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Equilibrium of Surfaces in a Vertical Force
Field

Antonio Mart́ınez and A. L. Mart́ınez-Triviño

Abstract. In this paper, we study ϕ-minimal surfaces in R
3 when the

function ϕ is invariant under a two-parametric group of translations.
Particularly those which are complete graphs over domains in R

2. We
describe a full classification of complete flat-embedded ϕ-minimal sur-
faces if ϕ is strictly monotone and characterize rotational ϕ-minimal
surfaces by its behavior at infinity when ϕ has a quadratic growth.
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1. Introduction

The equilibrium of a flexible, inextensible surface Σ in a force field F =
(X,Y,Z) of R3, was given by Poisson [20, pp. 173–187] and when the intrinsic
forces of the surface are assumed to be equal, the external force must have
a potential T which corresponds, up to a constant, with the tension of the
surface, that is,

dT + Xdx + Y dy + Zdz = 0. (1.1)

In this case, the equilibrium condition is given in terms of the mean curvature
vector H of Σ as follows:

HT + F⊥ = 0 (1.2)

where ⊥ denotes the projection to the normal bundle of Σ.
From equations (1.1) and (1.2), Poisson obtains:

• The minimal surface equation, by taking F = 0 and T = const.
• The capillary surface equation, by taking T = const and F normal to

the surface with ‖F‖ depending linearly on the height.
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and Junta de Andalućıa Grant No. FQM325.

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-021-01877-4&domain=pdf


    3 Page 2 of 28 A. Martínez and A. L. Martínez-Triviño MJOM

• The equation of a heavy surface in a gravitational field, by taking T =
(0, 0, g E(z)), g = gravitational constant and E(z) a density function on
the surface.

In this paper, we are interested in the last case, that is, when the equa-
tion (1.2) gives

H = (∇ϕ)⊥ = ϕ̇ �e⊥
3 , (1.3)

where ϕ(z) = log
∫ z

z0
g E(t))dt, ∇ is the gradient operator in R

3 and ( ˙ )
denotes derivate respect to the third coordinate. To get a regular problem,
we have to restrict the surfaces to the region of R3 where ϕ is regular. These
surfaces are a particular case of the so called f -minimal surfaces (see [3]) for
which the function f depends only on the height. They can be viewed either
as critical points of the weighted volume functional

Vϕ(Σ) :=
∫

Σ

eϕ dAΣ, (1.4)

where dAΣ is the volume element of Σ, or as minimal surfaces in R
3 with the

conformally changed metric

Gϕ := eϕ 〈·, ·〉. (1.5)

From this property of minimality, a tangency principle can be applied and any
two different ϕ-minimal surfaces cannot “touch” each other at one interior
or boundary point (see [7, Theorem 1 and Theorem 1a]).

Any surface satisfying (1.3) will be called [ϕ, �e3]-minimal and if Σ is the
vertical graph of a function u : Ω ⊆ R

2 −→ R, we also refer to u as [ϕ, �e3]-
minimal. Hence, u is [ϕ, �e3]-minimal if and only if it solves the following
[ϕ, �e3]-minimal equation:

(1 + u2
x)uyy + (1 + u2

y)uxx − 2uyuxuxy = ϕ̇(u)
(
1 + u2

x + u2
y

)
. (1.6)

This kind of surfaces has been widely studied specially from the view-
point of calculus of variations. Classical results about the Euler equation and
the existence and regularity for the solutions of the Plateau problem for (1.4)
can be found in [2,9–11,24].

But contributions from a more geometric viewpoint only has been given
for some particular functions ϕ. It is interesting to mention

• The case of ϕ(z) = z: it corresponds with translating solitons, that is,
surfaces in R

3 such that

t 	→ Σ + t�e3

is a mean curvature flow, i.e., such that normal component of the veloc-
ity at each point is equal to the mean curvature at that point: H = �e⊥

3 .
Recent advances in the understanding of its local and global geometry
can be found in [4,8,12–14,16,17,23,25]

• The case of ϕ(z) = α log z, α=const. It includes the two dimensional
examples analogues of the catenaries (when α = 1). We refer to [2,5,6,
15,19] for some progress made in this family.
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The aim of this paper is develop a general and systematic approach to
study [ϕ, �e3]-minimal surfaces from a geometric viewpoint. Nonetheless, the
class of [ϕ, �e3]-minimal surfaces is indeed very large and much richer in what
refers to examples and geometric behaviors. Although new ideas are needed
for its study, it will be necessary, to get classification results, to impose some
additional conditions to the function ϕ. Here, as a general assumption, we
will always consider ϕ strictly monotone, that is,

ϕ :]a, b[⊆ R → R is a strictly increasing (or decreasing) function
and Σ ⊂ R

2×]a, b[. (1.7)

Invariant surfaces by an uniparametric group of rigid motions in R
3 are

related with the one-dimensional case of (1.6). Since ϕ is taking so arbitrary,
we only consider [ϕ, �e3]-minimal surfaces invariant by two types of unipara-
metric groups, namely, groups of horizontal translations and the group of
vertical rotations.

In the first case, besides vertical planes, we may consider that u = u(x),
x ∈ I depends only on x. Then, from (1.6), the generalized cylinder Σ =
{(x, y, u(x)) | x ∈ I, y ∈ R} is a [ϕ, �e3]-minimal surface if and only if u
satisfies

u′′(x) = ϕ̇(u)(1 + u′(x)2) (1.8)

From its physical interpretation, any solution of (1.8) will be called
ϕ-catenary. The corresponding generalized cylinder is called [ϕ, �e3]-catenary
cylinder. If we rotate around the x-axis a [ϕ, �e3]-catenary cylinder an angle
θ ∈]0, π/2[ and dilate by 1

cos θ , the resulting surface is also [ϕ, �e3]-minimal and
we will say it is a tilted [ϕ, �e3]-catenary cylinder. In Theorem 3.7, we prove
that any complete flat [ϕ, �e3]-minimal surface is either a vertical plane or a
[ϕ, �e3]-catenary cylinder (maybe tilted).

In the second case, we consider [ϕ, �e3]-minimal surfaces that are invari-
ant under the one-parameter group of rotations that fix the �e3 direction.
From (1.6), the arc-length parametrized generating curve

γ(s) = (x(s), 0, z(s)), s ∈ I ⊂ R

of a such surface satisfies
⎧
⎨

⎩

x′ = cos(θ)
z′ = sin(θ),
θ′ = ϕ̇(z)cos(θ) − sin(θ)

x .

(1.9)

In Theorems 4.5 and 4.11 , we establish the geometric properties of the rota-
tional [ϕ, �e3]-minimal surfaces according two types of surfaces: one is globally
convex with only one complete embedded end (it is called a [ϕ, �e3]-minimal
bowl) and the other has two complete embedded convex ends and has a
generating curve of winglike type (it is called [ϕ, �e3]-minimal catenoid)

Very little is known about the geometry of the immersed [ϕ, �e3]-minimal
surfaces and most of the results have been proved only for translating solitons.
One of the first result in that direction was obtained by Clutterbuck, Schnüre,
Schulze in [4], where they proved that when ϕ̇ ≡ 1, any rotationally symmetric
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solution u = u(r), r =
√

x2 + y2, on the exterior of a compact planar domain
has de following asymptotic behavior:

u(r) =
r2

2
− log r + O(r−1).

Somewhat later Martin–Savas–Smoczyk proved in [17] that any complete
translating soliton with a single end asymptotic to a translating paraboloid
is a translating paraboloid.

In this paper, we generalize the above results to [ϕ, �e3]-minimal with ϕ̇
satisfying the following expansion at infinity:

ϕ̇(u) = αu + β +
∞∑

n=1

an

un
, an ∈ R, (1.10)

where either α > 0 and the first non-vanishing ak is positive or α = 0,
β > 0 and the first non-vanishing ak is negative. The results we prove can be
summarized in the following two theorems

Theorem A. If ϕ̇ satisfies (1.10), then any rotationally symmetric solution u
of (1.6) has the following asymptotic behavior:

• If α > 0,

ϕ(u)(r) = C eα r2
+ O(r2), C > 0, (1.11)

• If α = 0 and up to a constant, we have

G(u)(r) =
r2

2
− 1

β2
log(r) + O(r−2), (1.12)

where G is the strictly increasing function given by G(u) =
∫ u

u0

dξ
ϕ̇(ξ) .

Theorem B. Let Σ be a complete properly embedded [ϕ, �e3]-minimal surface
in R

3 with a single end that is smoothly asymptotic to a [ϕ, �e3]-minimal bowl,
ϕ̇ satisfying (1.10). Then, the surface Σ is a [ϕ, �e3]-minimal bowl.

The paper is organized as follows: in Sect. 2, we show some fundamental
equations related to our family of surfaces and as a consequence, we prove
the non-existence of closed examples and two results about strictly convexity
and mean convexity of [ϕ, �e3]-minimal surfaces.

Section 3 is devoted to the study and classification of embedded com-
plete flat [ϕ, �e3]-minimal surfaces. We describe geometrically the so called
[ϕ, �e3]-catenary cylinders and tilted [ϕ, �e3]-catenary cylinders and character-
ize them together to vertical planes as the unique examples of complete flat
[ϕ, �e3]-minimal surfaces.

In Sect. 4, we study the existence and classification of rotational exam-
ples. We construct for ϕ in a very general class of functions (strictly increas-
ing and convex) a family of [ϕ, �e3]-minimal bowls (which are strictly convex
graphs) and [ϕ, �e3]-minimal catenoids with a winglike shape (which resemble
the usual translating catenoids in R

3).
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Finally, Sects. 5 and 6 are devoted to study [ϕ, �e3]-minimal surfaces
when ϕ has a quadratic growth. We provide the asymptotic behavior of rota-
tionally symmetric examples and characterize [ϕ, �e3]-minimal bowls by their
behavior at infinity.

2. Some Relevant Equations

Here, we will give some local fundamental equations related to [ϕ, �e3]-minimal
surfaces. Let ψ : M −→ R

3 be a 2-dimensional [ϕ, �e3]-minimal immersion
(maybe with a non empty boundary) with Gauss map N , induced metric g
and second fundamental form A. We shall denote by ∇, Δ and ∇2, respec-
tively, the Gradient, Laplacian and Hessian operators of g.

The mean curvature vector of ψ is defined by H = tracegA and the
symmetric bilinear form A given by A(X,Y ) = −〈A(X,Y ), N〉, X,Y ∈ TΣ,
is called scalar second fundamental form. The mean curvature function H will
be the trace of A with respect to g. With this notation, (1.3) is equivalent
to

H := −ϕ̇〈N, �e3〉. (2.1)

We will assume that ϕ satisfies (1.7) and let us introduce the height and
angle functions, respectively, by

μ := 〈ψ, �e3〉, η := 〈N, �e3〉.

Lemma 2.1. The following relations hold:

∇μ = �e�
3 , 〈∇η, · 〉 = −A(∇μ, · ), (1)

ϕ̇2 = ϕ̇2|∇μ|2 + H2, (2)
ϕ̇∇2μ = HA, (3)

∇2η = (∇A)(∇μ, · , · ) +
H

ϕ̇
A[2], (4)

Δμ = ϕ̇(1 − |∇μ|2), (5)
ΔN + ϕ̇∇η + ϕ̈η∇μ + |A|2N = 0, (6)

∇2H = −η∇2ϕ̇ − (∇A)(∇ϕ, · , · ) − HA[2] + B (7)
ΔA + (∇A)(∇ϕ, · , · ) + η∇2ϕ̇ + |A|2A − B = 0, (8)

where A[2] and B are the symmetric 2-tensors given by the following expres-
sions:

A[2](X,Y ) =
∑

k

A(X,Ek)A(Ek, Y ),

B(X,Y ) = 〈∇ϕ̇,X, 〉A(∇μ, Y ) + 〈∇ϕ̇, Y 〉A(∇μ,X),

for any vector fields X,Y ∈ TΣ and any orthonormal frame {E1, E2} of TΣ.

Proof. (1) Differentiating μ and η respect to any X ∈ TΣ, we get

〈∇μ,X〉 = dμ(X) = 〈�e�
3 ,X〉,

〈∇η,X〉 = dη(X) = 〈dN(X), �e�
3 〉 = A(X, �e�

3 ).
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(2) From (2.1) and (1), it is clear that

1 = |∇μ|2 +
H2

ϕ̇2
.

(3) From definition of the Hessian operator,

∇2μ(X,Y ) = XY (μ) − (∇XY )(μ) = 〈A(X,Y ), e3〉 = −A(X,Y )η.

Therefore, (3) follows from (2.1).
(4) From Codazzi equation and (2.1):

∇2η(X,Y ) =
∑

k

(∇A)(Ek,X, Y )Ek(μ) −
∑

k

A(X,Ek)A(Y,Ek)η

= (∇A)(∇μ,X, Y ) +
H

ϕ̇
A[2](X,Y ).

(5) From (2) and (3),

Δμ =
∑

k

∇2μ(Ek, Ek) =
H2

ϕ̇
= ϕ̇(1 − |∇μ|2).

(6) As H = −ϕ̇η, we have

∇H = −ϕ̈η∇u − ϕ̇∇η,

and (6) follows from the well-known fact that ΔN = ∇H − |A|2N .
(7) From (2.1) and (4), we obtain

∇2H(X,Y ) = XY (H) − (DXY )H

= −η∇2ϕ̇(X,Y ) − ϕ̇∇2η(X,Y ) − 〈∇ϕ̇, Y 〉〈X,∇η〉 − 〈∇ϕ̇,X〉〈Y,∇η〉
= −η∇2ϕ̇(X,Y ) − (∇A)(∇ϕ,X, Y ) − HA[2](X,Y ) + B(X,Y ).

which give the proof of (7).
(8) Using the well-known Simon’s identity:

ΔA = ∇2H − |A|2A + HA[2]

and (7) we obtain (8).
�

From this Lemma, we have

Corollary 2.2. If ϕ :]a, b[→ R, is a strictly increasing (or decreasing) func-
tion, then the height function μ of ψ cannot attain a local maximum (or local
minimum) at any interior point.

Corollary 2.3. There is no any closed 2-dimensional [ϕ, �e3]-minimal immer-
sion ψ : M −→ R

2×]a, b[.

About the sign of the curvatures of ψ, we have

Theorem 2.4. Let ϕ :]a, b[→ R be a strictly increasing function satisfying

ϕ̈ + λ ϕ̇2 ≥ 0, for some constant λ > 0, (2.19)

and let ψ : Σ −→ R
2×]a, b[ be a 2-dimensional [ϕ, �e3]-minimal immersion

with H ≤ 0. If H vanishes anywhere, then H vanishes everywhere and ψ(Σ)
lies in a vertical plane.
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Proof. Using (2.1) and the Eqs. (1), (2), (5) and (6) in Lemma 2.1, we have

Δ(e−λϕ) + λe−λϕ(ϕ̈|∇μ|2 + H2 − λϕ̇2|∇μ|2) = 0,

Δη + ϕ̇〈∇η,∇μ〉 + (|A|2 + ϕ̈|∇μ|2)η = 0.

Thus, we obtain

Δ(e−λϕη) + (2λ + 1)〈∇(e−λϕη),∇ϕ〉 =

= −ηe−λϕ((λ + 1)(ϕ̈ + λ ϕ̇2)|∇μ|2 + λH2 + |A|2).
But, by hypothesis, η is a nonnegative function, and so, from the strong max-
imum principle, if it vanishes anywhere then it vanishes everywhere, which
concludes the proof. �

Theorem 2.5. Let ϕ :]a, b[→ R be a strictly increasing function satisfying...
ϕ ≤ 0, and let ψ : Σ −→ R

2×]a, b[ be a 2-dimensional locally convex [ϕ, �e3]-
minimal immersion. If the Gauss curvature K vanishes anywhere, then K
vanishes everywhere.

Proof. By hypothesis, the Gauss map N can be chosen such that A is a
positive semi-definite bilinear form and from (8), we have

ΔA + (∇A)(∇ϕ, . , . ) + G(A) = 0

where

G(A) = η∇2ϕ̇ + |A|2A − B.

But, from Lemma 2.1, if
...
ϕ ≤ 0, we obtain G(A)(v, v) = η

...
ϕ〈∇μ, v〉2 ≤ 0

for each null vector v of A. Therefore, can apply the maximum principle of
Hamilton (see [21, Section 2]) and if there is an interior point of Σ where A
has a null-eigenvalue then A must have a null-eigenvalue everywhere, which
concludes the proof of the theorem. �

3. Complete Flat [ϕ, �e3]-Minimal Surfaces

3.1. Vertical Graphs Invariant by Horizontal Translations

Consider the [ϕ, �e3]-minimal vertical graph given by a function u which only
depend on one variable, u = u(x), from (1.6) u must be a solution of the
following ODE:

u′′(x) = ϕ̇(u)(1 + u′(x)2) (3.1)

To look for complete examples, we will consider that

ϕ : ]a,∞[ −→ R

is either a strictly increasing (or decreasing) function. Then, by taking z =
ϕ(u) and u′ = tan(v), we obtain that (3.1) is equivalent to

v′ = h(z),
z′ = h(z) tan(v),

}

(3.2)

where h(z) = ϕ̇(ϕ−1(z)).
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Figure 1. Phase portrait of (3.2)

It is clear that ezcos(v) is constant along the solutions of (3.2) and from
Fig. 1, for each solution u of (3.1) there exists a unique x0 ∈ R such that
v(x0) = 0 (it is not a restriction to assume that x0 = 0).

By taking the initial conditions

u(0) = u0, u′(0) = 0, (3.3)

we have that for each x ≥ 0, u(x) is given by

u(x) := (X ◦ ϕ)−1(x), with X (z) =
∫ z

z0

dτ

|h(τ)|
√

e2(τ−z0) − 1
, (3.4)

where z0 = ϕ(u0). Thus, from (3.1) and (3.3), we obtain,

Proposition 3.1. The solution u of (3.1)–(3.3) is even and it is defined in the
interval ] − Λu0 ,Λu0 [, where

Λu0 = lim
u→∞

∫ ϕ(u)

ϕ(u0)

dτ

|h(τ)|
√

e2(τ−z0) − 1
. (3.5)

Theorem 3.2. If ϕ : ]a,∞[ −→ R is a strictly increasing function, then,

• Λu0 < ∞ if and only if
∫ ∞

u0
e−ϕ(λ)dλ < ∞. Therefore, if Λλ0 < ∞ for

some λ0 ∈]a,∞[, then Λλ < ∞ for all λ ∈]a,∞[.
• If Λλ < ∞ and ϕ̇ is increasing (respectively, decreasing), then Λλ is

decreasing (respectively, increasing) in λ.
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Proof. As

lim
τ→∞

√
e2(τ−z0) − 1

eτ−z0
= 1 �= 0,

the first item follows from (3.5).
On the other hand, by assuming that ϕ̇ is increasing and Λλ < ∞ for

all λ ∈]a,∞[, we have from (3.5), that, if λ1 ≤ λ2,

Λλ1 ≥ Λλ2 + lim
z→∞

∫ z−ϕ(λ1)

z−ϕ(λ2)

dτ

h(τ + ϕ(λ1))
√

e2τ − 1
= Λλ2 .

A similar discussion can be done when ϕ̇ is decreasing. �
From (3.1), (3.2), (3.3), (3.4), (3.5) and Theorem 3.2, we can prove the

following properties of the solutions,

Theorem 3.3. Let ϕ : ]a,∞[ −→ ]b, c[, a, b ∈ R ∪ {−∞}, c ∈ R ∪ {∞} be
a strictly increasing diffeomorphism, then the solution u of (3.1)–(3.3) is
defined in ] − Λu0 ,Λu0 [, Λu0 ∈ {R+,∞}, it is convex, symmetric about the
y-axis and has a minimum at x = 0. Moreover,

• if c < ∞, then Λu0 = ∞, and

lim
x→±∞ u(x) = ∞, lim

x→±∞ u′(x) = ±
√

e2(c−z0) − 1.

• if c = ∞,

lim
x→±Λu0

u(x) = ∞, lim
x→±Λu0

u′(x) = ±∞.

In particular, if Λu0 < ∞, the graph of u is asymptotic to two vertical
lines.

Theorem 3.4. Let ϕ : ]a,∞[ −→ ]b, c[, a, b ∈ {R,−∞}, c ∈ {R,∞} be a
strictly decreasing diffeomorphism, then the solution u of (3.1)–(3.3) is de-
fined in ] − Λu0 ,Λu0 [, Λu0 ∈ {R+,∞}, it is concave, symmetric about the
y-axis and has a maximum at x = 0. Moreover,

• if c < ∞, then Λu0 < ∞, and

lim
x→±Λu0

u(x) = a, lim
x→±Λu0

u′(x) = ±
√

e2(c−z0) − 1.

• if c = ∞, then

Λu0 < ∞ ⇐⇒
∫ u0

a

e−ϕ(λ)dλ < ∞,

and

lim
x→±Λu0

u(x) = a, lim
x→±Λu0

u′(x) = ±∞.

Remark 3.5. In the hypothesis of Theorem 3.4, the graph of u is complete
when a = −∞. But in this case, by changing ϕ by −ϕ, we can also apply
Theorem 3.3.

Definition 3.6. For each solution u of (3.1)–(3.3), we refer C := Graph(u)×R

as a [ϕ, �e3]-catenary cylinder surface (Fig. 2).
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Figure 2. [ϕ, �e3]-catenary cylinders with ϕ̇ = 1 and ϕ̇ =
1/u2, respectively

3.2. Tilted [ϕ, �e3]-Catenary Cylinders

Let ψ := (x, y, u(x)), x ∈] − Λu0 ,Λu0 [ be a [ϕ, �e3]-catenary cylinder with u
satisfying (3.3) and Gauss map,

N =
1√

1 + u′2 (u′, 0,−1).

If we rotate the surface by an angle θ ∈]0, π/2[ about the x-axis and dilate
by 1/ cos θ, the resulting surface may be written as follows:

ψ̃ = ψ +
1 − cos θ

cos θ
〈ψ, �e1〉�e1 + (tan θ)�e1 ∧ ψ,

where �e1 = (1, 0, 0) and whose Gauss map is given by

Ñ = cos θ N + (1 − cos θ)〈N, �e1〉�e1 + sin θ �e1 ∧ N. (3.6)

The mean curvature H̃ of ψ̃ verifies

H̃ = cos θ H = − cos θ ϕ̇〈�e3, N〉 = −ϕ̇〈�e3, Ñ〉.

Consequently, ψ̃ is also [ϕ, �e3]-minimal and we are going to refer these exam-
ples as tilted [ϕ, �e3]-catenary cylinders.

Observe that,

ψ̃(x, y) :=
( x

cos θ
, y − u(x) tan θ, u(x) + y tan θ

)
, (3.7)

and it is the graph of the function

Cθ : ] − Λu0

cos θ
,

Λu0

cos θ
[×R −→ R

Cθ(x, y) =
u(x cos θ)

cos2 θ
+ y tan θ
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Figure 3. Titled [ϕ, �e3]-catenary cylinders with ϕ̇ = 1 and
ϕ̇ = 1/u3, respectively

Theorem 3.7. Let Σ ⊂ R
3 be a complete flat [ϕ, �e3]-minimal surface. If ϕ :

R → R is a strictly increasing diffeomorphism, then Σ is either a vertical
plane or a [ϕ, �e3]-catenary cylinder (maybe tilted) surface (Fig. 3).

Proof. From basic differential geometry, Σ = α×Π⊥ is a ruled surface and its
Gauss map is constant along the rules, where α is a complete regular curve
in a plane Π ⊂ R

3.

Claim Let L be a straight line of Σ and VL be the unit normal
vector along L. If 〈VL, �e3〉 �= 0, then there exists a [ϕ, �e3]-catenary
cylinder CL (tilted, if L is not horizontal) containing L and tangent
to Σ along L.

Then, up to an appropriate rotation and dilatation, Σ is tangent to a [ϕ, �e3]-
catenary cylinder along a rule. The result follows from standard theory of
uniqueness of solution for the ODE (3.1). �

Proof of the Claim. If L is horizontal then, after a rotation about the axis
�e3, we may assume that

L = {(x0, 0, u0) + s(0, 1, 0) | s ∈ R}

and there exists φ ∈] − π/2, π/2[ such that VL = (− sin φ, 0, cos φ). Then, as
ϕ : R → R is a strictly increasing diffeomorphism, from (3.1), there exists a
solution uL of (3.1)–(3.3) and x1 ∈ R, such that uL(x1) = u0 and u′

L(x1) =
tan φ. The [ϕ, �e3]-catenary cylinder we are looking for is just a translation in
the �e1-axis of the catenary cylinder CuL associated to uL.
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If L is not horizontal and p = L ∩ {z = 0}, then by rotation of center p
and axis �e3 we may assume there exists θ ∈] − π/2, 0[ and α ∈ R, such that

VL =
1√

α2 + 1
(−α,− sin θ, cos θ).

Therefore, from (3.6) and (3.7), if we take the solution uL of (3.1)–(3.3)
satisfying

uL(x1) = 〈p, �e2〉 cos θ sin θ, u′
L(x1) = α,

for some x1 ∈ R, we conclude that our tilted [ϕ, �e3]-catenary cylinder is a
translation in the �e1-axis of the tilted [ϕ, �e3]-catenary cylinder obtained after
rotation of angle θ around the �e2-axis and dilation of 1/ cos θ the [ϕ, �e3]-
catenary cylinder associated to uL. �

As consequence, from the Theorem 2.5, the following result holds:

Corollary 3.8. Let ϕ :]a, b[→ R be a strictly increasing function satisfying...
ϕ ≤ 0, and let Σ be a complete locally convex [ϕ, �e3]-minimal immersion in
R

2×]a, b[. If the Gauss curvature K vanishes anywhere, then Σ is either a
vertical plane or a [ϕ, �e3]-catenary cylinder (maybe tilted) surface.

4. [ϕ, �e3]-Minimal Surfaces of Revolution

In this section, we are going to study geometric behavior of rotationally
symmetric solutions of (1.6).

4.1. The Singular Case

In the rotationally symmetric case, the Eq. (1.6) reduces to the following
ordinary differential equation for u = u(r), r =

√
x2 + y2:

u� =
(
1 + u�2

)
(

ϕ̇(u) − u�

r

)

, (4.1)

where (�) denotes derivative respect to r and ϕ :]a, b[⊆ R −→ R is a smooth
function. Since (4.1) is degenerated, the existence and uniqueness of solution
at r = 0 is not assured by standard theory. Multiplying by r we obtain that
(4.1) also writes as

(
r u�

√
1 + u�2

)�

=
rϕ̇(u)√
1 + u�2

. (4.2)

But, from [22, Theorem 2], a solution of (1.6) cannot possess isolated non-
removable singularities, hence, it is not a restriction to look for the existence
of solutions of (4.2) with the following initial conditions:

u(0) = u0 ∈]a, b[, u�(0) = 0. (4.3)

In this sense and using a similar argument to [15, Proposition 2], we can
assert
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Proposition 4.1. The problem (4.1)–(4.3) has a unique solution u ∈ C2([0, R])
for some R > 0 which depends continuously on the initial data and such that

u�(0) =
ϕ̇(u0)

2
.

The following result allows us to compare rotational symmetric [ϕ, �e3]-
minimal graphs:

Proposition 4.2. Let ϕ1, ϕ2 :]a, b[→ R be strictly increasing and convex func-
tions satisfying that ϕ̇1 > ϕ̇2 on ]a, b[ and denote by uϕ1 and uϕ2 the [ϕi, �e3]-
minimal graphs solutions to the corresponding problem (4.1)–(4.3). Then

u�

ϕ1
> u�

ϕ2
, on ]0, r0[.

Proof. If we take the function d := u�

ϕ1
− u�

ϕ2
, then d(0) = 0 and

d �(0) = u�

ϕ1
(0) − u�

ϕ2
(0) =

(
ϕ̇1(u0)

2
− ϕ̇2(u0)

2

)

> 0.

Hence, there exists ε > 0 such that d = u�

ϕ1
−u�

ϕ2
> 0 on ]0, ε[. If there exists

r1 > 0 satisfying d(r1) ≤ 0, we can take r∗ := inf{r > 0 : d(r) < 0} so that
d(r∗) = 0 and d �(r∗) ≤ 0. But, from (4.1) and having in mind that

∫ r∗

0
d > 0,

we get

0 ≥ d �(r∗) = (1 + u�

ϕ1
(r∗)2) [ϕ̇1(uϕ1(r

∗)) − ϕ̇2(uϕ2(r
∗)]

> (1 + u�

ϕ1
(r∗)2) [ϕ̇1(uϕ2(r

∗)) − ϕ̇2(uϕ2(r
∗)] > 0,

which is a contradiction. �

Remark 4.3. The above Proposition also holds if we assume that ϕ1, ϕ2 :
]a, b[→ R are smooth functions so that

inf ϕ̇1 > sup ϕ̇2, on ]a, b[.

As consequence of Proposition 4.2 and the asymptotic behavior of ro-
tational solitons proved in [4], we have

Corollary 4.4. Let ϕ : [a,+∞[→ R be strictly increasing regular function and
u be an entire solution of (4.1). If there exists α > 0 such that ϕ̇ > α, then

u�(r) ≥ α r − 1
α r

,

for r large enough.

4.2. Geometric Description of Revolution [ϕ, �e3]-Minimal Surfaces

Now, we want to describe [ϕ, �e3]-minimal surfaces that are invariant under
the one-parameter group of rotations that fix the �e3 direction. A such surface
with generating curve the arc-length parametrized curve

γ(s) = (x(s), 0, z(s)), s ∈ I ⊂ R

is given by

ψ(s, t) = (x(s) cos(t), x(s) sin(t), z(s)) , (s, t) ∈ I × R. (4.4)
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The inner normal of ψ writes as

N(s, t) = (−z′(s) cos(t),−z′(s) sin(t), x′(s)) , (4.5)

and the coefficients of the first and second fundamental form,

〈ψs, ψs〉 = 1, 〈ψs, Ns〉 = −κ,
〈ψt, ψt〉 = x2, 〈ψt, Nt〉 = −x z′,
〈ψs, ψt〉 = 0, 〈ψs, Nt〉 = 0,

(4.6)

where κ is the curvature of γ and by ′ we denote derivative respect to s.
From (4.6), the mean curvature vector of ψ is given by

H = −
(

κ +
z′

x

)

N. (4.7)

Consequently, from (2.1), (4.4) and (4.5), the surface ψ is a [ϕ, �e3]-minimal
surface if and only if

⎧
⎨

⎩

x′ = cos(θ)
z′ = sin(θ),
θ′ = ϕ̇(z)cos(θ) − sin(θ)

x ,

(4.8)

where θ(s) =
∫ s

0
κ(t)dt.

Along this section, we will consider that ϕ : ]a,∞[ −→ R is a strictly
increasing and convex function, that is

ϕ̇ > 0, ϕ̈ ≥ 0, on ]a,∞[. (4.9)

4.2.1. Globally Convex Examples. Here, we want to study the solutions of
(4.8) with the following initial conditions,

x(0) = 0, z(0) = z0 ∈]a,∞[, θ(0) = 0. (4.10)

In this case, the surface intersects orthogonally the rotation axis and we have
the following result:

Theorem 4.5. If x0 = 0, then γ is the graph of a strictly convex symmetric
function u(x) defined on a maximal interval ]−ω+, ω+[ which has a minimum
at 0 and

lim
x→±ω+

u(x) = ∞.

Proof. First of all, we remark that the existence of γ around s = 0 is guar-
anteed from Proposition 4.1.

Moreover, it is easy to see that x(s) = −x(−s), z(s) = z(−s) and
θ(s) = −θ(−s) are also solutions of the same initial value problem (4.8)–
(4.10). Hence, γ is symmetric respect to �e3 direction and we may consider
only the case s ≥ 0.

By application of L’Hôpital’s rule, we have that 2θ′(0) = ϕ̇(z0) > 0 and
γ is a strictly locally convex planar curve around of s = 0. We assert that
θ′(s) > 0 for s ≥ 0, otherwise from (4.10), there exists a first value s0 > 0
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Figure 4. [ϕ, �e3]-minimal bowls for ϕ̇(u) = e−1/u(left) and
ϕ̇(u) = u2 (right)

such that θ′(s0) = 0 and θ′′(s0) ≤ 0. As θ′ > 0 on [0, s0[, from (4.8) we have
that 0 < 2θ(s0) < π and by differentiation of (4.8), we get

θ′′(s0) =
sin(2θ(s0))

2

(

ϕ̈(z(s0)) +
1

x(s0)2

)

> 0, (4.11)

getting a contradiction.
In the same way, as θ′ > 0 for s > 0, we have that 0 < 2θ(s) < π for

s > 0 and γ is the graph of a strictly convex function u = u(x) which is a C2

solution of
{

u� =
(
1 + u�2

) (
ϕ̇(u) − u�

x

)
> 0,

u(0) = z0, u�(0) = 0,
(4.12)

on the maximal interval of existence ] − ω+, ω+[. Finally, if limx→±ω+u(x) =
h0 < ∞, then the standard theory of prolongation of solutions, gives that
ω+ = +∞ which is also a contradiction by the convexity of u (Fig. 4). �

Definition 4.6. If γ is a graph as in Theorem 4.5, we are going to say that
the revolution surface with generating curve γ is a [ϕ, �e3]-minimal bowl.

4.2.2. Non-convex Examples. Now, we want to study the solutions of (4.8)
with the following initial conditions:

x(0) = x0 > 0, z(0) = z0 ∈]a,∞[, θ(0) = 0. (4.13)

From standard theory, the existence and uniqueness of solution to the
problem (4.8)–(4.13) is guaranteed.

Let ] − s−, s+[ be the maximal interval of existence and consider γ+ :=
γ
∣
∣
[0,s+[

the right branch of γ. Arguing as in Theorem 4.5, we can prove that
γ+ is the graph of a convex function u = u(x) defined on a maximal interval
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]x0, ω+[, such that

lim
x→ω+

u(x) = ∞.

For studying the left branch of γ, we are going to consider, γ−(s) =
γ(−s) for s ∈ [0, s−[. Then, by taking x(s) = x(−s), z(s) = z(−s) and
θ(s) = θ(−s) + π for s ∈ [0, s−[, we have that {x, z, θ} is a solution of (4.8)
on [0, s−[ satisfying

x(0) = x0 > 0, z(0) = z0 ∈]a,∞[, θ(0) = π. (4.14)

Lemma 4.7. There exists s0 ∈]0, s−[ such that 2θ(s0) = π.

Proof. Assume on the contrary, θ(s) ∈]π
2 , π[ for all s ∈]0, s−[, and from (4.8)–

(4.14), we have that x ′ < 0, θ ′ < 0 and z ′ > 0 on ]0, s−[. Hence, there exist

x− = lim
s→s−

x(s), z− = lim
s→s−

z(s), θ− = lim
s→s−

θ(s),

and as ] − s−, s+[ is the maximal interval of existence of γ, we have that
either x− = 0 or z− = ∞. Therefore, γ− is the graph of a convex function
u = u(x) on ]x−, x0[ such that either x− = 0 or limx→x− u(x) = +∞.

In the first case, if limx→x− u(x) = +∞, from the convexity of u we get
that θ− = π

2 and there exists a sequence {sn} → s− satisfying θ ′(sn) → 0,
but then, from (4.8),

0 = lim
n→∞ θ ′(sn) = lim

n→∞ cos(θ(sn))ϕ̇(z(sn)) − sin(θ(sn))
x(sn)

≤ lim
n→∞ cos(θ(sn))ϕ̇(z(sn)) ≤ 0.

Thus,

0 = lim
n→∞ cos(θ(sn))ϕ̇(z(sn)) = lim

n→∞
sin(θ(sn))

x(sn)
=

1
x−

�= 0,

which is a contradiction.
If x− = 0 then, from [22, Theorem 2], limx→0 u(x) = +∞ and arguing

as above we also obtain a contradiction. �

Lemma 4.8. If s ∈]s0, s−[, then 0 < 2θ(s) < π.

Proof. It is clear because θ ′ < 0 on θ −1(π
2 ) and θ ′ > 0 on θ −1(0). �

Lemma 4.9. θ has a minimum at a point s1 ∈]s0, s−[ and θ ′ > 0 on ]s1, s−[

Proof. Assume that θ ′ < 0 on ]s0, s−[. Then, from Lemma 4.8, x ↗ x−,
z ↗ z− and θ ↘ θ− ∈ [0, π

2 [ when s → s−. In particular, there is a sequence
{sn} → s− satisfying limn→∞ θ ′(sn) = 0.

Under this assumption, we assert that θ− �= 0 and x− < +∞, otherwise

0 = lim
n→∞ θ ′(sn) = lim

n→∞ cos(θ(sn))ϕ̇(z(sn)) − sin(θ(sn))
x(sn)

= lim
n→∞ cos(θ−) lim

n→∞ ϕ̇(z(sn)) ≥ cos(θ−)ϕ̇(z0) > 0,
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which is a contradiction. Thus, γ− is the graph of a concave function u = u(x)
on a bounded interval ]x(s0), x−[ satisfying limx→x− u(x) = +∞ but this is
also a contradiction because θ is strictly decreasing on ]s0, s−[.

Hence, there exists s1 ∈]s0, s−[ such that θ ′(s1) = 0. Moreover, from
(4.8),

θ ′′(s1) = sin(θ(s1)) cos(θ(s1))(ϕ̈(z(s1)) +
1

x2(s1)
) > 0,

and s1 is a local minimum of θ. Now, arguing as in Theorem 4.5, we can
prove that, on the interval ]x(s1), x−[, γ− is the graph of a convex function
satisfying

lim
x→x−

u(x) = +∞.

�

Lemma 4.10. The profile curve γ is embedded.

Proof. Let s0 ∈] − s−, 0[ the point given by the Lemma 4.7 and consider the
following branches of γ determined by γ

∣
∣
−s−,s0[

and γ
∣
∣
]s0,s+[

, respectively,
parametrized by

u+(x) = (x, u+(x)) for any x ∈]x0, x(s−)[

u−(s) = (x, u−(x)) for any x ∈]x0, x(s+)[,

where u is solution of the Eq. (4.12). Now, define the following smooth func-
tion d(x) = u�

+(x) − u�

−(x). It is clear that d(x) > 0 for x ∈]x0, x0 + δ[ for
some δ > 0. Suppose that there exists a first r ≥ x0 + δ such that d(r) = 0
and d�(r) ≤ 0. Consequently, u+(x) > u−(x) for any x ∈]x0, r[ and from the
equation 4.12, we get to contradiction since,

d�(r) = (1 + u�(r)2) (ϕ̇(u+(r)) − ϕ̇(u−(r))) > 0.

Thus, d� > 0 everywhere and integrating u+(x) > u−(x) for any x ≥ x0. �

Theorem 4.11. For every x0 > 0, there exists a complete embedded rotational
[ϕ, �e3]-minimal, see Fig. 5 (right) with the annulus topology whose distance
to axis of revolution is x0 and whose generating curve γ is of winglike type
see Fig. 5 (left).

These examples will be called [ϕ, �e3]-minimal catenoids.

Proof. It follows from Lemmas 4.7, 4.8, 4.9 and 4.10. �

Proposition 4.12. Under the above conditions, the following statements hold:
1. If ϕ̇ has at most a linear growth, then ω+ = +∞ and x− = +∞.
2. If ϕ̇ growths as uα for some α > 1, then ω+, x− ∈ R.

Proof. If ϕ̇ has at most a linear growth, then there must be a constant c > 0
such that ϕ̇(u)/u ≤ c outside a compact set. Thus, from the equation (4.12),
when x is large enough the following inequalities hold:

x ≥ u�

ϕ̇(u)
(x) ≥ 1

c

u�

u
(x). (4.15)
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Figure 5. [ϕ, �e3]-minimal catenoid with ϕ̇(u) = e−1/u

Integrating both members of the inequality (4.15), we get that

x2

2
− x2

0

2
≥ 1

c
log

(
u(x)
u(x0)

)

for some x0 > 0. (4.16)

Hence, ω+ = +∞ and x− = +∞.
Let us go to consider now that

lim
u→+∞

ϕ̇(u)
uα

= M �= 0 for some α > 1,

and suppose that ω+ = +∞. Then, from the Theorems 4.5 and 4.11, the real
function f given by

f(r) :=
u�(r)

M uα(r)

has, for r large enough, a bounded and strictly monotone primitive F (u)(r).
Hence, there exists a sequence {rn} ↗ +∞ such that

lim
n→∞ f(rn) = 0. (4.17)

Claim 4.13. The function f satisfies that limr→∞
f(r)

r = 0.

Proof of Claim 4.13. Assuming on the contrary, there exists δ > 0 and a
sequence {sn} ↗ +∞ such that

f(sn) >
f(sn)

sn
> δ,

which together (4.17), says that f−1(δ) is unbounded real subset containing
a divergent sequence to +∞.



MJOM Equilibrium of Surfaces in a Vertical Force Field Page 19 of 28     3 

But, from the equation (4.1), the function f satisfies the following dif-
ferential equation:

f � =
(

ϕ̇(u)
M uα

− f(r)
r

)

+ M2 f2 u2α

(
ϕ̇(u)
M uα

− f

r
− α

M
u−α+1

)

(4.18)

and we obtain that there exists r̂ ∈ f−1(δ) such that f �(r) > 1 for any
r ∈ f−1(δ), r ≥ r̂, which is impossible because f−1(δ) is unbounded. �

From (4.18), Claim 4.13 and using that u diverges to +∞ we get that,
for r sufficiently large, the following inequality holds:

2f �

1 + f2
> 1. (4.19)

By integration of this expression, we conclude that ω+ < +∞. �

Remark 4.14. Notice that ω+ = +∞ does not imply that ϕ̇ has at most a
linear growth. For example, by taking ϕ̇(u) = u log(u) with u ≥ 1 and by the
integration of both members in (4.15), we get that

x2

2
− x2

0

2
≥ log

(

log
(

u(x)
u(x0)

))

for some x0 > 0.

Thus, ω+ = +∞ but the function log(u) is not bounded.

5. Asymptotic Behavior of Rotational Examples

Clutterbuck, Schnürer and Schulze studied in [4] the asymptotic behavior of
solitons rotationally symmetric. They proved that the problem

{
u� = (1 + u�2)

(
1 − u�

r

)
, r > R,

u(R) = u0 ∈ R, u�(R) = u1 ∈ R.
(5.1)

has a unique C∞-solution u on [R,∞[. Moreover, as r → ∞, u has the fol-
lowing asymptotic expansion:

u(r) =
r2

2
− log(r) + O(r−2).

Due to the arbitrariness of the problem (4.1), it is impossible to find
a general asymptotic behavior of their solutions because if you consider any
strictly convex smooth function u = u(r), r > R, one can find a function ϕ
such that u is a solution of (4.1).

Proposition 4.12 motivates to consider ϕ :]a,+∞[−→ R a smooth func-
tion satisfying (4.9) and with a quadratic growth, that is, with the following
asymptotic behavior:

lim
u→∞ ϕ̈(u) = α ≥ 0 and lim

u→∞(ϕ̇(u) − α u) = β ∈ R. (5.2)

In this case, we are going to generalize the result in [4] to the following
problem:

{
u� = (1 + u�2)

(
ϕ̇(u) − u�

r

)
, r > r0 ≥ 0,

u(r0) = u0 > a, u�(r0) = u1 ≥ 0,
(5.3)
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with ϕ :]a,∞[−→ R satisfying (4.9) and (5.2).

Remark 5.1. Observe that if α > 0, then u is solution of (4.1) if and only if
v = u + β−β̃

α is solution of

v� = (1 + v�2)
(

ψ̇(v) − v�

r

)

where ψ(v) = ϕ
(
v − β−β̃

α

)
satisfies

lim
v→∞ ψ̈(v) = α ≥ 0 and lim

v→∞(ψ̇(v) − α v) = β̃.

It is also clear that v�

ψ̇(v)
= u�

ϕ̇(u) .

Theorem 5.2. (Case α > 0) Assume that ϕ̇(u0) r0 ≥ u1 and α > 0. Then,
the problem (5.3) has an unique strictly convex C∞-solution u on [r0,∞[.
Moreover, as r → ∞, we have the following asymptotic expansion:

ϕ̇(u)(r) = e
1
2 αr2+o(r2) (5.4)

u�

ϕ̇(u)
(r) = r − α r ϕ̇(u)−2(r) + o

(
rϕ̇(u)−2(r)

)
, (5.5)

Proof. First of all, arguing as in Theorems 4.5, 4.11 and Proposition 4.12 ,
(5.3) has a unique C∞-solution u on [r0,∞[ which is strictly convex function
satisfying that limr→∞ u(r) = ∞. Hence, from (4.1),

r ϕ̇(u) > u �, r ≥ r0. (5.6)

From Remark 5.1, to study the asymptotic behavior of u�

ϕ̇(u) , it is not a re-
striction to assume that β > 0.

Take ε > 0 such that β > 2ε, from (5.2) there exists rε such that if
r ≥ rε,

− ε < ϕ̇(u)(r) − α u(r) − β < ε, −ε < ϕ̈(u)(r) − α < ε. (5.7)

Lemma 5.3. Consider for any R > r0, the function

ζR(r) := gε

(

u(R) +
∫ r

R

t ϕ̇(u)(t) dt

)

, r ≥ R, gε =
β − 2ε

β + ε
.

Then, there exists r1 ∈ R, depending only on ε, such that for any R ≥ r1, ζR

satisfies the following inequality:

ζ�

R < (1 + ζ �2
R)

(

ϕ̇(ζR) − ζ �

R

r

)

, r ≥ R. (5.8)

Proof. From the inequality (5.6), ζR(r) > u(r)gε. Hence, from (5.7), when r
is large enough, we have

ϕ̇(ζR)(r) > α gεu(r) + β − ε. (5.9)

Using (5.6), (5.7) and by a straightforward computation,

ζ�

R(r) < gεϕ̇(u)(r)(1 + (α + ε)r2), r ≥ rε, (5.10)
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On the other hand, from (5.9) and (5.7), when r ≥ rε, the following
inequality holds:

(1 + ζ � 2
R )

(

ϕ̇(ζR) − ζ �

R

r

)

> ε(1 + ϕ̇(u)2 r2g2
ε). (5.11)

Thus, (5.8) follows from (5.9), (5.10), (5.11) bearing in mind that u → +∞
when r → +∞. �
Lemma 5.4. For any R ≥ r0 there exists rR ≥ R such that u�(rR)−ζ �

R(rR) >
0.

Proof. Assuming on the contrary, if u�(r) − ζ �

R(r) ≤ 0 for any r > R, then
the following inequalities holds:

u�(r)
1 + u�2(r)

≥ 3ε

β + ε
ϕ̇(u)(r) >

3ε

β + ε
ϕ̇(u)(r0),

Integrating, we can find a finite radius r such that u′ → +∞ as r → r, getting
a contraction since the solution u is defined for all r > r0. �

Let us consider the function d = u� − ζ �

R on [R,∞[. From Lemmas 5.3
and 5.4 , we can find R � r0 verifying u(R) > 0, d(R) > 0 and such that the
inequality (5.8) holds. Hence, if there exists a first s ≥ R such that d(s) = 0
and d�(s) < 0, we have

0 > d�(s) = (1 + u�(s)2)(ϕ̇(u(s)) − ϕ̇(ζR(s))).

On the other hand, as d(r) > 0 for any r ∈]R, s[, we have by integration of
d� that

u(s) > ζR(s) + u(R) − ζR(R) = ζR(s) +
3ε

β + ε
u(R) > ζR(s),

and (4.9) gives that d�(s) > ϕ̇(u(s)) − ϕ̇(ζR(s)) > 0 which is a contradiction.
Thus, d(r) > 0 for r large enough and using the inequality (5.6), we get

u�(r)
ϕ̇(u)(r)

= r + V1(r), with lim
r→+∞

V1(r)
r

= 0. (5.12)

Moreover, from the previous formula (5.12) and L’Hôpital’s rule, we also get
that

lim
r→+∞

log
(
ϕ̇2(u(r))

)

αr2
= 1

and ϕ̇(u) has the following asymptotic expansion:

ϕ̇(u)(r) = e
1
2 α r2+o(r2). (5.13)

Lemma 5.5. V1 → 0 as r → +∞.

Proof. As V1 is sublinear, we have that for r large enough, |V1(r)| < c r for
all c > 0. Moreover, from (5.3) and the inequality (5.6), V1 is a non-positive
function and it satisfies the following differential equation:

V �

1(r) = −V1(r)
r

(
1 + ϕ̇(u)2(r)(r + V1(r))2

)
− 1 − ϕ̈(u)(r)(r + V1(r))2.

(5.14)
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Take ε > 0 and R � r0. If r ≥ R and V1(r) ≤ −ε, from the sublinearity, we
can suppose that −r/2 < V1(r), and

r2

4
< (r + V1(r))2 < (c + 1)2r2. (5.15)

Now, choosing R large enough, the Eq. (5.14) and the inequalities (5.7) and
(5.15) give

V �

1(r) ≥ −1 +
ε

r
+ r

(ε

4
ϕ̇(u)2(r) − (α + ε)(c + 1)2r

)
. (5.16)

Using the conditions (4.9) and the asymptotic behavior (5.13), R may be
chosen large enough so that

ϕ̇(u)2(r) ≥ 4
ε

(

(α + ε)(c + 1)2r +
1
r

(
c + 1 − ε

r

))

, r ≥ R.

Thus, if R is large enough and r ≥ R where V1(r) ≤ −ε, then V �

1(r) ≥ c > 0.
Hence, V1(r) ≥ −ε for r large enough and we conclude the proof. �

Lemma 5.6. limr→+∞ 1
r ϕ̇2(u)(r)V1(r) = −α.

Proof. If λ(r) = 1
r ϕ̇2(u)(r)V1(r), then from (5.3) and (5.12), we have

λ�(r) = ϕ̇2(u)(r)
(

2V1(r)
(

ϕ̈(u)(r)
(

1 +
V1(r)

r

)

− 1
r2

)

− 1
r

)

+ ϕ̇2(u)(r)
(

(r + V1(r))2

r
(−ϕ̈(u)(r) − λ(r))

)

.

Fix ε > 0 and R large enough. Consider points r ≥ R where λ(r) ≥ −α + ε,
then

− ϕ̈(u)(r) − λ(r) ≤ −ϕ̈(u)(r) + α − ε (5.17)

and if R is large enough, from (5.2) and (5.17), we also get that

−ϕ̈(u)(r) − λ(r) ≤ −εα

2
< 0

and then λ�(r) < −1 when R is chosen sufficiently large. Hence, we obtain
that λ(r) ≤ −α + ε for r large enough.

In a similar way, we may prove that λ(r) ≤ −α − ε for r sufficiently
large. �

Now, (5.5) follows from (5.12), (5.13) and Lemmas 5.5 and 5.6.

Theorem 5.7. (Case α = 0) Assume that ϕ̇(u0) r0 ≥ u1, α = 0 and β >
0. Then, the problem (5.3) has an unique strictly convex C∞-solution u on
[r0,∞[. Moreover, if

lim
u→+∞ u ϕ̈(u) = 0, (5.18)

we have the following asymptotic expansion:

u�

ϕ̇(u)
(r) = r − 1

β2 r
+ o

(
r−1

)
, (5.19)
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Proof. Arguing as in Theorems 4.5, 4.11 and Proposition 4.12 , (5.3) has a
unique C∞-solution u on [r0,∞[ which is strictly convex function satisfying
that limr→∞ u(r) = ∞. Moreover, as Lemmas 5.3 and 5.4 also work in this
case, we have the following asymptotic expansion:

u�

ϕ̇(u)
(r) = r + V1(r), (5.20)

where V1 verifies the same differential equation (5.14), is also non-positive
and V1(r) → 0. Moreover, from (5.2), ϕ̇ writes as

ϕ̇(u)(r) = β + o(1). (5.21)

Consider now the new function V2(r) = r ϕ̇2(u)(r)V1(r). Then,

V �

2 = r ϕ̇2

(

2ϕ̈V1(r + V1) − 1 +
(r + V1)2

r2
(−r2 ϕ̈ − V2)

)

.

From the expressions (5.18), (5.20) and L’Hôpital’s rule, we have

lim
r→+∞ ϕ̈(u(r)) r = 0 and lim

r→+∞ ϕ̈(u(r)) r2 = 0, (5.22)

and working as in Lemma 5.6 we can prove that V2(r) → −1. Finally, the
Theorem follows from the expansion (5.20) as r → +∞. �

5.1. Proof of Theorem A

If α > 0, from (5.12) and (5.13), we can write

log(ϕ̇(u))(r) =
αr2

2
+ Υ(r), (5.23)

where Υ� = (ϕ̈ − α)r + ϕ̈V1. Hence, as the first non-vanishing ak is posi-
tive, for r large enough Υ is a decreasing function in r such that −∞ < c =
limr→+∞ Υ(r) otherwise from Lemma 5.6, (1.10), (5.23) and using L’Hôpital’s
rule, we have that

+∞ = lim
r→+∞ ϕ̇2(u)(r) = lim

r→+∞
e2Υ

e−αr2 = lim
r→+∞

(
e2Υ

)�

(
e−αr2

)�

= − lim
r→+∞

ϕ̇(u)2(r) ((ϕ̈(u)(r) − α)r + ϕ̈(u)(r)V1(r))
αr

= α a1,

which is a contradiction.
Applying again L’Hôpital’s rule to limr→+∞ e2Υ−e2c

e−αr2 , we have

ϕ̇2(u)(r) = eαr2+2c + O(1) and lim
r→+∞ O(1) = α a1.

Thus, from Lemma 5.6 and Theorem 5.2,

ϕ(u)�(r) = reαr2+2c + αa1r + o(r),

and (1.11) follows by integration of the above expression.
If α = 0 then, the condition (5.18) follows from (5.20) and we have that

u�

ϕ̇(u)
(r) = r − 1

β2 r
+ o

(
r−1

)
. (5.24)
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Now, by taking V3(r) = (V2(r) + 1)r2, we get

V �

3 =
2V3

r
+ r3 ϕ̇2

(

2ϕ̈V1(r + V1) − 1 +
(r + V1)2

r2

(

−r2 ϕ̈ + 1 − V3

r2

))

= rϕ̇2

(
2V3

ϕ̇2r2
+ 2r4ϕ̈

V1(r + V1)
r2

− r2 +
(r + V1)2

r2
(−r4 ϕ̈ + r2 − V3)

)

= rϕ̇2 (r + V1)2

r2

(

−r4ϕ̈ + r2

(

1 − r2

(r + V1)2

)

− V3

)

+ rϕ̇2

(
2V3

ϕ̇2r2
+ 2r4ϕ̈

V1(r + V1)
r2

)

.

But, from (5.20) and L’Hôpital’s rule, we obtain

lim
r→+∞ ϕ̈(u(r)) r4 = −4a1

β2
,

lim
r→+∞ r2

(

1 − r2

(r + V1)2

)

= − 2
β2

thus, by working as in Lemma 5.6, we prove that

lim
r→∞ V3(r) =

−2 + 4a1

β2
.

Hence,

u�

ϕ̇(u)
(r) = r − 1

β2 r
− 2 − 4a1

β4 r3
+ o

(
r−3

)
,

and (1.12) follows from integration in the above expression.

6. Uniqueness of Globally Convex Solutions

Along this section ϕ :]a,+∞[−→ R will be a regular function satisfying the
expansion (1.10).
For any θ ∈ [0, 2π[, we consider �v = (cos θ, sin θ, 0) and denote by Π�v(t) the
vertical plane

Π�v(t) = {p ∈ R
3 | 〈p, �v〉 = t} (6.1)

Definition 6.1. Let Σ1 and Σ2 be two arbitrary subsets of R3. We say that
Σ1 is on the right hand side of Σ2 respect to Π�v(t) and write Σ1 ≥�v Σ2 if
and only if for every point q ∈ Π�v(t) such that

π−1(q) ∩ Σ1 �= ∅ and π−1(q) ∩ Σ2 �= ∅,

we have the following inequality:

inf{〈p, �v〉 : p ∈ π−1(q) ∩ Σ1} ≥ sup{〈p, �v〉 : p ∈ π−1(q) ∩ Σ2},

where π : R3 → Π�v(t) denotes the orthogonal projection on Π�v(t).
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For an arbitrary subset M of R3, we also consider the following subsets:

Σ+(t) := {p ∈ M : 〈p, �v〉 ≥ t}.

Σ−(t) := {p ∈ M : 〈p, �v〉 ≤ t}.

Σ∗
+(t) := {p + 2(t − 〈p, �v〉)�v ∈ R

3 : p ∈ Σ+(t)}.

Σ∗
−(t) := {p + 2(t − 〈p, �v〉)�v ∈ R

3 : p ∈ Σ−(t)}.

From Theorem A, it is natural to study [ϕ, �e3]-minimal surfaces whose be-
havior at infinity is of rotational type. To be more precise,

Definition 6.2. We say that a [ϕ, �e3]-minimal end Σ is smoothly asymptotic
to a rotational-type example if Σ can be expressed outside a ball as a vertical
graph of a function uΣ so that, according to α is either positive or zero, one
of the following expressions holds:

ϕ(uΣ)(x) = C eα |x|2 + O
(
|x|2

)
, if α > 0, (6.2)

where C is a positive constant or up to a constant,

G(uΣ)(x) =
|x|2
2

− 1
β2

log(|x|) + O
(
|x|−2

)
, (6.3)

if α = 0 and β > 0.

Let Σ be an embedded [ϕ, �e3]-minimal surface Σ with a single end
smoothly asymptotic to a bowl-type example. Then, there exists R > 0 large
enough such that Σ ∩ (R3\B(0, R)) is the vertical graph of a function uΣ

verifying either (6.2) if α > 0 or (6.3) if α = 0 and β > 0.

Lemma 6.3. There exists r1 > R such that if t > r1 then Σ+(t) is a graph
over Π�v(t).

Proof. It is clear that when t > R, Σ+(t) has only one component which is
unbounded. Moreover, if α > 0 then from (6.2),

ϕ̇(uΣ)(x)(duΣ)x(�v) ≥ 2α eα |x|2〈x, �v〉
(
C + e−α |x|2g(|x|)

)
,

where

lim
|x|→

g(|x|)
|x|2 = 0.

Hence, there exists r1 large enough such that if 〈x, �v〉 ≥ r1, then (duΣ)x(�v) >
0, and in this case, the Lemma follows because Σ is embedded and Σ+(r1) ∪
π(Σ+(r1)) bounds a domain in R

3.
When α = 0, a similar argument with (6.3) also works. �

From Lemma 6.3, fixed t > r1, Σ∗
+(t) ∩ {p ∈ R

3 : 〈p, �e3〉 > R} is the
vertical graph of the function satisfying

u∗
t (x) = uΣ(x + 2(t − 〈x, �v〉)�v) (6.4)

Lemma 6.4. Consider a > 0 not depending on R and ε0 > 0. Then, for R
large enough and t > a + 〈x, �v〉, we have

u∗
t (x) − uΣ(x) > ε0 > 0.
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Proof. If α > 0 then, from (6.2) and (6.4), we obtain

ϕ(u∗
t )(x) − ϕ(uΣ)(x) ≥ C eα |x|2

(
e4αt(t−〈x,�v〉) − 1

)

− M
(
2|x|2 + 4t(t − 〈x, �v〉)

)
,

for some positive constant M . Hence, taking λ such that

1 +
√

1 + λ

λ
<

R

2t

and R > α−1, we have that 4t(t − 〈x, �v〉) ≤ λ|x|2 and

ϕ(u∗
t )(x) − ϕ(uΣ)(x) > C eα R2

(
e4αR a − 1 − Me−α R2

(λ + 2)R2
)

> 0

for R large enough. The result follows because ϕ is strictly increasing.
When α = 0, we can estimate G(u∗

t )(x) − G(uΣ)(x) as in [17, Claim 1,
Step 3] and to use that G is a strictly increasing function. �

6.1. Proof of Theorem B

The main idea is to use the Alexandrov’s reflection principle, [1], for proving
that Σ is symmetrical with respect to Π�v(0). For proving that, it is not
difficult to see that Lemmas 6.3 and 6.4 are the fundamental facts we need
to check that all the steps in the proof of Theorem A in [17] can be adapted
to our case and for getting to prove that 0 ∈ A were

A := {t ≥ 0 : Σ+(t)is a graph over Π�v(t) and Σ∗
+(t) ≥�v Σ−(t)}.

A symmetrical argument gives that Σ∗
−(0) ≤�v Σ+(0). Hence, Σ∗

+(0) = Σ−(0)
and Σ is symmetric respect to the plane Π�v(0). As �v = (cos θ, sin θ, 0) rep-
resents any unit horizontal vector, Σ would be a revolution surface touching
the axis of revolution, that is, a [ϕ, �e3]-minimal bowl.

Remark 6.5. It would be interesting to give a similar results for [ϕ, �e3]-maxi-
mal surfaces in the Lorentz–Minkowski space L

3 using the Calabi’s Type
correspondence of [18].
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