most inefficient electric cars will have a better climate
footprint than the most efficient internal combustion vehicles. Overall,
the switch to EVs will almost certainly reduce greenhouse gas emis-
sions in most regions around the world[64]. An improvement in air
quality can also be expected, as particulate emissions from electric
cars are only generated to a small extent by tire abrasion and braking
processes. Mechanical braking can be reduced by energy recovery
systems. However, the greatest potential for reduction comes from
the absence of exhaust gases from internal combustion engines, which
means that no nitrogen dioxide is produced here either[69].
Even in the case of combustion vehicles, partial electrification in the
form of a PHEV in combination with a battery can lead to an improve-
ment in the environmental balance. The maximum efficiency of an
Otto engine at optimum speed and load is approximately 37 %. At
fixed rpm, efficiency is highest just under full load, depending heavily
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Figure 1.5: Worldwide new registrations of battery electric vehicles and plug-
in hybrids (PHEV).[125].

on the load, and drops to zero by the time the engine reaches idling
speed[12, 90]. Electric motors have a comparatively high efficiency of
over 90 %. This remains high over a wide speed range[90]. Partial load
and idling of the combustion engine occur frequently in urban traffic
and can be largely avoided in PHEVs. The combustion engine can now
be operated more frequently and for longer periods at high load with
reasonable efficiency. The surplus energy produced is used for battery
charging via a generator. During acceleration, the combustion engine
and electric motor can work together, allowing a smaller combustion
engine to be used. During braking and overrun, the greater part of the
braking energy is recuperated in the battery. Especially in urban traffic,
these recuperations help reduce consumption by up to 60 %[90].
In addition to the improved environmental footprint, tax advantages
and a falling price are also leading to a growing number of BEVs
worldwide, as can be seen in Figure 1.5. Along with this, the demand
for battery capacity and the raw materials is also growing massively.
Since electric cars mainly use lithium-ion cells, the demand for cobalt
in particular is considered critical. This is because, as with many other
ores, mining is partly carried out under precarious conditions. In
particular, child labor in the often unsecured mines in the Democratic
Republic of Congo is problematic. It is estimated that in the Congo,
the country where a more than half of the world’s cobalt is mined,
around 20% of the cobalt is mined by hand. Complete electrification of
all vehicles based on lithium-ion technology is therefore not justifiable.

The environmental footprint of BEV is particularly good when renew-
able electricity is used to charge the electric cars. Renewable energy
sources are energy sources that are practically inexhaustible in the
horizon of mankind for sustainable energy supply or are renewed
relatively quickly[110, 112]. In contrast, fossil energy sources only
regenerate over a period of millions of years. Uranium and other
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nuclear fuels are also finite, so nuclear energy is not an alternative
to fossil fuels because of limited resources[110]. Estimates are that
uranium reserves will last until about 2070 if today’s nuclear power
plants continue to use the same amount of fuel. Furthermore, the
disposal of the highly radioactive fuel elements or the residues from
reprocessing is still unsecured. As of 2012, no final repository for
highly radioactive materials is available worldwide[103]. Therefore, a
sustainable energy policy must rely on biomass, geothermal energy,
hydro power, ocean energy, solar energy and wind energy.
Since renewable energies are to a large extent not permanently avail-
able and depend, for example, on the weather, grid stability must
also be considered when expanding renewable energies. For example,
the locations and technical characteristics of the plants influence grid
stability, and so does the quality of the grid. In addition, grid stability
depends on the respective short-term power flows in the power grid,
which in turn depend heavily on the weather in a renewable power
supply. The grid is considered stable when frequency, voltage and
angular stability are satisfied. Figure 1.6 explains these terms by com-
paring the time course of an unstable grid voltage with a sinusoidal
curve. The period of the grid voltage differs here from the 20 ms
of the sinusoidal curve. A power supply system whose frequency
deviates significantly from the nominal value of 50 Hz does not meet
the criterion of frequency stability. The same applies to voltage sta-
bility, too much deviation from the voltage target value (UC) of the
respective voltage level would lead to loss of voltage stability of the
system. This is illustrated by the fact that the grid voltage does not
reach the amplitude of the sine wave. This voltage deviation applies
only to that particular location in the network being considered. At
other points in the network, the voltage amplitudes may have other
values at the same point in time. The voltage stability of a grid is only
given if the voltage values at all points in the grid are within certain
tolerance ranges around the voltage target values. Angular stability,
on the other hand, is given when the angular velocity of machines
(generators) connected to the grid is equal to the angular velocity of
the grid voltage. The loss of this synchronism is illustrated in by a
phase shift[65, 121].
While voltage stability can be maintained by distributed generation
facilities and communication systems, maintaining frequency stability
is more complex. So far, the rotating masses of the power gener-
ators support the grid frequency in the first moments of a power
loss (frequency-response reserve). Such a power deficit can occur, for
example, due to the failure of an offshore wind farm. The contribu-
tion of frequency-response reserve is not an active form of frequency
maintenance, but rather a passive and essential feature of the power
grid. The foreseeable absence of rotating masses raises the question
of whether there will be sufficient frequency-response reserve in the
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power system in the future, or whether the system will have sufficient
inertia in the event of abrupt power plant or line failures to allow
sufficient time for the deployment of spinning reserve[57, 65].
If the mismatch between consumed and generated energy exceeds the
time horizon of the frequency response reserve, primary control power
is used to ensure that frequency stability is not affected. If the energy
demand is higher than predicted, power plants already in use are first
operated at a higher working point and, if necessary, additional power
plants that are in standby mode are brought online. The demand
for control power that needs to be held in reserve increases with the
increasing amount of weather-dependent renewable energies, whose
output can only be predicted to a certain extent[38]. In principle, the
possible power gradients of weather-dependent solar and wind power
plants are sufficient to react quickly compared to large power plants.
However, it should be noted that the availability of control power is
only possible if there is sufficient wind or sun. Since the allocation
of control power by weather-dependent renewable energies is only
possible by throttling, free available energy remains unused, which
applies to the allocation of negative and positive control power. In the
case of positive control power, however, the extent is greater, since the
plants must be permanently throttled in order to be able to increase
output if necessary[65].
Hence, for a complete roll-out of renewable energies, alternatives for
power control must also be considered in order to ensure a safe system
state of the grid. Due to the fast activation and reaction time, battery
systems are ideal for providing the necessary control power. The time
required to provide or consume energy is mainly determined by the
used power electronics and reaches full load in the range of 20 ms.
This means that battery systems can provide both frequency response
reserve and operating reserve. To a certain extent, it is even possible
to generate the replacement reserve with batteries. In contrast, the
alternatives are not as versatile. For example, pumped storage power
plants require a longer period of time to start up. Flywheel storage
is already more responsive, but still takes several minutes to start up
and has a high self-discharge rate, so the energy is only available for a
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very limited period of time[11, 56, 65]. Therefore, the energy transition
can only be achieved by a massive expansion of battery storage power
plants. Already today, battery storage power plants are used to a
significant extent. For example, in 2017, about 700 battery storage
power plants with a capacity of over 2.5 GW were in operation. The
majority of these use lithium-ion batteries with the problems already
described[34].

1.2 benefits of zinc-air batteries

As already explained in the previous chapter, lithium-ion accumula-
tors are currently used in numerous battery applications. Especially
when considering the further storage demand due to electromobility
and the expansion of renewable energies, a shortage of the necessary
cell materials is expected. In particular, cobalt, which is used for the
production of the positive electrode, is only available on a small scale
on earth and has a high toxicity. The problem is further intensified by
the fact that the majority of cobalt deposits are located in countries
with poor working conditions, making it difficult to switch to other
suppliers. In the meantime, there are also alternative cell variants that
use other materials for the positive electrode. Lithium iron phosphate
batteries are a popular alternative. Although here there is no depen-
dence on cobalt any more, the cell voltage is also reduced, so that they
have a much lower energy density.
Zinc is a relatively frequent element on Earth, representing 76 ppm
of the Earth’s crust, making it the 24th most frequent element[48]. It
is thus more common than lithium (60 ppm), cobalt (40 ppm) or lead
(18 ppm)[13, 18, 48]. Consequently, the price of zinc per ton is much
lower than that of lithium[44]. In addition, the deposits are distributed
all over the world, so that better working conditions can be guaran-
teed. Large deposits exist in the United States, Canada, Australia
and China, but there are also zinc deposits in Europe that are being
actively mined[48]. Another major advantage of zinc is that it is com-
pletely recyclable. For example, it is estimated that in North America
more than 33 % of the utilized zinc is made from recycled materials.
Globally, the recycling rate is about 40 % of the produced zinc, with
the recycling loops in Europe being largely closed for zinc recycling.
This is mainly done with the help of the Waelz process. Therefore, a
rotary kiln with a slowly rotating conveyor belt is used. The scrap
passes through various zones, first being dried, then slowly heated up
to 1400 °C.The zinc evaporates and can thus be extracted[59].
Another advantage of metal-air batteries and thus of zinc-air batteries
as well are particularly high theoretical specific energies and theoreti-
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cal energy densities[1, 78]. The theoretical specific energy is given by
the equation

e =
Vcell · Mreaction

charge carrier transfer per mole
, (1.1)

where Mreaction is the mass of the reactants, for a substance amount
of one mole. For illustration, Figure 1.7 shows the theoretical specific
energies of different metal-air batteries in comparison to current bat-
tery technologies. It can be seen that the theoretical specific energy
of metal-air batteries is several times higher than that of other battery
technologies. For metal-air batteries, one differentiates whether the
oxygen content is included or excluded in the calculation. This seems
confusing at first, but is based on practical operation, since oxygen
is usually used from ambient air and is not inside the cells. The
lithium-air cells stand out with the highest specific energy. However,
this is a primary cell technology. This means that lithium-air batteries
can only be discharged once, as superoxide ions form during the dis-
charge process and react with the electrolyte, preventing a recharge[52].
Aluminum-air batteries are also primary cells and cannot be recharged.
In contrast, operation as a secondary cell is theoretically possible with
magnesium-air batteries. Metallic magnesium even has the advantage
that dendrite formation does not occur during the charging process.
However, there are no commercial magnesium-air secondary cells yet,
as research is currently being carried out on electrolytes and electrodes
that work with magnesium ions[23].
Compared to the lithium-air primary cell, the theoretical specific en-
ergy of zinc-air cells is much smaller. In addition to the positive
aspects of gaining raw materials, it also offers the advantage that
secondary cell operation is possible. In relation to current secondary
cell technologies, the theoretical specific energy is still much higher.
However, it should be noted that the zinc-air battery as a secondary
cell has not yet been optimized to the extent that lithium-ion technol-
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Figure 1.8: Quantitative comparison of specific energy and costs of different
battery technologies[94].

ogy has. Therefore, the actual specific energies of current cells are
approximately at the level of current lithium-ion cells[76].
Another advantage of the zinc-air technology is the low price. In two
economic analyses by Brinker and Greßhoff, the manufacturing costs
of zinc-air batteries are compared with the manufacturing costs of
lithium-ion accumulators and other energy storage systems[19, 49].
Figure 1.8 gives a quantitative overview of the specific energy and the
costs of different battery technologies. While the theoretical energy
density of a zinc-air battery is about a factor of 2 greater than that
of a lithium-ion cell, the difference in manufacturing costs is much
greater. Thus, the expected production price of zinc-air in relation to
the stored energy is a factor of 10 lower than that of lithium-ion cells.
Since the production of zinc-air cells is not yet automated, Brinker
compares the material costs of the cells. This should be a pessimistic
estimate insofar as no complex processes are necessary to produce
zinc-air cells. For example, no process takes place under vacuum.
Cell prices alone are of course only comparable if an equal number
of cycles can be guaranteed. Here, there is still a lot of potential for
improvement due to the early stage of development. Nevertheless, the
material price with respect to stored energy and number of cycles is
already competitive with lithium-ion technology[19].

1.3 requirement of a battery management system

Battery management systems are electronic circuits that ensure the
safe state of the battery systems and monitor and control the charging
and discharging processes of the batteries. Their protective functions
include, for example, deep discharge protection, overcharge protection
and overcurrent protection. Deep discharge protection is also neces-
sary for lead-acid and lithium-ion batteries, as this can disable the
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battery. In the case of lead-acid batteries, deep discharge can lead to
sulfating of the active mass and thus to a loss of capacity. Furthermore,
corrosion of the electrodes occurs due to the lower acid density. Over
a longer period of time, recrystallization leads to the formation of
coarsely crystalline lead sulfate, which can end in a short circuit of
the cell. In lithium-ion batteries, even a slight deep discharge leads to
irreversible damage and loss of capacity. In the case of a significant
deep discharge, it is even likely that copper bridges will form, leading
to a short circuit. In this condition, the cell becomes unstable and heats
up very strongly, creating a fire hazard[9]. Deep discharge should
also be avoided for zinc-air batteries. Although there is no fire hazard
here, a loss of capacity, performance and lifetime is to be expected.
In the charged state, the zinc anode consists mainly of metallic zinc
and is therefore mechanically stable. During deep states of charge, the
zinc oxidizes to zincate, which mixes within the electrolyte to form
a viscous paste. Due to gravity, the anode mass now slowly sinks
towards the bottom of the cell and the anode surface area decreases
along with a loss of capacity and power. If the cell remains in a SoC

that is too low for a longer period of time, more and more anode mass
accumulates at the bottom of the cell and flows towards the counter
electrode. Once this is reached, a short circuit occurs, preventing
further battery operation. Therefore, zinc-air batteries must also be
protected against deep discharge to ensure a long cycle life.
Overcharging can also damage batteries. When various lithium-ion
batteries are overcharged, metallic lithium can be reduced and accu-
mulated at the cathode; this can also result in the release of oxygen at
the anode. In an ideal case, the produced oxygen will outgas through
a safety valve. Otherwise, it reacts with the electrolyte or the anode.
As a result, the accumulator heats up and can even catch fire[36, 126].
Other lithium-ion batteries such as the LiFePO4 battery are thermally
stable, but are also irreversibly damaged if overcharged[111]. Less
critical is the electrolysis that occurs when a lead-acid battery is over-
charged. The water component of the electrolyte outgasses during this
process and the electrolyte level drops so that some of the anodes can
no longer be used for battery operation. In an open cell, the loss of
liquid can be compensated with distilled water. A similar overcharge
behavior also exists for zinc-air batteries, as electrolysis starts here
as well. In addition to the loss of liquid and capacity, the electrolyte
concentration also increases. Typically, the initial concentration is
selected to achieve maximum conductivity. The change in concen-
tration therefore additionally leads to reduced cell performance by
increasing losses. Although it is also possible with zinc-air batteries
to compensate for the loss with distilled water, overcharging the cells
should generally be avoided for the reasons mentioned.
So that these essential protective functions can work, the SoC of the
respective cell must be known or determinable. In current cell tech-
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nologies, the cell voltage is usually used for this purpose, because
typically the cell voltage of an empty cell is lower than that of a full
cell[101]. The Nernst equation can be used to estimate the resulting
change of the open circuit voltage. The Nernst equation describes the
dependence of the electrode potential of a redox couple on tempera-
ture and concentration[104, 120]:

Ered = EΘ
red −

RT
zF

ln
aRed

aOx
(1.2)

Where EΘ
red corresponds to the standard electrode potential at normal

conditions, R is the universal gas constant, T specifies the absolute
temperature, and z defines the number of electrons transferred in the
reaction. In order to determine the voltage change due to the SoC,
these variables can be considered constant. In contrast, the SoC is a
key determinant of the activity of the redox partner (aRed and aOx,
respectively). The activity indicates the concentration corresponding to
the behavior of a real mixture. As an approximation, the concentration
of the reduced or oxidized species and thus the SoC can be used. The
Nernst equation describes the behavior at one electrode at a time,
so that the differences of both electrodes accumulate. In terms of a
lead-acid battery, the voltage difference between a full and an empty
cell is

VPb,SoC,diff = VPb(SoC = 1)−VPb(SoC = 0) = 2.3 V− 1.8 V = 0.5 V

(1.3)

where VPb(SoC = 1) is the cell voltage in the charged state and
VPb(SoC = 0) is the voltage in the empty state. Using the example of
a lithium-ion battery the nominal voltage is 3.6 V, but a charging cycle
of an empty battery starts at 3.4 V and finishes at 4.2 V. So that the
resulting voltage difference due to the SoC is

VLiIon,SoC,diff = VLiIon(SoC = 1)− VLiIon(SoC = 0)

= 4.2 V − 3.4 V = 0.8 V. (1.4)

The typical regulated charging process of lead-acid batteries and
lithium-ion batteries is divided into two sections by the maximum
charging current and the end-of-charge voltage (see Figure 1.9). As
long as the cell is still discharged enough that the end-of-charge
voltage is not reached, charging takes place at a constant current.
As the SoC increases, the cell voltage rises until the end-of-charge
voltage is finally reached. From now on, the external cell voltage
is regulated to the end-of-charge voltage. Due to the active charge
current, the cell voltage measurable from the outside is not the current
redox potential of the cell in no-load operation, but the voltage of the
internal resistance VRi is also added to it. The resulting charge current
Ich in this section is therefore calculated as

Ich =
(Vcell − Ered)

Ri
. (1.5)
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Figure 1.9: Qualitative illustration of a constant current - constant voltage
charging process.

Since the redox potential in the open circuit increases with the SoC,
the charge current becomes smaller and smaller. After it drops below
a threshold value, the cell is considered to be fully charged. The
discharge behavior is normally not controlled, since the discharge cur-
rent depends on the application. To prevent deep discharge, the cell
voltage is prevented from falling below the end-of-discharge voltage.
In both lead-acid batteries and lithium-ion cells, the voltage differences
are therefore sufficiently high to enable simple detection of the SoC.
In individual variants of lithium-ion batteries, the voltage difference
can already be reduced in some areas. Lithium iron phosphate bat-
teries, for example, show only a slight change in cell voltage in the
state-of-charge range between 10 % and 90 % during both charging
and discharging, making it difficult to determine the SoC.
When analyzing zinc-air batteries, the change in cell voltage as a func-
tion of the SoC is even less significant. Usually zinc-air batteries use
oxygen from the ambient air. The amount of oxygen consumed dur-
ing discharging or the amount released during charging is relatively
small compared to the amount of oxygen in the air and therefore has
only a very small influence on the partial pressure of oxygen in the
ambient air. The redox potential of the air electrode therefore shows
almost no dependence on the SoC of the cell. Instead, only the zinc
anode contributes to the change in open circuit voltage. Applying
the Nernst equation to the zinc anode, the activity of the oxidation
partner can be assumed to be a constant concentration of Potassium
Hydroxide (KOH) solution cKOH. In contrast, the chemical activity of
the reduction partner is strongly influenced by the SoC, as it is the
ratio xZnO of zincate to zinc:

Ered,ZnAir,anode = EΘ
red,ZnAir,anode −

RT
zF

ln
xZnO

cKOH
. (1.6)
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Figure 1.10: Successive charging and discharging of a zinc-air battery with
constant current.

Unfortunately, the resulting impact is not very distinct as the redox po-
tential difference between a fully charged and a nearly empty battery
is about

VZnAir,SoC,diff = Ered,ZnAir,anode(xZnO → 0)− Ered,ZnAir,anode(xZnO = 1)

VZnAir,SoC,diff ∼ 60 mV.
(1.7)

The influence of the SoC is thus an order of magnitude smaller than
with traditional technologies. In particular, the temperature and
possible aging of the cell and especially of the electrolyte have a
stronger effect on the cell voltage than the SoC. It is therefore not
possible to determine the SoC from the open-circuit voltage of a zinc-
air cell. Figure 1.10 shows the cell voltage of a zinc-air cell during an
active charge and discharge cycle. Both the charging process and the
discharging process are performed with a constant current. Even with
an active charge current, the change in cell voltage over the charge
cycle is so small that neither state-of-charge detection nor effective
end-of-charge detection is possible from the cell voltage. In addition,
it is problematic that towards the end of the charging process an
accompanying electrolysis process starts at a similar voltage level,
so that overcharging with gassing cannot be detected either. The
voltage characteristic during the discharge process is also largely
constant. Towards the end of the discharge process, however, there is
a voltage drop, so that at least deep discharge detection is possible
with the aid of a conventional voltage threshold. While SoC detection
is very difficult this way, the behavior on the other hand has the
advantage that applications using a zinc-air cell can be optimized for
very constant voltage ranges.
In this work, therefore, the question is answered whether it is possible
to develop a BMS based on zinc-air batteries with the help of alternative
methods. First, an electrochemical model of the cell is developed to
evaluate potential measurement methods. Furthermore, parasitic
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effects that occur during the operation of zinc-air cells are investigated
and the influence is classified. For critical effects, possible solutions
are shown in order to treat them. For the reasons mentioned above,
the most important sub-aspect is the determination of the SoC of the
zinc-air cell. EIS turned out to be a promising measurement technique
to obtain measurement data which depend on the SoC. Due to the
special electrode arrangement of the used zinc-air cells, an adapted
measurement hardware is presented. The acquired measurement data
are then combined with different regression methods to determine
the SoC as accurately as possible. In addition to the traditional fitting
of the created electrochemical battery model, artificial intelligence
methods are also applied.
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T H E O R E T I C A L A S P E C T S





2
T H E O R E T I C A L B A C K G R O U N D O F B AT T E R I E S

The first part of this chapter explains the basic structure, operation
and behavior of conventional batteries. In addition, the advantages
and disadvantages of the respective technology are pointed out. This
is followed by a detailed description of zinc-air batteries. In addition
to the structure of the cell and the description of the different cell
components involved, the chemical reactions are also described and an
overview of the current state of research is given. Finally, a description
is given of the cell which is used to complete the research in this
document.

2.1 conventional batteries

Batteries are devices that allow the transformation of chemical energy
into electrical energy. Typically these devices have got two terminals
that are formed by the anode and the cathode, respectively. Batteries
can be split into different groups. On the one hand, there are primary
batteries that can be discharged only once. After assembling they
are charged, but the electrochemical reactions that occur while dis-
charging the battery are not reversible. On the other hand, there are
secondary batteries that can be charged and discharged many times.
Typically, these type of cell is more expensive than primary cells, but
the total cost of a lifetime powering an electronic device is much lower
since they can be charged inexpensively quite often.
In general, any combination of two different electrodes and an elec-
trolyte is called a galvanic element. Figure 2.1 illustrates such a
galvanic element. The function of the galvanic cell is based on a redox
reaction. Reduction and oxidation take place physically separated
each in a half cell (half element). When both electrodes are connected
to each other via an electrical conductor, the different redox potentials
of the electrodes ensure that the reaction can continue. Since the redox
potential of the more noble metal is higher, more ions go into solution
at the electrode of the less noble metal than at the other electrode. The
electron gas remains in the electrode. Therefore, the negative charge
of the base electrode is higher than the charge in the noble electrode,
so a voltage is created where the electrons are "pushed" towards the
noble electrode. This causes the dissolution of the noble atoms in the
electrolyte to stop, instead the arriving electrons react with the ions of
the noble electrolyte solution and cause them to attach to the noble
electrode as normal atoms. The noble electrode is thus the cathode
(electrode at which reduction takes place) and the positive pole of the

23



24 theoretical background of batteries

ion
conductorba

se
m
et
al

no
bl
e
m
et
al

V

Figure 2.1: Galvanic cell

galvanic cell (absence of electrons). At the base electrode, on the other
hand, oxidation takes place. The base electrode is therefore the anode
and the negative pole of the galvanic cell (surplus of electrons). The
electrode regions are connected to each other by an ion bridge (salt
bridge), which is necessary to close the circuit. During the charging
process of secondary cells, the chemical reactions at the poles are
reversed: oxidation takes place at the positive pole, which is why it
then functions differently as the anode - accordingly, the negative pole
is then the site of reduction and thus the cathode[99]. The resulting
voltage of the electric current can be calculated by the Nernst equation

∆E = ∆E0 − RT
nF

ln Q, (2.1)

where Q depends on the activities (concentrations) of the reactants.
Therefore, the voltage depends on the type of metal (∆E0) and the
concentration[104]:

2.1.1 Lead-Acid Battery

The structure of a lead acid battery is shown in Figure 2.2. A lead
acid battery consists of an housing and two lead plates or groups of
plates, one of them serving as a positive electrode and the other as
a negative electrode, and a filling of 37 % sulfuric acid (H2SO4) as
electrolyte[71, 118]. The ground electrode made of Pb-PbO paste in
the lead grid at the negative pole has a high hydrogen overvoltage, so
that gassing occurs only when the cell is overcharged. The use of 0.5%
barium sulfate forms crystallization seeds for PbSO4, which should
act against sulfation[71]. In order for the plates to be as close together
as possible, there are separators between them, for example made of
polyvinyl chloride, which prevent the electrodes from touching each
other directly and thus preventing a short circuit[118].
The principle of operation of the lead acid battery can be illustrated by
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Figure 2.2: Structure of lead-acid cell.

the chemical processes that take place during charging and discharg-
ing. During discharge, the process

Pb + SO 2−
4 −−→ PbSO4 + 2 e− (2.2)

takes place at the negative pole. Lead is oxidized with the electrolyte
to lead sulfate, releasing 2 electrons. Lead sulfate is also formed at the
positive electrode with the bonding of sulfuric acid in the reaction

PbO2 + SO 2−
4 + 4 H+ + 2 e− −−→ PbSO4 + 2 H2O. (2.3)

But this time by a reduction of lead oxide. The formed lead sulfate
deposits as a coating on the electrodes and to some extent also on
the bottom of the housing. Since the sulfuric acid is utilized during
the discharge process, the SoC can be determined by measuring the
density of the electrolyte.
During charging, the processes take place in the opposite direction,
so that the lead sulfate formed during discharging is oxidized to lead
and reduced lead oxide, respectively. If the lead sulfate is completely
consumed and the charging process is not stopped, electrolysis of
the electrolyte begins. The cell gases hydrogen and oxygen. Sealed
batteries have catalysts (Pd, Pt) above the vent where oxyhydrogen
gas can recombine to water[71].
The resulting cell voltage can be determined from the galvanic series.
For the two reactions, the redox potentials are at

Pb + SO 2−
4 −−→ PbSO4 + 2 e− | − 0.36 V (2.4)

PbO2 + SO 2−
4 + 4 H+ + 2 e− −−→ PbSO4 + 2 H2O |1.68 V (2.5)

resulting in a total cell voltage of

E0
tot = 1.68 V − (−0.36 V) = 2.04 V. (2.6)
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The nominal voltage of a cell is about 2 V, but the voltage varies
between approximately 1.75 V and 2.4 V depending on the SoC and
the charging or discharging current[99, 118]. The specific energy is
about 35 W h

kg to 50 W h
kg and can thus be classified as low[71]. Lead acid

batteries can deliver high currents for short periods, so they have a
high power density. This property is for example necessary for vehicle
and starter batteries, and is part of the lead acid battery’s strength.
On the other hand, because of this property, short circuits lead to
extremely high currents, which may cause fires of the wiring.
Lead-acid batteries can achieve quite a long lifetime of several years.
However, the voltage regulation is crucial here. Especially in cars as a
starter battery, this is often insufficiently accurate, so that only 2 to 4

years of use are typical. Drive batteries or storage batteries can achieve
a lifetime of between 5 and 15 years, depending on quality and stress.
When lead acid batteries are of the same capacity and size, but of
different weights, the heavier battery usually lasts longer because the
lead frames are stronger. The power rating when new is not directly
affected by this, as a weaker lead structure can also be designed with
a large active surface area. The aging of lead acid batteries is mainly
caused by internal corrosion of the lead structure of the electrodes,
by the formation of fine short circuits and by sulfating of the lead.
Sulfating causes the PbSO4 crystals to cluster together into larger and
larger compounds. Thus, the electrochemically active surface area of
the PbSO4 decreases and it gradually dissolves less easily. In addition,
the electrical conductivity of the sulfate is lower than that of lead. The
resulting increase in the internal resistance of the cell leads to a greater
voltage drop under load[32].
When lead-acid batteries are recycled, they are first chopped up in
several stages and separated by material. Components such as grid
metal, lead paste and sulfuric acid are then treated differently. The lead
is found in the grid metal and in the lead paste. The grid metal and
the paste are separated in a processing plant. The paste is desulfurized
and recycled into lead in a Metallurgy process. The lead quality is then
sufficiently high to use it again for batteries. Sulfuric acid represents
about 10 % of the weight of a battery. The acid can be separated and
serves as a raw material for the chemical industry. The recycling rate
of lead-acid batteries reaches almost 100 % in Germany. However, the
recycling of old lead-acid batteries in developing countries is a risk to
health and the environment, as the lead is recovered by hand[22, 60].

2.1.2 Nickel-Metal Hydride Battery

A NiMH battery is an accumulator with a positive electrode made of
nickel hydroxide and a negative electrode made of a metal hydride.
Like NiCd batteries, they have a nominal voltage of 1.2 V per cell
with a typical end-of-discharge voltage of 1 V. Nevertheless, they are
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widely used as a replacement for alkaline batteries, which have 1.5 V
nominal voltage per cell, in many applications and are commonly
found in standard battery designs. In some applications, however,
the lower nominal voltage can be a disadvantage. For example, un-
regulated lights that are designed for 1.5 V operation tend to shine
less brightly. Compared to alkaline batteries, the internal resistance of
NiMH batteries is much lower. Because of this, they have the advantage
that a higher voltage can be maintained under high load.
The layer structure of a NiMH round cell can be seen in Figure 2.3. An
outer perforated foil serves as a carrier for the metal hydride powder,
which forms the negative electrode. During discharge, the hydrogen
bound in the metal hydride M+H− is oxidized to a H+ proton and a
metal of 0 oxidation state is formed:

MH + OH− −−→ M + H2O + e− (2.7)

The resulting protons react with the OH− hydroxide ions of the KOH

solution to form water. The redox potential at a electrolyte pH value
of 14 is approximately −0.83 V. The separator holds the electrolyte,
a 20 % KOH solution, and prevents direct contact with the positive
electrode. This consists of a sheet of nickel hydroxide and black nickel
oxide hydrate. Here, nickel of oxidation state +III is reduced to nickel
of oxidation state +II in the reaction

NiO(OH) + H2O + e− −−→ Ni(OH)2 + OH−. (2.8)

During this process, free electrons are bound so that this pole be-
comes the positive electrode. The redox voltage of the reduction is
approximately 0.49 V. The total voltage of the redox reaction is thus

E0

tot,NiMH = 0.49 V − (−0.83 V) = 1.32 V. (2.9)

The foil combination is now wound up to ensure a high active surface
area with minimal volume. The negative electrode is on the outside
so that it can be directly encased in a metal cylinder. The outer casing
thus forms the negative contact. An electrical connection from the
nickel oxide sheet leads to the head of the cell and forms the positive
pole[41, 42, 66].
The specific energy of a NiMH cell is about 80 W h

kg , which is almost as
high as that of an alkali-manganese cell and more than twice as high
as that of a NiCd battery. NiMH batteries are sensitive to overcharging,
overheating, incorrect polarity and, if the capacity of the electrodes
is symmetrical, also to deep discharge. To prevent the metal from
oxidizing instead of the hydrogen towards the end of the discharge,
a negative electrode is used which is much larger than the positive
electrode. The latter thus determines the capacity of the battery. This
prevents the battery from being destroyed by a deep discharge. The
discharge process of NiMH cells is therefore not critical. However, to
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Figure 2.3: Structure of nickel-metal-hydrite battery.

achieve the desired cycle life of typically 500 cycles, an intelligent BMS

is required during charging to monitor the necessary parameters. This
is often integrated only inside the charger[42, 137].
The recycling of NiMH batteries relies on a vacuum distillation oven.
The defective cells are placed in the oven, which is then evacuated to
a vacuum of 0.1 mbar. Induction coils are used to achieve an internal
temperature of 100 °C to 150 °C in the oven. This temperature is
sufficient to evaporate the water and any volatile organic components
present. A nickel-iron mixture remains in the furnace, which can
either be separated or used, for example, in steel production. The
advantages of vacuum distillation are the comparatively low costs and
the very low waste gas pollution[108].

2.1.3 Lithium-Ion Battery

Lithium is the lightest of all metals with a density of 0.534 g
cm3 at 20 °C.

The normal potential of −3.045 V enables batteries with high energy
and power. However, metallic lithium reacts strongly with water
and can cause fires. Therefore, lithium is placed as ion in a liquid
or polymer electrolyte system in the form of so-called intercalation
electrodes, which can absorb and release lithium ions reversibly[71].
There are numerous different lithium-ion batteries. They do not only
differ in size and design, but also in the chemical composition of
their components and also have different voltage ranges. For about
two decades, most of the lithium-based accumulators available on the
market were lithium-cobalt oxide accumulators. Today, the lithium
nickel manganese cobalt oxide based batteries are the most sold. The
characteristics such as cell voltage, temperature sensitivity, charge
and discharge end voltage and the maximum permissible charge or
discharge current vary depending on the type and are essentially
dependent on the electrode material and electrolyte used.
The schematic structure of a lithium-ion battery is shown in Figure 2.4.
A charged lithium-ion accumulator uses the electrical potential dif-
ference between the electrodes to generate an electric current in an
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Figure 2.4: Structure of lithium-ion battery.

electrochemical process involving a change in the material of the
electrodes. Li+ lithium ions can freely move through the electrolyte
between the two electrodes in the battery, hence the name of the bat-
tery. In contrast to the lithium ions, the transition metal and graphite
structures of the electrodes are fixed and a separator protects them
from direct contact. The movement of the lithium ions is necessary
to balance the external current flow during charging and discharg-
ing, so that the electrodes themselves remain essentially electrically
neutral. The negative electrode is a graphite intercalation compound
with the general composition LixCn, where lithium is a cation. During
discharge the reaction

LixCn −−→ Cn + xLi+ + xe− (2.10)

takes place at the negative electrode, so the intercalation compound
emits electrons that flow to the positive electrode via the external
circuit. At the same time, an equal number of Li+ ions from the
intercalation compound also migrate through the electrolyte to the
positive electrode. At the positive electrode, it is not the lithium ions
that accept the electrons from the external circuit, but the structures of
the transition metal compounds present there. Depending on the type
of battery, these can be cobalt, nickel, manganese or iron ions. For the
currently most frequently sold variant, the lithium-manganese battery,
the following reaction equation takes place at the positive electrode:

Li1−xMn2O4 + xLi+ + xe− −−→ LiMn2O4. (2.11)

Therefore, the lithium is still ionic at the positive electrode. Since the
affinity of the lithium ions for the material of the positive electrode is
greater than their affinity for the negative electrode, energy is released
when lithium ions flow from the negative to the positive electrode[95,
135].
The specific energy of lithium-ion batteries is in the order of 150 W h

kg

to 200 W h
kg and the energy density is in the order of 200 W h

L to 400 W h
L ,
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which makes lithium-ion batteries particularly interesting for use as
electrical energy storage devices in mobile applications and allows
the construction of small and lightweight batteries[71]. The typical
temperature range for use is about 30 °C to 60 °C. The problem is
that the cells are not able to withstand overcharging due to their
cell chemistry. When several cells are connected in series to achieve a
higher voltage, cells that are as similar as possible should be connected
together (binning). Nevertheless, it is usually necessary to use a BMS

that enables balancing to compensate for the capacity tolerances[137].
As already mentioned, the cell voltage depends on the variant and
results from the difference in the Gibbs free enthalpy of the lithium
ions in the two electrode materials[71]. Conventional LiCoO2 batteries
provide a nominal voltage of 3.6 V, which is about three times higher
than that of a NiMH battery (see section 2.1.2). The end of charge
voltage is up to 4.3 V and the end of discharge voltage is about 2.5 V.
Deep discharge leads to irreversible damage and loss of capacity.
Most types of lithium-ion accumulators are damaged by over temper-
ature, since thermal runaway occurs with the commonly used oxides
such as lithium cobalt oxide and lithium nickel manganese cobalt
oxides at temperatures above approximately 180 °C. This is due to the
decomposition of the oxide which then releases oxygen, which reacts
with other cell components such as the electrolyte and thus leads to a
self-boosting exothermic reaction that can no longer be stopped exter-
nally. This applies to all known cathode materials, including lithium
iron phosphate, although its temperature range is considerably larger.
This is because the cathode materials differ in the onset temperature,
the temperature at which the exothermic reaction begins, and in the
energy released in the process. Oxides such as nickel dioxide, which
allow the construction of lithium-ion batteries with a high specific
capacity, have a strong tendency to thermal runaway and are therefore
almost not used at all.
The recycling of lithium-ion batteries is comparatively complex and
there are electrical hazards, chemical hazards and fire hazards. The
first step is to deactivate and discharge the battery. If necessary, this
is followed by disassembly if the system consists of several cells. Py-
rometallurgical processes are often used for material separation. At
450 °C to 500 °C, the cases burst open and the electrolyte burns off
abruptly. However, it is then difficult to separate the remaining mate-
rials. In contrast, hydrometallurgical processes can also be used for
material separation. Due to an inert atmosphere, separation can take
place at lower temperatures. In total, more than 90 % of the materials
in a battery cell can be recycled[53, 79].
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Table 2.1: Summary of technology characteristics of conventional batteries.

parameter lead-acid nm hydride lithium-ion

Specific energy Low Medium High

Power density High High Very High

Lifetime Medium Low High

Recyclability Good Medium Bad

Handling Easy Medium Difficult

2.1.4 Comparison

A summary of the main characteristics of the presented battery tech-
nologies is given in Table 2.1. Lead-acid batteries offer only a low
specific energy, but due to the maximization of the active surface and
small distances between the electrodes, very high currents are possible.
Overall, the lifetime can only be rated as medium, especially since low
states of charge lead to a reduction in lifetime. Even though lead is a
toxic heavy metal, recyclability can still be considered good. This is
because processes have already been established within Europe that
allow almost complete recycling of the materials. Handling is also
a plus point, because as long as the cell is not deep discharged or
overcharged, which can be seen very simply from the cell voltage,
lead-acid batteries are very robust.
In comparison, NiMH batteries offer more than twice the specific en-
ergy at a similar power density. However, with about 500 cycles, the
cycle life is slightly reduced. Since a vacuum is required for recy-
cling, this is more complex. Nevertheless, recycling is still possible
at relatively low cost. Similar to lead-acid batteries, the discharge
behavior is robust and can be performed up to the end-of-discharge
voltage without much intelligence. When charging, however, a BMS is
necessary.
Of the three technologies, lithium-ion technology offers the highest
energy density and power density. For this reason, almost all electric
cars use lithium-ion batteries. The lifetime is also better than that of
other technologies. But there are also a few critical points here. Above
all, recycling is costly and the processes are not yet established. In
addition, a BMS is always necessary when using lithium-ion batteries
to ensure a safe condition. This is because excessive currents and
temperatures and overcharging can lead to fires that are difficult to
extinguish.
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Figure 2.5: Structure of a zinc-air battery

2.2 zinc-air batteries

Zinc-air batteries can also be separated into primary cells and sec-
ondary cells. Primary zinc-air cells are well known and are commonly
used in hearing aid devices since the 1960s[24]. Therefore, primary
cells can be considered as an established technology with little need
of further research.
In contrast, the technological development of rechargeable zinc-air
cells is being actively researched[24, 71]. Figure 2.5 shows the gen-
eral structure of a zinc-air battery. The zinc metal electrode forms
the largest part of the cell and is the negative pole. A solution of
KOH or caustic soda works as electrolyte and improves the standard
potential[10, 24]. The separator isolates both electrodes mechanically
in order to prevent a conduction of electrodes inside the cell. The
positive electrode is formed by a Gas Diffusion Electrode (GDE) made
of activated carbon which has a large surface area, is electroconductive
and has a catalytic activating effect on cathodic oxygen reduction. In
order to increase mechanical stability and electrical conductivity, the
electrode is often provided with a metal mesh[10].

2.2.1 Reactions

Actually several different processes occur at the zinc anode in an
alkaline solution. The desired discharge reaction is[24, 100]:

Zn −−→ Zn2+ + 2e− (2.12)

Zn2+ + 4OH− −−→ Zn(OH) 2−
4 (2.13)

First, zinc is oxidized and dissolved in the electrolyte while electrons
are emitted. Then the oxidized zinc ions react with hydroxide ions
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Figure 2.6: Fractions of Zn2+ species formed as function of pH[24, 130]

and form zincate. If possible, the zincate then accumulates again at
the zinc anode. However, a partial dissolving in the electrolyte cannot
be completely avoided resulting in a loss of capacity[24].
Figure 2.6 shows the resulting fractions of different Zn2+ species. As
one can see, the Zn(OH) 2−

4 zincate is only stable for pH values higher
than 13. Lower pH values result in the formation compact zinc oxide
that harms the battery operation:

Zn(OH) 2−
4 −−→ ZnO + H2O + 2OH− (2.14)

However, if the concentration of the electrolyte is too high, this also
has negative consequences. Because then the electrolyte corrodes the
zinc metal and hydrogen is released:

Zn + 2H2O −−→ Zn(OH)2 + H2↑ (2.15)

The GDE has to be permeable for oxygen ions in order to use the
oxygen of the ambient air. Furthermore, it performs the reduction of
O2. Therefore, the electrode has to be electrocatalytically active and
porous[24]. For alkaline solutions as electrolytes, which are commonly
used in zinc-air batteries, the reaction is given by:

O2 + 2H2O + 4e− −−→ 4OH− (2.16)

An advantage of zinc-air cells is that precious metal catalysts are not
required at the air electrode. Thus, the cells are cheap and are easy to
recycle. The usage of noble catalyst even harms the cell performance,
because traces of them diffuses to the zinc anode lowering the hydro-
gen overvoltage[24]. This results in the production of hydrogen when
the battery is being charged[133].

2.2.2 Electrode Potential

Mortimer uses the following model for the generation of an elec-
trode potential[99]. When a zinc electrode is placed in a solution,
for example in an electrolyte, some Zn2+ zinc ions migrate into the
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solution while the free valence electrons remain in the electron gas
of the electrode. An electric field is formed between the positively
charged zinc ions in the solution and the negatively charged electrode,
which counteracts further migration of ions. In addition, individual
ions migrate back into the electrode. If the two ion currents equal
each other, a state of equilibrium is reached. A defined potential now
applies, which depends on the concentration of the solution and on
the temperature. The level of the potential depends on how easily the
metal can be oxidized.
However, the absolute value of the resulting potential cannot be mea-
sured, since a second half cell is always required for this purpose.
Instead, the relative potential to a reference cell is measured. The
standard hydrogen electrode serves as the reference cell. The elec-
trode potential of the hydrogen electrode was set to be 0 V for all
temperatures. It consists of a hydrogen gas flowing around a platinum
electrode at normal pressure (1013 hPa) and is immersed in an acid
solution with H+ ion activity of 1. The setup of a galvanic element
for determining the relative electrode potential with respect to the
standard hydrogen electrode is shown in Figure 2.7. Here, the zinc
electrode is connected to the hydrogen electrode via a salt bridge.
The salt bridge is filled with a concentrated salt solution, allowing
current conduction but preventing mixing of the two solutions. Now
the potential between the zinc electrode and the standard hydrogen
electrode can be measured. The potential against the standard hydro-
gen electrode is called the standard potential and is denoted by E0.
The potential of two different electrodes can be determined by the
difference of the corresponding standard potentials.
The standard electrode potentials of the involved half-reactions are
given in Table 2.2. At the zinc anode, zinc reacts with the hydroxide
ions to form zincate. If an air electrode is used, oxygen and water are
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Table 2.2: Standard electrode potentials in zinc-air batteries.

Half reaction E0

Zn(OH) 2+
4 ⇌ Zn + 4OH− −1.215 V

O2 + 2H2O + 4e− ⇌ 4OH− +0.401 V

NiO2 + 2H2O + 2e− ⇌ Ni(OH)2 + 2OH− +0.490 V

reduced to hydroxide ions at the GDE. This results in a potential for
the total reaction of the zinc-air cell of

∆E0
ZAB = E0 (O2 + 2H2O + 4e−|4OH−)+

− E0 (Zn(OH) 2+
4 |Zn + 4OH−) , (2.17)

∆E0
ZAB,standard = (+0.401 V)− (−1.215 V) = 1.6 V. (2.18)

As already stated at the beginning of the chapter, the resulting po-
tential depends on the temperature and the activity of the solution.
The standard potentials refer to a temperature of 25 °C and activity
of 1. The question now is how to calculate the potentials for other
temperatures and activities. The basis is the change in free enthalpy
or Gibbs energy ∆G as a function of activity:

∆G = ∆G0 + RT ln Q

Q = ax(X)·az(Z)
aa(A)·ae(E)

for reaction: aA + eE −−→ xX + zZ

. (2.19)

The activity describes the concentration of the substance and corrects
for non-ideal behavior. As an approximation, it can be assumed that
the activity for solids is 1, for gases the activity corresponds to the
partial pressure in relation to the normal pressure and for solutions
the activity corresponds to the molarity of the solution.
The Gibbs energy describes the maximum recoverable energy of the
reaction and can be linked to the electrode potential using the number
of charge carriers. Since Q describes the molarity, multiplication by
the Faraday Constant F gives the number of reactants. A further
multiplication by the number of electrons z given in the reaction
equation finally yields the number of charge carriers. Thus

∆G = −nF · ∆E, (2.20)

∆G0 = −nF · ∆E0 (2.21)
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follows. After conversion to ∆E, the Nernst equation is obtained:

∆E = ∆E0 − RT
nF

ln Q. (2.22)

First, the Nernst equation is applied to the anode reaction

Zn + 4OH− −−→ Zn(OH) 2−
4 + 2e− (2.23)

where 2 electrons are involved. Inserting the values gives

Eanode = E0
anode −

RT
nF

· ln

(
(a(Zn))1 ·

(
a(OH−)

)2(
a
(
Zn(OH) 2+

4
))1

)
, (2.24)

Eanode = −1.215 V − 25.7 mV
2

· ln


1 ·
(

c[OH−]
1 mol

L

)2

1

 . (2.25)

The reaction at the air electrode is

O2 + 2H2O + 4e− −−→ 4OH− (2.26)

In contrast to the anode, a reduction takes place at the GDE during
discharge. Therefore, the variable term is added instead of subtracted:

Ecathode = E0
anode +

RT
nF

· ln

(
(a (O2))

1 · (a(H2O))2(
a(OH−)

)4

)
, (2.27)

Ecathode = 0.401 V +
25.7 mV

4
· ln


p[O2]

1013 hPa ·
(

c[H2O]

1 mol
L

)2

(
c[OH−]

1 mol
L

)4

 . (2.28)

To calculate the voltage between both electrodes, the difference of the
respective potential can be used again:

∆E = Ecathode − Eanode, (2.29)

∆E = 1.6 V +
25.7 mV

4
· ln


p[O2]

1013 hPa ·
(

c[H2O]

1 mol
L

)2

(
c[OH−]

1 mol
L

)4

+

+
25.7 mV

2
· ln


1 ·
(

c[OH−]
1 mol

L

)2

1

 . (2.30)
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Figure 2.8: Different zinc anode structures[140]

The resulting open-circuit voltage thus depends on the temperature,
oxygen content and molarity of the electrolyte. In lead-acid batter-
ies, the electrolyte is directly involved in the redox reaction, so the
electrolyte concentration changes with the SoC of the battery. This is
not the case with zinc-air batteries. The hydroxide ions are formed
at the air cathode by reducing oxygen and then migrate to the zinc
anode. Since it is an open system, water vapor can escape through
the air cathode, thus the concentration of the electrolyte can change
over time due to evaporation. This then has a greater influence on the
open-circuit voltage than the actual SoC.

2.2.3 Zinc Anode

The zinc anode simply consists of zinc. A simple zinc foil is usually
not used because it offers poor performance. Instead, nano- and mi-
crostructured materials are often used to increase the surface area
and efficiency. A selection of different structures is presented in Fig-
ure 2.8[140]. Thereby, typically the porosity is somewhere between
60 % and 80 % which results in a capacity density of 1.2 A h

cm3 to 1.2 A h
cm3 .

Porosity not only affects the surface area and capacity of the cell,
but cell performance is also strongly influenced by porosity and
structure[24] (see Figure 2.9). Here, the conductivity of fibers is
consistently good for a wide range of porosity values[139]. By con-
trast, the use of zinc powder only works with gelling agents such
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Figure 2.9: Anode conductivity depending on anode porosity[139]

as PolyTetraFluoroEthylene (PTFE), sago, and carbopol gel[72, 91, 96,
100]. Although the porosity can be adjusted fairly accurately via the
binders, they lead to an increase in resistance and thus reduce cell
performance[24, 73].

2.2.4 Gas Diffusion Electrode

The gas diffusion electrode is an air cathode that completes the redox
reaction by reducing O2 when discharging. It is possible to use several
different materials. Graphene loaded with Mn3O4 nanoparticles is
commonly used as it results in a high efficiency and performs better
than noble metals[24, 73]. Thus, precious metal catalysts are not re-
quired at the air electrode. The usage of noble catalyst even harms
the cell performance, because traces of them diffuse to the zinc anode
lowering the hydrogen overvoltage[24]. Once again, a porous structure
is used in order to increase the electrocatalytical behavior.
The different layers of a GDE are shown in Figure 2.10. Although the
porous graphene should prevent the leakage of electrolyte, superhy-
drophobic materials are often added to the air side of the electrode
for further securing against leakages. Here, PTFE has proven to be
useful (white foil)[51]. Then there is current collector mesh that also
works as cell contact. Since copper can be attacked by the electrolyte,
a nickel or nickel coated mesh is usually used instead. The structure
is completed by the gas diffusion layer.
For rechargeable zinc-air cells, an efficient oxygen reduction reac-
tion at the air cathode is not the only important factor. During the
charging process, there is an oxygen evolution reaction. Two different
approaches are the subject of current research. On the one hand,
there is research on bi-functional electrodes that enable both processes.
However, the lifetime and efficiency of these electrodes is still very
limited[24]. Another approach is the use of a separate electrode for
charging. Since no oxygen from the ambient air is needed during
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Figure 2.10: Structure of zinc-air gas diffusion electrode.

the charging process, a simple nickel net can also act as a positive
electrode[24, 77].

2.2.5 Electrolyte

Since acids react with zinc, only alkaline electrolytes can be used.
KOH is the most commonly used because it has a high conductivity
compared to other basic electrolytes and is also very low cost[58].
KOH is very hydrophilic and is highly soluble in water. Regarding the
concentration, three things need to be considered.
First, if the concentration is too high, KOH can also corrode the zinc
(reaction equation 2.15). This reaction occurs when the pH-value
rises above 13, which is the case at a molarity of 4 mol

L . Hydrogen is
released in the process which may result in a dangerous hydrogen gas
buildup[24]. In addition, the overvoltage of the electrolysis is reduced
by a high concentration. This also causes accelerated hydrogen forma-
tion, here during a charging process[24].
Second, as shown in Figure 2.6, the concentration may also not be too
low, since the zincate precipitates as zinc oxide at a pH below 13. The
precipitated zinc oxide then passivates the anode. The occupied parts
can no longer be used for battery operation and the cell dramatically
loses power and capacity. A pH of 13 is approximately reached when
the concentration drops below 4 mol

L [24].
The third aspect is the conductivity of the KOH solution, which has
a strong dependence on the concentration. The goal is, of course, to
maximize the conductivity so that the losses are as small as possi-
ble. The specific conductivity of a KOH solution as a function of its
molarity is shown for various temperatures in Figure 2.11. For low
concentrations, there is a linear dependence between concentration
and specific conductivity. A higher number of charge carriers results
in a higher conductivity. This behavior changes when the average
distance between the ions becomes smaller at high concentrations. The
electrostatic impact between the charge carriers stops a further gain
of the conductivity and can even lower it[5]. The point of maximum
conductivity also depends on the temperature. For typical battery
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Figure 2.11: Specific conductivity of potassium hydroxide solutions at differ-
ent temperatures and molarities[5, 43].

operating temperatures, however, this point is always in the range of
a slightly above 6 mol

L .
Considering all aspects, a 30 % KOH solution is often used as a com-
promise, which corresponds to a molarity of 6.3 mol

L . At this point, the
conductivity is very high and precipitation of zinc oxide is not yet a
problem. Although corrosion of zinc already occurs in this range, the
effect is still very small.
Other electrolytes have also been studied with zinc-air batteries. One
of the most important of these is caustic soda. Operation with this
solution is also possible, but larger losses usually occure due to the
lower conductivity[24].
A major problem with water-based solutions is carbonation. The car-
bon dioxide in the ambient air leads to the formation of potassium
carbonate in the electrolyte. The associated potassium ion is then
no longer available as a charge carrier and the conductivity of the
electrolyte decreases. Another problem is that potassium carbonate is
much less soluble in water. It precipitates and clogs the pores of the
GDE[58, 80, 88].
There was a recent publication that used a Zn(OTf)2 solution instead
of an alkaline electrolyte. It is interesting to note that the zinc anode is
not oxidized to zincate during discharge, but to a reversible zinc per-
oxide. This has the advantage that it does not continue to precipitate
as zinc oxide, which should extend the life of the cell[129].

2.2.6 Oxygen Consumption

Now the oxygen consumption of a zinc-air cell is analyzed to de-
termine whether additional steps, such as ventilation, are necessary
to avoid a negative impact on the cell performance and to ensure a
breathable oxygen content. It is important to note that the oxygen used
during the discharge process to oxidize the zinc is released during the
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subsequent charge process. The oxygen is therefore not permanently
taken from the ambient air. The oxygen reaction takes place at the
GDE. Therefore, the corresponding reaction equation is shown here
once again:

O2 + 2H2O + 4 e− −−→ 4OH− (2.31)

This is a reduction, since one electron is taken up by one oxygen
particle at a time. However, to a certain extent the oxygen is also used
from the water of the electrolyte. Therefore, one oxygen molecule (2
oxygen atoms) of the ambient air can react with 4 electrons forming 4

hydroxide ions. To relate the reaction equation to an electric current,
it is first necessary to know the number of electrons N1C that transfer
a charge of 1 C:

N1C =
Q
e
=

1 C
1.6021 · 10−19C

= 6.2415 · 1018. (2.32)

Since 4 electrons react with one oxygen molecule at a time, the number
of oxygen molecules required to discharge 1 C results in

NO2,1C =
N1C

4
= 1.5603 · 1018. (2.33)

The relationship between particle number, molar mass, volume and
mass is shown in Figure 2.12. In order to calculate the necessary air
volume, the molar mass must first be determined. The Avogadro
constant NA is used as a conversion factor. This gives the necessary
molar mass of oxygen for 1 C as

nO2
[Q = 1 C] =

NO2,1C

NA
=

1 C
4 · e · NA

= 2.5911 · 10−6. (2.34)

The ambient air can approximately be considered as an ideal gas. This
means that only hard, elastic collisions with each other and with the
walls are considered as interactions between the particles. This leads
to a linear relationship between the pressure and the temperature
and density. It is particularly interesting that the molar volume Vm0

of an ideal gas, which defines the ratio between the volume and
the number of molecules, is a fundamental quantity constant under
standard conditions and has a value of[127]

Vm0 = 22.414
L

mol
. (2.35)

The oxygen volume to discharge the battery by 1 C is therefore

VO2
[Q = 1 C] = Vm0 · nO2

= 5.808 × 10−5 L. (2.36)
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A charge of 1 C is transferred within one second at a discharge current
of 1 A. Somewhat more concrete is certainly the necessary oxygen
volume for a charge of 1 A h or

Q1 A h = 1 A h · 3600 s
1 h

= 3600 C. (2.37)

This charge corresponds to the volume

VO2
[Q = 1 A h] = Vm0 · nO2

=
Vm0

4 e · NA
· 3600 C = 0.209 L. (2.38)

It should be noted that zinc-air batteries are not used in a pure oxygen
environment, but in normal ambient air. The required air volume is
larger according to the oxygen content.

2.3 description of zinc-air battery under development

The research project was performed in cooperation with 3E Batterie
Systeme GmbH, that developed the cell chemistry and are mainly
responsible for the assembly of the zinc-air cells. Figure 2.13 depicts
a typical zinc-air cell being scrutinized in this thesis. The cases are
injection molded and have two terminals for electrolyte circulation.
If passivating zinc oxide has formed at the anode, circulating the
electrolyte can help to regenerate the cell. This is possible because
zinc oxide dissolves in the electrolyte and can thus be removed. The
air cathode is also manufactured by machine. However, the actual
assembly and production of the anode mass is still done by hand at
the current stage. First, the air cathodes are glued into the sides of
the case. The anode mass is pressed with a hydraulic press and then
dried. There are still minor variations in the mass here. As a result,
the capacity of the cells also varies. Finally, the anode wrapped with a
separator and two nickel nets, which are used as charging electrodes,
are inserted into the cell and the case is glued.
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Figure 2.13: Photo of the zinc-air cell under development.

The characteristic properties of the cell are summarized in Table 2.3.
As for other zinc-air cells as well, the open circuit voltage of 1.45 V is
slightly below the theoretical cell voltage. Due to the hand manufac-
turing process, there is a slight variation in the cell capacity, which
nevertheless keeps slightly above 100 A h. With a cell volume of 0.5 L
and a weight of 0.6 kg, an average discharge voltage of 1.1 V results in
an energy density and a specific energy that are already on par with
lithium-ion technology in the current state of research. However, since
the theoretical specific energy is 1350 W h

kg , there is still a lot of poten-
tial for improvement. The main reason for this is the large distance
between the electrodes, which is currently still necessary as a safety
margin against dendrite growth. A technological disadvantage is the
low power density, which is caused by the long diffusion lengths in
the air cathode. However, current developments show that geometry
adjustments can lead to a higher power density.

2.3.1 Structure

Figure 2.14 shows the inner structure of the battery, which is basically
known from chapter 2.2. The cell is symmetrically designed to increase
the cell performance. The zinc anode forms the core of the cell,
which is surrounded by electrolyte. In the electrolyte there are nickel
electrodes on both sides, which are used to charge the cell. Thus, a 3-
electrode technology is used here, avoiding the use of bi-functional air
cathodes. The main reason is the increased lifetime of the GDE when
it is only used to discharge the cell. In addition, a separate charging
electrode offers the advantage that the charging power, independent
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Table 2.3: Summary of technology characteristics of conventional batteries.

parameter value

Off-load voltage 1.45 V

Capacity 100 A h

Volume 0.5 L

Energy density 200 W h
L

Weight 0.6 kg

Specific Energy 166 W h
kg

Charging voltage 2.1 V

Discharging voltage 1.1 V

End of discharge voltage 0.6 V

Maximal discharge Power 15 W

Power density 30 W
L

of the GDE, is much higher than the discharging power. The GDEs
are then mounted on the outermost side in each case. These use
porous graphite deposited on a nickel mesh to dissipate the current.
To prevent leakage, a super hydrophobic layer of PTFE is also applied.

2.3.2 Demonstrator

Within the research project, a first small demonstrator has already
been developed and assembled. Figure 2.15 shows the structure of the
demonstrator. 12 cells are used, so that a total capacity of 1.32 kW h
is provided. Acrylic glass walls are used to guide the air flow. The
cooling concept was developed using CFD flow simulations to ensure
that the temperature of all cells is as homogeneous as possible. This
allows the cells to age at the same rate and prevents premature failure.
Furthermore, an electrolyte management system is installed which
regularly flushes the anodes and thus ensures good coating of the
anode with fresh electrolyte.
As shown in Figure 2.16, the demonstrator was successfully tested on
a Photo Voltaic (PV) system. The zinc-air storage system stores the
PV energy during the day and releases it at night when the sun is no
longer shining. For this purpose, a BMS was implemented in LabView
to control the demonstrator. In addition to the actual functionality,
emphasis was also placed on a safe system state, so that the cells
are not overcharged and also premature aging due to too low charge
levels is prevented.
I would like to take this opportunity to once again thank all the
partners involved in the project. Figure 2.16 shows some of the collab-
orating people. From left to right, you can find Ludwig Horsthemke,
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Figure 2.14: Structure of the zinc-air cell under development.

Figure 2.15: Zinc-air storage system demonstrator.

Figure 2.16: Demonstrator of a zinc-air storage system at a solar power plant.
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Figure 2.17: Different cell geometries that have been evaluated to optimize
the power density of zinc-air cells.

Andre Löchte and Peter Glösekötter from University of Applied Sci-
ences Münster at first, whose main focus is on the battery management
and the construction of the demonstrator. Next comes Markus Kunkel,
head of the companies Kunkel und Partner and 3e Batteriesysteme,
that have developed the cell technology and are responsible for cell
production. From the company EMG Automation there are Uwe
Jaschke, Nicol Otterbach and Anno Jordan, who handled the develop-
ment and construction of the electronics and power electronics. The
development of the battery managemen system and the further devel-
opment of the cell technology was inertially funded within the project
EFRE-0800072 by the Projektträger ETN, Leitmarktagentur.NRW. In
the follow-up project EFRE-0801585, a cell with optimized power
density is now being developed by Kunkel und Partner, 3e Batteriesys-
teme and University of Applied Sciences Münster in association with
Stadtwerke Steinfurt.

2.3.3 Geometry

A technology-related disadvantage of zinc-air cells is the low discharge
power caused by the GDE. While the focus of this thesis is not on opti-
mizing the cell, electrical power is also an important aspect for battery
management, which is why it is briefly discussed here. One approach
to address the cell performance issue is to optimize the cell geometry.
The key here is to maximize the active surface area of the GDE with
respect to the cell volume. Figure 2.17 shows different geometries
that have been evaluated. Round cells are particularly suitable for
small diameters, since the cathode surface, which is significant for the
cell performance, increases only linearly with the diameter, while the
cell volume has a quadratic dependence. Prismatic cells are suitable
for the larger scale. Here, the aspect ratio can be used to focus on a
higher energy density or a higher power density. In the end, the active
surface has increased to about twice the size using a prismatic cell.
Nevertheless, the volume and capacity are unchanged by thinning the
overall cell and reducing the electrode distances.
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Figure 2.18: Discharge power as a function of the discharge current of a
power-optimized zinc-air cell.

This also doubles the cell power. Figure 2.18 shows the cell power as
a function of the discharge current. According to this, the maximum
discharge power is 30 W, which is achieved at a current of 42 A. How-
ever, reducing the distances also reduces the lifetime of the cell. Thus,
the cell was destroyed by a dendrite after 300 microcycles, each time
the cell was discharged by 10 %.





3
C E L L M O D E L I N G

The chemical processes and reactions as well as the structural design
of zinc-air batteries have already been described in detail in chapter 2.2.
This chapter now describes the reaction processes on the electrical
level. On the one hand, a description of the static processes is given
on the basis of the electrolyte and the charge transfer resistance, which
define the constant relationship between cell voltage and current after
the equalization processes have faded out. On the other hand, the
double layer capacity and the diffusion processes are described, so
that an electrical description in the frequency domain is also possible.
Especially with regard to a later evaluation of the impedance data
generated during an EIS measurement, this consideration is necessary
and useful.

3.1 electrolyte

When an aqueous solution contains ions, it conducts electricity. Pure
water contains only a few ions resulting from the reaction

2H2O −−⇀↽−− H3O+ + OH− (3.1)

and is therefore a bad conductor. An electrolyte is a substance whose
aqueous solution conducts the electric current better than pure water.
An electrolyte is partially or completely present in aqueous solutions
in the form of ions, they are partially or completely dissociated. The
dissociated ions move under the influence of an electric field and thus
increase the conductivity. The part that remains in the solution in the
form of molecules does not increase the conductivity. Electrolytes are
divided into two groups. Strong electrolytes are practically completely
dissociated in aqueous solutions. The most important electrolytes are
therefore either acids, bases or salts. In contrast, weak electrolytes con-
sist of polar molecules that are only partially split into ions in aqueous
solutions. At the same concentration of substance, weak electrolytes
therefore conduct worse than strong electrolytes. Nevertheless, the
electrical conductivity of a strong electrolyte as an ion conductor is
typically lower compared to metals[99].
In zinc-air batteries, KOH dissolved in water is usually used. KOH

dissociates completely in water, which means that K+ and OH− ions
separate and the solution is conductive. The complete dissociation
results in high conductivity, which is the main reason for its frequent
use. In addition, this makes it a binary electrolyte because both anions
(OH−) and cations (K+) are present as mobile species. However, only
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Figure 3.1: Initial state of movement of anions and cations in the electrolyte
during external current.
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Figure 3.2: Idealized concentration gradient of the movement of anions and
cations in the electrolyte with external current.

the anions pass through the electrode-electrolyte interface, as can be
seen from the chemical reactions in chapter 2.2.1. As a result, a concen-
tration gradient is formed in the electrolyte under current flow, which
is accompanied by a voltage drop across the electrolyte volume[119].
Figure 3.1 shows the situation in the electrolyte shortly after an electric
current is applied. At each interface, OH− ions are transferred from
the electrode into the electrolyte (air cathode on the right) and from
the electrolyte into the electrode (zinc anode on the left).
Inside the electrolyte, the current is driven partly by K+ and OH− ions,
which move to the left and to the right, respectively, according to their
charge. Since the mass flow of OH− ions at the edges corresponds to
the total current, but in the center only a part of the electric current
is initially driven by an equivalent mass flow of OH− ions (the K+

ions drive the rest), more OH− ions are injected in the left half of the
volume than are transported away. In the right half, more OH− ions
are removed than supplied. This results in a shift of the concentration
of both ion types to the left[119]. Figure 3.2 shows the situation in an
idealized form.
According to Fick’s law, the resulting concentration gradient results
in a diffusion current shown in Figure 3.3, which counteracts that
concentration gradient and thus reduce the difference in concentra-
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Figure 3.3: Resulting diffusion of anions and cations in the electrolyte due to
the concentration gradient with external current.

tion. Due to different mobilities of the two types of ions, there is a
microscopic charge separation and a resulting electric field

−→
E diffuse.

Macroscopically, this leads to an additional voltage drop, which, how-
ever, only rises with time[119]. In addition to an ohmic resistance
Rel , the electrolyte is thus also described by a diffusion resistance, the
mathematical description of it can be found in chapter 3.4.

3.2 double layer capacity

3.2.1 Helmholtz Double Layer

The term double layer was first mentioned in 1853 by Herman von
Helmholtz in a paper in which he described the electric field of two
oppositely charged, infinitely close conductive areas[54]. In a later
work he then explained that these double layers are formed at metallic
electrodes in an electrolyte[55]. Figure 3.4 illustrates the scheme of
the Helmholtz double layer that corresponds to a zinc electrode and
a KOH electrolyte. The hydroxide anions displace the electrons from
the surface, resulting in two oppositely charged layers of the same
amount of charge. Since ions are generally much larger than electrons,
the average distance between the layers is mainly defined by the size
of the radius of the ion species[55, 128]. Since the caustic potash is
a water based solution, solvation can occur. That means that water
molecules are being attracted by the ions due to the dipole momentum
resulting in a bigger hull. Thus, the average distance between the
layers is increased.

Generally, the relation between space charge ρ and potential ϕ is
described by the Poisson equation

∂2ϕ

∂2x
=

4πρ

ϵ
. (3.2)
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Figure 3.4: Scheme of a Helmholtz double layer

The Helmholtz layer consists of solvated ions that are directly located
at the electrode. Therefore, the space charge within the two layers is
zero by definition:

∂2ϕ

∂2x
= 0. (3.3)

So that the Laplace equation

∂ϕ

∂x
= const. (3.4)

applies. This means that the potential has a linear course as seen in
Figure 3.5. The average space charge in the metallic electrode and in
the electrolyte is also 0. Since the zero-current case is considered here,
it can approximately be assumed that the potential in the respective
species is constant. Hence the resulting potential curve is

ϕ(x) =


ϕM for x ≤ 0

(ϕL − ϕM) x
d + ϕM for 0 < x < d

ϕL for d ≤ x

. (3.5)

Here ϕM and ϕL describe the potential of the electrode and the elec-
trolyte, respectively, and d is the radius of a solvated ion. The Diver-
gence Theorem

C =
Q
V

=

∮
A
−→
D d

−→
A∫

s
−→
E d−→s

(3.6)

can be used to determine the resulting capacity. Here the dielectric
displacement

−→
D is

−→
D = ϵ0 · ϵr ·

−→
E , (3.7)

so that

C = ϵ0 · ϵr

∮
A
−→
E d

−→
A∫

s
−→
E d−→s

(3.8)
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Figure 3.5: Development of potential in Helmholtz double layer[54, 55, 128]

follows. Based on Figure 3.5, the electric field can be considered ap-
proximately homogeneous. Thus, the Helmholtz layer can be regarded
as a plate capacitor with a very small gap in order to determine the
capacity:

CH = ϵ0 · ϵR · A
d

. (3.9)

3.2.2 Gouy-Chapman Double Layer

The rigid model of the Helmholtz double layer was later extended
by Otto Stern with the Gouy-Chapman model. The Gouy Chapman
model considers two differently directed forces. One is the electrostatic
force known from the Helmholtz layer, which binds the ions to the
electrode. On the other hand, there is thermal movement, because
particles aim for a uniform diffusion. Gouy and Chapman modeled the
resulting distribution analogous to the Barometric Elevation Formula
that describes the Earth’s atmosphere[128]. These movements result
in a diffuse layer shown in Figure 3.6 that is wider than a single
layer of molecules adjacent to the electrode[46, 47]. The Boltzmann
distribution is used to determine the ion concentration based on the
electrical potential at a specific point and the Laplace equation is used
to model this electric potential[25]. This means that a continuous
distribution is used instead of using discrete charges of ions[128]. This
results in an exponentially decreasing potential as shown in Figure 3.7.
The total charge in each species is

qM = −qL = 2
√

2ϵRTc sinh
(

zF (ϕ − ϕ0)

2RT

)
. (3.10)
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Figure 3.6: Scheme of Gouy-Chapman double layer
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Figure 3.7: Development of potential in Gouy-Chapman double layer

Since the charge is non-linearly dependent on the potential, the ca-
pacity of the double layer is also potential-dependent and must be
indicated differentially:

CGC = −dqL

dϕ
= zF

√
2ϵc
RT

cosh
(

zF (ϕ − ϕ0)

2RT

)
. (3.11)

The weakness of the model is that the charge distribution is modeled
continuous so that charge carriers are modeled punctiliously instead
of owning a size. Thus, this model is particularly incorrect in the
area that is close to the electrode, because charge carriers would also
appear at points that are closer to the electrode than the radius of the
ion species. These charge carriers increase the resulting double layer
capacity unrealistically.

3.2.3 Stern Double Layer

This means that there are now two models, each of them can describe
one phenomenon, while failing at another. The Helmholtz model
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Figure 3.8: Scheme of Stern double layer and its development of potential.

produces capacity values that correspond to the measured values.
However, the model does not explain the dependence of the capacity
on the electrode potential. In contrast, the Gouy-Chapman model
can describe this dependency, but returns values that are way too
large[128]. That is why Otto Stern combined both models. According
to Stern, the double layer is separated in two parts. A touching layer
of ions, that is described by the Helmholtz model and a diffuse layer
according to Gouy-Chapman whose charge continuously decreases to
0 (see Figure 3.8). The sum of charge in the Helmholtz layer qH and in
the diffuse layer qdequals the charge in the electrode

qM = qH + qd. (3.12)

Although the total charge is given by the potential difference

qM = ϵ0 · ϵR · A
d
· (ϕM − ϕL) , (3.13)

the division still has to be clarified.
The charge in the Helmholtz layer is given by the number of absorbed
anions n− and cations n+ by multiplying them by the charge per ion:

qH = ze · (n− − n+) . (3.14)

n− and n+ can be related to the potential in the Helmholtz layerϕL

using the Boltzmann Distribution theorem:

n+ =
z1

1 + 1
c e

zeϕL
kT

(3.15)

n− =
z1

1 + 1
c e

−zeϕL
kT

(3.16)

The final result is

qH = z ·
(

z1

1 + 1
c e

−zeϕL
kT

− z1

1 + 1
c e

zeϕL
kT

)
(3.17)
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for the charge in the Helmholtz layer. So, qM, qH, and qd of equa-
tion 3.12 can be replaced using equations 3.13, 3.17, and 3.10 which
results in

ϵ0 · ϵR · A
d

(ϕM − ϕDL) = z ·
(

z1

1 + 1
c e

−zeϕDL
kT

− z1

1 + 1
c e

zeϕDL
kT

)
+

+ 2
√

2ϵRTc sinh
(

z · e · ϕDL

2RT

)
(3.18)

As far as the material properties are known, ϕDL is the only unknown
in the equation and is uniquely quantifiable. Hence, the total charge
qM and thus also the double layer capacity CDL can be determined:

CDL =
qM

ϕM
=

ϵ0 · ϵR · A
d

· ϕM − ϕDL

ϕM
(3.19)

3.3 charge transfer resistance

Kinetics, that is the speed of a reaction, is the most important aspect
regarding the cell performance. Chemical processes that need to
overcome an activation energy at the molecular level are described by
the Arrhenius equation

kr = A · e
−Ea
RT (3.20)

which depends on a pre-exponential factor A that is a constant for
each chemical reaction, the activation energy Ea, the universal gas
constant R ,and the absolute Temperature T. The result kr is a rate
constant which describes the frequencies of collisions resulting in a
reaction. Figure 3.9 illustrates the meaning of the activation energy.
The energy level of the reactants is higher than the energy level of
the product. Along the reaction coordinate, the transition state is
defined to be the state with the highest potential energy. A successful
reaction that forms the product only happens when the energy of a
collusion of reactant molecules is high enough to reach the transition
state, thus, the activation energy is exceeded. The Arrhenius equation
states that the reaction rate increases exponentially when activation
energy decreases.
The reaction rate can then be used to describe the rate of a reaction

at an electrode. Generally the rate can be defined as rate constant
multiplied with the molar concentration of the electroactive species
[X], thus the flux of material:

flux = kr · [X]. (3.21)

Regarding the reactions of the zinc electrode this leads to

rateOx = kc · [Zn] (3.22)
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Figure 3.9: Relation of activation energy and enthalpy of an exothermic
reaction.

when discharging the cell and to

rateRed = ka[Zn(OH) 2−
4 ] (3.23)

for the charging process. Since the zinc concentration corresponds to
the SoC,

rateOx = kc · SoC, (3.24)

rateRed = ka · (1 − SoC) (3.25)

also apply. To derive the resulting current density j from the material
flux, the flux must be multiplied by the charge per mole, i.e. the
Faraday constant F. This leads to

jc = F · kc · [Zn] = FAc · [Zn] · e
−Ea,c

RT (3.26)

and

ja = F · ka · [Zn(OH) 2−
4 ] = FAa · [Zn(OH) 2−

4 ] · e
−Ea,a

RT , (3.27)

respectively. The net current density is their difference

j = ja − jc,

j = F · ka · [Zn(OH) 2−
4 ]− F · kc · [Zn],

j = FAa · [Zn(OH) 2−
4 ] · e

−Ea,a
RT − FAc · [Zn] · e

−Ea,c
RT .

(3.28)

According to Atkins[7], the influence of an electric potential on the
activation energy is given by

Ea = Ea(0) + αzF · ∆ϕ. (3.29)

Where: Ea(0) is the activation energy in the absence of an electrical
potential; z is the number of involved electrons of the electrode re-
action, the sign of z is negative for the anodic process; the transfer
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coefficient α lies in the range 0 to 1 and describes how closely the
transition state resembles the product (ZnO). Thus, α is a symmetry
factor that determines whether the process is more addicted to the
charging or to the discharging process; Finally, ∆ϕ is the potential
difference between electrolyte solution and electrode metal[7, 106]

∆ϕ = ϕS − ϕM. (3.30)

The resulting current densities are therefore

jc = FAc · [Zn] · e
−Ea,c(0)

RT · e−
αzF·∆ϕ

RT , (3.31)

ja = FAa · [Zn(OH) 2−
4 ] · e

−Ea,a(0)
RT · e

(1−α)zF·∆ϕ
RT . (3.32)

If ∆ϕ is chosen to be the open circuit electrode potential E, jc equals ja
and the net current density j becomes 0. The remaining identical cur-
rent densities at this electrode potential are summarized as parameter

j0 = FAc · [Zn] · e
−Ea,c(0)

RT · e−
αzF·E

RT ,

j0 = FAa · [Zn(OH) 2−
4 ] · e

−Ea,a(0)
RT · e

(1−α)zF·E
RT .

(3.33)

A change in potential can now be divided into open circuit electrode
potential E and overpotential η:

∆ϕ = E + η. (3.34)

This results in the Butler-Volmer equation for the net current density:

j = j0 ·
(

e
(1−α)F

RT η − e−
αF
RT η
)

. (3.35)

3.4 diffusion

Diffusion describes the movement of atoms, ions, or molecules in
order to balance a difference in concentration. As described earlier
in Section 2.2.5, diffusion processes occur, for example, in a binary
electrolyte where only one ion species is used for battery operation. We
have this case in the zinc-air battery. According to Fick, the diffusion
flux J is proportional to the negative of the concentration gradient:

J(x, t) = −D
∂c(x, t)

∂x
, (3.36)

where c is the concentration of the corresponding species and D is
the diffusion coefficient. x defines the one-dimensional coordinate, at
which x = 0 corresponds to the electrode electrolyte interface. Com-
bining equation 3.36 with continuity equation for mass conservation
leads to Fick’s second law which is known as Diffusion equation:

∂c(x, t)
∂t

= −∂J(x, t)
∂x

=
∂

∂x

(
D

∂c(x, t)
∂x

)
= D

∂2c(x, t)
∂x2 . (3.37)
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In the later part of the thesis mainly data from EIS is used. Therefore, it
makes sense to use the frequency domain. Thereby, the time derivative
becomes a multiplication with iω and the concentration is replaced by
the perturbation in the concentration species c̃:

iω · c̃(x) = D
∂2c̃(x)

∂x2 . (3.38)

Equation 3.38 is a second order ordinary differential equation which
solution is given by

c̃(x) = f1 exp
(

x√
Di/iω

)
+ f2 exp

(
− x√

Di/iω

)
,

c̃(x) = f1 exp
(

x
ld

)
+ f2 exp

(
− x

ld

)
.

(3.39)

ld =
√

Di/iω is the frequency dependent diffusion length. f1 and f2

can be determined using boundary conditions. When considering
the interface between the air electrode and the air, it can be assumed
that the oxygen content of the air is almost constant. This assumption
can be made because the maximum distance of ambient air >> ld for
frequencies in the measurement range. But this assumption is also
valid for the electrode electrolyte transitions, since the zinc-air cell
used at this stage still uses large electrode spacing to have a buffer for
dendrite formation. The bulk part of perturbation of the concentration
at x = ∞ is therefore

c̃(∞) = c̃ = 0. (3.40)

Thus, f1 results in

f1 = 0. (3.41)

The diffusion speed at the electrode interface (x = 0) is given by the
charge transfer reaction described in chapter 3.3 and related to the
current density j:

D
∂c̃
∂x

= ± j̃
zF

. (3.42)

This means that the diffusion speed increases proportional with the
current density, but also depends on the charge number. A higher
charge number indicates that a molecule reacts with more than one
electron, so that a lower diffusion rate is sufficient to achieve the same
current density. Thus,

f2 = ± ld

nFD
· j̃. (3.43)

It is now assumed that the perturbation of the electrode potential
Ẽ depends on the current density and on the concentration at the
electrode interface:

Ẽ = Zint j̃ + ∑
i

βd,i c̃i(x = 0), (3.44)
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where Zint describes the interfacial impedance that consists of the
charge transfer resistance and the double layer capacity, βd,i is a coeffi-
cient that describes the electrode potential change as a function of the
concentration perturbation for species i. βd,i can be estimated using
the Nernst equation,

E = E0 +
RT
zF

ln
(

γoxcox

γrecre

)
, (3.45)

as long as the species concentration is not very low. E0represents the
equilibrium potential, and γi is the activity coefficient that describes
the difference between activity and concentration. In the dilute limit
(γ = 1), coefficient βd,i becomes

βd,i =
RT
zF

1
c̄i

. (3.46)

Substituting equations 3.39, 3.46 into equation 3.44 and defining Z =

Ẽ/ j̃, we receive the so-called Warburg impedance

Z = Zint +
RT

(nF)2

(
1

c̄ox
√

Dox
+

1
c̄re

√
Dre

)
(iω)−0,5. (3.47)
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R E G R E S S I O N M E T H O D S

In chapter 3, the chemical reactions and interfaces are transferred into
electrochemical models. However, unknown parameters remain in
several places. Here, ranges of values can be partially defined on
the basis of the literature. For example, the relative permittivity ϵr

of the used KOH solution, which is necessary for the determination
of the double layer capacitance, is about 3.3. Partly, the parameters
also depend on the cell geometry. In general, the exact value of the
parameters is not known and not constant. To stay with the example of
the double layer capacitance, due to the open system, the concentration
of the KOH solution will change with time and thus also the relative
permittivity. Also, the active area of the double layer capacitance at
the zinc anode is not constant, since it depends significantly on its
porosity, which will decrease with increasing number of cycles. The
parameters must therefore be considered unknown and need to be
estimated. This chapter therefore first explains how the measured data
from EIS can be used to fit the parameters of the battery model. The
resulting parameter values can then be used to determine the system
state, particularly the SoC. The later part of the chapter also introduces
machine learning methods based on Artificial Neural Networks (ANN)
and Support Vector Regression (SVR). These allow direct regression of
the SoC, even without an exact knowledge of the battery model.

4.1 equivalent circuit modeling

As indicated at the beginning of Chapter 3, the models of the chemical
processes can be combined to form an equivalent circuit shown in
Figure 4.1. The battery model is then a combination of a voltage
source Voff-load, which applies the open-circuit voltage of the battery,
and a series impedance Zi that describes the frequency dependent
losses in the cell and at the interfaces. Zi in turn is made up of further
components that describe the electrochemical model. In general, the
resulting series impedance is frequency dependent. By measuring sev-
eral impedance values at different frequencies, the parameter values
of the individual components of the equivalent impedance circuit can
then be determined or approximated.
Separate models for charging and discharging are used, since different
electrode are used, respectively. While the zinc electrode is used for
both processes, there are separate electrodes for charging and dis-
charging. Like in primary bottom cells, a GDE made of graphite is
used for discharging. During charging process a separate nickel grid

61
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ZiVoff-load

Figure 4.1: Equivalent circuit of a battery.
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Figure 4.2: Equivalent impedance of the zinc-air battery during charging
process.

is used. Both models consist of three parts, anode, electrolyte, and
cathode, respectively. The electrical model of the series impedance
during charging can be found in Figure 4.2, while Figure 4.3 shows
the series impedance during discharging. The electrolyte works as an
ion conductor and is approximated by a simple resistor Rel . Anode
and cathode consist of three components. The capacitor Cdl describes
the double layer capacity of the electrode while the resistor Rct ap-
proximates the charge-transfer resistance[6]. The diffusion processes
are marked with a D. The diffusion component describes the behavior
at two different states of aggregation. So during charging there is one
change between nickel net and electrolyte and one between electrolyte
and zinc anode, resulting in one diffusion process per electrode (see
Figure 4.2). The zinc anode is also used for discharging. However,
the air electrode is now used as the counter electrode. Two diffusion
processes take place here, one at the electrolyte - electrode interface
and one at the electrode - ambient air interface. This is because the
oxygen in the ambient air must also diffuse to the electrode[6]. In
Figure 4.3, therefore, two diffusion processes are present at the right
electrode, which represents the GDE. However, a separation of the
influence of the respective diffusion process is not possible due to
the series connection. The complex term of a diffusion process Zd
(equation 3.47) has the form

Zd = a(iω)−0,5. (4.1)

The series connection of two diffusion processes

Zd,series = a1(iω)−0,5 + a2(iω)−0,5, (4.2)

though, can be returned to the original form with changed values:

Zd,series = (a1 + a2) (iω)−0,5. (4.3)
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Figure 4.3: Equivalent impedance of the zinc-air battery during discharging
process.
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Figure 4.4: Interconnection of the impedance of an electrode.

Since only the voltage and current at the outer terminals are considered
during EIS, the two diffusion processes cannot be considered separately,
but act as a single diffusion process with the absolute of the impedance
being added.

4.1.1 Formation of the Equivalent Circuit

When forming the series impedance, the well-known Kirhoff’s laws
can be used. This means that the total admittance of a parallel circuit
is given by the sum of the admittances of the components and that
the total impedance of a series circuit is given by the sum of the
impedances of the individual components. The chemical processes
of an electrode are interconnected as shown in Figure 4.4. The total
impedance of the electrode is therefore

Zelectrode =
1

YCdl ( f ,C,V)+ 1
Rct(j0,α,V,Ea)+Zwar( f ,V,β)

Zelectrode =
Rct(j0,α,V,Ea)+Zwar( f ,V,β)

1+YCdl ( f ,C,V)Rct(j0,α,V,Ea)+YCdl ( f ,C,V)Zwar( f ,V,β)

(4.4)

The entire cell then consists of the two representing the contact
resistances of the terminals, the two electrodes and the electrolyte
resistor as shown in Figure 4.5. While the two electrode impedances
are formed according to equation 4.4, the contact and electrolyte
resistances are approximately ohmic resistances. Since Kirchoff’s laws
also apply here, the ohmic resistances can be combined and it is not
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Figure 4.5: Interconnection of the impedances of the zinc-air cell.

possible to separate the measurement data to determine the respective
proportions.
Some of the components of the individual processes are nonlinear
functions that depend on subparameters, but also have nonlinear
dependencies on the voltage itself. Here, for example, the double
layer capacitance is to be mentioned. As long as only the Helmholtz
model is considered, the charge of the capacitor is proportional to
the applied voltage and a constant capacitance can be defined. But
if the double layer is extended by the Gouy-Chapman model, there
is a cosine hyperbolic dependence on the applied potential. Also the
charge transfer resistance is not constant, since the resulting current
increases exponentially with the applied voltage. If a linear description
is required, linearization may be necessary. In this case, a linear
approximation at the working point is used. The deviation of the linear
approximation from the actual nonlinear model can be determined
with the help of the remainder term of Taylor’s theorem. According to
MacDonald, the potential deviation per cell should be less than 10mV
for the linearized model to be sufficiently accurate[8].

Double Layer Capacity

In section 3.2, the Stern double layer model is presented. According to
equation 3.18, the charge is divided into an ion layer attached to the
electrode and a diffuse ion layer. In this model, the capacitance of the
adjacent Helmholtz layer is independent of the electrode potential. In
contrast, the diffuse Gouy-Chapman layer shows a dependence on the
potential of the electrode. Due to the parallel connection of the layers,
the total capacitance is[107]

CDL,Stern. = CH + CGC (ϕ0) . (4.5)

Since the capacitance defines the ratio of charge to voltage of a capaci-
tor, the charge of the double layer is

qDL,Stern (ϕ0) = CH · ϕ0 + CGC (ϕ0) · ϕ0 (4.6)

The Helmholtz capacitance is constant with respect to the electrode po-
tential ϕ, it can therefore be considered as a constant in a linearization,
so that

CDL =
dqDL,Stern

dϕ0
|ϕ= d

dϕ0
CH · ϕ0 + CGC (ϕ0) · ϕ0 |ϕ,

CDL = CH + CGC (ϕ) +
dCGC(ϕ0)

dϕ0
|ϕ ·ϕ

(4.7)
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Figure 4.6: Nyquist plot illustrating the constant phase element.

results for the linearized capacitance.
In practice, the measured impedance spectra often do not show ideal
behavior of the double layer capacitance. For example, as shown in
Figure 4.6, the semicircles in the Nyquist plot created by paralleling
the double layer capacitance and the charge transfer resistor do not
start at a 90° angle to the real axis. Instead, it appears that the center of
the plot is not on the real axis, so the semicircle begins at a more acute
angle. Among other things, the porosity of the electrode was identified
as the cause, since it is not an ideal two-dimensional geometry[97].
Another aspect concerns the edge regions of the cell in which the
homogeneity of the current density cannot be guaranteed[61].
The so-called constant phase element is often used to model this
behavior. Its impedance is described by equation

Ycpe =
1

Zcpe
= Q◦ · (iω)n . (4.8)

Here, Q approximately describes the capacitance and n determines
the ratio of the angle compared to a right angle. For n = 1, this again
results in the ideal impedance of a capacitance

Ycpe(n = 1) = Q◦ · (iω) = iωC. (4.9)

Charge Transfer Resistance

The charge transfer resistance is mainly described by the Butler-Volmer
equation. An increase of the potential results in an exponential in-
crease of the electrode current. Figure 4.7 shows the resulting current
density for α = 0.5, j0 = 10 mA

m and an absolute temperature of 300 K
as an example. In order to create the equivalent circuit, the charge
transfer resistor will be replaced by a linearized ohmic resistor. The
linearization is shown here for η = 150 mV. The differential slope at
this working point determines the linearized admittance.
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Figure 4.7: Linearization of the Butler-Volmer equation.

Since equation 3.35 is already rearranged for the current density j, it
appears useful to determine the linearized admittance first:

Yct =
dj
dη |ηwp=

d
dη j0 ·

(
e
(1−α)F

RT η − e−
αFη
RT η
)
|ηwp ,

Yct = j0 ·
(
(1−α)F

RT e
(1−α)F

RT η + αF
RT e−

αFη
RT η
)
|ηwp .

(4.10)

The associated charge transfer impedance is then determined by in-
verting the admittance:

Zct =
1

Yct
=

1
j0
· 1
(1−α)F

RT e
(1−α)F

RT η + αF
RT e−

αFη
RT η

|ηwp . (4.11)

After applying the (real) overvoltage of the working point ηwp in
equation 4.11, a real value that is independent of the frequency also
results for the charge transfer resistor. Consequently, the charge
transfer resistance can be modeled by an ohmic resistor:

Zct = Rct (j0, α) . (4.12)

Diffusion

The Warburg impedance has already been derived in equation 3.47

in order to describe the diffusion process. This impedance can be
used directly in the electrical equivalent circuit and does not require
linearization.

4.1.2 Parameter Fitting

After having selected a matching equivalent circuit to a measured
impedance spectrum, the parameters of the individual elements have
to be determined. Therefore, the model parameters have to be ad-
justed until the differences to the measured values are minimized.
This regression is called fitting. Remaining differences of the approxi-
mated solution to the measured values are residuals and are used to
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measure the performance of the fit. For the calculation of impedance
models, the method of least squares for nonlinear model functions is
widely used. This has been extended by Macdonald et al. to a complex
form which is known as the Complex-Nonlinear Least-Squares (CNLS)
concept. The CNLS method uses the Kramers-Kronig relationship to
perform a simultaneous calculation of the squared errors of the real
and imaginary parts of the impedance[8, 105, 116, 138].
In order to have a constant electrical equivalent circuit, the linearity
and time invariance for the impedance measurement must be ensured.
High stimulus currents can disturb the linearity and thermal and
system drifts can influence the time invariance. The Kramers-Kronig
relationship can be used to check these conditions. This was derived
simultaneously, but independently of Kramers and Kronig in disper-
sion studies in the X-ray region[67, 68]. The method was transferred
by Bode to impedance measurements[15]. If the above mentioned
conditions are fulfilled, a link between real and imaginary part exists,
so that one property can be calculated by the other. Equations 4.13

and 4.14 show a possible method to determine the course of the real
part from the course of the imaginary part and vice versa. Thus, a
validation of the measured data can be performed based on the devia-
tion to a calculated impedance quantity according to Kramer-Kronig
relationship[16, 17, 62, 138].

ℑ {Z} (ω) = −
(

2ω

π

) ∞∫
0

ℜ {Z} (ω′)−ℜ{Z} (ω)

ω′2 − ω2 dω′ (4.13)

ℜ {Z} (ω) = ℜ {Z} (ω → ∞) +

+

(
2
π

) ∞∫
0

ω′ · ℑ {Z} (ω′)− ω · ℑ {Z} (ω)

ω′2 − ω2 dω′ (4.14)

The minimization problem of the CNLS is defined as the sum of the
squared errors of two dependent variables considering the real part fr

and the imaginary part fi separately in equation 4.15. The model func-
tion ft(ωi, P) depends on the angular frequency ωi and the parameter
set to optimize P. yr,i are the corresponding measured values of the
impedance spectrum and wr,i are corresponding weighting factors. Al-
ternatively to real and imaginary part, absolute value and phase could
be chosen as well. For the stabilization of the fitting a proportional
weighting was chosen[8].

ECNLS =
k

∑
l=1

{
wr

l [ f r
el − f r

t (ωl , P)]2 + wi
l

[
f i
el − f i

t (ωl , P)
]2
}

(4.15)

Numerical methods such as the Gauss-Newton method or the Newton
method can be used to solve this equation. Here, the optimum is grad-
ually approached, with the step direction and width being determined
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Figure 4.8: General structure of artificial neural networks.

on the basis of the first and the first two derivatives at the current
point, respectively. The numerical Levenberg-Marquardt algorithm is
often used. The method combines the Gauss-Newton method with a
regularization technique that forces descending function values. This
allows the solution to converge faster and with higher probability,
even with poor initial conditions[75, 89].

4.2 artificial neural networks

ANN are networks of artificial neurons, each of them inspired by the
biological model. McCulloch and Pitts introduced a threshold element
as first artificial neuron that outputs a Boolean value oj depending
on the sum of input signals xi[92]. By now, a commonly used im-
plementation of a neuron is the perceptron model which extends the
threshold element by a weighting of the input signals wij[114]:

oj =

1 ∑i wijxi + b > 0

0 otherwise
(4.16)

The general structure of feed forward networks is shown in Figure 4.8
and allows only a signal flow in forward direction. There are also
network structures that allow a feedback to a previous layer, e.g.
Recurrent Neural Networks. Several neurons are organized in layers.
When using perceptron neurons, these networks are called Multilayer
Perceptron. The first layer is called the input layer and represents the
features of an input sample extended by a constant bias. The bias can
be used as a threshold value by the following layer. Here, only one
hidden layer is illustrated, but multiple hidden layers are also possible.
The signal flows through all hidden layers until in reaches the output
layer. Each neuron in the output layer represents an output value[136].

Multilayer perceptron networks are used in applications where an
input sample is associated with an output class or an output variable.
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Figure 4.9: Elman structure of recurrent neural networks.

The input example can thereby be described in a higher-dimensional
feature space. The structure is characterized in particular by the fact
that the order in which example data are evaluated by the previously
trained network has no influence on the individual result, the network
has no memory.
In contrast, the structure of a Recurrent Neural Network is shown in
Figure 4.9. In this concrete case it is an Elman structure, where the
values of the hidden units are stored within the feedback loop and
are then available as input values in the subsequent data set. The
output of the network thus also depends on the internal state of the
network, which is determined by the previous data. Recurrent Neural
Networks are therefore very well suited for modeling sequences, as
found in time series analysis. They are also successfully used for the
analysis of sentences, which consist of words and letters.

4.2.1 Activation Functions

The activation of a neuron according to equation 4.16 has a discon-
tinuous change of the output from 0 to 1 when crossing 0. Thus, it is
not possible to use this type of activation when using gradient based
training algorithms. Therefore, derivable or continuously derivable
functions with a similar progression are often used. Figure 4.10 shows
several common activation functions , where the input of the activation
function is the weighted sum of input v = ∑i wijxi. A simple derivable
function is the piece wise linear:

ϕpwl(v) =


1 if v ≥ 1

2

v + 1
2 if − 1

2 < v < 1
2

0 if v ≤ − 1
2

(4.17)
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Figure 4.10: Different activation functions for perceptron neurons.

Another activation function is the Sigmoid function that represents
a “S”-curve which curvature can be controlled by parameter a. It is
commonly used, because it is easily derivable[136]:

ϕsig(v) =
1

1 + exp (−av)
=

exp (av)
1 + exp (av)

=
1
2

(
1 + tanh

av
2

)
(4.18)

Radial basis function networks use an entirely different activation
function. These are networks with exactly one hidden layer. The
activation functions of the neurons in the hidden layer are based on
the Gaussian radial basis function:

ϕrb f (x; µ, σ2) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
(4.19)

While x is input vector of the network, the parameters µ and σ2 rep-
resent the mean and the variance activation function. In fact, ϕrb f

correspond to probability density of a Gaussian or Normal distribu-
tion[136]. The course of the one-dimensional function is shown in
Figure 4.11. It is a symmetric function which center can be shifted
using parameter µ. The variance can be used to change the width of
the distribution. This means that the activation is high whenever the
input vector is similar to the mean value.

4.2.2 Training Algorithms

Training algorithms are used to set weights of each neuron. When
small logic functions (AND, OR, etc.) are patterned, it is possible
to manually set those weights. However, ANNs are frequently used
in applications with huge datasets. Therefore, an algorithms have
been developed that autonomously optimize the weights of the net-
work. These algorithms can be divided into supervised and reinforced
learning. In this thesis, supervised learning is used exclusively which
means that the training samples also contain target values tj for the
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output j.
One example is the Perceptron Learning Rule that works for binary
input and output signals. The idea is that the weight is incremented
when the output is 0, but should be 1; the weight is decremented
when the output is 1, but should be 0 ;and the weight left unchanged,
when the output corresponds to the expectation[114]:

∆wperceptron
ij = α ·

(
tj − oj

)
· xi

wij(k + 1) = wij(k) + ∆wij

. (4.20)

Where tj is the target value and α sets the learning rate. However, this
approach only works when all training data is linear separable.
The delta rule overcome this problem by minimizing the error function

E∆ = ∑
j

1
2
(
tj − oj

)2 (4.21)

using a gradient decent. This means that the activation function have
to be derivable. The weight space of the neurons is moved against the
direction of the gradient of E∆ with respect to each weight

∂E∆

∂wij
=

∂ 1
2

(
tj − oj

)2

∂wij
. (4.22)

Since we differentiate with respect to the weights of jth neuron, the
weights of the other neurons in the sum vanishes. Inserting

oj = ϕ

(
∑

i
wijxi

)
= ϕ (v) (4.23)

and applying the chain rule results in

∂E∆

∂wij
= −

(
tj − oj

)
· xi · ϕ′(v). (4.24)
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Once again a learning rate is used for weight update and the minus
sign is eliminated for moving in the direction of the minimum. This
results in update equation

∆wdelta
ij = α

(
tj − oj

)
· xi · ϕ′(v). (4.25)

The delta rule is only applicable to single layer-layer neural networks.
A generalized form is the Error Backpropagation learning. It uses the
very same error function to minimize:

Eebp = ∑
j

1
2
(
tj − oj

)2 . (4.26)

However, the adjustment of the weights depends on whether the
neuron is in the output layer or in the hidden layer:

∆webp
ij = −α

∂E
∂wij

= αδjoi (4.27)

and

δj =

ϕ′(v)
(
tj − oj

)
if j corresponds to an output neuron

ϕ′(v)∑k δkwjk if j corresponds to hidden neuron
. (4.28)

Here i corresponds to prior neurons of j and k corresponds to subse-
quent neurons. This means that oi is the input of neuron j, for the first
layer oi equals xi. Moreover, for hidden neurons the weight adjust-
ment depends on the error of the subsequent neurons. Thus, the error
is back propagated to hidden neurons. The Error Backpropagation
algorithm is also a gradient decent based, which makes it vulnerable
for finding local minima. Therefore, different solutions are possible
for different weight initialization.
There are some other weaknesses that are tackled by some extensions
to that algorithm. Firstly, the weight adjustment is based on the
derivative of the activation function. As one can see in Figure 4.12,
the derivative of the Sigmoid function is very small in the outer areas
which can lead to small adjustment for large errors. The heuristic
approach extension instead uses a linear curve between output and
target values for calculating the weight adjustment[136].
Secondly, the algorithm tends to oscillate when the learning rate is
too large (see Figure 4.13). Several approaches make use of a momen-
tum term in order to smooth the solution process. This means that
the Weight increment depends not only on the error, but also on the
increment of the previous step[115, 122, 136]:

∆wij(n + 1) = β∆wij(n) + γ∆wij(n − 1). (4.29)

The tendency to oscillations can also be tackled by lowering the
learning rate constant. However, this also decreases the training speed.
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Figure 4.13: Solution process of Error Backpropagation without and with
momentum term.

In contrast, the directional search extension can speed up the solution
process. The idea is to look for a minimum in gradient direction before
the calculation for a new gradient. The minimum in gradient direction
can be found using the Newton-Raphson method.
The Levenberg-Marquardt algorithm can improve the convergence
speed as well and is based on the Gauss-Newton algorithm. Ac-
cording to that, for sum of squares performance functions like equa-
tions 4.21and4.26 the Hessian can be approximated as

H ≈ JT J. (4.30)

Where J is the Jacobi matrix of the performance function that can be
calculated using the Error Backpropagation algorithm. Close to the
minimum of the error function, the Gauss-Newton algorithm tend to
be faster and more accurate. However, the gradient decent algorithm is

1

32

Figure 4.14: Directional search on the gradient direction when using Error
Backpropagation algorithm.
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faster at the beginning. Therefore, the Levenberg-Marquardt algorithm
extends the weight increment to

∆wlm
ij = −

[
JT J + βI

]
E (4.31)

where I is the identity matrix and E correspond to the matrix of error
values. At the beginning of the training β is set to a larger value
resulting in a gradient decent. When reaching the optimal solution, β

becomes closer resulting in the Gauss-Newton algorithm[75, 89, 136].
In Recurrent Neural Networks, the Error Backpropagation algorithm
cannot be used in its original form because the recurrent loops prevent-
ing it. With the help of the Backpropagation Through Time method,
this problem can be overcome. Backpropagation Through Time is
a method based on Backpropagation. Here, the Error Backpropa-
gation method is extended by a time factor. Since the output of a
Recurrent Neural Network depends on the order of the data, the
training data is an ordered sequence of k input and output pairs
⟨x1, y1⟩, ⟨x2, y2⟩, . . . , ⟨xk, yk⟩. In order to subsequently apply the origi-
nal Backpropagation algorithm, the Recurrent Neural Network must
be unfolded. This approach is illustrated in Figure 4.15, where the
unfolded network now processes the input sequence entirely in one
run, rather than sequentially. The unfolded network thus contains k
inputs. The recurrent components of the original network are com-
pletely duplicated for each required time step. The Backpropagation
algorithm is then applied to the expanded network.
The complexity of the resulting unfolded network increases drasti-
cally when increasing the length of the training sequence. This can
lead to problems when using the Backpropagation algorithm because,
as shown in the corresponding equation 4.28, the variations of the
weights depend also on the gradients of the errors of the subsequent
neurons. In case of a long sequence, the error term of the unfolded
network is multiplied accordingly many times. Provided that the error
term is smaller than 1, a frequently repeated multiplication results in
a value close to 0 (vanishing gradient problem). On the other hand,
the magnitude of the error term could also be larger than 1, so that
after repeated multiplication the resulting gradients explode and the
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gradient descent becomes unstable. For deep recurrent neural net-
works the Backpropagation Through Time Algorithm is therefore not
suitable, instead other structures like the Long Short-Term Memory
module should be used.

4.3 support vector regression

The basic idea of ϵ-SVR is finding the flattest function f (x) whose
deviation from the training data is not larger than a given parameter
ϵ. In case of a linear function

f (x) = ⟨w, x⟩+ b (4.32)

where ⟨·, ·⟩ denotes the dot product, the resulting optimization prob-
lem is given by:

minimize 1
2 ∥ w ∥2

subject to

{
yi − ⟨w, xi⟩ − b ≤ ϵ

⟨w, xi⟩+ b − yi ≤ ϵ

} (4.33)

Here, the flatness is defined as norm of the parameter vector, ∥ w ∥2=

⟨w, w⟩. The constraints mean, that training data with an error smaller
than ϵ is not taken into account while errors larger than ϵ are not
acceptable[123, 131].
However, depending on the type of function it is not always feasible to
find a function that keeps the deviation small enough for all training
data. Under certain circumstances, this function does not exist. There-
fore, the margin can be softened depending on the training data by
using slack variables ξi and ξ∗i which belong to a positive or negative
error, respectively:

minimize 1
2 ∥ w ∥2 +C ∑ι

i=1 (ξi + ξ∗i )

subject to


yi − ⟨w, xi⟩ − b ≤ ϵ + ξi

⟨w, xi⟩+ b − yi ≤ ϵ + ξ∗i
ξi, ξ∗i ≥ 0


(4.34)

The margin is extended by the slack variables, so that deviations larger
than ϵ are now acceptable, but penalized. Figure 4.16 illustrates the
development of the penalty. As long as the deviation is within the ϵ

margin, no penalty is applied. If the deviation becomes larger than ϵ,
the penalty increases with a slope defined by the parameter C. Thus,
there is a trade-off between the flatness of the resulting function and
the size of remaining deviation that can be set by constant C. This
trade-off is especially important because flatter functions tend to be
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more robust to unseen data.
Lagrange multipliers can be used to find the extremum of a (optimiza-
tion) function f (x) with constraints g(x). The basic idea is that at the
point of extremum the gradients of f (x) and g(x) need to point in the
same direction. Otherwise it would be possible to increase or decrease
the value of f (x) by moving along g(x). However, while the gradient
vectors have to point in the same direction, they don’t necessarily have
the same length. Therefore, the Lagrange multiplier λ is added to the
gradient of g(x) in order to re-scale its vector length. The resulting
constraint for an extremum of f (x) at g(x) is

∇ f (x) = λ∇g(x). (4.35)

Applied to equation 4.34 f (x)− λg(x) gives the so-called Lagrangian:

L :=
1
2
∥ w ∥2 +C

ι

∑
i=1

(ξi + ξ∗i )−
ι

∑
i=1

(ηiξi + η∗
i ξ∗i ) +

−
ι

∑
i=1

αi (ϵ + ξi − yi + ⟨w, xi⟩+ b) +

−
ι

∑
i=1

α∗
i (ϵ + ξ∗i + yi − ⟨w, xi⟩ − b) (4.36)

where ηi, η∗
i , αi, α∗

i represent the Lagrange multipliers. According to
the saddle point condition of equation 4.35 the partial derivatives of L
with respect to ω, b, ξi ,and ξ∗i have to be zero:

∂L
∂b

=
ι

∑
i=1

(α∗
i − αi) = 0 (4.37)

∂L
∂ω

= ω −
ι

∑
i=1

(αi − α∗
i ) xi = 0 (4.38)

∂L
∂ξi

= C − αi − ηi = 0 (4.39)
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∂L
∂ξ∗i

= C − α∗
i − η∗

i = 0 (4.40)

Constants αi and α∗
i define the resulting support vectors. ηi and η∗

i

can be eliminated through equations 4.39 and 4.40 as η
(∗)
i = C − α

(∗)
i .

Furthermore, ω can also be expressed as

ω =
ι

∑
i=1

(αi − α∗
i ) xi (4.41)

which is known as Support Vector expansion, since ω can completely
be described by a linear combination of the training data[123].The sub-
stitution of equations 4.37 to 4.40 into 4.36 results in the optimization
problem

maximize − 1
2 ∑ι

i,j=1 (αi − α∗
i )
(

αj − α∗
j

)
⟨xi, xj⟩+

−ϵ ∑ι
i=1 (αi + α∗

i ) + ∑ι
i=1 yi (αi − α∗

i )

subject to ∑ι
i=1 (αi − α∗

i ) = 0 and αi, α∗
i ∈ [0, C]

. (4.42)

The result of the optimization problem determines the linear com-
bination of the training data that is used to describe ω. Finally, the
complete algorithm can be described using the data, even the evaluat-
ing f (x):

f (x) =
ι

∑
i=1

(αi + α∗
i ) ⟨xi, x⟩+ b. (4.43)

According to the Karush-Kuhn-Tucker conditions, the product of the
primal variables and the constraints vanishes at the point of solution:

αi (ϵ + ξi − yi + ⟨ω, xi⟩+ b) = 0

α∗
i (ϵ + ξ∗i + yi − ⟨ω, xi⟩ − b) = 0

(4.44)

and

(C − αi) ξi = 0

(C − α∗
i ) ξ∗i = 0

. (4.45)

Firstly, equation 4.45 means that only samples (xi, yi) with α
(∗)
i = C lie

outside the ϵ-tube[123], because either ξ
(∗)
i is zero which means that

the sample lies inside the ϵ-tube or ξ
(∗)
i > 0, but then α

(∗)
i has to equal

C in order to fulfill the equation. Secondly, according to equation 4.44

α
(∗)
i = 0 for samples that lie inside the ϵ-tube. The inner part of

the brackets is non-zero when the sample lies in the tube, because
ξ
(∗)
i ≥ 0. Thus, α

(∗)
i have to be zero in order for the equation to vanish.
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In conclusion, only samples outside the ϵ-tube have non vanishing
coefficients and are used to create the regression model. They are
called Support Vectors.
Until now, this chapter only described the linear function case. A
simple method for archiving a nonlinear algorithm is a preprocessing
map Φ of the input space into a higher dimensional feature space[4].
However, this approach can quickly become computationally infeasible
for higher dimensional input space or feature space[123]. As already
seen in equation 4.42, it is sufficient to know the result of the dot
product of the mapped input samples instead of explicitly calculate
the mapped samples. The result of the dot product of the mapped
input samples is called kernel

k
(
xi, xj

)
= ⟨Φ(xi), Φ(xj)⟩. (4.46)

and substitutes the former dot product in the optimization problem:

maximize − 1
2 ∑ι

i,j=1 (αi − α∗
i )
(

αj − α∗
j

)
k
(
xi, xj

)
+

−ϵ ∑ι
i=1 (αi + α∗

i ) + ∑ι
i=1 yi (αi − α∗

i )

subject to ∑ι
i=1 (αi − α∗

i ) = 0 and αi, α∗
i ∈ [0, C]

. (4.47)

There are several types of kernels that fulfill the necessary conditions,
but note that the optimization now finds the flattest function in feature
space not in input space[123].

4.4 hyperparameter tuning

In ANN as well as in SVR, there are parameters that have to be defined
before fitting or training and that are not automatically optimized. In
the case of ANN, these are, for example, the number of layers or the
number of neurons. In SVR, the epsilon band has to be specified or
the factor C, which determines the amount of costs for points outside
the band, must be specified before fitting. These types of parameters
are called hyperparameters. Hyperparameters can have a significant
impact on model quality.
One way to define the hyperparameters is to use brute forcing. Ideally,
the user already has experience and can estimate in which parameter
range good results are obtained. Now different parameter changes
are tested and if possible the performance is checked for unseen data.
The procedure is quite easy to perform, but it is unclear whether an
optimum is really found. In addition, it is difficult to understand how
the resulting hyperparameters were found[3, 124].
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The Grid Search method follows a similar principle. Here, value
sequences are specified for all parameters to be tuned:

Nlayer = [1, 2, 3]

Nneuron = [1, 3, 5]

(4.48)

The value sequences of the various parameters are then combined to
form a grid. Each grid element corresponds to a different parameter
combination of the number of layers Nl and the number of neurons
Nn:

Grid =

 Nl = 1, Nn = 1 Nl = 1, Nn = 3 Nl = 1, Nn = 5

Nl = 2, Nn = 1 Nl = 2, Nn = 3 Nl = 2, Nn = 5

Nl = 3, Nn = 1 Nl = 3, Nn = 3 Nl = 3, Nn = 5


(4.49)

Each combination is then used to fit the model and to determine
the resulting performance. The advantage of this procedure is that
the combinations are already predefined and thus the testing can be
processed in parallel. However, there is no optimization of the combi-
nation selection, all elements of the grid are evaluated. Depending on
the number of hyperparameters and the length of the value sequences,
a huge grid can be formed, so that the tuning takes a lot of time[3].
In contrast, Bayesian Optimization only tests the parameter combina-
tions that are expected to improve the performance. Here, a Gaussian
process is used to approximate generalized performance function f (x)
(performance on unseen data) as a function of the hyperparameters X.
The Gaussian process detects the typical behavior of the performance
function, which can be used to derive the optimal approximation
for the problem. The result is a probability distribution of possible
approximation functions and the solution with the highest probability.
In principle, alternatives to the Gaussian process are also possible,
but due to its high flexibility and tractability, it has proven to be
very effective. A Gaussian process is completely defined by a mean
function m(x) and a positive definite covariance function k(x, x′). The
mean function is the a-priori estimate of the regression problem and
describes an offset or trend of the data known in advance. In many
cases, the mean function can be estimated by the covariance function
or a constant mean is sufficient.
Accordingly, the results for a successful approximation depend mainly
on the covariance function. In the regression problem, only discrete
grid points, namely the already evaluated hyperparameters, of the
generalized performance function which is to be approximation or
smoothed, are known. In such a case, a Gaussian process can also be
determined. For this purpose, instead of this single function, a set
of many copies of the function shifted to each other are considered.
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Figure 4.17: Prior approximation functions resulting from squared exponen-
tial kernel.

This distribution can now be described with the help of a covariance
function. Usually it can be expressed as a relative function of this shift
by

K(x, x′) = K(x′ − x) = K(r). (4.50)

It then applies equally to all locations of the function and describes the
always same (i.e. stationary) correlation of a point to its neighborhood,
as well as the correlation of neighboring points to each other.
Although there are infinitely many possible resulting performance
functions for all non-degenerate covariance functions, the nature of the
kernel can also specify certain properties of the performance function.
The most commonly used kernel is the squared exponential kernel

KSE(r) = Θ0 exp
(
−1

2
r2
)

. (4.51)

Figure 4.17 shows random instances of associated approximation
functions for the one-dimensional case. As can be seen, the associated
interpolation functions are very smooth and the changes tend to be
small. These properties usually prevent overfitting, but also lead to a
low convergence speed[124].
Snoek at el. recommend the Matérn 5/2 kernel

KM52(r) = Θ0

(
1 +

√
5r2 +

5
3

r2
)

exp
(
−
√

5r2
)

(4.52)

instead[124]. The Matérnrn kernel is smooth and twice derivable, so
that Quasie-Newton methods can be used to determine the optimum.
At the same time, faster changes are possible as can be seen from
sample approximation functions in Figure4.18.
At the beginning of the Bayesian optimization some grid points are
already known. This means that the generalized performance for
several values of hyperparameters has already been determined. These
grid points can either have been determined within a grid search or the
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Figure 4.18: Prior approximation functions resulting from Matérn kernel.
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Figure 4.19: Posterior approximation functions resulting from Matérn kernel.

values have been determined randomly. The conditional a-posteriori
Gaussian process with known measured values yn at the coordinates
xn can be determined with the help of Bayes’ theorem:

( f (x) | xn, yn) ∼ GP
(
mpost, kpost

)
(4.53)

with

mpost(t) = m(t) + k⊤(x, xn)K(xn, xn)
−1(yn − m(xn)),

kpost(x, x′) = k(x, x′)− k⊤(x, xn)K(xn, xn)
−1k(x, x′).

(4.54)

Here, K is a covariance matrix obtained by evaluating the covariance
function k(x, x′) at the discrete rows xi and columns xj. Furthermore,
k was formed as a vector of functions by evaluating k only at discrete
rows or discrete columns. Three random resulting posterior approx-
imation functions are shown in Figure 4.19. The markers show the
known support points that are matched by all functions.
Between the saddle points, the approximation functions differ, of
course. In addition, Figure 4.20 shows the resulting mean value func-
tion m(x) together with the standard deviation. At the support points,
the standard deviation is 0 due to the known yn. With larger distance,
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Figure 4.20: Posterior mean function and standard deviation resulting from
Matérn kernel.

however, it grows. Now the question arises, which point should be
evaluated next.
At this point, the Acquisition Function determines the further pro-
cedure. It decides between exploration, i.e. searching at locations
with high variance, and exploitation, i.e. searching at locations where
low performance values have already been found. In fact, there are
several approaches to this. For the tuning of hyperparameters, two
commonly used acquisition functions a exists as they can be calculated
analytically in closed form. Both functions evaluate the improvement
of the generalized performance compared to the current minimum at
xbest:

γ(x) =
f (xbest)− m (x)

σ (x)
. (4.55)

In the probability of improvement method, the cumulative distribution
Φ of γ is evaluated and maximized:

aPI(x) = Φ (γ(x)) . (4.56)

Alternatively, the expected improvement can be maximized. In this
case, not only the probability of an improvement serves as a decision
criterion, but also its amount:

aEI(x) = σ(x) · (γ(x)Φ (γ(x))) +N (γ(x); 0, 1) . (4.57)

The more unknown the sections are, the larger the variance σ, so
that the width of the bell also becomes larger. In comparison to the
gradient descent, all known points are used for the determination of
the next point, so that jumps in the space of the hyperparameters are
also possible.
The selected point is then evaluated by fitting the model and deter-
mining the generalized performance. Next, the entire process is then
repeated, with the new evaluated point also being used in determining
the posterior. And the process is repeated until a specified number of
repetitions is reached or the generalized performance is sufficiently
accurate.
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5
B AT T E RY C Y C L I N G

This chapter takes a closer look at the operating behavior of zinc-
air batteries. For this purpose, typical charging and discharging
processes are presented and important points are explained. It will
be explained once again why the state estimation of conventional
battery technologies cannot be transferred to zinc-air batteries. Finally,
possible problems are shown and how they can be treated.

5.1 charging behavior

First, the complete charging processes of the zinc-air battery being
used are analyzed. Figure 5.1 shows the charging process of a cell
with a capacity of 50 A h. The electrolyte which is used is a 30 %
KOH solution, the typical electrolyte which is also often mentioned
in the literature. The cell was charged with a constant current of 2 A.
Therefore, after a time of 25 h, a charge equal to the cell capacity is
reached. To counteract possible self-discharge, the impressed charge
is increased by 10 %.
The first thing to notice is the overvoltage required to hold the charge
current. While the open circuit voltage of the cell is

Voff-load = 1.45 V, (5.1)

the cell voltage increases to

Vbat(I = 2.0 A) = 2.1 V, (5.2)

at a charge current of 2 A. The efficiency during charging is therefore

ηcharge(I = 2.0 A) =
Voff-load

Vbat(I = 2.0 A)
=

1.45 V
2.1 V

= 69 %. (5.3)

Apart from the voltage increase at the beginning of the charging
process, however, the voltage curve is remarkably flat and almost
constant. During the entire charging process, the battery voltage
increases by just 40 mV. On the one hand, this is an advantage because
the voltage curve is significantly more constant than with other cell
technologies. This means that the power electronics used to charge
the cells can be optimized specifically for this voltage range and thus
work particularly efficiently. On the other hand, it should be noted
that the cell in the figure has already been overcharged to a small
extent. However, the fact that the cell is already fully charged cannot
be determined at all from the voltage. The problem here is that in
addition to the reduction of the zinc anode, an electrolysis process also

85
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Figure 5.1: Charging cycle using potassium hydroxide electrolyte.

takes place. The voltage required to start the electrolysis is the same
as the charging voltage. As a result, the rate of hydrogen formation
increases when the cell reaches its charge termination.
Figure 5.2 shows the charging process of a cell that was identically
constructed but uses a different electrolyte. Accordingly, this cell
also has a capacity of 50 A h and is charged with a current of 2 A.
Additionally, the cell was operated at the same time and in close
proximity to the other cell, so the temperature of the two cells should
also be identical. However, the electrolyte used is not a pure KOH

solution, but a solution of KOH, Potassium Fluoride (KF) and Lithium
Fluoride (LiF) dissolved in water. According to Fu et al., this mixture is
supposed to slow down dendrite growth. However, since the amount
of KOH is lower, the electrolyte also has a lower conductivity, which
should result in a reduced efficiency[39].
A lower conductivity should actually be reflected in a higher charging
voltage or a lower discharging voltage. However, an increase in the
charging voltage at the start of the charging process is not evident.
The charge voltage is also at 2.1 V here. One possible reason is that
the conductivity of the electrolyte only contributes a small part of
the voltage difference between the off-load voltage and the charging
voltage. This would mean that the charge transfer resistance is much
larger than the resistance formed by the electrolyte:

Rct ≫ Rel . (5.4)

It should be noted that the absolute resistance values are meant here
(capital letters) and not the differential resistances.
In the further course, the voltage also remains constant at first. How-
ever, after about 25 h, when the cell is fully charged, an increase in
voltage can now be seen. Compared to other cell technologies, the
voltage increase of 110 mV is still quite small, but could now be used
to detect charge termination of the battery. From the increase of the
voltage it can be concluded that the voltage for starting the electrolysis
with the used solution is higher in comparison with the 30 % KOH
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Figure 5.2: Charging cycle using a mixture of potassium hydroxide, lithium
fluoride, and potassium fluoride electrolyte.
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Figure 5.3: Charging cycle at varying charge currents.

solution.
In order to verify whether the influence of the electrolyte conductivity
really is so small, a further charging process with varying charging
currents was performed. This is shown in Figure 5.3. As one can see,
the charging current was regularly changed between 1 A, 2 A and 3 A.
As expected, this also results in a change in the battery voltage. At
the beginning, the difference between the voltages at 1 A and at 3 A is
greater at approx. 130 mV than in the later course from approx. 10 h.
The difference has then decreased to approximately 70 mV.
Now it has to be clarified by which extend each parameter contributes
to the voltage change. If only the steady state after a current change
is considered, a quasi-stationary case can be approximately assumed.
Thus, the model of the cell can be simplified by eliminating the double
layer capacities and the diffusion processes. What remains are the
charge transfer resistances and the resistance of the electrolyte (see
Figure 5.4).
As already explained in chapter 3, the resistance of the electrolyte
depends on the temperature and the concentration of the alkaline
solution. However, since each current level was only applied for 10
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Figure 5.4: Stationary impedance model of a zinc-air battery.

minutes at a time, a constant temperature and concentration can be
assumed. Thus, a linear resistance can be assumed for Rel :

Vel = Rel · Ich (5.5)

In contrast, the charge-transfer resistances Rct are based on the nonlin-
ear Butler-Volmer equation which results in a current that increases
exponentially to the overvoltage η:

j = j0 ·
(

e
F

2RT η − e−
Fη

2RT η
)

. (5.6)

Since we only consider the charging process here, the exponential func-
tion being subtracted can be neglected. Conversion of the truncated
Butler-Volmer equation after the overpotential results in:

η = 1
a [ln (I)− ln (j0)]

with: a = F
2RT

, I = j · A

. (5.7)

As shown in Figure 5.4, the model contains two charge-transfer resis-
tors, one for each electrode. However, the sum of the two logarithmic
functions again results in a logarithmic function and can therefore be
simplified:

ηtot = η1 + η2, (5.8)

ηtot =
1
a1

[ln (I)− ln (j0,1)] +
1
a2

[ln (I)− ln (j0,2)] , (5.9)

ηtot =

(
1
a1

+
1
a2

)
ln (I)−

(
1
a1

ln (j0,1) +
1
a2

ln (j0,2)

)
, (5.10)

ηtot = atot · ln (I)− c. (5.11)

Since this is a series circuit, the total measured voltage difference is

Ubat − Uoff-load = Vel + η1 + η2 = Vel + ηtot, (5.12)
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Ubat − Uoff-load = Rel · Ich + atot · ln (Ich)− c. (5.13)

This results in an equation with 3 parameters. The parameters are all
linear. 3 measuring points are therefore sufficient to set up a linear
system of equations to determine the parameters. The system of
equations is structured as follows:

I · p = V (5.14)

 I1 ln (I1) 1

I2 ln (I2) 1

I3 ln (I3) 1

 ·

 Rel

atot

c

 =

 Ubat (I1)− Uoff-load

Ubat (I2)− Uoff-load

Ubat (I2)− Uoff-load

 (5.15)

Since the charge curve was recorded at 3 different currents, the follow-
ing values can be determined at the beginning of the charging cycle:

Ubat(Ibat = 1 A)− Uoff-load = 1.99 V − 1.45 V = 0.54 V

Ubat(Ibat = 2 A)− Uoff-load = 2.064 V − 1.45 V = 0.614 V

Ubat(Ibat = 3 A)− Uoff-load = 2.109 V − 1.45 V = 0.659 V

.

(5.16)

After solving the system of equations, the parameters

Rel = 4.12 mΩ

atot = 0.100

c = −0.536 V

(5.17)

are obtained. The largest deviation from the open-circuit voltage is
thus caused by the constant parameter c, which in turn is formed by
the sum of the parameters j0 of the two charge-transfer resistors. At a
charge current of 2 A, the charge transfer resistor is also responsible
for an overvoltage of

ηtot = atot · ln (2 A) = 69.9 mV (5.18)

due to the logarithmic dependence on the current. The part of the
voltage difference that is caused by the conductivity of the electrolyte
is very small in comparison and is

Vel = Rel · 2 A = 8.3 mV. (5.19)

A fresh electrolyte thus causes about 1.4 % of the overvoltage needed
to charge the battery.
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5.2 discharging behavior

Figure 5.5 shows the voltage curve of a complete discharge cycle of
the zinc-air battery used. First again with the standard 30 % KOH

electrolyte. This is the same cell from Figure 5.1, which has a nominal
capacity of 50 A h. The cell was discharged at a current of 2 A, so
the current had to be held for 25 h to fully discharge the cell. In fact,
the end-of-charge voltage of 0.6 V was already reached after 23.04 h,
which corresponds to a discharged capacity of 46.1 A h.
Right at the beginning of the discharge process, there is a drop in the
cell voltage. This is caused by the necessary overvoltage required to
reach the discharge current and has a size of

Voff-load − Vbat(I = −2.0 A) = 1.45 V − 1.265 V = 185 mV. (5.20)

Compared to the charging process, where the overvoltage was 650mV
for a charging current of the same magnitude, the value is much lower
during the discharging process. This is also reflected in the efficiency,
which is also significantly higher at

ηdis =
Vbat

Voff-load
=

1.265 V
1.45 V

= 87.2 % (5.21)

than when charging the cell. In the further process of the discharge
characteristic, the cell voltage initially decreases slowly. Thus, the
cell voltage is still 1.15 V after the cell has been discharged by 80 %.
Accordingly, the voltage drops by 0.115 V in this range. In comparison,
the voltage of a lithium-ion cell drops by about 0.6 V when80 % of its
capacity is discharged. Although the voltage of a zinc-air cell is more
influenced by the SoC during discharge than during charge, one can
still say that the discharge voltage is very constant compared to other
battery technologies. Only at the end of the discharge process there
is a much greater drop in the cell voltage until the final discharge
voltage is reached. The average discharge voltage is 1.2 V, resulting in
an overall efficiency of

ηtot =
Vbat,dis

Vbat,ch
=

1.265 V
2.1 V

= 60.2 %. (5.22)

As already explained in chapter charging, measurements were also
performed with an alternative electrolyte for the discharge process. To
ensure good comparability, the zinc-air cell itself was manufactured
in an identical process and has the same geometry, capacity and layer
thickness. However, the electrolyte was replaced with a mixture of
KOH, KF and LiF, which according to Fu et al. leads to an improved
cycle life of the battery, since dendrite growth is expected to be slowed
down[39]. Figure 5.6 shows a corresponding discharge curve. The
cell was also discharged with a discharge current of 2 A. The end
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Figure 5.5: Discharge cycle using potassium hydroxide electrolyte.

of charge was reached after 22.7 h, which thus corresponds to a dis-
charged capacity of 45.4 A h. The capacity is thus 0.7 A h less than
for the cell with 30 % caustic potash. The difference is caused by the
manufacturing process, as the cell was manufactured by hand. In
particular, the zinc anode was also pressed by hand, so the amount of
zinc can only be influenced to a certain extent.
The modified electrolyte solution has a reduced molarity of KOH, so
that the conductivity is reduced. Lower conductivity then leads to
higher voltage drops. For the charging process, it was shown that the
conductivity of the electrolyte has only a small effect on the efficiency
and cell performance, as the charge-transfer resistances have a much
larger influence. However, the discharge curve with normal 30 % KOH

has already shown that the overvoltages are lower during discharge
than during charge, so the situation must now be re-evaluated for the
discharge process. Here, at the beginning of the discharge process,
there is now a differential voltage of

Voff-load − Vbat(I = −2.0 A) = 1.45 V − 1.195 V = 255 mV, (5.23)

which is therefore 37 % greater than with conventional electrolyte. The
discharge efficiency is thus reduced from 87.2 % to

ηdis =
Vbat

Voff-load
=

1.195 V
1.45 V

= 82.4 %. (5.24)

The further course of the curve is similar to the cell with previous elec-
trolyte at a accordingly lower level. Again, the discharge curve is very
flat compared to other cell technologies. After the cell was discharged
by 80 %, the voltage dropped by 135 mV to 1.06 V. Thereafter, a faster
voltage drop occurs until finally the end of discharge voltage of 0.6 V
is reached.
In order to find out how the losses are divided between the charge-
transfer resistors and the electrolyte conductivity during discharge as
well, a discharge process was recorded in which the discharge cur-
rent was regularly alternated between 1 A, 2 A and 3 A. The resulting
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Figure 5.6: Discharging cycle using a mixture of potassium hydroxide, lithiu
fluoride, and potassium fluoride electrolyte.

voltage curve and the corresponding discharge current are shown in
Figure 5.7. According to chapter 3, the conductivity of the electrolyte
varies depending on the temperature and the concentration of the
solution. Therefore, each current value is applied only for 10 min at a
time in order to guarantee a constant temperature and concentration
per slot.
The dynamic processes of the cell decay after about 60 s, so that sta-
tionary behavior can be assumed thereafter. The diffusion processes
and double layer capacities can therefore be neglected. Thus, the
battery model for the stationary discharging process corresponds very
closely to the model for charging, which is shown in Figure 5.4. How-
ever, since the processes are now reversed, the negative term of the
Butler-Volmer equation must be considered instead of the positive
term. In the resulting system of equations, the voltage difference is
therefore inverted: I1 ln (I1) 1

I2 ln (I2) 1

I3 ln (I3) 1

 ·

 Rel

atot

c

 =

 Uoff-load − Ubat (I1)

Uoff-load − Ubat (I2)

Uoff-load − Ubat (I2)

 . (5.25)

Thus, 3 measured values are necessary to solve the system of equations.
For this purpose, the values of the battery voltage corresponding to
the 3 different currents are used:

Uoff-load − Ubat(Ibat = 1 A) = 1.45 V − 1.245 V = 0.205 V

Uoff-load − Ubat(Ibat = 2 A) = 1.45 V − 1.198 V = 0.252 V

Uoff-load − Ubat(Ibat = 3 A) = 1.45 V − 1.152 V = 0.298 V

.

(5.26)

After solving the system of equations, the parameters

Rel = 44.6 mΩ

atot = 0.0035

c = −0.160 V

(5.27)
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Figure 5.7: Discharging cycle at varying charge currents.

are obtained. The largest part of the voltage difference is now taken
up by the current-independent part of the charge transfer. This results
in a loss of approximately 160 mV. After that, the voltage loss due to
the charge transfer is only slightly influenced by the discharge current.
Thus, a current of 2 A leads to a further voltage loss of

ηtot = atot · ln (2 A) = 2.4 mV. (5.28)

In contrast, the resistance of the electrolyte is now much larger com-
pared to when charging, so that a current of 2 A causes a voltage
difference of about

Vel = Rel · 2 A = 89.2 mV. (5.29)

This corresponds to a percentage of 35.4 %. In fact, the resistance
Rel of the battery model also represents the resistance of the metallic
contact in addition to the electrolyte resistance. Since both components
behave identically, a separation of the impact is not possible. It is
therefore probable that the contacting of the air cathode is worse than
the contacting of the separate nickel electrode used for charging and
this leads to an increase in the series resistance.

5.3 microcyling

Cycle tests were performed to further analyze cell behavior. This
involves stressing the cell by constantly charging and discharging it
in order to obtain an accelerated aging profile. A one-hour discharge
duration at nominal current was set as the parameter. The subsequent
charging process also takes place at nominal current, but the charging
time is increased by 10 % to prevent gradual discharge of the cell due
to self-discharge. Figure 5.8 shows the course of the cell voltage and
cell current of such a cycle test. A total of 100 cycles are shown, so that
the individual changes can no longer be seen. However, it can be seen
that the current periodically changes between 2 A (charging) and −2 A
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Figure 5.8: Cycle test results of zinc-air battery using 30 % potassium hydrox-
ide electrolyte.

(discharging). Negative currents therefore represent a discharge cur-
rent here. The plotted voltage corresponds to the respective electrode.
This means that during charging the voltage between anode and nickel
electrode is used, while during discharging the voltage between anode
and air electrode is used. It can be seen that the resulting discharge
voltage is very constant over the entire time range. In contrast, the
charge voltage fluctuates considerably between individual cycles with
up to 200 mV. The difference between the cycles is thus higher than
the voltage difference of a complete charge cycle, which once again
highlights the problem of state-of-charge detection. The prognosis of
the cell voltage is not sufficient for this.
Figure 5.9 takes a closer look at the first five cycles. The voltage and
current curves can now be seen properly. During a discharge cycle,
the cell voltage is very constant. After the overvoltage has dissipated,
the voltage drops by just 10 mV within one hour. A different behavior
can be seen during charging. Here, there is a voltage increase of 2.2 V.
Looking at the absolute values, voltages of 2.2 V during charging and
1.25 V during discharging can be determined. The efficiency at the
beginning of the cycle test is thus

ηcycling, KOH, start =
Vch

Vdis
=

1.25 V
2.2 V

= 56.8 %. (5.30)

In comparison, Figure 5.10 shows the cell characteristic of the first
five cycles using an electrolyte solution of KOH, KF and LiF. The
differences that were already observed in the full charge cycles are
also found here. The cell voltage increases towards the end of the
charging process in the microcycles as well. This behavior indicates
that the overvoltage for starting electrolysis is higher here than with
the 30 % KOH solution. Towards the end of the charging process, the
percentage of electrolysis increases slowly until finally the charging
current is used for electrolysis only, and the voltage reaches a limit
value. The discharge curve is very flat, as before, but drops with
30 mV within a discharge process slightly more than it is the case with
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Figure 5.9: First cycles of cycling test using 30 % potassium hydroxide elec-
trolyte.

0 2 4 6 8 10

−2

0

2

time [h]

current [A]
voltage [V]

Figure 5.10: First cycles of cycling test using an electrolyte solution of potas-
sium hydroxide, lithium fluoride, and potassium fluoride.

the cell with KOH as electrolyte. Overall, the efficiency increased due
to the lower charge voltage, but is at a similar level:

ηcycling, special, start =
Vch

Vdis
=

1.185 V
2.04 V

= 58.1 %. (5.31)

A slightly wider view in terms of time is shown in Figure 5.11, which
shows the cycle sequence for several days. As can be seen from the
temperature, the room temperature drops at night and rises during the
day. It can be clearly seen that the charging voltage does not correlate
with the temperature, or only to a very small extent. Therefore, the
temperature cannot be used to eliminate the voltage fluctuations.
The discharge voltages do not follow the course of the ambient tem-
perature at the beginning either. In Figure 5.12, the voltage scale is
therefore adjusted in such a way that the fluctuation of the discharge
voltage can be seen. At the beginning, the discharge voltage increases
independently of the temperature. After 15 cycles, the discharge volt-
age follows the temperature, as expected from the Nernst equation.
One possible explanation is that the formatting process of the cell is
only completed after a certain number of cycles.
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Figure 5.11: Medium range cycles of cycling test using 30 % potassium hy-
droxide electrolyte.
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Figure 5.12: Medium range cycles of cycling test using 30 % potassium hy-
droxide electrolyte zoomed to see discharge voltage fluctuations.
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Figure 5.13: First 100 cycles cycles of cycling test using an electrolyte solu-
tion of potassium hydroxide, lithium fluoride, and potassium
fluoride.
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Figure 5.14: Last cycles of cycling test using an electrolyte solution of potas-
sium hydroxide, lithium fluoride, and potassium fluoride.

The characteristic of the first 100 cycles of the cell with the electrolyte
solution of KOH, KF and LiF can be seen in Figure 5.13 6. The observa-
tions of the normal electrolyte are confirmed here. Voltage fluctuations
occur between cycles, especially during charging. Once again, the
fluctuations do not correlate with the temperature and therefore can-
not be removed by calculation. Figure 5.14 shows the voltage and
current characteristics of the same cell after 350 cycles. In general, the
behavior is still identical. A difference can be seen in the voltage peaks,
which are now no longer so pronounced. Here, the carbonization and
aging of the electrolyte can lead to a reduction in the overvoltage of
the electrolysis. The efficiency has dropped to

ηcycling, special, end =
Vch

Vdis
=

1.17 V
2.05 V

= 57.1 %. (5.32)

The value has therefore changed only marginally.



98 battery cycling

Figure 5.15: Zinc dendrites penetrating the seperator.
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Figure 5.16: Voltage characteristic of zinc dendrites.

5.4 identifying cell defects

As already explained in the state of the art, the growth of dendrites is
still one of the biggest problems of the rechargeable zinc-air technology.
When the cell is charged, zinc crystals are formed which grow in the
direction of the counter-electrode. As soon as they reach it, a short
circuit occurs that prevents further battery operation. Figure 5.15

shows the beginning of the formation of dendrites. The separator foil
has already been penetrated here.
The effects of a dendrite on the cell voltage are shown in Figure 5.16.
As soon as the dendrite reaches the nickel electrode, the charge voltage
suddenly drops due to the short circuit. At this moment, the applied
current is no longer used to drive the redox reaction, so the SoC of the
battery is not increasing. Instead, there is now a conductive metallic
connection between the two electrodes. As long as the dendrites are
very small and thin, the applied current causes the dendrites to burn.
This can also be seen in the voltage curve. The dendrites initially cause
a voltage drop, but then burn and the voltage recovers very quickly.
The 3-electrode technology with a separate electrode for charging also
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has advantages when treating dendrites. The additional electrode is
located between the zinc anode and the air cathode. This means that
dendrites first reach the nickel mesh and can thus be detected by the
drop in the charge voltage before they reach the air electrode. In a first
step, one can try to burn the dendrite. Here, the chances of success
are higher if the applied current is increased to twice the nominal
value. However, this procedure no longer works for larger dendrites.
The resistance of the dendrite is then so small that the applied current
is no longer sufficient to burn the dendrite. Now the advantage of
the additional electrode comes into play. The dendrite has not yet
managed to reach the discharge electrode. This means that it is still
possible to discharge the cell. Since the dendrite is closest to the GDE,
it is significantly more oxidized than the actual zinc anode and falls
to the bottom. The cell can then be charged again. The associated
pseudocode of the dendrite treatment is shown in Listing 5.1.

Listing 5.1: Treatment of dendrites.

% Check for dendrite

if(t_charge > 5 min && v_charge < 2.0 V)

% Start burning dendrite

i_charge = 2 * i_nominal

wait(10 min)

% Check dendrite status

if(v_charge > 2.0 V)

i_charge = i_nominal

return

% Start discharge

i_charge = 0

i_discharge = i_nominal

wait(30 min)

% Return

return �
In so doing, it is still possible to use the cell for a longer period of
time. However, the dendrites are becoming more and more massive
with time, so that they cannot be completely eliminated even during
the discharge process. Figure 5.17 shows a dendrite formation that
could not be destroyed in the end.
Another feature that must be taken into account in the case of a zinc-air
cell with 3-electrode technology is the possibility of short-circuiting the
charging and discharging cathodes. Since no dendrite growth takes
place here, the two electrodes are usually not separated by a separator.
This would only lower the conductivity unnecessarily. However, there
is a risk that the nickel electrode may come into contact with the
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Figure 5.17: Zinc dendrites penetrating the seperator.

Figure 5.18: Dissolving of air cathode.

GDE. As a result, the GDE, which is not bifunctional, is also used to
charge the cell. The oxygen that is then produced at the GDE reacts
to a large extent with the carbon of which the electrode is made. It
therefore dissolves. Initially, this reduces the active surface area and
cell performance decreases. However, leakage of the cell also occurs
relatively soon. Figure 5.18 shows a partially dissolved GDE.
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PA R A S I T I C E F F E C T S

In this chapter, two parasitic effects will now be analyzed. First, the
influence of the oxygen content of the ambient air is evaluated. On
the one hand, a practical experiment is used to evaluate whether
the theoretical considerations on oxygen consumption are correct. In
addition, the influence of the oxygen content on the cell performance
is investigated. The is also a dedicate paper dealing with this topic[85].
The second effect involves electrolyte management. Since a metal-air
cell is necessarily an open system for gases, simple evaporation of
the water content may occur. Therefore, it is necessary to look for
solutions to ensure an electrolyte concentration that is as constant as
possible.

6.1 oxygen content

6.1.1 Theoretical Aspects

Oxygen consumption

As described in chapter 2.2.6, the amount of oxygen used during the
discharge process can be theoretically determined from the reaction
equation

O2 + 2H2O + 4 e− −−→ 4OH− (6.1)

at the GDE. 4 electrons as charge carriers thus react with one oxygen
molecule. Since

N1C =
Q
e
=

1 C
1.6021 · 10−19C

= 6.2415 · 1018. (6.2)

charge carriers transfer a charge of 1 C, a total of

NO2,1C =
N1C

4
= 1.5603 · 1018. (6.3)

oxygen molecules are required to discharge 1 C. The Avogadro con-
stant can be used to convert the number of molecules into the molar
mass. Since the ambient air can be considered in good approximation
as an ideal gas, which has a defined volume per molar mass, the
oxygen consumption is

VO2
[Q = 1 C] = Vm0 · nO2

= 5.808 × 10−5 L. (6.4)

101
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However, the ambient air does not consist of pure oxygen, but only
to the extent of 20.95 %. Therefore, to discharge the cell a 1 A h, an air
volume of

Vair [Q = 1 Ah] = 5.808 × 10−5 L
C
· 3600 A h

1 C
100

20.95
= 0.998 L (6.5)

is needed.

Electrode Potential depending on Oxygen Content

Theoretical approaches already exist for lithium-air primary cells that
analyze the power loss due to low oxygen content[98]. In this chapter,
the theoretical behavior of zinc-air batteries is considered in more
detail. Lower oxygen content leads to a reduced battery voltage,
which is described by the Nernst equation[104]:

E = E0 +
R · T
n · F

· ln
(
(aOx)

v

(aRed)v

)
. (6.6)

The electrode potential E increases with the activity of the oxidizing
agent and decreases with the activity of the corresponding reducing
agent. Equation 6.6 can be simplified under SATP conditions:

E = E0 +
0.059159V

n
· log

(
aOx

aRed

)
. (6.7)

The activities should be interpreted depending on the state of aggre-
gation. The activity for aqueous solutions, such as the electrolyte, is
the concentration of the solution in mol

L (molarity):

a [solution] =
c [solution]

1 mol
L

. (6.8)

For gases, the partial pressure is used instead:

a [gas] a = b. =
p [gas]

1013 hPa
. (6.9)

Since only the air cathode is in contact with the ambient air, its reaction
equation is relevant here. Adding the appropriate oxidizing and
reducing agents and the standard electrode potential to equation 6.6
leads to equation

EO2
= 0.401 V +

59.159 µV
4

· log


p[O2]

1013 hPa ·
(

c[H2O]

1 mol
L

)2

(
c[OH−]

1 mol
L

)
 , (6.10)

which gives the relationship between electrode voltage and oxygen
concentration. The partial pressure of oxygen is in the numerator.
Therefore, the voltage level of the battery increases logarithmically
with the oxygen content.
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Figure 6.1: Test chamber for determining the oxygen addiction

6.1.2 Test Setup

The theoretical analysis was verified by developing a test chamber.
The structure of the chamber is shown in Figure 6.1. It provides space
for up to three batteries and sensors to measure the air pressure and
the oxygen content in the chamber. Moreover, a fan is used to average
the oxygen concentration in the chamber by mixing the contents. Mul-
tiple sealed cutouts serve as feedthroughs and can be used to wire
components or circulate the battery electrolyte. A 3D CAD software
is used to determine the volume of air required by the components,
which must be subtracted from the chamber volume.
Figure 6.2 shows the complete measurement setup. Its main com-
ponent is the presented test chamber. The currents are applied via
relays and measured via Hall-effect based current sensors for safety.
Moreover, the battery voltage is measured via separate lines to avoid
a measurement error due to the applied current. Since the zinc-air
battery system is an open system, water can evaporate from the elec-
trolyte solution, resulting in a change in electrolyte concentration.
Since this also affects the voltage level, a separate electrolyte circula-
tion system is used to control the concentration.
Two batteries are used for the actual tests. One cell discharges and con-
sumes oxygen from the chamber. The second cell is used to measure
the open circuit voltage.
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Figure 6.2: Measurement setup for determining the oxygen addiction
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Figure 6.3: Oxygen content in the chamber as a function of the the discharged
charge

6.1.3 Results

Figure 6.3 shows the course of the oxygen content of a closed chamber
while a battery is discharged with different currents. The oxygen con-
tent is plotted against the discharged charge. The differences between
the curves are within the measurement tolerances. Thus, oxygen
consumption is actually linearly dependent on the discharged charge
and is not dependent on the current. Compared to the theoretically
estimated value, the oxygen consumption is about 19 % lower than
expected. One possible reason for this behavior are small leakages in
the test chamber.
In Figure 6.4, the open-circuit voltage of the second battery as a func-
tion of oxygen content is plotted. In addition, the estimated cell
voltage predicted by the Nernst equation is also plotted. Considering
that the ordinate axis includes only 12 mV, we can see that the general
behavior is consistent with theory. The drop-off of the measured curve
starts a little earlier. Again, this is probably due to the tolerance of the
oxygen sensor.
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Figure 6.4: Measured off-load voltage compared to the theoretical estimation
based on Nernst equation

Figure 6.5 compares the characteristics between an open and a closed
chamber of the same battery. The results of the open chamber are
shown by dashed lines. The capacity of the battery is quite large, so for
an open chamber with a constant oxygen content of 19 %, the battery
voltage does not change when the battery is discharged over 1 h with
1 A, As the current is kept constant, the oxygen content in the closed
chamber decreases again linearly. The voltage of the charged battery
is initially only slightly affected. At about 2.5 % oxygen content, a
sharp drop occurs that significantly degrades battery performance.
Therefore, it is recommended to ensure that the ambient air of zinc-air
batteries has an oxygen content of at least 5 %, fixing a minimum
percentage of power. The amount of fresh air required to maintain a
minimum oxygen content cO2,min after discharging a charge of Q is

Vair(cO2,min, Q) = 0.2312 L · 100 %
20.95 % − cO2,min

· Q
A h

. (6.11)

Assuming that the average discharge voltage of a zinc-air battery is
1 V, about 1.5 m3 of fresh air are needed to discharge 1 kW h.
The same measurement was repeated with other discharge currents. In
Figure 6.6, the voltage levels for different discharge currents are plotted
against the oxygen content. Our test setup’s maximum discharge
current is 4.2 A. General voltage levels are lower at higher currents
due to the internal series resistance. Plus, the sudden voltage drop
occurs a bit earlier at higher loads. Nevertheless, the recommendation
of an oxygen content of 5 % still fits.

6.2 electrolyte concentration

Metal air batteries in general use oxygen from the surrounding air. In
order to make use the oxygen of the surrounding air, electrodes that
are permeable for air but impermeable for liquids like the electrolyte
are used[109]. Normally aqueous solutions, like potassium hydroxide,
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Figure 6.5: Comparing the performance during discharging with a working
point of 1 A between an open oxygen chamber (solid lines) and a
closed chamber (dashed lines)
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Figure 6.7: Correlation of the specific conducitivty, temperature and concen-
tration of potassium hydroxide according to data of Gilliam et
al.[43]

are used as electrolyte. However, its water content can evaporate and
escape through the permeable electrode leading to unwanted high
electrolyte concentrations.
On the one hand the electrolyte concentration is chosen to have the
maximum conductivity which corresponds to the least power losses.
The specific conductivity of potassium hydroxide depending on its
temperature and concentration is shown in Figure 6.7. As one can
see the conductivity depends on both properties. Nevertheless the
maximum conductivity for all temperatures is close to 30 % making it
an optimal value[43]. If we concentrate on the correlation between the
concentration and the specific conductivity, we see a linear dependence
for low concentrations. A higher number of charge carriers results
in a higher conductivity. This behavior changes when the average
distance between the ions becomes smaller at high concentrations. The
electrostatic impact between the charge carriers stops a further gain of
the conductivity and can even lower it. Therefore, the series resistance
of the battery will increase when the concentration changes resulting
in a lower battery voltage when using high discharge currents[5].
On the other hand the electrolyte solution becomes more aggres-
sive when the concentration increases. The permeable electrode is a
weaker part in most cases and can therefore be destroyed by these
higher concentrated electrolytes. This can lead to dangerous situations
since aggressive materials permeate outer walls and become released.
Figure 6.8 shows a destroyed GDE of the zinc-air battery. The concen-
tration of the potassium hydroxide rapidly increased and crystallized
while the battery was stressed with high temperatures. The resulting
inner crystals then cut the electrode.
Both problems have to be avoided. Therefore, this chapter covers the
development of a new self-acting system for controlling the electrolyte
concentration.
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Figure 6.8: Gas diffusion electrode of a zinc-air battery that is damaged by a
high electrolyte concentration.

6.2.1 Measurement System

One of the most important property of a controller is the ability to
measure the actual value of the desired property. So for this system a
measurement of the concentration of the solution is essential. Different
approaches are viable. One idea to think of is to measure the pH value.
However, in general the concentrations of electrolytes are too high to
measure a change of the pH value. At a concentration of 30 % the pH
value will always be 14. Moreover, pH measurement electrodes are
quite expensive and need to be calibrated regularly.
Another feasible method for measuring the concentration of the elec-
trolyte is to measure its conductivity as already seen in Figure 6.7.
The schematic of the conductivity measurement circuit is shown in
Figure 6.9 and is based on a reference design of analog devices[74]. A
voltage is applied to the sensing electrode and the resulting current
is measured by an operational amplifier circuit. The op-amp imple-
ments an inverting amplifier whose input resistor is represented by
the electrolyte link within the measurement electrode. Because of the
negative feedback and the ground connection at the positive input
pin, the negative input pin node forms a virtual ground. Therefore,
the resulting output voltage of the op-amp is linear to the current
through the measurement electrode. Both, the voltage and the current
signal are then processed to suit the Analog Digital Converter (ADC)
of a STM32 microcontroller. In the first stage a Programmable Gain
Amplifier (PGA) is used to amplify the signals. The selectable gains
are 1, 10, 100, and 1000. Thus, a wide range of conductivities can
be measured. During the last processing step, the input signals are
shifted to the middle of the ADC input voltage range.

6.2.2 Reduction of Passivation Effects

As one can see analog multiplexers are used to create and measure a
modulated signal. The reason is that an Alternating Current (AC) mod-
ulated signal hinders the formation of passivation layers[20]. When
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Figure 6.9: Schematic of the conductivity measurement circuit.

applying a constant voltage to electrodes within an electrolyte, corre-
sponding ions move and accumulate at the opposed charged electrode
and create a contrary electric field that works against a further move-
ment of ions to this electrode. Therefore, the measured current would
decrease. By periodically changing the voltage direction, passivation
effects are being avoided. The signal processing for the ADC uses both,
the non-inverting and the inverting signal. The actual voltage and
current values can be measured by subtracting both values.
One important question is the required modulation frequency. When
the frequency is too low, polarization effects still exist which means
that the measured conductivity G is lower than the actual conduc-
tivity that correspond to the specific conductivity κ. However, if the
frequency is too high, the current might increase due to parasitic
capacities resulting in a higher measured conductivity[20]. Figure 6.10

illustrates that the ideal frequency is somewhere between both effects.
Finding an optimal frequency is possible by sweeping the frequency
and looking for an area where the measured conductivity does not
change.
Another way for minimizing the effect is making use of four-terminal
sensing. Interfering resistances due to polarization or wiring are
compensated by a separate currentless voltage measurement[5, 20].

6.2.3 Measurement Electrode

The final measurement electrode is built by a 3D printer and shown
in Figure 6.11. Both outer electrodes are used to apply the modulated
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Figure 6.10: Characteristics of the ratio of the measurement conductivity and
the actual conductivity depending on the modulation frequency.

Figure 6.11: 3D printed measurement electrode used to determine the con-
ductivity of the electrolyte.

alternating current while the inner electrodes are used to measure the
resulting voltage response. Moreover, a temperature sensor is located
within the measurement cell since it is not resistant to an alkali.
In order to create a liquid-tight case for the measurement electrode,
different filament and varnish combinations have been tested. In
general, a slight over extrusion helps the different layers to better
combine with each other. ABS (Acrylonitrile Butadiene Styrene), PLA
(polylactide) and PETG (PolyEthylene Terephthalate Glycol-modified)
filaments were analyzed for liquid-tightness. Furthermore each fil-
ament was also tested with a varnish of epoxy resin. Small boxes
for each combination were printed and filled with a 30 % potassium
hydroxide solution (Figure 6.12). During the next days the underlying
tissues were observed to identify leaking boxes.
The results are summarized in Table 6.1. While all of the filament
materials are liquid-tight in combination with the epoxy varnish, only
ABS is also alkali-proof. Even the varnished boxes made of PLA and
PETG started to leak after 2 d. One probable reason is that the so
called vase mode cannot be used for printing the measurement cell.
In vase mode, only the outer surface is printed in a spiralized mode.
The height of the nozzle is continuously increased instead of printing
complete layers one by one. Printing the measurement cell in vase
mode is not possible since it has an inner structure. However, ABS
filament can be used for the measurement electrode.
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Figure 6.12: Test setup for verifying the liquid- and alkali-tightness of differ-
ent filament and varnish combinations.

Table 6.1: Test results of liquid-tightness

filament material varnish result

ABS None Sealed

ABS Epoxy Sealed

PLA None Permeable

PLA Epoxy Permeable

PETG None Permeable

PETG Epoxy Permeable
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Figure 6.13: Setup for self-acting controlling of electrolyte concentrations.

6.2.4 Setup

The structure of the resulting measurement and control setup is shown
in Figure 6.13. The biggest component of the setup is the battery stack.
Its batteries are interconnected in series. It is quite complex to measure
the electrolyte concentration in each battery cell separately. Therefore,
a reservoir and a pumping system is used to create one central place
for measuring the concentration. The electrolyte interconnection can
be assembled in series and in parallel connection. The advantage of
a parallel connection is that electrolyte can flow back to the reservoir
when stopping the pump resulting in lower shunt currents. Due to
the serial connection of the batteries, filled electrolyte hoses form a
shunt resistor connecting cells at different potentials. However, the
resulting currents are rather small. The measured resistances never
dropped below 1 kΩ.
There is another reservoir that is used to store distilled water. Since it
is located at a higher position, a simple 2/2 directional control valve
can be used to control the flow of fresh water into the electrolyte
reservoir. The adding of new water to the electrolyte compensates the
evaporation and leads to an optimal performance.
The sequence for controlling the electrolyte concentration always starts
with activating the pumping system in order to transport the elec-
trolyte from within the cells to the central electrolyte reservoir. Af-
ter 5 min of pumping the concentration measurement takes place.
By knowing the measured concentration cm, the desired concentra-
tion ct and the volume of electrolyte in the system at the desired
concentrationVT, the volume of water that needs to be added VH2O,add
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can be approximated. The target and the measured electrolyte concen-
trations are defined as follows:

ct =
nsub

Vt
, (6.12)

cm =
nsub

Vm
(6.13)

where nsub describes the amount of the active component and Vm

the volume of the measured electrolyte. Assuming that the apparent
molar property is negligible, the target concentration can be obtained
by adding a volume VH2O,add of water:

ct ≈
nsub

Vm + VH2O,add
. (6.14)

Solving to VH2O,add and substituting both upper equations results in

VH2O,add ≈ Vt

(
1 − ct

cm

)
. (6.15)

In order to drop the need for a mass flow controller when adding water
to electrolyte reservoir, Torricelli’s law can be used to approximate the
speed of the water flowing out of its reservoir. The activation time of
the valve tsw can then be calculated by

tsw = VH2O,add ·
1

AH · µ ·
√

2gh
. (6.16)

Here AH, g and h correspond to the cross section of the hose, to the
gravitational acceleration and the difference in height between the
upper edge of the water and the valve.

6.2.5 Implementation

In order to implement the self-acting controlling of the electrolyte con-
centration, data collection of conductivity measurements took place
for a set of different concentrations and temperatures. The gained data
is then stored within a 2D lookup table that correspond to Figure 6.7.
This table links conductivity and temperature data to a concentration
value.
Figure 6.14 shows the software flowchart for implementing the con-
trolling of the electrolyte concentration. The process begins by settings
a General Purpose Input Output (GPIO) output pin in order to con-
trol a MOSFET that activates the pumping system. About 5 min are
needed to circulate and average the electrolyte of the stack. Therefore,
before going to deep sleep mode an alarm of the built-in Real Time
Clock (RTC) is set to 5 min in the future.
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When the microcontroller wakes up the actual conductivity measure-
ment takes place for a set of different modulation frequencies ranging
from 100 Hz to 10 kHz. The modulated current is applied to the mea-
suring cell by outputting a pulse width modulation with a duty cycle
of 50 % at the corresponding frequencies. The internal ADC is then
used to measure the resulting voltage and current values. Depending
on these values, suitable gain factors for the PGA are set and a Direct
Memory Access (DMA) transfer of 1024 current and voltage ADC values
is initiated. The actual current and voltage values used to determine
the conductivity are calculated by averaging all of the measured values
in order to increase precision. The derived conductivity is then stored
in an array whose elements represent the measured conductivity for
each frequency in the set. These steps are repeated for each frequency
in the set.
Next step is to find the measurement with the optimal modulation
frequency. Hence, the variance of each 3 element sub array of the
conductivity array is calculated. According to Figure 6.10 the sub ar-
ray with the least variance is the optimal frequency. The conductivity
value in the middle of this sub array is used (see Figure 6.15).
The pregenerated 2D lookup table is then used to determine the elec-
trolyte concentration from the measured conductivity and temperature.
Values between list items in the lookup table are linearly interpolated.
Another timer is then used to precisely control a MOSFET that activate
the valve to fill distilled water into the electrolyte reservoir.
In order for the water to mix with the electrolyte, the pumping system
is left on for another 5 min. Once again, the RTC is used to wake up the
microcontroller from deep sleep and for deactivating the pump. Last
step is to activate the RTC alarm for the next controlling cycle. The time
depends on the temperature and on the amount of evaporated water
and can be a value between 10 min and 12 h. Then the microcontroller
is put in deep sleep mode to save energy until the next controlling
step takes place.





7
S TAT E E S T I M AT I O N

BMS are electronic circuits that ensure the safe condition of battery sys-
tems and monitor and control the charging and discharging processes
of batteries. For these essential functions to work safely, both the SoC

and the SoH of the respective cell must be known or determinable.
In current cell technologies, the cell voltage is usually used for this
purpose, because typically the cell voltage of an empty cell is lower
than that of a full cell.
As already described in chapters 3 and 5, the cell voltage profile of
zinc-air batteries is so flat that state estimation in this way is not
possible. For this reason, this chapter examines alternative ways of
determining the SoC and the SoH. Here, electrochemical impedance
spectra are a promising approach. First, possibilities to measure
impedance spectra in a simple and accurate way are presented and
then methods to determine the SoC and the SoH from an impedance
spectrum are explained.

7.1 test setup

EIS determines the impedance, i.e. the AC resistance, of electrochemical
systems as a function of the frequency of an AC voltage or current.
Electrochemical systems are, for example, batteries. EIS can be used
to obtain precious information about the system under investigation
and the processes taking place in it. Usually, EIS is performed on
batteries by imposing an alternating current, that is, the current of
the working electrode is sinusoidally modulated and the resulting
voltage and its phase are measured. The Direct Current (DC) com-
ponent of the modulated current is usually set to 0 so that the EIS is
charge neutral and the SoC of the cell is not influenced. Due to the
3-electrode technology used in our zinc-air cells, the charge-neutral
method cannot be used, since the DC component must be at least
as large as the AC amplitude so that there is no switching between
charging and discharging during an impedance measurement. As an
alternative to the galvanostatic measurement method, EIS can also be
performed using an applied AC voltage; in this case, the current and
its phase are measured. The concept of impedance and the complex
alternating current theory assume that there is a linear relationship
between the amplitudes of voltage and current. In electrochemical
systems, this is only the case approximately for small amplitudes,
e.g., 1 mV to 10 mV[8]. Significantly larger voltage amplitudes must
therefore not be used for measurement.
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In particular, the necessary DC component during an impedance mea-
surement and the 3-electrode technology prevent the use of an existing
instrument for the measurement of impedance spectra. Therefore, de-
velopments for the measurement of impedance spectra of zinc-air
cells as well as adaptations for existing measuring instruments are
presented in this section.

7.1.1 PicoEIS

Commercially available and universally applicable measuring instru-
ments for EIS are financially very expensive. At the beginning of the
zinc-air project, there was no funding to purchase such a measuring
device as part of the project. On the other hand, there are considerably
less expensive instruments available that are designed for usage with
lithium-ion cells. This means that the frequency range is limited from
1Hz to 1kHz and that the impedance range is designed for low values
and becomes inaccurate at higher values. In addition, the 3-electrode
technology requires a system that can perform the impedance mea-
surement while a DC current is applied so that the working area of the
charging or discharging electrode is not exceeded.
For this reason, it has been necessary to build a dedicated measure-
ment system. The first approach is based on the PicoEIS, which Kiel
presented in his dissertation. The name is derived from a Pico Technol-
ogy PC oscilloscope being used. The structure of the customized setup
is shown in Figure 7.1. The oscilloscope has two analog inputs and
one analog output. The analog output is used to specify the current,
which means that a sine wave is output there. A current controller
now applies a current proportional to this voltage signal. The two
analog inputs measure the actual current and the resulting voltage
response of the cell. With these both information it is now possible
to calculate the impedance[63]. According to MacDonald et. al, the
voltage response should not exceed an amplitude of 10 mV per cell[8].
However, the AC response overlaps the DC cell voltage. Therefore,
to increase the accuracy of the voltage measurement, the DC offset
is removed. In the original setup, this is done by manually adjust-
ing a potentiometer, which is impractical for periodic measurements.
The setup was therefore extended with a microcontroller controlled
compensation of the offset voltage. Now a computer program can
automatically measure impedance spectra on a regular basis using an
algorithm that was implemented in Matlab.
Beside the oscilloscope, the circuit can be separated into two parts.
The first part of the circuit implements a current controller and is
shown in Figure 7.2. The setpoint of the current can be defined via a
voltage signal proportional to it at the coaxial socket. The operational
amplifier OA1 implements a PID controller that handles the current
control. The difference between the reference voltage and the ampli-
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Figure 7.1: Schematic structure of the PicoEIS impedance spectroscopy mea-
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Figure 7.2: Circuit for current control of the PicoEIS instrument.

fied voltage of the shunt resistor RS is compensated. The amplified
voltage of the shunt resistor is also connected to another coaxial socket,
so that a measurement of the actual current is possible. OA2 is an
OP549 power operational amplifier. This allows an output current of
up to 8 A, so that an additional driver stage is not necessary.
The circuit for offset compensation is shown in Figure 7.3. The battery
voltage is measured with an instrumentation amplifier. It has an input
for the voltage reference, i.e. the measured battery voltage is output
with respect to the reference potential. For offset compensation, this
reference voltage input has to be assigned with the negative cell volt-
age. The measured voltage is then passed through a low-pass filter to
prevent alias errors in the subsequent acquisition of the signal with
the PicoScope.
A STM32 microcontroller is used to automate the offset compensation
as soon as the main program of the computer initiates it using the se-
rial interface. The reference contact of the instrumentation amplifier is
controlled via a Digital Analog Converter (DAC). The resulting output
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voltage is then compared with ground potential using a comparator.
The actual compensation is done by successive approximation. The
bits of the DAC are set consecutively from Most Significant Bit (MSB)
to Least Significant Bit (LSB). If the resulting voltage is lower than
ground, the bit is reset, otherwise it remains set. The development of
the resulting voltage vm,volt is shown in Figure 7.4. The distance to the
ground potential becomes smaller with each step.
Due to the 3-electrode technology, the measurement of the impedance
spectra can only be performed during a charging process and during
a discharging process, respectively, so that the SoC of the cell changes
to a certain extent during the measurement. Since the measurement
time at low frequencies is up to 30 s, the DC component of the volt-
age measurement may change during the measurement. The voltage
change is particularly large at the beginning of charging or discharg-
ing processes because the slowest processes have yet to decay. The
voltage signal of such a case is shown in Figure 7.5 as an example.
The resulting error is minimized by modeling the DC voltage compo-
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Figure 7.5: Measured voltage signal of an impedance measurement whose
direct component increases during the charging process.

nent in a linear way and subtracting it from the characteristic of the
voltage. Linear functions are determined by two points. Thus, the
mean values of the first sine period (p1) and the last sine period (p2)
of the voltage signal are being determined. The mean value of a sine
period without offset is zero. Therefore, for the evaluated periods, the
mean value can be used to determine the offset value pi,v. The associ-
ated time component pi,t of the points corresponds to the midpoint
of each period. Thus, the point (p1) of the first period is given by its
components

pi,v =
sp

∑
s=0

vs

sp
, (7.1)

pi,t =
sp

∑
s=0

ts

sp
=

1
2 · f

. (7.2)

Here s implements a control variable that passes through the voltage
samples vs$ and their corresponding time pointsts. The number of
values corresponding to the period is given by sp and the measured
frequency by fk. The equation of a line described by p1 and p2 is
then subtracted from the raw measurement data. As can be seen in
Figure 7.6, the error is almost completely eliminated.
Afterwards the corrected voltage signal and the measured current
signal are Fourier transformed to V andI. Since only one frequency
is applied at a time, only this frequency has to be evaluated. To save
computational effort, the Goertzel algorithm can therefore be used[45].
Finally, the impedance Z of frequency k is calculated by

Zk =
Vk
Ik

. (7.3)

Several impedances for different frequencies are measured quickly
one after the other and can be combined to a spectrum.



122 state estimation

0 2 4 6 8 10

−2

0

2

time [ms]

vo
lt

ag
e

[m
V

]
Figure 7.6: Adjusted voltage signal of an impedance measurement after sub-

tracting the linear DC voltage function.

Exemplary measured impedance spectra are shown in Figure 7.7.
Both spectra were measured directly one after the other during a
discharge process, so that the states of charge differ minimally. Large
inaccuracies can be found especially in the low-frequency right-hand
region. The big disadvantage of the PicoEIS is the poor accuracy
of the impedance measurements. The reason for this is the limited
resolution of the current setpoint signal. The resolution of the DAC of
the PicoScope offers a resolution of 12 bit at a fixed reference voltage
of ±1 V. On the one hand, the resolution of the output signal thus
depends on the amplitude of the current, since the current amplitude
is selected such that the amplitude of the voltage response is less
than 10 mV. This means that one loses some of the resolution of the
DAC, particularly with larger impedances, since a reduced current
amplitude is used. These larger impedances can be found on the
right-hand side of the spectra which corresponds to low frequencies.
On the other hand, the signal output by the DAC consists not only of
the AC component, but also of the DC component, which determines
the charge or discharge current of the cell during the measurement.
If the DC component is particularly large, a scaled-down signal first
has to be output so that the voltage range of the DAC is not violated.
Subsequently, this signal is amplified again to obtain the desired
current. The initial scaling also reduces the resolution of the generated
sine wave.

7.1.2 MicroEIS

These problems are eliminated in a new circuit. The overall structure
of the circuit is shown in Figure 7.8. The entire EIS process is now
controlled by a microcontroller, so that the setup is much smaller
and field applications are also possible. The STM32F4 microcontroller
represents the centerpiece of the schematic that controls all of the
other peripherals. One of its two DACs is used to output a sine wave
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Figure 7.8: Schematic of developed circuit for measuring impedance spectra

at the frequency that is measured. The other DAC creates several
constant voltages using a Sample-and-Hold (S&H) circuit that enables
the duplication of numbers of outputs as long as constant voltages
are being output. These voltages control the amplitude and the offset
of the signal. The accuracy of the output signal is kept high, be-
cause amplitude and offset are controlled separately. A galvanostatic
impedance measurement is preferred because the SoC of the battery
is kept unchanged. Therefore, the output signal is used as input of
a current controller that applies the AC current to the Battery Under
Test (BUT). Last but not least, an external ADC is used to measure both
the actual applied AC current and the resulting voltage response of the
BUT. According to MacDonald the amplitude of the voltage response
has to remain less than 10 mV[8]. Therefore, a high precision, high
speed ADC, AD7768-4, is used so that the voltage response can be
measured with sufficient accuracy despite the voltage offset of the
battery. Offset compensation is thus no longer necessary.
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Figure 7.9: Schematic signal generation

7.1.2.1 Signal Generation and Measurement Unit

Figure 7.9 takes a closer look to the signal generation. The sine volt-
age VDAC1 is the DAC output of the microcontroller which oscillates
between 0 V and 3.3 V. The left amplifier is the voltage controlled
gain amplifier LMH6503. It amplifies its differential input voltage.
Therefore, Rpot1 sets the negative input voltage to 1.65 V so that the
differential input voltage is a symmetrical sine wave. The amplitude
of the output signal Vamp can by controlled by VGain.
The components on the right-hand side implement a difference am-
plifier. Since all resistors that belong to this circuit have an equal
resistance

Vout = Vo f f set − Vamp

applies to the output voltage. Accordingly, voltage Vamp is inverted
and shifted by an offset. Since Vamp is a symmetrical sine wave and
only the phase difference between the applied current and the voltage
response is evaluated for determining the impedance, an inversion of
Vamp does not have any impact on the measurement.
VGain and VO f f set are generated by a single DAC output using a S&H

circuit shown in Figure 7.10. The first amplifier implements a voltage
buffer that decreases the current of the DAC. The following voltage
divider shifts the DAC output range to symmetrical ±1 V range by
referencing the lower pin of R2 to a negative voltage. Thereby, the
offset voltage of Vout can correspond to either a constant charging or
a constant discharging current. The actual sampling is implemented
by a digitally controlled analog switch S1 while the capacitors hold
the sampled voltages. The circuit is controlled by the microcontroller
that uses a timer with three output compare channels that cyclically
generate interrupts at three different time points. During the first
interrupt the switch is set to middle position that is not connected.
The second interrupt changes the output of the DAC output voltage
to the value of the next clamp. Finally, the switch is switched to this
very clamp charging the corresponding capacitor. The final voltage
buffers output the voltage that is stored in the capacity. Since the
input current of an operational amplifier is rather small, the voltage of
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the capacity is almost constant, even when the DAC signal is removed
when switching to the other path.

7.1.2.2 Current Controller

Since the galvanostatic impedance measurement method allows impedance
measurements that do not affect the SoC of the battery, a current con-
troller needs to be developed. The first question that arises here is
whether digital or analogue control is better. Although it is much eas-
ier to adapt the controller parameters to the system being measured,
the time constants are very small, so that the sampling intervals of a
digital control would lead to instabilities. Therefore, an analog control
system that is based on operational amplifier is used. The OPA549

is again used as the output operational amplifier, which can directly
drive the required currents.
One possible method for implementing a current controller is How-
land’s current pump. The schematic of the basic Howland current
pump is shown in Figure 7.11. An advantage of the current pump is
that the current can flow in both directions. However, this original
version has two crucial disadvantages. On the one hand, the output
resistance depends strongly on the matching of the resistors R1 to
R4. On the other hand the load current iL flows to a large extent
also through R4. For EIS of batteries several amperes are necessary.
Accordingly, extremely precise resistors with a high nominal power
are required.
These weaknesses can be corrected by slight adjustments. Figure 7.12

shows an improved version of the current pump. The necessary loop
and node equations are given by

0 =
V1 − VC

R1
− i1, (7.4)

0 =
V2 − VC

R3
− i3, (7.5)
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Figure 7.11: Schematic of Howland current pump

0 = V1 − R1i1 − R2i1, (7.6)

0 = V2 − R3i3 − R4i3 − VL, (7.7)

0 = VA − R5i5 − VL, (7.8)

0 = i5 + i3 − iL. (7.9)

Separating iLin equation 7.9 and substituting i5 and i3 using equa-
tions 7.4 to 7.8 results in

iL =
V2 (R1R4 + R1R5 + R2R4)− V1 (R2R3 + R2R4)

R1R5 (R3 + R4)
+

+
VL (R2R3 − R1R5 − R1R4)

R1R5 (R3 + R4)
. (7.10)

The circuit implements a voltage controlled current source if the load
current iL is independent of the voltage of the load VL. Therefore the
constraint

R2R3 = R1R5 + R1R4 (7.11)

has to be satisfied which means that the ratio of R1 and R2 needs to
equal the ratio of R3 and (R4 + R5):

R1

R2
=

R3

R4 + R5
. (7.12)

Substituting R3 and R2 for R1and (R4 + R5), respectively, results in

iL =

(
R4 + R5

R1
· 1

R5

)
(U2 − U1) . (7.13)
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The output current of the improved Howland circuit depends on the
input voltage difference and the gain is set by R5 and modified by the
ratio of R1 and R2.
One advantage of the improved Howland current pump is that the

resistor R5 that sees the output current can be small while maintaining
the gain of the circuit by modifying the other resistors of the circuit.
However, the control loop does not use an integral component, so
that a high gain of the operational amplifier is necessary to ensure the
smallest possible control deviation. Especially when high frequency
signals are used, this condition is no longer guaranteed, since the
gain of the OPA549 has already dropped by 5 orders of magnitude
at a frequency of 1 kHz. For this reason, the Howland current pump
approach was discarded.
Another possible current controller implementation is shown in Fig-
ure 7.13. Here,an instrumental amplifier is used to measure the load
current iL and two operational amplifier implement a differential am-
plifier and a PID controller. The main purpose of the instrumentation
amplifier is to measure and amplify the differential voltage of the
shunt resistor RS and to reference its output voltage

vS(t) = (vA(t)− vL) · GS = RSiL(t) · GS (7.14)

to ground potential. The value vI(t) sets the desired load current iL

multiplied by RS and GS. Therefore, the operational amplifier on the
left-hand side implements the differential amplifier with a gain of 1

and determines the negative of the measured error e(t):

vE(t) = vS(t)− vI(t) = −e(t). (7.15)

The actual controller is implemented by the op amp on the right-hand
side. As an approximation, the inputs of an operational amplifier can
be regarded as current-less, so that the current flowing through R2

and C2 can be assumed to equal i1(t). Therefore, i11 and i12 form two
components of the regulating variable:

i2(t) = i1(t) = i11(t) + i12(t) (7.16)
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Due to the negative feedback, both input terminals of the operational
amplifier are forced to ground potential. Therefore, the current i11(t)
can be calculated by

i11(t) =
1

R1
vE(t) = − 1

R1
e(t). (7.17)

Furthermore, i12 is defined by

i12(t) = C1
d vE(t)

dt
= −C1

d e(t)
dt

. (7.18)

The output voltage vA is determined by the current i2 :

vA(t) = −i2R2 −
1

C2

∫
i2(t) dt. (7.19)

Inserting equations 7.16 to 7.18 results in

vA(t) = −R2

R1
vE(t)−

1
R1C2

∫
vE(t) dt+

− R2C1
d vE(t)

dt
− C1

C2
vE(t), (7.20)

vA(t) = −
(

R2C2 + R1C1

R1C2

)
vE(t)+

− 1
R1C2

∫
vE(t) dt − R2C1

d vE(t)
dt

, (7.21)

vA(t) =
(

R2

R1
+

C1

C2

)
e(t) +

1
R1C2

∫
e(t) dt + R2C1

d e(t)
dt

. (7.22)

Comparing the last equation with the equation of a PID controller

y(t) = Kp · e(t) + Ki

∫
e(τ) dτ + Kd

d e(t)
dt

(7.23)

results in the following parameters:

Kp =
R2

R1
+

C1

C2
, (7.24)

Ki =
1

R1C2
, (7.25)

Kd = R2C1. (7.26)

In the next step the controller parameters were optimized. Since the
load RL represents the BUT, which cannot be described sufficiently
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Figure 7.13: Schematic of the PID current controller

accurately by a resistor, an equivalent circuit consisting of a voltage
source, a series resistor and a RC parallel circuit was used as RL. The
circuit simulator Microcap already includes an optimizer. During the
optimization the controller parameters were tuned to minimize the
expression RMS(v(VE)) when a step function is applied to the input.
Thus, the root mean square of the voltage Ve, which in turn represents
the control deviation should be as small as possible. The optimized
circuit was then produced on a Printed Circuit Board (PCB). Care must
betakentoensurethattheconnectionsthatdrivethehighcurrentto
the BUT are sufficiently sized.
For testing of the current controller, a test impedance was designed
according to the recommendations in Kiel’s dissertation, which mod-
els the impedance behavior of a battery[63]. The main problem in
reproducing the impedance behavior of a battery is the necessary
capacitance, which is usually larger than a few farads. The produc-
tion of such large capacitance is very expensive, unless double layer
capacitors are used, which, however, show a strong dependence on
temperature, state of charge and aging and are thus far from con-
stant[31]. Figure 7.14 shows Kiel’s approach, in which the impedance
Z, which can consist for example of an R ∥ C element, is reduced by a
voltage divider circuit with Rshunt and Rv, so that available capacitors
can be used.
First, the step response of the current controller was measured using
the test impedance, whereby the target signal was generated with the
aid of a function generator. The voltage VS is used to measure the
current and shown in Figure 7.15. The step response of the current
controller asymptotically follows the input signal without overshoot
and thus demonstrates the behavior of a first order low pass filter.
The test signal transitions to 500 mV, so that the time constant can
be read when 315 mV is reached. This occurs after 43 µs and thus
corresponds to a cutoff frequency of 23 kHz. The current regulator is
thus sufficiently fast for frequencies usually measured during EIS.
Figures 7.16 and 7.17 show the results when combining the signal gen-
eration unit and the current controller. Once again, the test impedance
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Figure 7.15: Step response of the PID current controller.
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Figure 7.16: Step response of the signal generation unit and current controller
response.
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Figure 7.17: Control deviation of the PID current controller when applying
signal generation step function.

was used as RL, which was designed on the basis of Kiel’s disserta-
tion[63]. First of all, it is noticeable that there is no visible difference
between these two signals. However, the signals correspond rather
to a first order delay element than a step function. This is due to
the fact that the input signal is generated by the signal generation.
The charging of the capacitor in the S&H part is mainly responsible
for the slow rise of the voltage. Therefore, the current controller is
dimensioned sufficiently fast to output the generated signals.

Figure 7.17 takes a closer look at the control deviation VE. At the
beginning of the step, when the slope is at its maximum, there is a
small control deviation. In relation to the step height of 400 mV, the
maximum deviation of 6.3 mV is still relatively small.

7.1.3 EISmeter

During the project, funding was obtained for a commercial impedance
spectroscope. The most difficult challenge in the search for a suitable
product is the simultaneous application of a DC current during the
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Figure 7.18: Schematic structure of the Digatron EISmeter[14].

impedance measurement. This is essential for the developed zinc-air
cell, because it uses a 3-electrode technology and the respective charge
or discharge region must not be left during the impedance measure-
ment. If no DC current is applied, the cell would be charged during
the first half-period of the sine wave and discharged during the second
half-period.
The EISmeter from the Digatron company was finally chosen. This
was developed together with the Institute for Power Electronics and
Electrical Drives (ISEA) of RTWH Aachen university. The basic struc-
ture of the device is shown in Figure 7.18. The parameters of the
measurement are set on a computer. The parameter set includes the
frequency range being measured, the desired amplitude of the voltage
response, the DC current that will be used, and maximum values for
the current amplitude and cell voltage[28]. The data is transmitted to
the EISmeter via a CAN bus. A digital signal processor coordinates
the generation of the current signal and measures the resulting cell
voltage. AC part and DC part of the current are generated separately.
The impedance is then determined from the data and sent back to the
computer[14, 28].The impedance range of 300 µΩ to 3 Ω is sufficiently
large, because as seen with the previous measuring instruments, the
impedances of the zinc-air cells are between 5 mΩ and 100 mΩ. Also
the frequency range is generally applicable, especially it is possible to
measure at frequencies lower than 1 Hz[29].
Figure 7.19 shows some example measured data of the EISmeter.
Between the measurements the cell was discharged for 45 minutes,
therefore the spectra are not exactly identical. Especially in compar-
ison to the Picoeis, much smaller inaccuracies can be found. It can
already be seen here that especially the low-frequency components,
which are found on the right-hand side, are influenced by the SoC.

7.1.3.1 Electrode Changer

However, the EISmeter has the disadvantage that it is designed for
using two-pole battery cells. Besides the manual reconnection, one
way to still use zinc-air cells with 3-electrode technology is to use two
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Figure 7.20: Schematic of the electrode changer board used to drive 3 elec-
trode technology cells with EISmeter impedance spectroscope.

channels of the EISmeter for one cell. One channel is taken exclusively
during charging of the cell and is connected to the charging electrode
and one channel is connected to the air cathode is used only during
discharging of the cell. Of course, the method has the disadvantage
that it reduces the number of simultaneous tests by half. To overcome
this, an electrode changer board was developed. The corresponding
circuit is shown in Figure 7.20. It is based on a Hall-effect current
sensor from Allegro Microsystems. An operational amplifier, which
works as a comparator, detects the direction of the current, i.e. whether
the cell is being discharged or charged. Depending on the case, a
different current path is enabled to the appropriate electrode. An iden-
tical control is also available for the path of the voltage measurement,
whereby smaller transistors are used here.

7.2 state of charge estimation

Probably the most important information that a battery mangament
system relies on is the SoC of the cell. A too low SoC leads to a signifi-
cant reduction in the lifetime of zinc-air cells, since the proportion of
zincate in the anode is particularly high. On the one hand, it dissolves
in the electrolyte, which simply reduces the amount of material in
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the anode and thus the cell capacity. This can be counteracted by
already adding zinc to the electrolyte beforehand. Nevertheless, the
zinc anode in the discharged state is in the form of a paste and is
displaced downwards by the force of gravity. At the bottom, the anode
mass can then expand, reaching as far as the counter-electrode. The
resulting short circuit prevents further battery operation.
On the other hand, overcharging of the cell is also a problem. The
gassing voltage of the cell is on the same level as the charging voltage.
When charging at higher states of charge, an accompanying electroly-
sis of the electrolyte therefore already begins, resulting in the release
of hydrogen. As soon as the cell is fully charged, the applied current
is actually used completely for electrolysis. On the one hand, this is
problematic because an atmosphere with more than 5 % hydrogen is
an explosive environment. However, this problem can be overcome
with a fan. On the other hand, the electrolyte loses hydrogen and
oxygen during electrolysis, while the amount of potassium hydrox-
ide remains the same. The concentration of the electrolyte therefore
increases. This is accompanied by a decrease in the conductance of
the electrolyte and the efficiency of the cell. In addition, the higher
concentration of potassium hydroxide is more aggressive and can
attack the other cell components.
In current cell technologies, the cell voltage is typically used to deter-
mine the SoC. For both lead-acid batteries and lithium-ion cells, the
open-circuit voltage is strongly dependent on the SoC. This also en-
ables the Constant Current Constant Voltage (CCCV) charging method,
where a maximum current and voltage is specified. As long as the cell
is fairly empty, the charging voltage is below the end-of-charge voltage
and the cell is charged with the specified maximum current. Towards
the end of the charging process, the charge voltage then reaches the
end-of-charge voltage. Voltage regulation now takes place and the
charge current continues to drop.
As already described in sections 4.1 and 5.2, the voltage range is al-
most constant for a large part of the discharge process. At the end,
however, there is a rapid drop in cell voltage, so that an empty cell can
be easily detected. During charging, the dependence of the cell voltage
on the SoC is also much smaller for zinc-air batteries. Charging in
CCCV mode is thus impractical, since the cell voltage already reaches
the gassing voltage at the beginning of the charging process. Staying
away from the gassing voltage is only possible by drastically reducing
the charging power, in which case there would be no practical use
for the cell. For this reason, zinc-air cells are charged at a constant
current.
In particular, the course of the microcycles shows that the influence
of temperature and electrolyte condition on the cell voltage is greater
than the influence of the SoC. For example, the voltage differences
between cycles are greater than during a cycle. Thus, it is impossible
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to determine the SoC based on the cell voltage. Instead, the impressed
charge is often counted. When the cell is used continuously, this is
a totally practicable method. However, when the cell is left unused
for long periods, an unknown self-discharge comes into play. For this
reason, this chapter examines alternative ways of determining the SoC.
Here, electrochemical impedance spectra are a promising approach.

7.2.1 Modeling of Equivalent Circuits

A frequently used analysis method of impedance spectra is the pa-
rameterization of an electrical equivalent circuit, as it was created in
Section 4.1. There is also a dedicated paper dealing with SoC depen-
dent fitting of equivalent circuits[84].

7.2.1.1 Model Verification

From each measured spectrum, an electrical battery model is derived
whose parameters depend on the SoC. The parameters of the corre-
sponding equivalent circuit are varied so that the sum of the squared
error

Esquare =
n

∑
i=1

[Zmeasured( fi)− Zmodel( fi)]
2 (7.27)

between the measured impedance Zmeasured and the model impedance
Zmodel for the measured frequencies f is minimized. Numerical solu-
tion methods as described in Section 4.1 from Matlab or Python can
be used to solve the minimization problem. The developed Python
program to fit the model can be found in Appendix A.2.
Figure 7.21 shows a measured impedance spectrum during the charg-
ing process and the impedance curve of the fitted battery model. Both
curves have a very similar course. Although models of different cell
reactions often provide similar impedance behavior, it can be seen that
the battery model created in Section 4.1 is suitable for successfully
modeling the tested zinc-air cell. Colored highlights are used to mark
various properties of the measured spectrum. First of all, the green
area shows that at particularly high frequencies an inductive compo-
nent can also be measured, which is indicated by a positive real part.
The subsequent semicircle of the impedance curve, which results from
the parallel connection of the charge transfer resistance and the double
layer capacity, does not start at a 90° angle to the real axis (red area).
As mentioned in Section 4.1, the porosity of the two electrodes is a
potential reason. Therefore, the double layer capacity in this battery
model is described by a constant phase element. While the double
layer capacity also significantly defines the frequency distribution on
the semicircle, the charge transfer resistance defines the radius marked
in yellow. Both electrodes act in the same frequency range during the
charging process, so that both semicircles overlap and are difficult to
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Figure 7.21: Impedance spectrum of the zinc-air battery measured during a
charge process and impedance curve of the fitted model.

distinguish. However, a closer look reveals that the curvature of the
semicircle changes during the course (red and blue area), so that only
a model that describes both electrodes allows a sufficiently accurate
fitting. In the gray area of the particularly low frequencies, the first
impact of the Warburg impedance can be seen.
In Figure 7.22, the battery model is verified with the measured spec-
trum during a discharge process. Again, the developed model is
suitable for modeling the measured data. Compared to the charge
process, especially the impedance values at the low frequencies are
about twice as high. This confirms once again that the separate nickel
electrode used for charging not only leads to an increased cycling life,
but also allows higher charging currents with lower power dissipation.
The semicircles based on the parallel connection of the double layer
capacitance and the charge transfer resistor are more separated here.
In the left part of the curve, there is initially a smaller circle for the
higher frequencies, which is created by the zinc anode. Subsequently,
this merges into a much larger semicircle. The radius of the semicircle
is essentially formed by the charge-transfer resistor. Because the air
electrode is several millimeters thick, the diffusion length of the oxy-
gen ions is also correspondingly long, so that the discharge power of
the cell depends mainly on the surface of the GDE.
While in this section the battery models were verified first with the
measurement data from the conventional EISmeter instrument, the
next section investigates whether embedded measurement devices
that can be used in a demonstrator, with their limited resolution, are
sufficient to determine the SoC based on the battery model.

7.2.1.2 Results

Since the model structure of the equivalent circuit of the anode and
cathode is identical, the assignment of the diffusion processes to the
electrodes in the model can be random. Thus, the reactions of the
zinc anode in Figure 4.5 can be assigned either to the left electrode
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Figure 7.22: Impedance spectrum of the zinc-air battery measured during a
discharge process and impedance curve of the fitted model.

impedance or to the right. To provide a fixed assignment for periodic
impedance measurements, the parameters of the previous impedance
spectrum are used as initial values for the Levenberg-Marquardt al-
gorithm. Since this performs a gradient descent, a strong tendency is
thus established for the same electrode pairing.
Initially, the PicoEIS setup was used to perform the EIS. Selected ex-
amples of the measured spectra during discharge of a 50 A h zinc-air
cell are shown in Figure 7.23. Using the low-budget setup is sufficient
to measure spectra that differ with respect to the SoC. Especially in
the right region of the impedance spectrum, clear differences between
the charge states can be seen; these are the low frequencies in the
range from 100 mHz to 1 kHz. The reason for this behavior is prob-
ably that the diffusion processes at the GDE are rather slow. Spectra
at higher charge states tend to have higher absolute values for both
the imaginary and real parts. This can be explained by increasing
charge transfer resistance. At higher frequencies, the impedance is
mainly determined by the conductivity of the electrolyte, since the
double layer capacitors of the anode and cathode act as a short circuit.
Therefore, all spectra end with almost the same impedance value.
In Figure 7.24, two different spectra of a charging cycle are shown. For
each spectrum, only one semicircle is shown here. While the spectrum
of a half-charged battery matches the equivalent circuit, the behavior
of a fully charged battery does not match the equivalent circuit. Prob-
ably in this case electrolysis is dominant, which leads to a completely
different behavior. At low frequencies, the impedance spectrum tends
to drift away with constant phase, which can be explained by a domi-
nant Warburg element[134]. Again, the highest variance is found at
the low frequencies.
In Figure 7.25 some of the determined parameter values of the equiva-
lent circuit during the course of a discharge cycle are shown. These val-
ues are normalized with respect to the mean value in order to illustrate
the characteristic. However, their variance is still small and is therefore
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Figure 7.23: Some measured sample spectra of a discharging cycle at different
states of charge
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Figure 7.25: Development of the normalized parameter of the equivalent
circuit during a discharge cycle

plotted in parts per thousand. The assignment of the electrodes is
selected so that Cdl,2 and Rct,2 belong to the GDE. Their parameter
values are quite constant, since both the oxygen concentration of the
ambient air and the electrolyte concentration and temperature change
only slightly during the discharge process. The absolute change in Rel
is also quite small, since resistivity is the minimum impedance of each
spectrum. Therefore, the most unambiguous parameter for assessing
the charge state is the charge transfer resistance Rct,1 of the zinc anode.

Figure 7.26 takes a closer look at the course of Rct,1. As before, the
absolute change in the parameter value is rather small, but a precise
trend can still be seen. At the beginning of the discharge cycle, the
resistance hardly changes. The zinc concentration is still high enough
not to affect the charge transfer. But it increases linearly after 20 A h
have been discharged. A quadratic polynomial model MECM,dch pro-
vides a good approximation in both parts of the characteristic curve.
So, calculating back the determined charge transfer resistance Rct,1 to
the SoC results in a Root Mean Squared Error (RMSE) of

RMSEEC,dch =

√
1
n

(
∑n

i=1 (MECM,dch (Rct,1(i))− Qdch (Rct,1(i)))
2
)

RMSEEC,dch = 2.03 A h.
(7.28)

Figure 7.27 shows the determined parameters of the model with re-
spect to the SoC during an entire charge cycle. These values are also
normalized to the respective mean value here. It should be noted
that the cell was massively overcharged and that the change in the
parameter values is so large that these are not given in parts per thou-
sand. Most parameters show a significant change at 68 A h. Taking
into account that during the discharge process 51 A h could be dis-
charged before the final discharge voltage was reached, the secondary
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Figure 7.26: Closer look to the charge transfer resistance of the anode during
a discharge cycle
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Figure 7.27: Development of the normalized parameter of the equivalent
circuit during a charging cycle

electrolysis process, which occurs when the cell is overcharged, is
probably the reason for the massive change of the parameters. The
assumption is strengthened by the fact that the ohmic resistance of
the electrolyte also experiences a strong change. Battery operation no
longer takes place, electrolysis becomes dominant at the end of the
charging process and the model simply no longer fits. The difference
between the charged and the discharged charge can be explained by
the coulombic efficiency.
So while measuring the cell voltage is not sufficient to determine a
charge termination of zinc-air batteries, measuring impedance spectra
and fitting the created electrical equivalent circuit of the cell makes it
easy to detect the end of charge.
Determining the current SoC, on the other hand, is more problematic.
The reason is that there is no clear dependence of any parameter on
the SoC when considering the range in which the battery is not yet fully
charged and no dominant electrolysis takes place. Nevertheless 7.28

provides a more detailed representation of the course of the charge
transfer resistance of the anode Rct,1 in the region where the battery
is not yet full. Again, there is a correlation with the SoC, which can
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Figure 7.28: Development of the charge transfer resistance during a charging
cycle while the battery is not overchaged

be approximated by a linear fit MECM,ch. However, the noise of the
parameters fitted from the measured data is so large that no exact
assignment to a SoC is possible. Therefore, a RMSE of

RMSEEC,ch =

√
1
n

(
∑n

i=1 (MECM,ch (Rct,1(i))− Qch (Rct,1(i)))
2
)

RMSEEC,ch = 13.51 A h
(7.29)

is obtained.
With the parameterization of the electrochemical model based on
measured electrochemical impedance spectra, it is therefore possible
to determine both the charge termination and the SoC during discharge.
In particular, detection of the charge termination purely on the basis
of the cell voltage was not possible before. However, the noise during
charging is too high to allow reliable detection of the SoC based on the
electrical equivalent circuit.

7.2.2 End of Charge Detection

Section 7.2.1 presents how the measurement of an electrochemical
impedance spectrum can be used to detect a charge termination of
rechargeable zinc-air batteries. It is shown that a strong change in the
low frequency diffusion process occurs when the full state is reached.
This is well illustrated in Figure 7.24 by the much larger radius of
the overcharged spectrum. In this chapter, a robust method is now
presented that uses the change in impedance spectra as a cutoff cri-
terion and therefore works reliably even in the presence of strong
manufacturing tolerances, such as those that are expected when cells
are manufactured by hand. A detailed publication covering this topic
can be found in [82].
The idea behind the new end-of-charge criterion is to observe the
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Figure 7.29: Impedance spectrum colour weighted from red (SoC=0) to blue
(SoC=100)

rate of change of the electrochemical impedance spectra. The spectra
describe the chemical processes in the cell and depend, for example,
on the charge state or the SoH. Of course, the spectra are also affected
by parameter tolerances. Therefore, not the absolute impedance values
are evaluated, but their rate of change. The measured spectra of a
charge cycle are shown in Figure 7.29. The color of each characteris-
tic curve specifies the time of the impedance measurement. Since a
constant charge current is used, the color also represents the SoC of
the battery. Red spectra indicate an empty battery (SoC=0 %), while
blue spectra belong to a fully charged or even overcharged battery
(SoC=100 %). While the differences in spectra between a full and an
empty battery are rather small at high frequencies (left part of the
Nyquist plot), the largest deviation in impedance values is found at
the low frequencies that form the semicircle on the right. To reduce
the computational cost as much as possible, no electrochemical model
is fitted in this approach. Instead, the proposed method generates
circular models of the right semicircles and uses the evolution of their
radii[81].

There are two challenges in creating a circle model based on a mea-
sured spectrum. On the one hand, the right semicircle must be sepa-
rated. The phase ϕ of the impedance values can easily be used for this
purpose. This indicates the angle between the impedance values and
the real axis. The evolution of ϕ over all frequencies in a spectrum is
shown in Figure 7.30. The first frequency index k = 0 corresponds to
the lowest measured frequency. Therefore, the values on the left side
in Figure 7.30 correspond to the values on the right side of Figure7.29.
Since the radii of the high-frequency circles have a tendency to be
much larger than the radii of the important semicircles, the angle
values decrease significantly as the frequencies of the left semicircle
are reached.
The aim of the method is to be as robust as possible and therefore
to be able to generalize to new battery prototypes. Hence, the use
of absolute values is omitted. Instead, the derivative of the course
of ϕ with respect to the frequency is used. Since the impedances are
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Figure 7.31: Resulting spectrum after separating the right semicircle.

measured only at discrete frequencies, the derivative can be specified
as the difference quotient of two subsequent impedance values with
an interval of 1 (diff function). Also the threshold value used to deter-
mine the index of the splitting point is not based on an absolute value,
but is determined by averaging the spectrum itself. The index of the
splitting point is chosen so that

ksplit =
∂ϕ(Zk)

∂k
>

[
5 · RMS(

∂ϕ(Zk)

∂k
)

]
, (7.30)

more precisely

ksplit = ϕ(Zk)− ϕ(Zk−1) > [5 · RMS(ϕ(Zk)− ϕ(Zk−1))] . (7.31)

Figure 7.31 shows a separated spectrum after the cutting process. As
can be seen, the cutting algorithm works quite well. However, the
data is also contaminated with a lot of noise during the charging
process. Therefore, the second challenge is to remove outliers from
the spectrum before modeling the circles.
Here, good results have been achieved with the RANSAC (Random
Sample Consensus) algorithm. Figure 7.32 helps to illustrate the
algorithm. The basic idea is to fit multiple models and use the best-
fitting model with the fewest outliers[37]. Three points are sufficient to
define a circle, so three impedance points are first randomly selected
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Figure 7.32: Visualisation of RANSAC algorithm.

and used to create an initial circle model. These three points can either
result in a good model (blue points) or a bad model (red points). The
resulting model is then tested against all other impedance values. If
the distance between an impedance value and the circular model is
less than 2 % of the maximum absolute value of that spectrum, it is
considered an inlier and the number of inliers is summed up. Good
models are characterized by a high number of inliers. These steps
are repeated for 15 sets of randomly chosen initial values. Finally, the
algorithm selects the model with the highest number of inliers.
Next, an optimized circular model is determined using all impedance
values that are considered inliers by minimizing the mean squared
error according to Bucher[21]. The relation of a circle is given by

(x − xc)
2 + (y − yc)

2 = r2 (7.32)

where xc and yc denote the center of the circle and r the radius.
Substituting

A = x2
c + y2

c , (7.33)

B = 2 · xc, (7.34)

C = 2 · yc (7.35)

results in a linear system of equations:
1 −x1 −y1

1 −x2 −y2

1 −x3 −y3
...

...
...

 ·

 A

B

C

 =


x2

1 + y2
1

x2
2 + y2

2

x2
3 + y2

3
...

 (7.36)
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that is solved using the least-squares solution of the system. Finally,
the actual radius is determined by inserting the solution into the equa-
tions above.

The idea of the algorithm is to detect the transition of chemical pro-
cesses from charging the battery to overcharging with accompanying
electrolysis. Considered separately, the spectra change only moder-
ately during the charging process. At the beginning of the charging
process, the zincate is reduced to zinc. This process leads to an in-
crease in the SoC of the cell. When the charging process is about to end,
an accompanying electrolysis process starts, which separates the water
part of the electrolyte to hydrogen and oxygen. The concept is that
the spectra of these two reactions are very different, as the reactions
are completely different. Therefore, there is a detectable transition
when the cell reaches its charge termination. At this stage, the fraction
of impressed current used for zinc reduction decreases, while the
fraction used for electrolysis increases. For this reason, the derivative
of the radii is analyzed with respect to the charged energy. Since the
measurements of the impedance spectra were performed time discrete
with a fixed charging current and a fixed sampling interval of 30 min,
the difference between two following radii at measurement index n is
used as the derivative:

r′(n) =
∂r(n)

∂Qcharged(n)
=

rn − rn−1

Qcharged,n − Qcharged,n−1
. (7.37)

The development of the magnitude of the derivative during a charging
cycle is shown in Figure 7.33. It is quite small at the beginning of
the charging cycle, which means that the change in radii during the
charging process is actually quite small. Then after 60 A h has been
charged into the cell, the gradient increases sharply. At this point, the
transition of the chemical reactions begins. After 85 A h, the gradient
then decreases again. Here the reduction process stops completely
and only the electrolysis process takes place. Since this is relatively
constant, the change in the impedance radii is also accordingly small.
The threshold is determined based on the values of the derivative at
the beginning of the charging cycle. Even if the evaluated battery has
large tolerances, it can be assumed that at least 33 % of the targeted
capacity is reached. Therefore, the values of the derivative from the
first third of the nominal capacity are used to calculate the limit ∆rlimit.
More precisely, the algorithm uses the average the absolute values in
this range:

∆rlimit =

√√√√ 3
N

N/3

∑
n=1

∣∣r′(n)∣∣ · 8. (7.38)

Here N indicates the number of impedance spectra within the com-
plete nominal capacitance. The complete method thus operates free of
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Figure 7.33: Development of the gradient of the radii of the circle models.
The characteristic is divided into several chemical processes.
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Figure 7.34: Impedance spectrum split in charging (green) and overcharging
(red) - transition at roughly 60 A h

absolute values. The resulting threshold is also included in Figure 7.33.
A battery is now considered full when the absolute derivative of the
radius exceeds the comparison value:

∂r(Qcharged)

∂Qcharged
> ∆rlimit →

 True

False

Battery is full

Battery is not full
(7.39)

The battery used in this example was supposed to be manufactured
with a capacity of 100 A h. However, although the battery was charged
for 50 h with 2 A, which corresponds to a charge of 100 A h, only 56 A h
could be discharged during the subsequent discharge cycle. Assuming
that this difference is caused by coulombic losses, the criterion holds in
practical tests even in cases of particularly large deviation. Figure 7.34

shows the classification of the individual spectra of the charging cycle.
As expected, the spectra of a charged battery are densely arranged in
a small range. In contrast, the spectra of the overcharged battery vary
greatly. The reason for this is that the spectra of the transition are also
assigned to the overcharged state.

7.2.3 Regression using Artificial Neural Networks

With the methods presented in Sections 7.2.1 and 7.2.2, a robust de-
termination of the end of charge and a SoC determination during the
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discharge process is possible. Since the end of charge can be deter-
mined from the cell voltage, which drops sharply towards the end of
the discharge process, the only thing missing for a reliable detection of
the SoC is the possibility to determine it during the charging process
as well. In this section, it is therefore evaluated whether a regression
of the SoC based on ANN is possible[27, 35]. Among other things,
different methods of preprocessing the impedance data to generate
the feature space are presented and evaluated. A detailed publication
covering this topic can be found in [83].
Typically, the measured electrochemical impedance spectra are used
to fit the parameters of an equivalent circuit similar to Section 7.2.1.
Mainly due to the diffusion process, minimizing the squared error
does not result in a system of equations that allows a direct solution
using linear regression. Instead, a Newton-Raphson like algorithm
must be used to iteratively approach the minimum of the error func-
tion (see Section 4.1). This step is necessary for each evaluation of a
newly measured spectrum and therefore takes a lot of computational
resources. To avoid an underdetermined system of equations it is also
necessary to measure at least as many frequencies as parameters[40].
This may also increase the time needed. Following the identification
of the parameters of the electrical equivalent circuit, it is then still nec-
essary to relate the model parameters to the desired SoC, for example
with a quadratic approximation.
An analysis of the electrochemical impedance data based on the elec-
trochemical model does provide insights into the chemical processes
of the cell. However, insofar as the goal is only to determine the
SoC, this comes at the expense of speed and the necessary computing
power for each evaluation. ANN can offer an advantage here. While
training the network still takes its time, evaluation in the field is fast
and easy, not least because the SoC can be modeled directly. Thus, in
a short experiment on a desktop PC, a speedup of about 3 orders of
magnitude could be achieved. An evaluation of the equivalent circuit,
for example, takes on average 82.23 ms, while the evaluation of the
trained neural network took only 51.86 µs. Typically, BMS use micro-
controllers with much less computing power, making the evaluation
there require correspondingly more computing time. Moreover, ANN

have already been used successfully for the analysis of electrochemical
impedance spectra[27, 35].

Data Generation and Feature Extraction

Figure 7.35 shows the structure of the measured impedance data used
to train the neuronal networks. While parameter fitting of an elec-
trical equivalent circuit always uses one impedance spectrum to fit
an equivalent circuit, a large number of impedance spectra are used
for training an ANN. To generate the data, the zinc-air cell is charged
and discharged periodically while an electrochemical impedance spec-
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Figure 7.35: Structure of generated measurement data for state of charge
estimation using artificial neural networks.

trum is measured every 30 min (Figure 7.35 top). Since the cell is
used continuously and without interruptions, a known SoC can be
assigned to each measured spectrum by counting the charged and
discharged charges, respectively. Each individual spectrum in turn
contains 40 impedancemeasurements, each taken at different frequen-
cies (Figure 7.35 center). Since the impedance is the complex AC

resistance, the real and the imaginary part define an impedance in
each case (Figure 7.35 bottom).
Features now have to be defined from the generated measurement
data, which are supposed to work as input data of the ANN. In a
first approach, which is called raw in the further course, simply the
unchanged real and imaginary parts of a spectrum are used as input
vector xraw of the neural network. xraw thus results in

xraw = [ℜ {Z1} , . . . ,ℜ {Zm} ,ℑ {Z1} , . . . ,ℑ{Zm}] . (7.40)

The generation of the measurement data took place over a longer
period of time, so that the degradation and the SoH also influence the
measured impedance spectra. Therefore, two other types of features
are additionally evaluated. In a first approach, the real and imaginary
parts xraw measured at the SoC being evaluated are combined with the
real and imaginary parts of the last measured spectrum of an empty
cell xraw,SoC=0. This approach is called diff in the following part, since
it is intended to allow the evaluation of the difference of the spectrum
of the current SoC to an empty cell with the same aging condition.
Accordingly, the associated feature vector is formed by

xdiff = [xraw, xraw,SoC=0] ,

xdiff = [ℜ {Z1} , . . . ,ℜ {Zm} ,ℑ {Z1} , . . . ,ℑ{Zm}, .

ℜ {Z1,SoC=0} , . . . ,ℜ {Zm,SoC=0} ,

ℑ {Z1,SoC=0} , . . . ,ℑ{Zm,SoC=0}].

(7.41)
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The idea of the second approach is called grad and, similar to the
method presented in Section 7.2.2, it does not try to use the absolute
values of the spectra, but the change of the impedances Z and Z′ of
two successive spectra is evaluated. Since the impedance spectra are
measured regularly at 30 min intervals, the gradient of the spectra can
be approximated by the difference of two successive spectra. Thus,

xgrad = [xraw − x′raw] ,

xgrad = [ℜ {Z1} − ℜ {Z′
1} , . . . ,ℜ {Zm} − ℜ {Z′

m} ,

ℑ {Z1} − ℑ {Z′
1} , . . . ,ℑ{Zm} − ℑ{Z′

m}].

(7.42)

results for the feature vector here.
For the regression of the SoC, multilayer perceptron networks are used,
which have a hidden layer in addition to the input and output layer.
Due to the manual fabrication of the test cells, there are still strong
differences between the electrochemical impedance spectra of different
cells. Therefore, the neural networks are only trained with the data
of one cell, which results in a small data set. To avoid overfitting,
Bayesian regularization is used in the training algorithm. This tends
to improve generalization ability, since the sum of network weights
Ew is included in the objective function to be minimized[30, 87]:

F = α · 1
N

N

∑
i=1

(ei)
2 + β · Ew. (7.43)

Figure 7.36 illustrates the process for evaluating the ANN. In order
to evaluate the generalization capability, at the beginning, the mea-
surement data is randomly divided into training and validation data.
Meaning, the networks are trained with 90 % of the data set. After
training is complete, the remaining data is used to verify generaliza-
tion by predicting the state of loading of the unseen validation data by
the trained network and determining the resulting mean error. This
result also depends, to some extent, on the random partitioning of the
measured data. Therefore, to obtain a meaningful result, the proce-
dure is repeated five times using a heuristic technique. Furthermore,
the optimal number of neurons in the hidden layer is searched within
a grid search. The presented procedure is therefore repeated for the
number of neurons between 1 and 10.
Furthermore, the time required for the measurement is also subject to
optimization. The measured spectrum consists of a total of 40 different
frequencies, so 80 parameters are used as features (real and imagi-
nary part). Since a strong correlation is likely between impedances of
neighboring frequencies, it is investigated whether a smaller subset
of the whole spectrum is also sufficient to model the SoC. To test this
idea, the networks are also evaluated with spectra reduced to 40 and
20 features, respectively.
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Figure 7.36: Flowchart that describes the process of training and validation
of one combination of number of frequency and neurons

Analysis

A total of three cells are analyzed, each using a different DC compo-
nent during electrochemical EIS. Table 7.1 shows the mean absolute
error when the cell is charged with 1000 mA. The DC component of the
charging current is defined below as the working point. The results
are divided according to the method used, the number of frequencies
selected and the number of neurons in the hidden layer. The best
combination of each method is highlighted in green. The best overall
result is obtained using all 80 features of the 40 frequencies and 10

neurons when the spectra are combined with the impedances of the
empty cell as features (diff method). This leads to a mean absolute
error of 56.5 mAh. The results of the raw method are slightly higher,
but at a similar level. Although the result is also best here when all
frequencies are used, a reduction of the measured frequencies still
seems possible, since the error then does not increase dramatically.
The average error is still smaller than 1 % of the cell capacity, which
here is 100 A h. In contrast, the error of the gradient-based method is
quite high for most combinations. One possible reason is a high noise
level of the impedance measurement itself.
Applying ANN to the cells charged with other DC currents show simi-
lar characteristics. As can be seen in the associated Tables 7.2 and 7.3,
the error values are at a slightly higher level overall. One reason is
that the PicoEIS instrument is used. In this case, both the charging
current and the AC current of the EIS are modulated via one DAC.
Higher DC currents therefore result in a reduction of the resolution of
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Table 7.1: Mean absolute error in mA h at working point = 1000 mA with
respect to the used method, number of neurons (#n) and the
number of measured frequencies (#f). Best result of each method
is highlighted in green.

method Orig

#n

#f
80 40 20

1 118.5 180.7 590.1

3 122.0 124.0 140.0

6 117.0 4956 191.3

10 114.4 309.3 267.9

method Diff

#n

#f
80 40 20

1 141.3 237.2 4932

3 114.7 183.1 135.0

6 65.6 205.3 186.8

10 56.5 170.2 165.0

method Grad

#n

#f
80 40 20

1 643.9 925.8 4804

3 1233 2041 3222

6 3596 1747 236.7

10 1604 3486 272.5
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Figure 7.37: Regression plot that compares all output values of the trained
artificial neural network with its corresponding target value.

the sine wave. Overall, the diff method, which combines the current
impedance spectrum with the spectrum at the beginning of the charge
cycle, provides the best results. Furthermore, a small reduction of the
used features to 40 and 20 frequencies, respectively, is also possible
here without strongly degrading the regression quality. It can be
clearly seen that the third method, which uses the difference between
two measurements, is not suitable as feature extraction.
Figure 7.37 shows the states of charge estimated by the best network
fi as a function of the actual states of charge yi for the DC charging
current of 3 A. This corresponds to the nominal current of the cells
under investigation. A straight line corresponding to a perfect predic-
tion is also plotted in the Figure. However, due to the good prediction,
this line only overlays the predicted data. Accordingly, the coefficient
of determination

R2 = 1 − SSres

SStot
= 1 − ∑i (yi − fi)

2

∑i (yi − ȳi)
2 (7.44)

which is used to assess the goodness of fit of a regression, also has a
good value of 0.999.
In summary, EIS in combination with an artificial neural network is
also suitable for estimating the SoC of a zinc-air battery during a
charging process.

7.2.4 Regression using Support Vector Regression

In a next step, the SVR method is investigated as an alternative to
determine the charge state from an impedance spectrum. Two things
are special about this method. First, the cost function that is minimized
is designed so that small deviations that fall within a defined range
do not result in a cost. For example, it is possible to define the size of
the margin in such a way that the design of the cost function alone
prevents overfitting to the measured data. On the other hand, the
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Table 7.2: Mean absolute error in mA h at working point = 2000 mA with
respect to the used method, number of neurons (#n) and the
number of measured frequencies (#f). Best result of each method
is highlighted in green.

method Orig

#n

#f
80 40 20

1 6520 8327 7368

3 862.9 1579 1995

6 458.7 907.0 1312

10 801.2 557.5 1434

method Diff

#n

#f
80 40 20

1 4288 5172 5467

3 863.8 2158 1432

6 572.7 692.9 1047

10 572.9 425.8 1192

method Grad

#n

#f
80 40 20

1 23062 23014 22903

3 10806 15414 22968

6 8927 15529 17809

10 8391 13929 17378
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Table 7.3: Mean absolute error in mA h at working point = 3000 mA with
respect to the used method, number of neurons (#n) and the
number of measured frequencies (#f). Best result of each method
is highlighted in green.

method Orig

#n

#f
80 40 20

1 5746 6310 6706

3 949.3 3189 3130

6 1270 1066 2017

10 610.1 669.1 984.8

method Diff

#n

#f
80 40 20

1 4852 6266 6335

3 1035 1488 2466

6 866.1 529.4 1132

10 907.2 537.1 680.2

method Grad

#n

#f
80 40 20

1 23223 23204 23163

3 9424 23185 23192

6 7363 10292 23162

10 6206 10332 12885
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quality criterion is designed so that the parameters of the objective
function are as small as possible. This control is the basis of SVR and
has been adopted to some extent by other methods for controlling
overfitting. Since ∥ w ∥2 is minimized, the flatest possible function is
chosen. The idea is that a flat function makes good predictions even
on unseen data.
The first aspect of using SVR is the underlying model function. In
principle, this is always a linear scalar product between the weight
vector w and the vector of input data x. However, by applying a
kernel that maps the input data to a higher dimensional feature space,
other functions can be used as well. Nevertheless, the model remains
linear in the feature space. Two commonly used model functions are
the polynomial function and the radial basis function. The degree of
the polynomial function can be parameterized, but must be specified
before model fitting. Thus, it is a hyperparameter that is not optimized
by the actual cost function. For the radial basis function, the function
value is formed via a weighted sum of grid points. The weighting
is usually determined via a Gaussian radial basis function, with the
associated parameters \sigma and \mu found during optimization.
The input vector x resulting from EIS is very high dimensional, since
for each measured impedance Zk at frequency fk up to four values are
generated (real and imaginary part, absolute and angle). The structure
of the underlying input vector is

xi = [ℜ {Zi,1} , . . . ,ℜ {Zi,m} ,ℑ {Zi,1} , . . . ,ℑ{Zi,m},

|Zi,1|, . . . , |Zi,m|, ϕ(Zi,1), · · · , ϕ(Zi,m)].
(7.45)

It is simply the concatenated values of the real parts, the imaginary
parts and the magnitude and phase of the impedance spectra. Here,
Z1 represents the lowest measured frequency and Zm is the highest
measured frequency. i differs the observations at different states of
charge. It is therefore difficult to represent the curve of the SoC as a
function of all values of the input vector. Instead, the progressions
of the four values of frequency 1 kHz over the SoC are shown in Fig-
ure 7.38. The steps are probably difficult to model using a polynomial.
Nevertheless, both methods presented were tested to select the model
function. Since only a model function is to be selected here, the data
has not yet been preprocessed.
The values are also not yet scaled to a variance of 1 in this step and
still have an offset. In order to compare the two models, the data
set was split and only a portion of 80 % was used fitting the model.
The other part was then used to determine the performance using
the Root Mean Squared Error of Prediction (RMSEP). Before fitting the
model, the hyperparameters have to be defined first. These are still
optimized iteratively and manually in this step. The resulting values
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Figure 7.38: Development of real and imaginary part, absolute and angle of
the impedance at 1 kHz depending on the state of charge.

Table 7.4: Used hyperparameters of the Support Vector Regression for origi-
nal data.

parameter polynomial radial basis

C 0.1 15

ϵ 0.001 0.01

Degree of Polynomial 2 -

σ - 0.006

can be found in Table 7.4. For the model based on the polynomial
function, a resulting metric is

RMSEPpoly,original = 3.67 A h. (7.46)

In contrast, the RMSEP of the radial basis function was slightly lower
at

RMSEPrbf,original = 2.07 A h. (7.47)

The difference between the predicted SoC values and the actual values
for both models are shown in Figure 7.39. As can be seen, not only is
the mean deviation lower for the radial basis function model, but the
maximum deviations are also smaller.
Even in their current state, with no pre-processing done yet, both
models already deliver good results on unseen data. Although the
radial basis function model performs better, the difference is not
particularly high. Therefore, the next steps will also be performed
with both models in order to select the better model at the end.
In the next step a scaling of the input data takes place. As already
mentioned, in the cost function, which is minimized in the SVR, both
the deviations outside the ϵ range and large weights are penalized.
This is also linked to a dependence on the variance of the input data,
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Figure 7.39: Difference between predicted state of charge values of polyno-
mial and radial basis SVR model and the actual values with
manual optimization of hyperparameters.

since large variances result in smaller weights. Although this can be
partially compensated for by the hyperparameter C, the parameter
does not affect differences of variances of the different features. It can
therefore be useful to subtract the mean of the individual features and
then scale the variance to 1. The mean vector µ is formed by averaging
all observations of a feature:

µ = [ℜ {Z1}, . . . ,ℜ {Zm},ℑ {Z1}, . . . ,ℑ{Zm},

|Z1|, . . . , |Zm|, ϕ(Z1), · · · , ϕ(Zm)].
(7.48)

It should be noted that the mean vector is formed only using the
training data to prevent leakage from the test data. Then the mean
vector µ is subtracted from each observation vector xi resulting in the
zero mean vector

xz,i = xi − µ. (7.49)

Next, the variance of each feature is scaled to 1 by dividing each value
by the variance of the feature’s values in the training dataset. The zero
mean and variance 1 observation vectors thus result in

xzv,i = xz,i/[σ2 (ℜ {Z1}) , . . . , σ2 (ℜ {Zm}) ,

σ2 (ℑ {Z1}) , . . . , σ2 (ℑ{Zm}) ,

σ2 (|Z1|) , . . . , σ2 (|Zm|) , σ2 (ϕ(Z1)) , · · · , σ2 (ϕ(Zm))].
(7.50)

In which an element-wise division is performed. The rescaling of
the data requires of course also an adjustment of the hyperparam-
eters. However, the hyperparameters are now no longer optimized
to produce the smallest possible error on the test data. Instead, the
hyperparameters are specified from the training data alone to obtain
maximum separation between training and test data and to verify
generalization to unseen data. For this purpose, the cross-validation
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procedure is used. In this procedure, the training data is once again
divided into 5 equal splits. Then 4 of the splits are used to fit a model.
The fitted model is then validated by determining the RMSEP of the
observations of the remaining split. These steps are repeated a total of
5 times, so that each split has been used four times to fit the model
and once for validation. The resulting metrics can be averaged at the
end and even a standard deviation can be determined. Listing 7.1
summarizes the procedure once again.

Listing 7.1: Pseudocode of cross-validation procedure.

data_splits[5] = split(data_training)

for k=1 to 5

model = fit(data_splits[all except k])

metric[k] = test(model,data_split[k])

end for

mean_metric = mean(metric) �
So cross-validation already provides a good analysis of how well the
model can generalize even though all the data is also used for training.
However, the hyperparameters are not yet optimized by this method.
There are also automated procedures for doing this, so that the param-
eters are not optimized manually in a try and error procedure. One
example is the so-called grid search method. A grid of predefined
parameter combinations is created and each combination is separately
evaluated. Here, of course, a trade-off arises. If the parameter values
are very densely meshed, a huge grid is created, which requires a
lot of time. On the other hand, the optimum can be missed if the
parameter values are too coarse.
Therefore, Bayesian optimization was applied, using a Gaussian pro-
cess to model the performance function as a function of the hyper-
parameters. Based on Snoek et al. recommendation, the Matèrn 5/2

kernel was used as the covariance function and the evaluation points
were selected based on the expected improvement[124]. Bayesian
optimization was applied to the training data for 50 iterations via
cross-validation procedure. The hyperparameter combination with
the best RMSEP metric are shown in Table 7.5. The combinations were
then used to train a model with the complete training data set. The
generalized performance on the unseen training data results in

RMSEPpoly,scaled = 5.09 A h. (7.51)

for the polynomial model and

RMSEPrbf,scaled = 1.93 A h. (7.52)

for the radial basis function model.
Performance on unseen scaled data from the polynomial model, al-
though Bayesian optimized, is now worse than the model that uses
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Table 7.5: Used hyperparameters of the Support Vector Regression for scaled
data.

parameter polynomial radial basis

C 0.616 30.6

ϵ 0.105 0.0006

Degree of Polynomial 1 -

σ - 0.005
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Figure 7.40: Difference between predicted state of charge values of polyno-
mial and radial basis SVR model and the actual values with
hyperparameters being optimized by Bayesian Optimization.

unscaled data but was manually optimized to minimize test error.
This strongly indicates that the previous performance by optimizing
the hyperparameters on the test data resulted in a data leakage. In
contrast, the RMSEP has become even smaller with the radial basis
function model. This impression is further confirmed when looking
at the differences in the predicted test data in Figure 7.40. Because
also the maximum deviations are much smaller for the Radial Basis
Function Model. Therefore, the polynomial model is discarded for
further consideration.
The impedance spectra form a continuous course. As a result, the
differences in impedance values for neighboring frequencies are rather
small and there is a strong correlation. Therefore, to reduce the dimen-
sionality of the feature vector, the Principle Component Analysis (PCA)
is applied. PCA is a statistical technique that allows you to combine
many variables into a few principal components. Its aim is to com-
bine the variance of the data from many individual variables into few
principal components. These principal components are stochastically
independent of each other. As shown in Figure 7.41, this creates a new
coordinate system whose axes each map the direction of maximum
variance and are orthogonal to each other. The essential tool of this
procedure is the diagonalization of a symmetric matrix with the help
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Figure 7.41: Illustration of the principal component transformation.

Table 7.6: Explained variance depending on number of principle components.

no. princ . comp. explained variance

1 46 %

2 76 %

3 90 %

4 95 %

5 97 %

7 98 %

9 99 %

of an orthogonal matrix.
When using the principle component transformation, the question
arises about how many components should finally be taken over. One
approach is to specify the number of components directly. Another
approach is the definition of the portion of the explained variance.
This portion can be determined by the eigenvalues of the principal
components. Table 7.6 shows the explained variance depending on
the number of principal components when applying the principal
component transformation to the training data. As can be seen, the
assumption that there is a strong variance between the measurement
frequencies is confirmed. Already three principal components are
sufficient to describe 90 % of the variance.
For the numbers of principal components from Table 7.6, optimized
hyperparameters are now determined again using the combination of
Bayesian optimization and cross-validation. The best resulting RMSEP

for each number of principal components is shown in Table 7.7. The
error increased for all numbers of principal components compared
to the results without applying PCA. The reason why this was to be
expected is that in SVR good generalization can already be achieved by
adjusting the hyperparameters, and these very hyperparameters have
already been fixed beforehand by Bayesian optimization on unseen
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Table 7.7: RMSEP on unseen testdata and optimized hyperparameters de-
pending on number of principal components.

no. princ . comp. rmsep ϵ σ C

1 15.4 A h 0.2 0.045 0.45

2 6.64 A h 0.2 0.446 1.45

3 2.73 A h 0.0041 0.276 13.8

4 4.53 A h 0.02 0.169 27.8

5 4.70 A h 0.027 0.135 31.5

7 4.18 A h 0.037 0.067 28.1

9 4.80 A h 0.0015 0.032 31.9

data in the cross-validation procedure. Apart from that, generaliza-
tion can certainly improve performance if the variance of the data
is reduced by a principal component transformation. For example
because the reduced variance can eliminate measurement noise and
prevent overfitting.The best metric was achieved with a component
number of 3, so 10 % of the variance was removed. The RMSEP only
slightly increased. Moreover, the optimized hyperparameters changed
by several orders of magnitude. In particular, the epsilon band and
sigma are now much larger, which should make the model more stable.

Now having described the procedure, adapted features are evaluated.
This means that the raw impedance data is used in advance to extract
new features and to adjust the spectra, respectively. The use of the
feature extraction methods from Section 7.2.3 is omitted here because
they have either yielded very poor results (grad method) or rely sig-
nificantly on the fact that the impedance spectrum of an empty cell
is also measured regularly, but this SoC leads to premature damage
of the cell (diff method). Instead, in a first approach, the true ohmic
resistance of each spectrum is removed. According to the battery
model, this is mainly caused by the resistance of the electrolyte in
addition to the contact resistance. Ideally, there is no dependence
on the SoC for the true ohmic component at all, but rather on the
concentration and temperature of the electrolyte. The algorithm for
modifying the features is described in Listing 7.2 using R language.
First, the data is grouped based on the measurement id. Since each
spectrum has its own ID, the following command is applied to each
spectrum separately. An ohmic resistance results in a right shift on
the real axis. Especially at high frequencies the double layer capacities
appear like a short circuit, so that the ohmic resistance and possibly
even the inductive part of the cable remains. Because the inductive
part only affects the imaginary part, the ohmic part can be determined
by the minimum real part value of the spectrum and can then be
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Figure 7.42: Illustration of removing true ohmic resistance from impedance
spectra.

subtracted from all real parts.

Listing 7.2: Removing true ohmic resistance from impedance spectra.

eis_wo_rel_dataframe <-

raw_eis_dataframe %>%

group_by(measurement_id) %>%

mutate_which(select realparts,

realpart = realpart - min(realparts)

) �
The effect of the transformation is shown in Figure 7.42. Here, two
unchanged impedance spectra can be seen. The two spectra have
been recorded after different periods of time, so that the electrolyte
of one spectrum has already aged, which is reflected in a shift of the
spectrum to the right. Due to the transformation the ohmic part is
subtracted, so that now both spectra start at the imaginary axis.
For different numbers of principal components, the hyperparameters
have now been optimized using Bayesian optimization and cross-
validation, then the RMSEP performance has been determined. The
resulting performance and the hyperparameters used are summarized
in Table 7.8. It is noticeable that the best performance using the origi-
nal spectrum data, which was achieved with a component number of
3, is now no longer achieved. However, the overall results are now at
a lower level when using other component numbers.
In summary, SVR can also be used to determine the SoC of a zinc-air
cell with sufficient accuracy during the charging process. However,
the error values are slightly higher compared to the application of
artificial neural networks.
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Table 7.8: RMSEP on unseen testdata where Rel has been removed and result-
ing optimized hyperparameters depending on number of principal
components.

no. princ . comp. rmsep ϵ σ C

No PCA 4.09 A h 0.02 0.007 31.8

1 16.1 A h 0.051 0.120 0.26

2 6.60 A h 0.2 0.851 0.28

3 3.12 A h 0.0344 0.302 12.0

4 2.92 A h 0.0062 0.247 26

5 2.69 A h 0.023 0.187 26.9

7 4.04 A h 1.42e-5 0.155 26.7

9 3.18 A h 0.004 0.077 30.1

7.3 current generalization

The previous approaches always specified a fixed DC current that was
used to measure the impedance spectra. This principle can theoreti-
cally also be applied in practice. However, then the current working
point must be left in order to use the working point that was used for
training the models. When charging, this can lead to situations where
energy generated by a photovoltaic system cannot be utilized at this
point in time. When discharging, the energy of the new working point
may not be sufficient and additional energy from the grid is needed
reach the desired working point. In both cases, there is a monetary
loss. This chapter therefore analyzes whether it is also possible to
create a model that generalizes the DC current or the working point. In
detail, this means that the models are trained with data from different
working points and thus an evaluation with different direct currents
is also possible.
The problem that arises is well illustrated in Figure 7.43. It shows
impedance spectra at different currents and states of charge. One
can see, an increase in the DC current behaves similar to a change in
the SoC. This behavior can be explained with the battery model from
chapter 3. At high frequencies, the double layer capacities act like
short circuits, so that the total impedance is mainly formed by the
resistance of the electrolyte and the contacting. Since this resistance is
independent of the SoC of the cell and the current, the differences of
the curves on the left side are rather small. In contrast, the impedance
for small frequencies depends mainly on the charge transfer resis-
tances described by the Butler-Volmer equation. According to this, the
electrode current increases exponentially with the voltage. The differ-
ential resistance therefore decreases for higher currents, since smaller
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Figure 7.43: Impedance spectra of zinc-air batteries at different working
points and state of charges.

voltage differences are now sufficient to achieve an equal change in
current.

7.3.1 Data generation

To generate measurement data, a procedure shown in Figures 5.3 and
5.7 is picked up again. Here, zinc-air cells are continuously charged
or discharged with an alternating current of 1 A, 2 A or 3 A. This
means that the charging process starts with 1 A. A short delay is
made until the cell voltage has become familiar with the current and
a measurement of the impedance spectrum is started. After that, the
charging current is increased to 2 A, again a short delay is made and
the next impedance measurement is started. The same is done for
3 A and then it starts again at 1 A. Meanwhile, the applied charge
is counted so that the actual SoC is known. Once the cell is full, the
discharge process starts using the identical technique.
After several charge and discharge cycles, there is no random division
of the resulting data into training data and test data this time, but
the measurements at 1 A and 3 A form the training data set and the
measurements at 2 A form the test data set. This ensures that the
results correspond to an actual generalization of the working point.
The hyperparameters are optimized by cross-validating the training
set to prevent data leakage. Of course, the feature vector must be
extended to include the DC current value, so that the following vector
is now obtained:

xi = [Ibat,DC,ℜ {Zi,1} , . . . ,ℜ {Zi,m} ,ℑ {Zi,1} , . . . ,ℑ{Zi,m},

|Zi,1|, . . . , |Zi,m|, ϕ(Zi,1), · · · , ϕ(Zi,m)]. (7.53)
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7.3.2 Regression Using Artificial Neural Networks

The general procedure for model generation based on neural networks
has already been described in chapters 7.2.3 and 7.2.3. Since at this
point it is intended to investigate whether the models also generalize
to an unseen DC current component (= working point), the training
data consist of all measurements which have taken place at the work-
ing points 1 A and 3 A, while the spectra which have been measured
at a DC current of 2 A form the test data set. Since the measurements
have been performed alternating, the ratio of training to test data is
2/3.
In a first approach, the feature vector, as described in equation 7.53, is
obtained from the DC working point and from the measured impedance
data. Since the neural network is sensitive to feature scaling, for each
feature the mean is removed and scaled to a variance of σ2 = 1.
Impedance values at similar frequencies correlate strongly with each
other. Therefore, it is additionally analyzed whether a reduction of
the feature vector by means of a principal component transformation
leads to better results or to a better generalization, respectively. Here,
the principal component transformation is only applied to the mea-
surement data of the spectrum, since the DC operating point is very
important for the generalization, but has only a small variance due to
the two different values in the training dataset.
The quality of the resulting model depends, among other factors,
significantly on the hyperparameters used. However, the use of a
principal component transformation also affects the optimal values
of the hyperparameters. Therefore, for each number of principal
components, optimized values for the number of neurons and the L2

regularization term α are found using the Grid Search procedure in
combination with cross-validation. In Grid Search, a grid is spanned
containing all defined combinations of parameter values. These are
used sequentially by cross validation to train a model and test on
unseen data. In this process, the training data is divided into five
groups. The model is fitted with the data from four groups and tested
against the unseen data from the fifth group. This process is repeated
a total of five times, so each group is used once to determine perfor-
mance. The average of the five runs of the RMSEP is then used as the
performance of the Grid Search hyperparameter combination.
The optimized hyperparameter values depending on the number of
principal components are shown in Table 7.9. In addition, the perfor-
mance values for the best model in each case can also be found there.
The level of information when using a single principal component is
not sufficient to produce a good model. As a result, the RMSEP for
cross-validation with training data is 26.22 A h, which corresponds to
more than 25 % of the nominal capacity. Using two principal com-
ponents and more, the performance values are much better. It is
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Table 7.9: Mean RMSEP of cross-validated training data and optimized hyper-
parameters in current generalization when using artificial neural
networks depending on the number of principal components.

no. princ . comp. rmsep hidden neurons α

0 2.76 A h 6 6.4 · 10−4

1 26.22 A h 7 5.5 · 10−3

2 3.43 A h 9 2.6 · 10−8

3 2.92 A h 7 2.9 · 10−3

4 3.45 A h 4 6.6 · 10−7

5 2.11 A h 8 7.1 · 10−3

7 1.79 A h 9 3.2 · 10−3

9 1.94 A h 5 3.4 · 10−8
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Figure 7.44: RMSEP and standard deviation of crossvalidated training data
depending on number of principal components for current gen-
eralization using ANN.

interesting to note that the optimal number of neurons in the hidden
layer is below 10 in all cases. Higher values lead to poorer generaliza-
tion due to overfitting.
Figure 7.44 illustrates the cross-validation performance for the training
data again graphically. While too few principal components initially
lead to a poorer performance, a partial reduction of the input dimen-
sionality can also lead to an improvement of the model. For example,
the RMSEP is below the value when PCA is not applied, starting with a
number of 5 principal components. The best result is obtained with 7

principal components, although the standard deviation is larger here
than with 9 principal components.
In the next step, models are now fitted with the complete set of train-
ing data using the optimized hyperparameters. Then the prediction
of the test data takes place and the prediction is compared with the
target values. The difficulty is now much higher compared to the
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Table 7.10: RMSEP on unseen test data during current generalization us-
ing artificial neural networks depending on number of principal
components.

no. princ . comp. rmsep

No PCA 3.20 A h

1 2.45 A h

2 0.16 A h

3 3.24 A h

4 0.17 A h

5 3.98 A h

7 1.32 A h

9 24.1 A h

cross-validation of the training data, because the training data set con-
sists of spectra at a DC component of 1 A or 3 A, but now predictions
have to be made to measurements at a working point of 2 A.
Nevertheless, the resulting performance is sufficiently accurate for the
most part, as can be seen in Table 7.10, which summarizes the RMSEP

as a function of the number of principal components. In most cases,
the performance on the unseen working point is at a similar level or
even better than when cross-validating the training data. The network
with 2 principal components performs best. Here the RMSEP with a
value of 0.16 A h is even significantly better than for the training data.
An outlier is the network that uses 9 principal components, where the
performance is significantly worse.
Figures 7.45 and 7.46 show the predicted data and the difference from
the target value when no principal component transformation is per-
formed and for the best fit (2 components). Here it can be seen again
particularly well that the generalization of the DC working point for
the model with 2 components works very well. The network trained
with the complete impedance set of the spectrum also shows good
results, but there are larger deviations, especially for values at the
beginning of the charging process.

7.3.3 Regression Using Support Vector Regression

The procedure for modeling based on SVR has already been explained
in detail in chapter 7.2.4. During training, the data of the training
dataset are used in the cross-validation procedure. For this purpose,
the data set is divided into five equal parts. Within five runs, four parts
are used to train one model at a time and the remaining part is used
to determine performance. By using a different part for performance
evaluation in each run, an average performance can be determined
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Figure 7.45: Influence of PCA on the predicted state of charge values of ANN
models during current generalization.
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Figure 7.46: Influence of PCA on the difference between predicted state of
charge values and the actual values of ANN models during
current generalization.
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Figure 7.47: RMSEP and standard deviation of crossvalidated training data
depending on number of principal components for current gen-
eralization using SVR.

afterwards. Before training, the mean value of each feature of the
training parts is removed and the variance is scaled to 1. In addition,
the influence of a principal component transformation, in particular
the number of principal components used, is examined. A change in
the number of principal components also affects the optimal value of
the SVR hyperparameters. Therefore, Bayesian optimization is used
to obtain optimized hyperparameters for each number of principal
components that is analyzed. Again, the optimization is performed
using only the mean performance of the cross-validation with the
training data to prevent data leakage. Finally, after the optimal hy-
perparameters have been found, the complete set of training data is
used for fitting the model and the performance on the test data is
determined. The RMSEP is used as the performance metric.
Figure 7.47 shows the RMSEP values of the cross-validation with train-
ing data. Additionally, the error bars represent the standard deviation
of the RMSEP within the five parts. The performance using a single
principal component is out of scale with a value of 30 A h. This is
no surprise, since the constant current is now also part of the feature
vector and the principal component transformation has to bring in
this information as well. If the principal component transformation is
not applied, the results here are at a similar level as when analyzing a
constant working point. After applying PCA, the mean error decreases
with increasing number of principal components. At a number of 7 or
more principal components, even better performance is achieved than
when the principal component transformation is not applied.
Table 7.11 shows the resulting metrics when using the optimized hy-
perparameters to fit a model using all training data and predicting
the test data depending on the number of principal components used.
Again, model accuracy is very poor when only one principal compo-
nent is used. It is interesting to note that the results of the test data are
in most cases even better than the results of the cross-validation with
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Table 7.11: RMSEP on unseen test data and optimized hyperparameters of
current generalization using Support Vector Regression depend-
ing on number of principal components.

no. princ . comp. rmsep ϵ σ C

No PCA 1.90 A h 0.0094 0.00067 31.6

1 31.8 A h 0.19 1.1E-10 5.19

2 2.73 A h 0.12 0.98 30.2

3 4.38 A h 0.002 0.64 2.21

4 0.465 A h 0.0084 0.02 30.2

5 0.881 A h 0.043 0.018 31.6

7 1.37 A h 0.029 0.013 28.8

9 1.17 A h 0.0088 0.0085 31.3

the training data. This may be due to the fact that the number of train-
ing data used is now 20 % larger without cross-validation. Another
aspect is that the results seem to be better when the value of the DC

current falls within the range of the training data. Because while in
the previous cross-validation only 1 A and 3 A data were available that
mark the current limits, now only 2 A charging current data is tested.
In some cases, the reduced information content through the PCA even
provides an improvement in performance compared to the original
data. Thus, the best result is achieved with a principal component
number of 4.
Figures 7.48 and 7.49 show the predicted data and the difference from
the target value when no principal component transformation is per-
formed and for the best fit (4 components). Especially the first data
point directly marks the largest deviation. This is most likely due
to the fact that the diffusion processes have not yet settled. Thus, at
the beginning the cell voltage still increases by approximately 15 mV
during the measurement of the complete spectrum, while later the
cell voltage only changes by 2 mV-5 mV. The remaining test data are
approximated very well, but there is a slight tendency to too low
predictions.

7.3.4 Comparison

In this chapter, it has been shown that it is possible to determine the
SoC from impedance spectra at unseen DC working points using both
ANN and SVR. In principle, both methods are sufficiently accurate. By
means of a principal component transformation, the dimensionality
of the feature space was reduced with very little loss of information.
Provided that a particularly strong reduction of the dimensionality
is used, ANN show a better performance. Thus, the RMSEP is smaller
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Figure 7.48: Influence of PCA on the predicted state of charge values of SVR
models during current generalization.
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when using one to four principal components inclusive than with SVR.
The best result is obtained when using two principal components.
With a higher dimensionality of the input data the SVR is ahead. Even
when the principal component transformation is not used, SVR shows
a smaller tendency to overfit, so that the metric is only about half as
large.

7.4 state of health estimation

The SoH describes the degradation of the cell. Typically, the SoH of
an energy storage device is defined, for example in IEC62391-2, as
a function of the remaining capacity or the internal resistance[26].
The first criterion is based on the capacity of the cell. For instance,
considering a lead-acid cell, sulfating of the electrodes can result in
less anode material being available for battery operation. The lack of
material results in a loss of usable cell capacity. According to DIN
2020, a cell is considered defective when that cell has lost 30 % of its
nominal capacity. A possible definition of the SoH based on the current
cell capacity Qcell is therefore

SoHcap = 1 − Qnom − Qcell

0.3 · Qnom
. (7.54)

The second criterion is based on the internal resistance of the cell. The
sulfating of the lead electrodes also leads to a reduction of the active
surface of the cell and thus the internal resistance increases. If the
internal resistance doubles compared to the starting value, the cell is
also considered broken. A possible definition of the SoH by comparing
the current internal resistance Ri,cell with the initial value Ri,0 is

SoHRi = 2 − Ri,cell

Ri,0
. (7.55)

In order to apply these criteria to zinc-air cells, however, measurement
data are still not available at the current stage of cell development.
This means that for the zinc-air batteries under development, only
dendrites and leakages lead to cell defects, even before there is a
significant loss of cell capacity or an increase in internal resistance.
Nevertheless, in order to investigate whether it is possible to determine
the degradation state of zinc-air cells with the aid of EIS, measurement
results from existing publications are used. A detailed publication
covering this topic can be found in [83, 86].

7.4.1 Data generation

Publications already exist that analyze the impedance spectra of zinc-
air batteries as a function of the SoH. Arai et al., for example, evaluated
the impedance spectra of the cathodic part of zinc-air batteries and
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Figure 7.50: Equivalent circuit of the battery which is parametrized by the
impedance spectra according to Arai et al.[6]

performed an evaluation using an electrical equivalent circuit[6]. Based
on the data of Arai et al. an optimized SoH determination usingANN

is now developed. The electrical model of the air electrode used
by Arai et al. is shown in Figure 7.50. It is very similar to the
model presented in Section 4.1. While the resistance Rel describes the
electrolyte as an ion conductor, Rct describes the energy needed to start
the charge transfer. The double layer capacitance that appears at the
electrode-electrolyte interface is modeled by the capacitor Cd. Similar
to Section 4.1, there are two diffusion components, as two changes
in phase occur at the air cathode. Like the Warburg impedance, the
diffusion process of the ions is described by the solution of Fick’s
second law for complex rotating pointers. The solution used here is
called Nernst diffusion and depends on two parameters, the diffusion
resistance Rd and the diffusion factor K[120]:

ZNernst = Rd
[sinh(x)+sin(x)]−i[sinh(x)−sin(x)]

x[cosh(x)+cos(x)]

x =
√

2ω
K

(7.56)

The impedances of the capacitor and the Nernst diffusion components
depend on the frequency, whereas the impedances of the resistors are
not affected.
The air cathode was degraded by continuous operation and impedance
spectra were measured at three different states of health. The result-
ing measured data were used to fit the parameters of the presented
electrical equivalent circuit. The resulting parameters depending on
the SoH are shown in Table 7.12. Thus, the evaluation based on the
electrical equivalent circuit has already been successfully performed.
As can be seen, the values change with the SoH[6].
These three data points are not sufficient to perform an evaluation
using ANN. Therefore, they serve as a base to generate further training
data. The intermediate values of the parameters of the equivalent
circuit are linearly interpolated for this purpose. For example, the
equation

Rel,SoH=75% =
75 − 50

50
· Rel,SoH=100% +

100 − 75
50

· Rel,SoH=50% (7.57)
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Table 7.12: Resulting parameter values of the equivalent circuit derived by
the measured impedance spectra.

SoH [%] Rel [Ω] Cd [mF] Rct [Ω]

100 0.15 2.0 0.02

50 0.20 1.8 0.02

0 0.25 1.5 0.03

SoH [%] Rd1 [Ω] K1 [ 1
s ] Rd2 [Ω] K2 [ 1

s ]

100 0.14 20 0.25 98

50 0.22 30 0.29 110

0 0.25 9.1 0.55 140
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Figure 7.51: Nyquist plot of impedance depending on state of health.

is used to determine the electrolyte resistance at a SoH of 75 %. A total
of 1000 data points for each parameter was generated in this way.
The resulting parameter combinations are then used to calculate an
impedance spectrum for each interpolated SoH using the electrical
equivalent circuit. For this purpose, the frequency range was set
from 100 mHz to 1 kHz. So, again, the evaluation with the ANN is
done using the data of an impedance spectrum. Figure 7.51 shows
several examples of the resulting interpolated data in a Nyquist plot.
Higher degradation leads to semicircles with larger radius and a slight
shift to the right. Also, impedance points of a constant frequency of
148 mHz are highlighted in each spectrum. One goal of the following
analysis is to optimize the timing of the state-of-health determination.
Among other things, the selection of the frequencies to be measured
is important for this purpose. Therefore, the data points used for the
analysis are selected based on their frequencies, using 2 values per
decade from 100 mHz to 1 kHz.
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7.4.2 Analysis

The goals in evaluating the SoH using neural networks are, on the one
hand, high accuracy and, on the other hand, the shortest possible time
required for the estimation. Both goals depend on the selection of
frequencies ω that are measured and used for estimation. A smaller
number of frequencies n f that are measured leads to a shorter eval-
uation time, since each measurement requires a time tinit, which is
needed for the initiation and calculation of the real and imaginary
parts of the impedance. On the other hand, the selected frequencies
themselves are also an important factor, since smaller frequencies
require a longer time to measure tmeasure, since at least one full period
must be measured. In order to determine the SoH as fast as possible, a
cost function is defined and optimized, which depends on the vector
of measured frequencies ω and the number of measured frequencies
n f :

t = tinit(n f ) + tmeasure(ω, n f ). (7.58)

A set-up and evaluation time of 120 ms is used for tinit:

tinit(n f ) = 120 ms · n f (7.59)

tmeasure is the accumulated time for data acquisition. Supposed that 2

periods are used for one measurement tmeasure results in

tmeasure(ω) = 2 ·
n

∑
i=1

2π

ωi
= 4π

n

∑
i=1

1
ωi

. (7.60)

Another goal of the SoH estimation is a good accuracy. Therefore, an-
other function λerror is used to evaluate the precision of the estimation
by looking for the maximum difference between the output value y
and the target value T.

λerror(y) = max(abs(y − T)) (7.61)

For each frequency combination, a multilayer perceptron network
is trained. The size of the input layer depends on the number of
frequencies in each combination, since for each frequency the real
and imaginary parts are used as features. In the hidden layer, 10

neurons have been shown to be practical, so this value is used for
all combinations. To ensure the highest possible generalization, the
cross-validation procedure was also used here. For each frequency
combination, both the needed time and the resulting error λerror is
determined. The results are plotted in Figure 7.52. As there are two tar-
gets to minimize, a compromise has to be used. Combination where
one property cannot be improved without downgrading the other
property (pareto front) are shown in a different color. In order to find
good compromises these pareto optimal combinations are presented
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Figure 7.52: Pareto front combining measuring time and precision of estima-
tion. A total number of 255 frequency combination are proved,
while 18 combinations fell within the Pareto front.

Table 7.13: Frequency combinations of Pareto front and the resulting measur-
ing time and error

f1 [Hz] - f7 [Hz] t [s] λerror [%]

1000 - - - - - - 0.133 2.26

129 359 - - - - - 0.372 0.14

129 1000 - - - - - 0.35 0.69

359 1000 - - - - - 0.288 0.99

45 129 359 1000 - - - 0.896 0.12

17 46 359 1000 - - - 1.55 0.08

17 46 129 1000 - - - 1.61 0.075

6 46 129 1000 - - - 2.96 0.05

0.77 129 359 1000 - - - 16.8 0.0051

17 46 129 359 1000 - - 1.77 0.07

6 46 129 359 1000 - - 3.11 0.037

6 16 46 359 1000 - - 3.77 0.017

0.1 0.77 17 129 359 - - 143.4 0.0016

0.77 6 17 46 129 1000 - 20.2 0.0034

0.1 6 17 46 129 1000 - 129.6 0.0018

0.1 0.77 17 129 359 1000 - 143.5 0.0014

0.77 6 17 46 129 359 1000 20.3 0.0026

0.1 0.77 6 17 46 129 1000 146 0.00088
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in Table 7.13.
As one can see, using all the frequencies results in the best accuracy,
but needs the longest measurement time of all (146 s). As the dif-
ference of the measuring time is higher for lower frequencies, these
times lead to clusters. While the main part of the measuring time
of a combination is defined by its lowest frequency, the error of a
combination depends on all its frequency components. Therefore, the
absolute error within a cluster varies quite much with respect to the
measuring time. The fastest results can be received by using only the
highest frequency, which is 1 kHz. The resulting maximum error is
2.26 %. The fastest way to estimate the SoH with a precision of 1 %, is
to use a combination of the frequencies 359 Hz and 1 kHz. This results
in a total estimation time of 288 ms.
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C O N C L U S I O N

8.1 addressed question

In this thesis, it has first been shown why a massive expansion of
battery technology can be expected in the future. One important point
here is certainly the electrification of vehicles. At the moment, the
transport sector within the EU is still largely based on fossil fuels
and is responsible for more than 25% of greenhouse gas emissions
in Europe. If one leaves aside the Corona crisis, this share is even
growing. Climate research predicts that global warming will result
in the melting of sea ice and glaciers, rising sea levels, thawing of
permafrost soils with the release of methane hydrate, growing areas
of drought, and increasing weather extremes. To some extent, the
consequences are already being observed. According to current esti-
mates, the current human-caused extinction rate of species exceeds the
natural rate by a factor of 100 to 1000. In addition to global warming,
vehicles with internal combustion engines also contribute significantly
to air pollution. In particular, the proportion of ultrafine particles and
nitrogen dioxide increases as a result of combustion engines. In nu-
merous European cities, driving bans have therefore been introduced
for vehicles with high emissions. All these points are leading more
and more people to see all-electric and partially electrified vehicles as
a feasible alternative and make use of them. As a result, the demand
for battery capacity is also rising rapidly.
Nevertheless, electric cars are particularly climate-friendly only if the
electricity they use is also generated ecologically. To counteract global
warming, the share of renewable energies must therefore be massively
expanded in the future. However, electricity from PV systems and
wind turbines, which account for a large proportion of renewable
energies, is only available intermittently or irregularly. At the moment,
the stabilization of the transmission grid can still be maintained with
power plants and their rotating masses. If the expansion of renewable
energies leads to the shutdown of the majority of power plants, system
stabilization must be made possible in an alternative way. PV and
wind power plants can only provide positive control power if they
are permanently throttled. This is not very efficient, so that instead a
massive expansion of battery technology is to be expected in this point
as well. The provision of electrical energy is thereby made possible
sufficiently quickly.
This massive expansion of battery technology cannot be based on
existing battery technologies alone for several reasons. First, the raw
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materials of existing technologies are limited and are mainly found in
countries that do not allow safe working conditions. Foremost among
these is the Congo, where much of the cobalt needed for lithium-ion
batteries is mined under miserable conditions. Zinc, on the other hand,
is more often found in countries that do not exploit their employees,
such as Australia and North America. Another point concerning raw
materials is the recyclability cycle. Lithium-ion accumulators can only
be recycled at great expense and with the risk of explosion. The sim-
ple construction of zinc-air batteries helps here. They can be opened
without danger and the components can be separated without great
effort. Secondly, the theoretical energy density of metal-air batteries
is much greater than existing battery technologies. For example, the
theoretical energy density of zinc-air cells is three times greater than
that of lithium-ion cells. The potential of the cell prices is even sub-
stantially larger, since the cell production of zinc-air cells is simpler
and the raw materials are cheaper by a factor of 10.Therefore, metal-air
batteries and especially rechargeable zinc-air batteries are a crucial
factor to enable the energy transition.
However, the operation of zinc-air cells is more complex, since existing
BMS cannot be used. The reason for this is the small voltage differ-
ences that occur during charging and discharging. When a zinc-air
cell is charged, the cell voltage increases by only 40 mV during the
charging process, i.e. by an order of magnitude less than in other
battery technologies where the cell voltage can be used to detect the
state of charge. State of charge detection based on cell voltage is
not possible in particular because the influence of temperature and
electrolyte concentration on cell voltage is greater than the state of
charge itself. The charging process is further complicated by the fact
that an accompanying electrolysis process starts at about the same
voltage level as the battery charge voltage when the cell is overcharged.
This means that overcharging cannot be detected from the cell voltage.
Both overcharging and deep discharging damage the cell. However,
when discharging, a large voltage drop occurs towards the end of the
discharge process, which can be used to detect the end of discharge.
At the start of the thesis, it was therefore not possible to use zinc-air
batteries without coulomb counting. The typical application scenar-
ios are excluded by this obstacle, because the cell must be operated
continuously in order not to lose the known SoC due to self-discharge.
The coulomb counting method thus excludes in particular the use for
storage of non-continuous regenerative energies, since it is especially
important there to be able to adjust to the situation. In order to take
advantage of the benefits of zinc-air batteries, a BMS based on EIS has
therefore been developed that enables the detection of the end of
charge or the state of charge.
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8.1.1 Method

Thereby, the development of the BMS is based on a fundamental de-
scription of the cell chemistry. For this purpose, the individual cell
components and their current state of the art were presented. Based on
the reaction equations and the structure of the cell, an electrochemical
model was created. The static behavior of the cell is defined by the
open circuit voltage of the cell, the electrolyte as ion conductor and the
charge transfer resistance. The open-circuit voltage model includes the
state of charge and the temperature as well as the oxygen content and
the electrolyte concentration. Thus, all relevant parameters have been
included in the static model. As far as possible, practical experiments
were also carried out to confirm the model predictions. For example,
an oxygen chamber was set up in which it is possible to control the
oxygen content in order to investigate the influence of the oxygen
concentration on cell voltage and cell performance. In the practical
experiment, on the one hand, the model could be confirmed and, on
the other hand, it was shown that even a low oxygen content, which
at 5% is far below the normal oxygen content of the atmosphere, does
not significantly affect cell performance. Since the static behavior is
not affected sufficiently to derive the state of charge, the methods
developed for determining the SoC and charge termination are based
on the dynamic behavior of the cell. Therefore, dynamic components
were added to the cell model to obtain a frequency domain descrip-
tion of the cell. While the Warburg impedance describes the diffusion
of the charge carriers, the Stern double layer models the capacitive
behavior of the boundary layers of the electrodes.

8.2 results

Based on the electrochemical model, an frequency dependent electrical
equivalent circuit of the cell was developed. Typically, impedance spec-
tra can be used to fit the parameters of the electrical equivalent circuit.
However, the unique electrode arrangement of zinc-air secondary cells
means that conventional EIS measurement systems are not suitable
for use with zinc-air batteries. Therefore, this work demonstrates the
development of an adapter board that allows existing EIS measure-
ment systems to be used with zinc-air batteries. Since stand-alone
EIS measurement systems are usually very cost-intensive, a small and
low-cost measurement system was also developed, which makes the
integration of the measurement technology financially attractive even
for smaller energy storage systems, such as those used in the private
sector for intermediate storage of solar energy. By fitting the electrical
equivalent circuit with measured impedance spectra of the developed
zinc-air cell, it is already possible to determine the state of charge
during discharge with adequate accuracy. The determination of the
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charge termination is also possible without any problems, since the
parameters of the equivalent circuit show large steps when the full
state is reached. However, the accuracy via fitting the parameters is
not sufficient to also determine the SoC during the charging process,
since the resulting parameters only change in a very small range dur-
ing the course of the charging process.
Therefore, other methods, in particular artificial intelligence methods,
were also used to check the capability of determining the state of
charge on the basis of the measured EIS spectra. Artificial neural net-
works and SVR turned out to be particularly promising. Both methods
use the raw measured data of the measured impedance spectra as
input data, so that the exact knowledge of the battery model is not
necessary and they can be applied particularly easily. The hyper-
parameters of the two methods were optimized in the grid search
procedure and via a Bayesian optimization on the basis of the training
data set in order to prevent data leakage. As a result, both methods are
also suitable for determining the state of charge of zinc-air batteries
during the charging process.
Regression using artificial neural networks was able to determine
the state of charge with an error of 0.53 % of the battery capacity on
unseen data. It has been shown that generalization to unseen data
improves when the size of the input vector is reduced by using just
impedance values at prominent frequencies as inputs. Compared to
the parameterization of the electrical equivalent circuit, the regression
of the state of charge using artificial neural networks is thus much
more accurate and sufficient for use in a BMS.
In comparison, the application of SVR shows a slightly higher error of
2.69 % on unseen data. Nevertheless, even an error of this dimension
is sufficiently small to be applied in a BMS. One advantage that is
shown when using the SVR is that the regulation works better and
thus an overfitting has only a very small influence even with higher
dimensional input data.
A crucial point and a highlight is that both artificial intelligence meth-
ods can also be applied to unknown DC currents during impedance
measurement. A change in the charge or discharge current, for ex-
ample, leads to a shift in the working point during the linearization
of the charge transfer resistance and thus to a completely different
differential resistance. Provided that the training data constrain the
charging current selected from the outer limits of possible charging
currents, the determination of the state of charge when interpolating
the charging current within these limits is even more accurate than
when the regression takes place for a defined charging current. Thus,
the ANN achieves an error of 0.16 % and the SVR achieves an error of
0.47 % on unseen data. In practice, this success is of great relevance,
since no defined charge current, which was trained beforehand, has to
be applied for the determination of the state of charge, but any con-
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stant currents may occur during the measurement, which are within
the fitted limits
Another less computationally intensive method for detecting the
charge termination was also successfully tested. Here, the variation
of the low-frequency diffusion process over time is tracked in the
impedance data. The transition between reduction to zinc and electrol-
ysis can thus clearly be detected. Although only charge termination
is detected here, the method has the advantage that it is extremely
robust and can also be applied to new cells without prior training.
The possibility of determining the SoH based on electrochemical
impedance spectra by applying ANN was also investigated. The cell
under development degrades mainly due to the formation of den-
drites rather than a reduction in capacity or an increase in the internal
resistance, so existing data from other publications was used. The
detection of the state of degradation could be successfully performed
with the help of neural networks and even an optimization of the
measurement duration by identifying the important frequencies was
possible.
In addition to state detection, there are other hurdles facing the oper-
ation of zinc-air batteries. First, electrolyte management is a crucial
aspect. Since the GDE is permeable to gases, the water content can
evaporate from the electrolyte and diffuse to the outside through the
air cathode. The electrolyte concentration is thus negatively influenced
with an impact on cell performance and lifetime. Therefore, a measure-
ment and control system based on the electrolyte conductivity was
developed, which ensures a constant electrolyte concentration. Thus,
an important step has been achieved that allows zinc-air batteries to
operate in an extended temperature range.
Finally, the oxygen consumption of zinc-air cells was investigated. To
do this, a theoretical statement on oxygen consumption as a function
of the discharged charge was first made on the basis of the chemi-
cal reaction equations. In a practical experiment, in which the cells
were operated in an airtight box while the oxygen content was mea-
sured, the theoretical statements were confirmed very precisely. It was
shown that only the discharged charge is responsible for the oxygen
consumption and that other factors, such as the current intensity, have
no influence. The results thus allow a concrete design of the ventila-
tion of a zinc-air storage system based on the cell capacity.
In summary, the primary challenges of operating zinc-air batteries
have been solved and the success has been shown in practical ex-
periments. This step is also significant with regard to the energy
transition, as it is now possible to store renewable energy with a safe,
environmentally friendly and at the same time highly energetic bat-
tery technology. The developed processes could already be tested in
a demonstrator with 12 cells on a PV system. Currently, a setup with
more than 70 zinc-air cells is being developed, built and tested.
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8.3 outlook

Of course, research and development is not yet at an end. An impor-
tant point here is the further development of the actual zinc-air cell. By
using the 3-electrode technology, in which a separate nickel electrode
is used for charging, the durability of the GDE could be increased to
such an extent that it survives several zinc anodes. Instead, the focus
should now be on reducing dendrite formation. Strong improvements
have already been achieved here by modifying the electrolytes. One
aspect that affects the lifetime of the electrolyte is carbonization. CO2
from the ambient air enters the electrolyte and forms potassium car-
bonate. This can lower the pH of the electrolyte to a point where
zinc oxide precipitates and forms a passivating layer. Further battery
operation of the cell then requires complete replacement of the elec-
trolyte so that the passivating layer dissolves in the fresh electrolyte.
There is also further development potential with regard to the power
density and energy density of zinc-air cells. The key factor here is the
cell geometry, which is currently still designed for maximum safety
against dendrites. The first tests of a geometry with increased cell
performance are already taking place.
However, different cell geometries also lead to modified impedance
spectra. The state estimation methods presented in this work, however,
all require a known cell geometry, and the data from this geometry
were used to fit the models. In a next step, it should be investigated
whether the regression methods can also approximate different cell
geometries, for example with the aid of additional parameters such as
the active surface. The goal here is that the methods can be applied
to unknown cells. To strengthen robustness, it would be possible, for
example, not to perform a regression, but to classify the SoC in 10 %
steps.
A further potential for optimization, which is particularly useful in
monetary terms, is the development of integrated circuits that enable
galvanically isolated voltage measurement on battery systems with
3-electrode technology. While integrated circuits already exist for
conventional battery technologies with 2 electrodes, which enable gal-
vanically isolated voltage measurement even in systems with a high
number of cells, discrete circuit structures had to be developed and
built for the zinc-air demonstrators. On the one hand, this results in a
high space requirement. On the other hand, the discrete setup is also
much more expensive. Therefore, the development of an integrated
circuit, in which two voltages can be measured with one reference
potential, is an economically very important step.
Finally, battery systems, despite their importance, cannot alone man-
age the energy transition. Therefore, other technologies should be
further studied. One promising approach is the production of green
hydrogen from surplus renewable energy in an electrolysis process.
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With the help of fuel cells, the energy can then be returned to the grid
or used in a cars.





Part V
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a.1 schematic of pid current controller
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a.2 software : model fitting

The Python module scikit-optimize was used to fit the battery model.
The fitting is divided into three steps. First, the battery model is
defined, which determines the impedance depending on the model
parameters and the frequency being evaluated (Listing A.1). In order
to use the optimization functions from the scikit-optimize module, a
cost function must be defined whose cost increases with increasing
deviation between the measured data and the model data (Listing A.2).
The actual optimization then takes place in Listing A.3.

Listing A.1: Definition of the battery model in Python.

# Define Battery model

def z_model_charge(f,param):

w = 2*np.pi*f

# Split up parameters

Rel = param[0]

Rct1 = param[1]

ad1 = param[2]

cpe_q = param[3]

cpe_n = param[4]

Rct2 = param[5]

ad2 = param[6]

Cdl2 = param[7]

L = param[8]

# Calculate Warburg impedance

Zwar1 = ad1 * ((1j*w)**(-0.5))

Zwar2 = ad2 * ((1j*w)**(-0.5))

# Calculate CPE

Ycpe1 = cpe_q * ((1j*w)**cpe_n)

# Calculate electrode impedance

Zelectrode1 = 1 / (Ycpe1 + (1/(Rct1+Zwar1 )))

Zelectrode2 = 1 / ((1j*w*Cdl2) + (1/(Rct2+Zwar2)))

# Return complete Impedance

return (Rel + Zelectrode1 + Zelectrode2 + (1j*w*L)) �
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Listing A.2: Definition of the error function in Python to fit the battery mode.

# Define cost function

def squared_error_charge(eisdata,param):

residual_sum = 0.

for k in range(len(eisdata)):

Zm = eisdata.Z[k]

f = eisdata.ActFreq[k]

Zc = z_model_charge(f, param)*1E3

residual = Zm-Zc

residual_sum += residual.real**2 +residual.imag**2

return residual_sum

def f_cost(param):

return models.squared_error_charge(eis_data, param) �

Listing A.3: Python program used to fit the battery model against measured
impedance spectra.

# Define initial guess

param0 = [1.0-2, # Rel

1.0E-2, # Rct1

5e-12, # ad1

4.0E0, # cpe_q

5.0E-1, # cpe_n

8.0E-3, # Rct2

9.0E-5, # ad2

4.0E-1, # Cdl2

4.0E-8] # L

# Define boundaries

bounds = scipy.optimize.Bounds(np.ones([len(param0)])*1e-20,

np.ones([len(param0)])*5)

# Optimize

cnt = 0

while (res.fun > 2 or cnt < 10):

res = scipy.optimize.minimize(f_cost,

param0,

bounds=bounds,

options={"maxiter":1E2})

param0 = res.x

cnt +=1

# Store results

params_charge = res.x �
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