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Abstract: Human milk (HM) is considered the most complete food for infants as its nutritional
composition is specifically designed to meet infant nutritional requirements during early life. HM
also provides numerous biologically active components, such as polyunsaturated fatty acids, milk
fat globules, IgA, gangliosides or polyamines, among others; in addition, HM has a “bifidogenic
effect”, a prebiotic effect, as a result of the low concentration of proteins and phosphates, as well as
the presence of lactoferrin, lactose, nucleotides and oligosaccharides. Recently, has been a growing
interest in HM as a potential source of probiotics and commensal bacteria to the infant gut, which
might, in turn, influence both the gut colonization and maturation of infant immune system. Our
review aims to address practical approaches to the detection of microbial communities in human
breast milk samples, delving into their origin, composition and functions. Furthermore, we will
summarize the current knowledge of how HM microbiota dysbiosis acts as a short- and long-term
predictor of maternal and infant health. Finally, we also provide a critical view of the role of breast
milk-related bacteria as a novel probiotic strategy in the prevention and treatment of maternal and
offspring diseases.
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1. Introduction

Human milk (HM) represents the gold standard, providing protective and functional
nutrients for the newborn, ensuring healthy growth and development [1,2]. Accordingly,
the World Health Organization (WHO) and other international organizations, such as the
European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN),
recommend that infants should be exclusively breastfed during their first 6 months of
life, with breastfeeding continuing until two years of age, combined with complementary
feeding [3,4]. However, it is necessary to point out that exclusively breastfed infants present
a particular risk of vitamin D deficiency, due to its low concentration in breast milk [5], low
maternal vitamin D levels and daily intake, as well as the lack of exposure of newborns and
suckling infants to sunlight [6]. Therefore, associations such as the American Academy of
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Pediatrics and ESPGHAN recommend vitamin D supplementation at doses of 400 IU/day
in infants who are exclusively or partially breastfed [7,8].

Unlike its traditional consideration as a sterile fluid, HM is now recognized as an
interesting source of potentially probiotic and commensal bacteria such as Bifidobacterium
spp., Lactobacillus spp., Clostridiales spp., viral organisms, among others, which may lead
to healthy infant gastrointestinal (GI) microbiota and immune system maturation [9-11].
Although studies provide strong evidence of the existence of microbes in human milk, their
origin and potential role in breastfed infants” health need to be studied in greater depth,
particularly concerning the contribution of HM microbes to the growth and development
of infant gut microbiota. In fact, some authors reported that HM microbiota contributes
less than previously expected to gut microbiota composition during early life, and virtually
nothing at 6 months of age [12,13]. Nevertheless, as human microbiota is essential for
optimal host physiology, there is currently great interest in better understanding how
HM microbiota dysbiosis could be related to the development of non-communicable
diseases in both mother and child [14]. Consequently, methodological advances and more
consistent findings are still needed to better understand the uncertain aspects related to HM
microbiota origin, composition and function [15], and its potential interaction with other
bioactive components. This review aims to summarize and evaluate the current knowledge
of HM microbiota, highlighting avenues for future research and potential therapeutic
implications for both maternal and child health.

2. Human Milk Microbiota: Practical Approaches to Detect Microbial Communities in
Human Breast Milk Samples

Culture-dependent approaches were initially used to demonstrate the existence of
specific microbiota in HM samples. In this regard, Martin et al. [16] reported the pres-
ence of potential probiotic and commensal lactic acid bacteria (LAB), mainly Lactobacillus
gasseri and Enterococcus faecium, in aseptically collected HM samples from healthy women.
These bacteria can inhibit the growth of pathogenic bacteria through acetate and lactate
production, suggesting that both strains may have a preventive role in neonatal infectious
diseases. This experimental methodology has been widely used to identify other bacterial
species naturally present in HM, including different LAB strains (Lactobacillus, Lactococcus,
Leuconostoc, Weissella, etc.), bifidobacteria, facultative anaerobic bacteria, and novel bacterial
species as Streptococcus lactarius [17-19]. However, it fails to detect both strictly anaerobic
and non-culturable bacteria, and new experimental approaches have been required to
discover and describe the whole HM microbiota.

Thus, the use of culture-independent molecular techniques (qQPCR, denaturing/
temperature gradient gel electrophoresis, etc.), and Next Generation Sequencing (NGS)
technology, have made it possible to overcome these limitations, identifying strictly anaer-
obic bacteria (Bifidobacterium spp., Bacteriodes spp., and Clostridia) in HM samples from
healthy women [18] (Table 1). Hunt et al. [20], using 16S-ribosomal RNA gene pyrose-
quencing, showed that central node of HM microbiota was mostly formed by Streptococcus,
Staphylococcus, Serratia and Corynebacteria. Other bacteria, including Lactobacillus, Bifidobac-
terium, Propionibacterium, Pseudomonas, Bradyrhizobium, Sphingomonas and Ralstonia, were
also found to a greater or lesser extent in HM samples. Similar results were obtained by
Jost et al. [21] using the above-mentioned experimental approach in combination with
culture-dependent methods. Interestingly, gut-associated obligate anaerobes bacteria, such
as Bacteroides and Clostridia were also found, which could explain the potential beneficial
role of HM and its microbiota on colonic health.

Moreover, culture-independent molecular techniques, such as gPCR plus pyrose-
quencing and 165 rRNA sequencing, have been crucial for understanding how populations
of HM microbiota change over lactation or due to maternal factors during pregnancy or at
delivery [22,23]. These findings were further expanded using metagenomic approaches,
identifying archaea, viruses, fungi and protozoa as other common members of HM mi-
crobial metagenome [24,25]. Although their practical limitations, including the over- or
underestimation of certain bacterial groups, dead bacteria detection or targeting the in-
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herent properties of 165 rRNA region, these methodological approaches have allowed the
diversity and complexity of HM microbial communities to be evaluated [18]. However,
further studies using novel experimental approaches, such as NGS and omics technologies,
are still needed, not only to better understand the detailed HM microbiota composition
and functions, but also to understand their potential interactions with other milk bioac-

tive compounds.

Table 1. Main features of experimental procedures in analysis of bacterial communities.

Method Description Advantages Disadvantages References
Culture-Dependent Approaches
Limited selective media for
v T ide estimates of potential strains of interest.
Isolation of target bacteria using general or opP r%"l €es LI?a efs ° Inaccurate representation of
. . selective culture media; dose-response rmicrobes capable O whole species present in a
Isolation media study of antibiotics effects on rephc?itmg u;'lderd. i sample. [26,27]
bacteria growth experimental conditions. Subjective identification.
v Low-cost method. Need for trained personnel to
obtain reliable results.
Culture-Independent Approaches
v To identify unlimited
“Classic” target template detection PCR number of species present ; ;
. . Artifacts generation by
ot plus fluorescent detection methods to in the sample. e
Quantitative . - - unequal amplification of PCR
Pol Chai record product formation during each cycle v To quantify both . 8
ymerase Chain £ PCR lificati ficat ¢ bund d . products (PCR bias). [28]
Reaction (q-PCR) o amplification. Quantl.lcatlor\ of abundance and expression Unable to identify unknown
gene (or transcript) numbers is determined of taxonomic and species
during the exponential phase. functional gene markers. P ’
v Safe and fast method.
Synthesis of complementary DNA (cDNA) High cost.
chains from mRNA and subsequent v Simult detecti £ Large number of probe
amplification to biotin-labelled }11mu aréleoufs etection o designs based on
DNA microarray complementary RNA (cRNA). Once these ¢ OusaSNS AO genes or low-specificity sequences. [29,30]
fragments are obtained, they will be v ;argtet th dsequences. Lack of control over the pool
hybridized with microarray probes and astmethod. of analyzed transcripts.
stained for analysis. PCR bias.
Liquid bacteria suspension is moved into
liquid stream (sheath fluid) and then
subjected to the effects of a laser, which v Rapid assay times and data
scatters light in two major directions: generation. Low number of fluorescent
Flow cytometry Forward angle light scatter (Forwarc_l scatter High numbers of cells stains _available to &{I}alyze (31]
or FSC) or Side-angle light scatter (Side analyzed per sample with bacterial cells’ viability,
scatter or SSC). Both light signals are minimal volume. structure and/or metabolism
converted into electronic signals to analyze v High performance.
bacteria solution based on their fluorescent
or light scattering characteristics.
FISH (Fluqrescence Target DNA is hybridized using specific v Extensive philogenetic Unable to identif Kk
In Situ DNA probe for further fluorescence identification. nabie to identity unknown [32]
Hybridization) microscopy analysis v No PCR bias species.
v Detect_ “unculturable” Unable to analyze metabolic
bacteria. . P
. . activity and bacterial viability.
v High precision when . Measurement of the relative
Identification of nucleotides order in whole explorm% the I})hy}ogg{}e{nc abundance of bacterial
: composition of microbia .
Next-generation genome or targeted DNA/RNA regions populations. populations rather than
DNA sequencing using sequencing technology characterized v Detailed lvsis of absolute abundance. [31,33]
by ultra-high-throughput, scalability . Z,al_; aln aLys1s o High cost
and speed. H,: 1tV1h ual genome Need for qualified personnel
stretches. . and massive amount of work
v Precise analysis of RNA to analvze the obtained
transcripts for gene resultsy
expression. ’

3. Composition and Potential Origin of the HM Microbiota

Different studies have reported the existence of “core” HM microbiota, mostly formed
by Staphylococcus, Streptococcus and Propioninacterium [21,34-36], although its composition
can vary between 2 and 18 taxa, including other members at lower abundances such as
Bifidobacterium, Veillonella, Rothia, Lactobacillus, Corynebacterium, Ralstonia, Acinetobacter,
Acidovorax, Pseudomonas, Bacteroides, Clostridium, Escherichia/Shigella, Gemella, and Ente-
rococcus [37]. This lack of consensus in HM microbiota composition seems to be due to
differences in both methodologies (sample collection and stored, DNA extraction proto-
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cols, 165 rRNA sequenced region) [38] and study populations (geographical and lifestyle
factors) [39]. However, it seems clear that “core” HM microbiota acquisition occurs grad-
ually over lactation, and this could potentially drive healthy gastrointestinal microbiota
development and subsequent optimal later-life health [37,40].

There are different questions about the origin of HM microbiota. Scientific evidence
supports a pre-existing mammary gland microbiota formed before pregnancy and lactation,
thus acting as a basis for HM microbiota establishment [41-43]. Once set, the existence
of multiple microbial sources, such as maternal skin and GI tract, as well as infant oral
cavity, could direct the development of HM microbiota. This fact would not only explain
the differences in composition between mammary gland and HM microbiota, but also
its dynamic composition during breastfeeding [37]. Nevertheless, to date, this is still
under discussion; in fact, some studies have detected human skin bacteria, mainly genus
Staphylococcus, Propionibacterium and Corynebacterium, in HM samples, suggesting the
ability of maternal skin microbiota to colonize the mammary gland [20]. However, other
findings fail to identify this microbial source. Thus, although LAB were found in both
HM and mammary areola, these bacteria showed different DNA profiles according to the
analyzed source [16]. Similarly, there were also significant differences in Streptococcus and
Propionibacteria abundance between microbial communities present in the HM and maternal
skin [21]. It is also important to highlight that the bacterial genera shared between HM
and maternal skin also seem to be related to GI tract and mouth [34], thus reinforcing the
need for further studies to clarify the real contribution of maternal skin to HM microbiota.
Interestingly, HM microbiota origin could be also explained by bacterial retrograde flow
between breast milk and infant oral cavity. This assumption is not only suggested by the
presence of typical oral bacteria species, mainly Streptococcus, Rothia and Gemella, in HM
samples [44], but also by the significant differences in oral microbiota composition found
between formula-fed and breastfed infants [45].

Finally, there is growing interest in entero-mammary pathway to explain the potential
HM microbiota origin, which is founded by the presence of typical GI bacteria (Bifidobac-
terium, Veillonella, Bacteroides, and Clostridium, among others) in breast milk [12,21,34,46,47].
This hypothesis is also supported by studies performed in mice models, which suggest
that dendritic cells (DC) can regularly reach the intestinal epithelium and selectively rec-
ognize commensal gut bacteria to move them to the mammary gland through lymphatic
system [36]. Zhou et al. [48] also found that DC shared bacterial signatures with those
reported in the intestine, lymph nodes and breast milk in lactating mice. Furthermore,
interventional studies performed in lactating women have reported that HM microbiota
composition can be selectively modified by diet or pro- and prebiotic treatment, emphasiz-
ing the potential maternal GI origin of HM microbiota [49,50]. Recent studies also suggest
that the entero-mammary pathway is involved in immune cell circulation, which may
partially explain the immunomodulatory role of HM, which is discussed in more detail
below. In this sense, Ikebuchi et al. observed a higher proportion of CD4+ and CD8+ T
cells in milk compared to mammary gland in mouse model [51]. Moreover, CD8+ T cells
showed increased expression of claudin polymerization-associated genes (cldn3 and cldn7),
as well as the tjp1 gene, which is related to the biosynthesis of tight junction protein ZO-1.
This expression profile, observed in CD8+ T cells (and probably in CD4+ T, y6T, and NK
cells), allows immune cells to selectively translocate through the tight junction region to
milk. Consequently, when the infant is breastfed, T cell populations could migrate to
lymphoid tissues, thus reinforcing neonatal-cell-mediated immunity [52]. Therefore, CD4+
T-cell-mediated adaptive immune response is crucial to maintain intestinal immune home-
ostasis against food molecules and non-harmful microbial components [53], while CD8+
T-cell-mediated response plays a key role in protection against intracellular pathogens,
thereby maintaining an optimal balance in the gut microbial community [54].

Taken together, further studies are not only needed to better evaluate the potential
contributions of different sources to HM microbiota composition, but also to clarify whether
the bacterial communities present in mammary gland are a true permanent microbiota or
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constantly provided by external sources. It will be also of interest to explore the probable
interactions between HM microbiota and immune components present in HM.

4. Potential Factors That Influence HM Microbiota Composition

In recent years, it has been established that HM microbiota composition is highly
influenced by genetic, maternal and early-life factors (gestational age, delivery mode,
maternal nutrition and body composition, time of day and stage of lactation, intake of
antibiotics, and geographic location), which cause substantial inter-individual variation in
its composition [55] (Figure 1).

>
Gestational age and

mode of delivery é é

—

Maternal nutrition and
body composition

Collected samples

Antibiotics
exposure

Geographic
location

Time of day and
stage of lactation

Figure 1. Potential factors that influence breast milk microbiota composition.

In this line, both gestational age and mode of delivery can modify the abundance of
certain bacteria in HM microbial community. Khodayar-Pardo et al. [56] observed a lower
abundance of Lactobacillus spp. (L. fermentum and L. salivarius) and Bifidobacterium spp.
in HM samples from women who had a cesarean delivery with respect to those who
gave birth vaginally. Moreover, human milk Bifidobacterium concentrations were increased
in mothers who had a term delivery compared to those who had a preterm birth. On
the other hand, Cortés-Macias et al. [57] reported that C-section delivery and antibiotic
exposure caused compositional changes in the HM microbial community, in terms of lower
abundances of Lactobacillus, Bacteroides, and Sediminibacterium genera.

Regarding the influence of maternal diet and body composition on HM microbiota
composition, the results achieved to date are limited and indicate a need for further research.
Padilha et al. [58] observed that HM microbiota diversity was associated with vitamin C
intake during pregnancy, while human milk Bifidobacterium concentration was positively
correlated to polyunsaturated and linoleic fatty acids intake during lactation.

Interestingly, maternal BMI seems to have an impact, either positive or negative, on
the diversity of certain bacteria phylum, but not on overall o-diversity [59]. However, the
potential influence of maternal diet and body composition on HM microbiota composition
is still controversial. In this line, studies conducted to date suggest that both the aforemen-
tioned factors seem to be associated with changes in the HM profiles of oligosaccharides
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(HMOs), fatty acids, proteins, hormones, immune cells and antibodies [60—-62]. These
changes could alter the milk microenvironment and, ultimately, microbial community
composition [59].

Recently, scientific research has focused on the role of circadian rhythms in HM micro-
biota composition. Corona-Cervantes et al. [63] showed changes in Shannon diversity index
during the day, as well as a predominance of Proteobacteria, Actinobacteria and Firmicutes
at night, in HM samples from healthy women who had vaginal deliveries. Despite the
limitations of this study, the obtained findings seem to suggest that HM microbiota could
follow a circadian rhythm, with dynamic changes in its composition depending on the time
of day.

Lactation stages have been also identified as a novel factor that can contribute to the
remodeling of HM microbiota composition. Gonzalez et al. [64] found that HM samples
collected during early lactation (6-46 days post-partum) were rich in Staphylococcus and
Streptococcus spp., both related to infant oral and intestinal tract, while aromatic com-
pound degradation-related species such as Sphingobium and Pseudomonas were prevalent in
HM samples collected at the late stage (109-184 days post-partum). Likewise, Moossavi
et al. [59] showed that HM microbiota composition, but not -diversity, was related to
lactation stage within the period of study (17 £ 5 weeks). Moreover, they also showed that
indirect breastfeeding decreased the relative abundance of Bifidobacterium but increased
relative abundance of potential pathogens, including Enterobacteriaceae and Pseudomonas.
Similar to other studies [21,65], these authors also suggest that the collection method is an
extrinsic factor influencing HM composition analysis.

It is known that geographic location influences HM composition, including levels of
micro- and macronutrients, bioactive compounds, and immunological factors, and thus ulti-
mately also affects HM microbiota composition [66,67]. In fact, after analyzing HM samples
belonging to 117 Chinese mothers from three different geographic locations, Wan et al. [68]
reported that microbial diversity and richness during lactation were potentially related to
maternal geographic location.

5. Human Milk Microbioma Functions and Activity

The recent technological advances discussed above have allowed the potential functions
of human-milk-associated bacteria in promoting host health to be identified. In this line, the
results obtained from diverse studies suggest that HM microbiota may influence infant gut
microbial colonization through vertical mother-child bacterial transmission [34,69-71]. In
support of this hypothesis, both HM and breastfed infants’ stool samples seem to share spe-
cific bacteria patterns (mainly Lactobacillus spp., Lactobacillus plantarum, Bifidobacterium breve
and Bifidobacterium longum subsp. longum), with significant differences also seen compared to
strains obtained in faeces from formula-fed infants [34,69-72]. Interestingly, this similarity in
microbial composition remains throughout the first year of life [73]. The vertical transmission
of HM microbes to infant gut would not only be facilitated by milk’s own characteristics, but
also by specific microbial features that could allow them to survive the GI environment. On
the one hand, the neutral pH of breast milk counteracts the acidity of the GI tract during
lactation. Moreover, HM is also rich in non-digestible carbohydrates (HMOs) that facilitate
commensal bacterial growth [74]. On the other hand, members of the Bifidobacteria genus
present in HM might colonize and persist in the GI tract due to the specific structural features
present in its surface combined, with crucial molecular tools specifically designed to respond
to environmental changes [75,76]. Among them, Bifidobacteria has the ability to resist the
acidic environment of GI tract through its FOF1-ATPase activity, which is responsible for
active proton extrusion and the maintenance of pH homeostasis [77]. Nevertheless, despite
this evidence, the potential influence of HM bacteria on infant gut colonization is still under
review as studies carried out to date show inconsistent findings. In fact, Pannaraj et al. [12]
reported that the contribution of HM to infant gut microbiota in breastfed infants ranged
between 15 and 20%, while Williams et al. [13] found that HM bacteria represented only
about 5% to the infant gut microbiome on day 2 of life, but virtually nothing at 6 months of
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age. Consequently, further studies are still needed to better understand the potential role of
HM bacteria on infant gut colonization.

It is also important to highlight that HM microbiota might be involved in the micro-
biota establishment in other niches. For instance, HM microbiota might drive oral micro-
biota development, as suggested by the higher abundances of HM-related bacteria in oral
samples from breastfed infants compared to those who received infant formula [13,78,79].
Likewise, HM microbiota seems to influence upper respiratory tract (URT) microbiota
establishment during early life, thus supporting the protective effects of HM against infants
URT infections. In fact, URT microbiota from breastfed infants is mainly formed by LAB,
but there is a low abundance of Staphylococcus and anaerobic bacteria, with the latter being
predominant in URT microbiota from formula-fed infants [80,81].

Due to its hypothetical role in GI microbiota establishment, HM microbial may have
other potential functions in the infant gut. Studies suggest that HM-related bacteria protect
against gastrointestinal infections through different mechanisms including: (i) growth
inhibition of pathogenic bacteria by competitive exclusion; (ii) production of antimicrobial
compounds such as hydrogen peroxide (H,O;); (iii) enhancing intestinal barrier protec-
tion via increased mucine production, lower intestinal permeability, and upregulation of
detoxifiying enzymes [82]. Consequently, HM-related bacteria strains belonging to Lacto-
bacillus (L. salivarius CECT5713 and L. fermentum CECT5716) and Staphylococcus epidermidis,
have emerged as promising therapeutic agents in the treatment of child gastrointestinal
infections [82-84].

Scientific evidence also suggests a potential metabolic role of HM microbiota in infants;
as an example, both lactobacilli and bifidobacteria have the ability to break down non-
digestible HMOs into butyrate, which is not only used for colonocytes as energy source,
but also has modulatory effects on intestinal health [85,86]. Additionally, HM microbiota
seems to be involved in nutrient metabolism and synthesis, as suggested by the fact that
stool samples from breastfed infants showed a significant increase in carbohydrates, amino
acids and nitrogen metabolism, as well as cobalamin synthesis, compared to those obtained
from formula-fed infants [87].

Certain bacteria strains provided by breast milk, along with other HM bioactive
compounds (nutritional components, hormones, growth factors, neuropeptides, cytokines
and nucleotides) can maturate and modulate immune responses in neonates and infants,
thus protecting them against asthma, allergies and other non-communicable diseases [88].
In vitro models suggest that Lactobacillus salivarius CECT5713 and Lactobacillus fermentum
CECT5716 could have potent immunomodulatory effects by regulating the activation of NK
cells, CD4+/CD8+ T cells and regulatory T cells [89]. Moreover, compared to formula-fed
infants, the immune response observed in breastfed infants is largely based on regulatory
T cells and TH1/TH2 balanced responses [90]. Other human-milk-related bacteria strains,
including Lactobacillus gasseri CECT5714 and viridans streptococci, also seem to have a pro-
tective role in allergic conditions, mainly cow ‘s milk protein allergy/intolerance [91] and
atopic eczema [92], respectively. Overall, these studies suggest the possible immunomodu-
latory role of HM microbiota in infants.

6. Short- and Long-Term Implications of HM Microbiota on Maternal and
Child Health

Regardless of its origin, the existence of commensal microbes in HM might have
a beneficial role in the health of mothers and their newborn infants. In fact, research
carried to date points to a potential influence of HM microbiota on health outcomes [93,94].
However, further studies are still needed to obtain stronger scientific evidence, particularly
considering that HM not only contains commensal bacteria, but also many other immune,
nutritional and bioactive factors that may influence maternal and child health.

6.1. Maternal Pathologies and Human Milk Microbiota Dysbiosis

It is established that breastfeeding provides short- and long-term positive effects on
maternal health, including better postpartum recovery, lower risk of breast and ovarian
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cancer, and a reduced incidence of cardiovascular and autoimmune diseases [95,96]. Inter-
estingly, clinical and scientific evidence also suggests a bidirectional interaction through
which maternal health can modify HM microbiota composition.

Mastitis is a common inflammatory condition that affects 33% of lactating women
and causes pain during lactation, redness of the breast and fever, ultimately leading
to decreased milk production and subsequent early suppression of breastfeeding [97].
There is evidence suggesting an association between this inflammatory condition and HM
microbiota dysbiosis in terms of low microbial diversity, decreased relative abundances of
commensal bacteria (Lactococcus and Lactobacillus) and the establishment of opportunistic
pathogens such as Staphylococcus, Streptococcus and Corynebacterium [98,99]. In fact, acute
mastitis is widely caused by S. aureus, reaching concentrations of 4.0 logj colony-forming
cells (cfu)/mL in milk of acute mastitis-suffering women compared to concentrations
from 1.5 to 3 logjp cfu/mL reported in the milk of healthy women. However, other
potentially pathogenic strains, including coagulase-negative Staphylococci, S. epidermidis
and Corynebacterium, also lead to subacute, chronic or granulomatous mastitis in lactating
women, respectively [100,101]. As these bacteria are often resistant to antibiotic therapy,
promising strategies for mastitis treatment are currently based on the use of Lactobacillus
strains isolated from the human milk of healthy women. Clinical trials published to date
indicate that oral intake of different Lactobacillus strains isolated from human milk, either
alone, such as L. fermentum CECT5716 and L. salivarius CECT5713 [102], or combined
(L. salivarius CECT5713 plus L. gasseri CECT5714) [49], reduces the counts of pathogenic
bacteria and improves mastitis symptoms after 14-21 days of treatment, thereby emerging
as promising treatment for lactational infectious mastitis when antibiotic treatment fails.
Interestingly, both L. fermentum CECT5716 and L. salivarius CECT5713 were also found
in HM samples of treated women, suggesting that both strains are able to recolonize the
mammary gland to reduce and reverse mastitis-associated dysbiosis [102]. Further studies
have been performed to better understand the key biomarkers and potential mechanisms
involved in this probiotic effect. Overall, these studies showed that Lactobacillus-based
probiotic treatment did not affect milk macronutrient composition, but was associated with
specific microbiological, immunological and metabolomic markers related to the improved
integrity of mammary gland epithelia [103,104]. Moreover, a recent study also suggest that
probiotic treatment might act on specific genes involved in inflammatory and cell-growth
signaling pathways, thus opening new avenues for research based on specific responsive
molecular targets [105]. Finally, daily oral intake of HM-related L. salivarius PS2 between
week 30 of gestation and delivery, significantly reduced the incidence of mastitis in women
who suffered this pathology in previous pregnancies, compared to those who received a
placebo during the same period [98].

The potential protective role of HM microbiota in breast health is also indirectly sug-
gested by the close link between the microbial communities present in mammary tissues
and risk of breast cancer. In this line, Urbaniak et al. [106] reported cancer-related dysbiosis
characterized by a significantly lower abundance of LAB, but increased abundance of
Bacillus spp., Staphylococcus epidermidis, family Comamonadaceae and Enterobacteria such as
Escherichia coli. However, the potential mechanisms through which microbiota dysbiosis
could contribute to breast cancer are still unknown. On the one hand, this effect could
be explained due to the ability of S. epidermidis and E. coli to induce DNA damage by
double-strand breaks [106]. Moreover, breast-cancer-associated microbial dysbiosis could
downregulate the host immune system, which, in turn, leads to a permissive environment
for breast tumorigenesis [107]. Xuan et al. [108] found a lower abundance of Sphingomonas
yanoikuyae in breast tumor tissue, a gram-negative bacteria involved in immune cell acti-
vation and the inhibition of tumor growth. In a similar study, nipple aspirate fluid from
breast cancer women was rich in genus Alistipes and other bacteria with -glucuronidase
enzymatic activity, which is associated with profound changes in estrogen metabolism
and an increased risk of breast cancer [41]. It is also important to note that the use of
chemotherapy to treat breast cancer might alter the bacterial communities present in HM
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and mammary tissues, reducing these potentially beneficial bacteria for mother and infant
health [43]. Despite this evidence, further studies are still needed to clarify whether these
bacteria strains could grow into a tumorigenic environment or whether they are a direct
cause of breast cancer.

Other maternal pathologies also seem to be accompanied by HM microbiota dysbiosis.
For instance, Gonzalez et al. [109] showed that breast milk of human immunodeficiency
virus (HIV)-infected women presented increased bacterial diversity and Lactobacilllus spp.
frequency, but its content in S. hominis and S. aureus was lower compared to breast milk of
healthy women. Nevertheless, no evidence for HIV-related microbial dysbiosis was found
in other studies [110]. These contradictory findings may be explained by methodological
and population differences between studies, making it difficult to identify whether changes
in HM microbiota composition were a response to maternal disease or vice versa. Similar
conclusions have been obtained in studies that analyzed HM microbiota composition in
women who suffer from allergies or celiac disease. In both cases, lower relative levels of
Bifidobacterium and Bacteroides were found in breast milk samples, but there were significant
differences in dietary habits between healthy and unhealthy women [111,112].

Special mention should be made to the potential relationship between HM and coro-
navirus disease 2019 (COVID-19). Although HM microbiota dysbiosis has not yet been
found in women positive for SARS-CoV-2, recent evidence suggest that GI microbiota
is profoundly altered in COVID-19 patients, particularly in terms of reduced bacterial
diversity and lower levels of commensal bacteria with immunomodulatory role (Faecalibac-
terium prausnitzii, Eubacterium rectale and Bifidobacterium), as well as increased growth of
potentially pathogenic Enterococcus strains [113,114]. These changes in GI microbiota com-
position seem to be positively related to cytokine storm intensity and subsequent disease
severity [114], and preliminary results suggest that therapeutic strategies focused on GI
microbiota modulation using pro- and synbiotics (mainly Lactobacillus spp. and Bifidobac-
terium spp.) could be effective in the prevention and treatment of severe COVID-19 [115].
Interestingly, noting the entero-mammary origin, it is plausible that COVID-19 disease
also involves dynamic changes in HM microbiota composition. Moreover, due to the
hypothetical role of HM microbiota in the establishment of infant GI microbiota, breast-
feeding could have a potential protective effect on severe COVID-19-related dysbiosis in
infants. While both assumptions require further research, there are different approaches,
emphasizing that mothers infected by SARS-CoV-2 can breastfeed their infants, with the
necessary precautions, in order to transmit HM's protective properties against COVID-19
disease [116-119]. In fact, unlike other viruses- such as HIV and human cytomegalovirus,
which can be transmitted to infants via breast milk, Bauer et al. reported that HM samples
obtained from mothers with SARS-CoV-2 infection and/or those who have recovered from
COVID-19, showed no presence of SARS-CoV-2 RNA [120]. Interestingly, these authors
also observed that HM could provide passive immunity to breastfed infants via the transfer
of SARS-CoV-2 spike-protein-specific antibodies. Similarly, Demers-Mathieu et al. found
a positive correlation between antigens and secretory antibodies in breast milk samples
from mothers with confirmed COVID-19 PCR, characterized by higher levels of S2 subunit
SARS-CoV-2-specific IgG, while SIgA and SIgM were polyreactive and cross-reactive to
S1 or S2 subunit SARS-CoV-2 [121]. In conclusion, the data discussed here seem not only
to support the breastfeeding recommendations during the COVID-19 pandemic, but also
its potential beneficial role for mothers and their offspring in the prevention of severe
COVID-19 disease [122]. However, as mentioned above, further studies are required to
better understand the role of both HM and GI microbiota in the physiopathology and
management of COVID-19.

Lastly, there is growing interest in evaluating the effects of maternal metabolic con-
ditions during pregnancy on the composition and activity of HM microbiota, as well as
its potential associations with later maternal and child health status. In this regard, it is
now established that maternal obesity and gestational diabetes mellitus (GDM) involve gut
microbiota dysbiosis which, if we consider the entero-mammary pathway as a potential ori-
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gin of HM microbiota, might result in HM microbiota dysbiosis. Thus, the gut microbiota
of obese women is characterized by their lower diversity and higher Firmicutes:Bacteroidetes
ratio with respect to lean women [123]. Similar changes were also found in gut micro-
biota composition in women affected with GDM, including lower x-diversity, changes in
B-diversity, higher Firmicutes:Bacteriodetes ratio, increased prevalence of gram-negative
bacteria, and reduced levels of potential probiotic bacteria [124]. Therefore, these dynamic
changes might not only alter HM microbiota composition, but also generate an “obeso-
genic” environment in infant gut, thus increasing infant obesity risk [123,124]. However,
there is limited knowledge about the possible effects of maternal metabolic conditions on
HM microbiota composition. Studies conducted to date seem to indicate that both maternal
pre-pregnancy obesity and excessive gestational weight gain were related to lower diversity
and Bifidobacterium abundance, but increased counts of Lactobacillus and Staphylococcus
in milk samples [22,125]. These characteristics in HM microbiota composition were also
related to changes in immunological biomarkers [125], which may further explain the plau-
sible link between higher risk of child and maternal obesity and HM microbiota dysbiosis.
Recent studies have focused on analyzing the combined impact of both maternal metabolic
conditions on HM composition. LeMay-Nedjelski et al. [126] found that milk samples
obtained from obese mothers with GDM or impaired glucose tolerance contained higher
levels of Gemella, compared to normal-weight mothers. Moreover, the colostrum samples of
obese mothers with GDM showed higher microbial diversity and increased levels of amino
acid and carbohydrate metabolism-related bacteria [127]. However, the HM microbiota
composition reported in these studies was also affected by other confounders, including
type of delivery, use of antibiotics, ethnicity and infant sex [126,127]. Consequently, further
studies are required to better evaluate potential mechanisms by which HM microbiota
from mothers suffering obesity and GDM may influence later health and development.

6.2. Role of Human Milk Microbiota on Child Health

Several clinical trials have described the potential benefits of HM in infants who
suffer from necrotizing enterocolitis (NEC), gastrointestinal disorders, celiac disease, obe-
sity, dermatitis, asthma, and infection-related processes such as surgical procedures and
chemotherapy [128,129]. These health effects are largely due to HM’s composition, which
is rich in nutritional, immune and bioactive compounds. Furthermore, the presence of
commensal and potentially probiotics bacteria could also be an important factor in explain-
ing the protective effects of HM on infant health. For instance, some authors suggest that
Bifidobacterium breve, a common member of the microbiota of breastfed infants, could be
key to promoting healthy GI microbial colonization due to its ability to use HMOs, thus
possibly protecting against infection and modulating immune system maturation [130,131].
However, it is important to point out that further studies are still needed to accurately
understand the potential implication of HM microbiota on infant health, as well as the
possible biological mechanisms and interactions with other bioactive compounds through
which HM microbiota could exert these potential protective effects on child health.

NEC is a major cause of acquired intestinal morbidity and neonatal death, especially
in preterm infants [132]. Although a clear dysbiosis pattern has not yet been reported,
the obtained findings suggest that preterm infants suffering from NEC or nosocomial
sepsis showed dynamic changes in gut microbiota composition (mainly decreased bacte-
ria diversity and high levels of potentially pathogenic bacteria such as Proteobacteria and
Clostridium perfringes), compared to healthy infants [133,134]. Due to its possible ability to
modulate infant gut microbiota, human milk feeding has emerged as promising strategy
to reduce the risk of NEC [135]. In addition to its high nutritional, the preventive role of
HM could be explained by its high content of commensal beneficial bacteria, including Bifi-
dobacteria, Lactobacillus, and Streptococcus. Interestingly, these bacteria strains showed both
species-specific probiotics effects and wider preventive effects when combined [135,136].
Breastfeeding should be also encouraged in preterm infants due to its high HMO con-
centration, which favors commensal bacteria growth in the gastrointestinal tract. This
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would explain why breastfed infants respond better to probiotic treatment than formula-fed
infants [127]. For mothers unable to produce sufficient breast milk to meet the nutritional
needs of their premature infants, pasteurized donor milk supplemented with the mother ‘s
own milk is highly recommended to support optimal gut microbiota maturation, thus im-
proving premature infant health [137]. In combination with this modulatory role in infant
GI microbiota, HM can also decrease the risk of neonatal NEC through anti-inflammatory
mechanisms related to the inhibition of the NF-«B signaling pathway. In fact, HM reduces
IL-1p-induced activation of the IL-8 gene, an NF- kB-dependent, pro-inflammatory cy-
tokine that is crucial for NEC pathophysiology. This anti-inflammatory effect seems to be
related not only to increased IkBa synthesis, a key inhibitor of the NF-«B pathway, but also
to a decrease in its 26S proteosome-dependent degradation [138]. Taken together, these
results suggest that breastfeeding, due to its complete nutritional composition, should be
taken into account as a protective and therapeutic strategy to reduce the risk of NEC and
other inflammatory bowel diseases.

Human-milk-related beneficial bacteria also seem to have a protective effect on minor
gastrointestinal disorders in healthy infants; as an example, the intake of infant formula en-
riched with L. fermentum CECT5716 Lc40 or B. breve CECT7263, both previously identified
in breast milk, reduced both the frequency and recovery time of GI infection-associated
diarrhea and infant colic-associated crying, respectively [139]. However, other HM com-
pounds such as HMOs are also implicated in the prevention of infant gastrointestinal
disorder. Thus, 2'-fucosyllactose (2’-FL), a HMOs related to Secretor gene fut2 [140], plays a
protective role in diarrhea caused by Campilobacter jejuni [141]. Similarly, fucosyltransferase
enzyme (FUT3), associated with the Lewis-Secretor gene [140], is involved in the synthesis
of different types of HMOs with potent in vitro antimicrobial activity against Group B
Streptococcus (GBS), potentially reducing the risk of neonatal infection [142].

The protective role of breastfeeding on the incidence and severity of infant atopic
disorders (AD) and asthma has gained a lot of research interest as the prevalence of both
pathologies is increasing globally [143,144]. However, the results obtained to date are
controversial. In this respect, Orivuori et al. reported that soluble IgA (sIgA) levels in
breast milk were associated with microbial-load-related environmental factors but not with
breastfeeding duration. Interestingly, sIgA levels during the first year of life were related to
lower risk of AD up to between 2 and 4 years, but associations between sIgA levels and risk
of AD or asthma were not found at 6 years [145]. On the other hand, the results obtained
from exhaustive review and meta-analysis showed that children who were breastfed longer
had a lower risk of developing asthma and eczema up to 2 years of age, although this risk
increased with infant’s age [146]. Conversely, Kong et al., using non-targeted metabolic
analysis in mouse model, identified the long-chain saturated fatty acids (LCSFA) present in
breast milk as damage-associated molecular patterns (DAMPs); thus, breast milk intake
was related to increased levels of inflammatory Group 3 innate lymphoid cells (ILC3) in
gut, with increases in the production of IL-17 and IL-22, which may migrate to the skin
and increase the risk of AD [147].

Based on its immunomodulatory role, human-milk-related LAB could have a promis-
ing therapeutic effect on infant allergic conditions [148]. According to this assumption,
in vitro studies suggest that L. salivarius CECT5713 and L. fermentum CECT5716 isolated
from breast milk are potent activators of NK cells, but their effects seem to be moderate
on CD4+, CD8+ and regulatory T cells, and seriously limited on T cells activation. More-
over, both potentially probiotic strains could modulate the cytokine patterns, favoring
Th1 immunity response and enhancing both innate and acquired immune responses [89].
Interestingly, the plausible protective role of HM in allergic conditions could be related to
the low contents of Bifidobacteria found in breast milk from allergic women [149]. Thus,
maternal probiotic treatment with Lactobacillus spp. and/or Bifidobacterium spp. aiming to
modulate HM microbiota should be considered a useful tool for the prevention or treat-
ment of allergic conditions, although questions about species-specific and dose-dependent
effects, time of administration and treatment duration remain unsolved [149].
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Finally, Gough et al. [150] found a lower bacterial diversity and high concentrations of
Acidaminococcus genus in gut microbiota from infants who suffer from severe linear growth
retardation. Considering its potential role in healthy infant gut colonization, these findings
might suggest that the beneficial features of HM microbiota could determine optimal infant
growth and development, although direct evidence has been not reported to date.

Overall, the findings discussed here suggest that the complex modulation of infant
gut microbiota through breast milk could have beneficial effects on infant health. These
benefits are especially important in preterm infants since their GI microbiota are rich in
potentially pathogenic bacteria. However, the available evidence is sparse, and further
studies should be carried out to better understand the role of HM microbiota in infant
health, which would allow us to identify novel HM-related beneficial strains as promising
therapeutic tools for the treatment of microbiota-dysbiosis-related disorders.

7. Conclusions

1.  Advanced experimental approaches have made possible to identify the existence of
an HM microbiota “core” primarily consisting of Lactobacillus, Staphylococcus, Propi-
onibacterium and Streptococcus. An HM bacterial “core” is gradually acquired over
lactation, although several maternal factors contribute to its composition, including
gestational age, delivery mode, maternal nutrition and body composition, antibiotics
intake and geographic location.

2. There is growing evidence supporting the mother-to-infant vertical transmission of
HM-related bacteria. However, the original source of such bacteria is still unclear,
with maternal skin and GI tract, as well as infant oral cavity, serving as potential HM
microbiota sources.

3. Independently of its origin, HM microbiota may promote optimal health status in
mothers and their infants via the broad array of potential functions related to the
healthy establishment of gut microbiota, growth inhibition of pathogenic bacteria,
and its modulatory effects on both metabolic pathways and immune responses.

4. HM microbiota dysbiosis seems to be associated with specific disease conditions,
both maternal (mastitis, breast cancer, and metabolic diseases during pregnancy)
and in infants during their early life (necrotizing enterocolitis, allergies, infections,
alterations in growth and development, among others).

5. Finally, although further studies are needed to better understand the protective role
of HM microbiota, the isolation of different beneficial strains present in breast milk,
mainly belonging to Bifidobacterium, Lactobacillus, and Streptococcus, could provide al-
ternate therapeutic options against those disorders related to HM microbiota dysbiosis
in which antibiotic-based therapy does not produce the desired effect.
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