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Objective. To investigate the effect of novel polymeric nanoparticles (NPs) doped with mela-

tonin (ML) on nano-hardness, crystallinity and ultrastructure of the formed hydroxyapatite

after endodontic treatment.

Methods. Undoped-NPs and ML-doped NPs (ML-NPs) were tested at radicular dentin, after 24

h  and 6 m. A control group without NPs was included. Radicular cervical and apical dentin

surfaces were studied by nano-hardness measurements, X-ray diffraction and transmission

electron microscopy. Mean and standard deviation were analyzed by ANOVA and Student-

Newman-Keuls multiple comparisons (p < 0.05).

Results. Cervical dentin treated with undoped NPs maintained its nano-hardness values after

6  m of storage being [24 h: 0.29 (0.01); 6 m: 0.30 (0.02) GPa], but it decreased at apical dentin

[24  h: 0.36 (0.01); 6 m: 0.28 (0.02) GPa]. When ML-NPs were used, nano-hardness was similar

over time [24h: 0.31 (0.02); 6 m: 0.28 (0.03) GPa], at apical dentin. Root dentin treated with

ML-NPs produced, in general, high crystallinity of new minerals and thicker crystals than
X-ray diffraction those produced in the rest of the groups. After 6 m, crystals became organized in randomly

oriented polyhedral, square polygonal block-like apatite or drop-like apatite polycrystalline

lattices when ML-NPs were used. Undoped NPs generated poor crystallinity, with preferred

orientation of small crystallite and increased microstrain.
Significance. New polycrystalline formations encountered in dentin treated with ML-NPs

may  produce structural dentin stability and high mechanical performance at the root. The
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decrease of mechanical properties over time in dentin treated without NPs indicates scarce

remineralization potential, dentin demineralization and further potential degradation. The

amorphous stage may provide high hydroxyapatite solubility and remineralizing activity.

©  2021 The Author(s). Published by Elsevier Inc. on behalf of The Academy of Dental

Materials. This is an open access article under the CC BY-NC-ND license (http://
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.  Introduction

onventional treatment methods in dental pulp inflamma-
ion, apical periodontitis and irreversible pulpitis comprise
he pulp chamber disinfection plus filling with biomateri-
ls. This is generally recognized as root canal treatment [1].
nflammation is always associated with the production of
eactive oxygen species. It has been demonstrated that, in sev-
ral endodontic pathologies such as periapical abscess and
ulpitis, oxidative stress is an important pathogenic mecha-
ism [2,3]. The free radicals that generate reactive oxygen or
itrogen species, through oxidative stress, are considered to
e highly destructive, but directly neutralized by melatonin

ML) [4]. The role of ML  in hard tissues has claimed atten-
ion [5]. ML  (N-acetyl-5-metoxy-tryptamine) is an indoleamine
hat is synthesized and secreted by the pineal gland in a cir-
andian pattern [4]. Melatonin is also formed in perhaps all
rgans in quantities by orders of magnitude higher than in
he pineal gland and in the circulation [6]. ML  is involved in
he development of teeth [7] and may also regulate dentin
ormation.

One of the goals for regeneration of dentin-pulp complex
s to reconstruct the pulp repair capability by mineraliza-
ion [3]. In bioactive molecules related with growth factors,
ransforming growth factor-� (TGF-�)  shows a pivotal role.
ctopic mineralization in pulp tissue is inducted by TGF-
3, increasing type1 collagen levels and osteocalcin [8]. To
reat pulpal inflammation, and to preserve or regenerate vital
ental pulp, resolvines (RvE1 and RvD1), molecules coming
rom omega-3 polyinsatured fatty acids, have been recom-

ended. Initial inflammatory responses are resolved by RvE1,
hich decreases NF-��, permitting macrophages in M1 stage

o change to M2  stage. Special roles in standard morphogen-
sis of teeth are played by Wnt  signaling molecule family.
nt1, a step of Wnt/�-catenin signaling pathway interferes
ith the differentiation of the stem cells of dental pulp

DPSCs) into odontoblasts and inhibits ALP activity [9]. Signal-
ng pathway is understood as the ability of cells to receive,
rocess, and transmit signals with its environment and with

tself [10,11]. All these strategies in handling signaling path-
ays for healing of dentin-pulp complex are representative
f sophisticated, costly and uncertain approaches of tissue
ngineering for dentin repair [12]. Their effectiveness in regen-
ration of the dentin-pulp complex should be investigated
urther.

Although the benefits of ML  on periodontal regeneration
as been demonstrated in gingival fibroblasts and in vivo

nd in vitro animal models [13], its effects in radicular
entin regeneration have not been reported yet. Polymeric
anoparticles (NPs) with anionic carboxylate (i.e., COO−)
creativecommons.org/licenses/by-nc-nd/4.0/).

groups located along the polymer support, that may be
doped with ML  (ML-NPs) have been previously synthesized
to favor remineralization of dentin in endodontically treated
teeth. Remineralization of radicular dentin may be a deter-
minant factor trying to mechanically reinforce the tissue
[14]. Non-resorbable polymeric NPs doped with antimicro-
bials and reinforcing agents have successfully been tested in
advance [15], but combined anti-inflammatory, antioxidant,
free-radical-scavenger and cytoprotective properties therapy
have only been partially considered [12,13,16–18].

Dentin, a mineralized connective tissue, constitutes the
main part of dental organ. It is made of 70% (by weight)
inorganic calcium deficient hydroxyapatite (HAp) crystal in
the form of a sub-micrometer to nanometer-sized carbon-
ate rich with crystallites (∼5 × 30 × 100 nm)  [19]. This
nanocrystalline hydroxyapatite is partitioned into extrafib-
rillar and intrafibrillar mineral, accounting the later for the
maintenance of the mechanical properties [20]. Crystallites
determine the mineral content of dentin, whose maturity, tex-
ture and size are influenced by their tooth location [21,22].
Both morphology and dimensions of the formed HAp crystal-
lites influence its clinical service and mechanical properties
[23]. Dentin is characterized by its hierarchical structure that
can accurately be analyzed by X-ray diffraction (XRD), pro-
viding data of lattice strain on the tooth surface and crystal
orientation of crystallites [24]. High resolution transmission
electron microscopy (HRTEM) and selected area diffraction
patterns (SAED) measure shape, size and dentin nanostruc-
tures. Elemental constituents through energy dispersive X-ray
spectroscopy analysis (EDX) can also provide information
about the chemical composition of crystallites. Root dentin
does have regional variations in its material properties. There
exists a decreasing tendency in mineral presence from the
cervical to the apical region, and this mineral content will
condition both clinical and mechanical performance of root
dentin [25].

Thus, the purpose of the present study was to determine
the influence of crystallinity, amorphization, crystallite and
gran size, lattice strain and texture on nanohardness (Hi)  and
remineralization of radicular dentin after ML-NPs treatment.
The challenge is to ascertain if Hi increases after NPs applica-
tion. The Hi rise is directly associated to a higher presence of
intrafibrillar mineralization and improved tissue maturation
[26,27]. The research question that guided the present study
was: Does melatonin-doped polymeric nanoparticles applica-
tion improve crystallinity and maturity in radicular dentin?
The null hypothesis is that ML-NPs application in the inner

wall of the root canal did not affect, at the short term or
overtime, nanohardness, crystal morphology and structure of
radicular dentin.
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2.  Materials  and  methods

2.1.  Nanoparticles  fabrication  and  characterization

PolymP-n Active nanoparticles (NPs) (NanoMyP, Granada,
Spain) have been synthesized through polymerization precip-
itation by the Flory-Huggins model, using a 14 mL  Nalgene®

plastic bottle to mix0.170 mL  of ethylene dimethacrylate
(EDMA), 0.045 mL  of methacrylic acid (MAA), 0.137 mL  of
hydroxyethylmethacrylate (HEMA) and 14 mL  of solvent.
Then, 8.75 mg  of azobis-isobutyronitrile (AIBN) were added
and the system was sonicated during 1 min, the mixture
was cooled at −8 ◦C and the O2 was removed by purging the
system whit a soft flow of N2 during 3 min  [28]. The NPs
are composed of ethylene glycol dimethacrylate as the cross-
linker, the methacrylic acid as the functional monomer and
2-hydroxyethyl methacrylate as the backbone monomer. NPs
were functionalized with melatonin.

The NPs ML  loading process was conducted by immer-
sion of 150 mg  of NPs in 15 mL  of distilled water melatonin
solutions (containing 50 mg  of melatonin) for 2 h at room
temperature under constant shaking. The NPs were then left
at room temperature until de solvent was completely evapo-
rated, ensuring that all the ML  remains adhered to the NPs. ML
is electrostatically immobilized on the NPs surface (acid-base
interaction). The secondary amino groups (R2NH) of melatonin
interacted with the carboxyl groups (COOH) present on the NPs
surface. ML loading on NPs was previously probed to be 0.33
mg of ML  per mg  of NPs. The melatonin liberation profile was
also calculated and it is about 1.85 mg/mL  at 24 h to 0.033
mg/mL  at 28 d [12].

Then, a suspension of 5 mg  /mL  of NPs-Melatonin in water
was prepared and the size and Z potential (�) were measured by
triplicate by Dynamic Light Scattering (DLS) using a Zetasizer
Nano ZS90 (Malvern Instrument Ltd, Malvern, UK).

For TEM characterization of the NPs, a specific amount
of the diluted sample was put on the mesh copper grid
coated with activated carbon, and then dried. Before observa-
tion, this sample was negatively stained with uranyl acetate
(2%) [29,30]. Images were acquired on a TEM ThermoFisher
Scientific TALOS F200X (Thermofischer, Waltham, MA, USA)
microscope, working at 200 kV.

Fourier-transform infrared spectroscopy (FTIR) charac-
terization was also performed for NPs, ML-NPs and ML.
Samples were analyzed on a JASCO 6200 FTIR (frequency
range 400–4000 cm−1, 2 cm−1 spectral resolution and 75
scans) equipped with an diamond-tipped attenuated total
reflectance (ATR) device (ATR Pro ONE, JASCO Inc., Maryland,
USA) for spectra collection without sample preparation, min-
imizing artifacts [31].

Two types of NPs were included in the study undoped-NPs
and ML-doped NPs (ML-NPs).

2.2.  Teeth  specimen  preparation  and  nanoparticles

application

Donors (18–25 yr of age) provided thirty-six sound human
mandibular premolars, with informed consent and follow-
 ( 2 0 2 1 ) 1698–1713

ing the Declaration of Helsinki [Institution Review Board
(#405/CEIH/2017)].

A low-speed diamond saw (Accutom-50 Struers, Copen-
hagen, Denmark) under constant water irrigation was used
to decoronate the samples at the cemento-enameljunction.
Parameters that were followed are: root length 12 mm  and
checking with 2 angulations X-ray of a single canal presence.
The treatment of the root canal started with the use of Gates
Glidden drills (Dentsply Maillefer, Ballaigues, Switzerland),
size 2 and 3, to shape the roots coronal third part. Afterwards,
the canal patency was achieved with a size 15 Flex-o-file
(Dentsply Maillefer, Ballaigues, Switzerland). The working
length was verified, and it was established 0.5 mm shorter
than apical foramen. ProTaper nickel-titanium rotary instru-
ments (Dentsply Maillefer, Ballaigues, Switzerland) were used
for the final instrumentation (<size F4). Each time the instru-
ment was changed, the root canal was irrigated with 0.5 mL  of
5% sodium hypochlorite (NaOCl, Panreac, ref. n. 212297), while
at the end of canal instrumentation 0.5 mL  of a 17% EDTA
solution were used for 3 min  (MD-Cleanser, Meta Biomed,
Chungbuk, Republic of Korea) to remove the smear layer. All
specimens were finally irrigated with 0.5 mL  of 5% NaOCl for
1 min, followed with distilled water for one more  minute,
and then dried with paper points (Dentsply Maillefer) [32].
A random distribution for specimens was established in 3
groups (n = 12). The teeth roots received 100 �l of the two
distinct ethanol suspensions of NPs at 10 mg/ml. NPs were
not applied in the control group, but just 100 �l of ethanol.
Subsequently, in all groups, AH-Plus sealant cement (Dentsply
Maillefer, Ballaigues, Switzerland) was introduced into the
instrumented root canal with a lentulo spiral and, imme-
diately, one size 30 guttapercha cone (Guttacore, Dentsply
Maillefer, Ballaigues, Switzerland) was placed and compacted
to working length into the canal, in all groups, to complete the
obturation. Finally, the excess of gutta-percha and/or cement
was removed from the coronal portion of the root canal, and
the specimens were obturated with Cavit. (ESPE, 3M,  St. Paul,
MN, USA) as a provisional restoration [33]. The control group
was the group without NPs application and only AH-Plus was
applied. AH-Plus was also applied for the rest two  groups. All
procedures were conducted by the same operator. Two peri-
ods of study were established at 24 h or 6 m.  After storage,
two dentin discs, representative of cervical and apical radicu-
lar dentin were cut at 12.5 and 2.5 mm above apex, respectively
at each specimen (Fig. S1).

2.3.  Nanoindentation

Dentin surfaces were polished with silicon carbide (SiC)
abrasive discs from 600 to 4000 grit mounted on water-
cooled polishing equipment (LaboPol 4, Struers, Copenhagen,
Denmark). Then, the specimens were finally submitted to
an ultrasonic cleaning procedure during 10 min to eliminate
the created dentin debris during the polishing procedure. A
Hysitron Ti-750D TriboIndenter (Hysitron, Inc., Minneapolis,
MN) with a commercial nano-DMA package was used in this

research. A Berkovich (three sides pyramidal) diamond tip (tip
radius ∼20 nm)  was the nanoindenter. Ten nanoindentations
were executed on each slab (cervical and apical root dentin)
at 20 �m next to the radicular canal, at the region of inter-

https://doi.org/10.1016/j.dental.2021.09.001
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st (Fig. S1). The rest of the nanoindentation procedure was
s in Toledano et al. [32]. Data were analyzed with ANOVA
nd Student-Newman-Keuls multiple comparison tests, with
tatistical significance preset at p < 0.05.

.4.  X-ray  diffraction  (XRD)  analysis

n X-ray microdiffractometer (�XRD2) Bruker-D8 Venture
Bruker AXS, Karlsruhe, Germany) provided with a 2-
imensional detector CMOS Photon 100 (Bruker AXS, Karl-
ruhe, Germany) and a kappa geometry based goniometer 2D
etector was used for the analysis. The X-ray beam (� = 1.5418
, Cu K� line) was produced by a Cu microforms supply I�S.
ettings generator were 50 kV/1 mA.  The position-sensitive 2D
etector used was 1024 × 1024 pixels. Beam collimator diam-
ter was 0.1 mm (spot size 100 �m)  and its length 90 mm.
he detector distance to crystal was calibrated with a sam-
le of ylid. The sample was fixed on the XYZ goniometer with
he surface to be analyzed placed normal to the � axis. Then
he goniometer is automatically adjusted to bring the sample
urface into focus, with the region of interest in the center
f the crosshair of the video window by means of a video
amera system (NTSC-Digital Video Camera. Model LCL-211H,
atec America Corp.,USA). The considered kappa goniometer

ositions at 40 mm distance were: 2�, 40◦; ω, 20◦; ϕ, 270◦; �,
0◦. The exposure time was 60.00 s and the measurements
ere performed at room temperature (295 ± 0.1 ◦K). Three

mages were obtained from each specimen. The final refined
XRD2 profile and Debye–Scherrer rings image  (pole image) of
ach group were obtained by accumulating all X-ray energies
wavelengths) in a single image.  The results are commonly
resented as maximum positions in 2� (x) and X-ray counts

intensity) (y) in the form of an x–y chart. The XRD2DScan
oftware [34] was employed, as it allows all images to be inte-
rated into a representative single image.  The whole batch of
he measured frames is loaded and all frames are processed;
hen a single file is created. This file contains the variation
f intensity along the Debye ring associated with the selected
eflection as a function of angle, for every processed frame. All
his information was used to construct the final refined �XRD2

rofile and pole image.
The X-ray microdiffraction pattern was used to calculate

he preferred orientation and size of the crystallites [35,36]:

 = K�

 ̌ cos�
(1)

ere d indicate the mean size of the crystallites, K is defined as
 dimensionless form factor and presents a value near unity-
ote that in dentin it is K ≈ 0.94- [36], and  ̌ corresponds to the
eak full width at half maximum (FWHM) of the line broaden-

ng.
This equation was used for the broadenings of the 002 (H)

nd 310 (L) reflections, to evaluate the crystallite length and
idth, respectively. The highest peak (112) was also measured.
rystallites preferred orientation, i.e., the texture, was calcu-
ated from the next intensity ratios [36]:

hkl = khkl
I211

Ihkl
(2)
 0 2 1 ) 1698–1713 1701

In this equation, Ihkl and I211 were respectively the intensi-
ties of the line reflections hkl and 211, and

khkl = Ist
hkl

Ist
211

(3)

In this formula, st indicate the intensities obtained follow-
ing to the JCPDS card [36].

2.5.  High  resolution  transmission  electron  microscopy
(HRTEM),  energy  dispersive  X-ray  spectroscopy  (EDX)
analyses  of  dentin  discs

Dentin discs (1 mm thickness) were perpendicularly sectioned
at three points: (1) in the middle, (2) about 500 �m to the right
of the interface and the same distance to the left. The external
surfaces (cementum) of the specimens were polished until a
100 �m distance from the interface. SiC abrasive papers, from
600 until 2400 grit were used for grinding (Buehler-MetaDi,
Buehler Ltd. Lake Bluff, IL, USA). Then, the specimens were
finally submitted to an ultrasonic cleaning procedure dur-
ing 10 min  (Fig. S1) to eliminate the created dentin debris. A
fine-grained powder was obtained after milling each dentin
specimen. Afterwards, 2 mL  of an aqueous solution of NaOCl
(2%) was added to the dentin powder in order to eliminate the
collagen, the process was completed under a sonicator (Ultra-
sons HD, P. Selecta SA, Barcelona, Spain) during 1 week. NaOCl
solution was replaced each 24 h. The rest of the procedures
was as in Martínez-Ruiz et al. [37]. A SUPER-X silicon-drift
windowless EDX detector, for analytical electron microscopy
(AEM), was also used. Digital X-ray maps and selected area
electron diffraction (SAED) was employed on HAp particles.
Nanoindentation, XRD, HRTEM and EDX analyses were exe-
cuted at 24 h and 6 m of SBFS storing.

3.  Results

3.1.  Nanoparticles  fabrication  and  characterization

The size of the unloaded NPs was 242.3 ± 20 nm.  The polydis-
persity index (PDI) was 0.050 ± 0.003, and the zeta potential
(�) is 38.5 ± 1.0 mV. The size of NPs loaded with ML,  measured
by DLS was 292.3 ± 30 nm,  with a PDI 0.230 ± 0.08. The zeta
potential (�) was 24.5 ± 0.5 mV.

TEM images of NPs are displayed in Fig. 1. NPs presented
a spherical shape and did not agglomerate. No differences in
morphology were found after melatonin loading.

FTIR-bands of the melatonin and NPs overlapped, and the
amine and amide groups of melatonin could not be identified
in the FTIR spectrum of ML-NPs (Fig. S2).

3.2.  Nanoindentation

Mean and SD of nanohardness (Hi) at both cervical and apical
dentin are shown in Fig. 2. All specimens, regardless the group,

performed similar when cervical root dentin was analyzed at
24 h. Samples treated with undoped NPs attained higher Hi
than the rest of the groups at apical root dentin, at 24 h of
storage. After 6 m time point, all NPs-based groups showed

https://doi.org/10.1016/j.dental.2021.09.001


1702  d e n t a l m a t e r i a l s 3 7 ( 2 0 2 1 ) 1698–1713

Fig. 1 – Transmission electron microscopic (TEM) images of undoped nanoparticles (NPs) and melatonin-doped NPs
(ML-NPs). Dark and light objects inside the NPs were artifacts that developed during electron beam transmission. Scale bars
are 1 �m (A), 100 nm (B, D) and 500 nm (C) in total length.

Fig. 2 – Mean and standard deviation (SD) values of nanohardness, Hi,  (GPa) attained at the different experimental groups.
Identical lowercase means no significant difference among distinct NPs at the same dentin half (cervical and apical) at 24 h.
Identical capital letter indicates no significant difference between different NPs at the same dentin half (cervical and apical)
at 6 m.  Identical number indicates no significant difference between different storage time (24 h vs 6 m)  within the same
NPs at the same dentin half (cervical and apical). Asterisks indicate significant difference between different dentin halves
(cervical vs apical) within the same NPs at the same storage time (24 h and 6 m).

https://doi.org/10.1016/j.dental.2021.09.001
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igher Hi than the control group. Samples without NPs showed
i decrease over time, irrespective of the dentin location. Cer-
ical dentin treatment with undoped NPs maintained its Hi
fter 6 m,  but Hi decreased at apical dentin. When ML-NPs
ere employed, Hi did not change over time, regardless of the
entin location (Fig. 2).

.3.  X-ray  diffraction  (XRD)  analysis

hysical broadening (FWHM) of peaks at 002 achieved the
ighest (more amorphous) and lowest (more crystalline) val-
es at cervical and apical dentin surfaces submitted to
reatment with undoped NPs, respectively at 6 m of immersion
Table 1). Peaks at 310, after 6 m,  presented the lowest FWHM
t cervical and apical dentin treated with ML-NPs, denoting a
rystalline status (Table 1). The highest peak (112) showed the
aximum FWHM (more amorphous) at cervical dentin treated
ith ML-NPs, after 6 m of storage. At 24 h, the highest crys-

allinity was achieved at cervical dentin treated with ML-NPs
Table S1). Cervical dentin treated with ML-NPs at 6 m time
oint, showed a typical reflection at 002 peak (Fig. 3A inset) and
iffraction rings that corresponded to 002 plane, with higher
rystallinity values than samples treated with undoped NPs
Table 1) (Fig. 4B, C). At apical dentin and 310 plane, the highest
rystallinity (lowest FWHM)  (Fig. 3B inset) was obtained with
entin treated with ML-NPs, that also unveiled the brightest
ings on most peaks (Fig. 4F).

After 6 m of immersion, cervical dentin specimens treated
ith ML-NPs showed higher FWHM values (more amorphous)

han at 24 h of storage at both 002 and 310 planes. At apical
entin and 310 plane, crystallinity increased (lower FWHM)
ver time (Fig. S3). The highest peak (112) showed an increase
f crystallinity after comparison between 24 h and 6 m when
ssessing the control group and cervical dentin treated with
ndoped-NPs (Table S1). The Fig. S4 represented the highest
RD peak of apical dentin treated with ML-NPs after 6 m of
torage.

.3.1.  Crystallite  and  grain  size  assessment
 scattering dominion of the crystallite size is shown in
able 1. Apical dentin treated with undoped-NPs attained the
ongest crystallite size [�002 (H)] (23.54 nm). Cervical and apical
entin treated with ML-NPs achieved the widest [�310 (L)] (6.62
nd 6.85 nm)  crystallite size, respectively, after 6 m.

At 310 reflexions, the highest values of grain size occurred
hen treating both cervical and apical dentin with ML-NPs

6.24 and 6.46 nm,  respectively) (Table 1).

.3.2.  Microstrain  assessment
he shortest dimension of the lattice strain (002 reflection)
orresponded to diffractions performed in specimens treated
ith ML-NPs at cervical (1.6 × 10−6) and apical dentin (1.1 ×

0−6), at 6 m (Table 1). ML-NPs, at 310 reflexions, attained the
owest strain at both cervical and apical dentin (1.3 × 10−5 and
.2 × 10−5, respectively) (Table 1).
.3.3.  Texture  and  H/L  ratio  assessments
t cervical dentin and at 002 plane (6 m),  the texture showed

he trend ML-NPs > AH-Plus > undoped NPs. The apical region
evealed the trend ML-NPs > AH-Plus > undoped NPs. Cervical
 0 2 1 ) 1698–1713 1703

dentin, at 310 plane acted as follows: AH-Plus > undoped NPs >
ML-NPs, and at apical dentin the trend followed the sequence:
undoped NPs > AH-Plus > ML-NPs (Table 1). The lowest H/L
quotient was obtained in samples treated with ML-NPs at both
apical and cervical dentin (Table 1).

3.4.  High  resolution  transmission  electron  microscopy
(HRTEM),  energy  dispersive  X-ray  spectroscopy  (EDX)
analyses,  and  Fourier  transform  infrared  (FTIR)
characterization  of  NPs

Representative examples of HRTEM are included
Figs. 5, 6 and 7. At 24 h, samples treated with ML-NPs
showed, at cervical root dentin, mainly starry needle-like
apatite crystals (Fig. 5A), meanwhile apical root dentin showed
preferentially parallelized alignments crystals (Fig. 5B). The
electron diffraction analysis showed the typical amorphous
structure of crystals (Fig. 5C, D). The observed crystal sizes
usually range from 100−200 nm.

At 6 m of storage and HRTEM/EDX analysis, samples treated
with ML-NPs showed structures organized in plate, needle and
block-like apatite polygons (Fig. 6A) of polycrystalline nature
(Fig. 6B), when cervical root dentin was analyzed. Similar
treatment in apical dentin produced polyhedral, squared or
drop-like shaped apatite crystals, crystalline in nature from
a mineralogical and crystallographic standpoint (Fig. 7D–H).
Diffraction patterns showed d-spacing values and clear central
halo rings, indicating crystallinity (Fig. 6B, F, H). The observed
crystal sizes usually range from 100−200 nm.  Energy disper-
sive X-ray (EDX) detected Ca and P as part of the elemental
analysis (Fig. 6I).

HRTEM analysis, at 6 m,  of samples treated with AH Plus
showed structures organized in typical polymorph/polyhedral
apatite crystals shaped by plate-like overlapped polygons
(Fig. 7A) amorphous in nature (Fig. 7B), when cervical root
dentin was analyzed. The selected area electron diffraction
(SAED) image  obtained showed amorphous precipitates in
the apatite particles, as diffractography depicted diffuse halo
rings, indicating mineral amorphization (Fig. 7B). At 6 m
of immersion and HRTEM analysis, samples treated with
undoped NPs presented semi-crystalline structures ordered in
block-like crystallite morphology when apical root dentin was
analyzed (Fig. 7C). These analyses permit to observe apatite
crystals and particles with relative crystalline profile (Fig. 7D).
The SAED (selected area electron diffraction image) obtained
showed well-crystallized apatite though with diverse degree of
crystallinity (Fig. 7D). The characteristic d-spaces were clearly
determined. The observed crystal sizes usually ranged from
100−200 nm.

4.  Discussion

Dentin treated with ML-NPs conserved its original nano-
hardness values after 6 m of storage and showed, in general,
higher crystallinity than samples treated with undoped NPs.

Thicker crystallites appeared randomly oriented showing
multivariate morphologies that ranged from polyhedral or
square polygonal block-like apatite to drop-like apatite poly-
crystalline lattices. Any type of dentin treated with ML-NPs

https://doi.org/10.1016/j.dental.2021.09.001
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Table 1 – Micro-X-ray diffraction pattern analysis approach of the experimental groups.

Disc Storage
time

002 plane 310 plane H/L

FWHM H:
Scherrer
equation
(nm) (�)

Scherrer-
Wilson
equation
(nm)

Microstrain
%

Rhkl FWHM L:
Scherrer
equation
(nm) (�)

Scherrer-
Wilson
equation
(nm)

Microstrain
%

Rhkl

Control
Cervical

24  h 0.0081 18.26 17.80 1.6 × 10−6 0.525 0.0256 6.02 5.67 1.5 × 10−5 1.168 3.03
6 m 0.0069 22.00 21.60 1.6 × 10−6 0.559 0.0239 6.64 6.15 1.4 × 10−5 1.223 3.31

Apical
24 h 0.0068 22.42 22.09 1.1 × 10−6 0.456 0.0225 7.03 6.53 1.1 × 10−5 1.234 3.19
6 m 0.0065 23.37 23.03 7.3 × 10−7 0.438 0.0250 6.32 5.87 1.3 × 10−5 1.229 3.70

Undoped-
NPs

Cervical
24 h 0.0070 22.06 21.60 1.2 × 10−6 0.454 0.0267 6.01 5.65 1.6 × 10−5 1.232 3.67
6 m 0.0082 18.17 17.78 1.5 × 10−6 0.489 0.0244 6.41 6.02 1.5 × 10−5 1.180 2.83

Apical
24 h 0.0068 21.87 21.32 1.1 × 10−6 0.442 0.0254 6.07 5.72 1.5 × 10−5 1.217 3.60
6 m 0.0062 23.54 23.12 7.2 × 10−7 0.465 0.0242 6.40 5.95 1.5 × 10−5 1.240 3.67

ML-
NPs

Cervical
24 h 0.0064 23.26 22.68 1.0 × 10−6 0.421 0.0216 7.15 6.73 1.1 × 10−5 0.912 3.25
6 m 0.0071 20.91 20.39 1.2 × 10−6 0.652 0.0233 6.62 6.24 1.3 × 10−5 1.105 3.16

Apical
24 h 0.0066 22.67 22.10 1.0 × 10−6 0.520 0.0229 6.77 6.38 1.2 × 10−5 1.057 3.16
6 m 0.0066 22.57 22.01 1.1 × 10−6 0.540 0.0225 6.85 6.46 1.2 × 10−5 1.093 3.29

Abbreviations: NPs: undoped/unloaded nanoparticles; Mel: Melatonin; FWHM, Full-width half-maximum; Rhkl: texture.

https://doi.org/10.1016/j.dental.2021.09.001
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Fig. 3 – Refined �XRD2 profiles of the inner zones of cervical (A) and apical (B) root dentin after 6 m of SBFS storage of the
c cate 

p
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ontrol, undoped NPs and ML-NPs groups. Vertical bars indi

reserved its original mechanical performance over time,
ut dentin samples treated without NPs decreased their
anohardness (Hi)  values at 6 m time point. Therefore, the
ecrease of the Hi in dentin specimens without NPs and in
pical dentin treated with undoped-NPs may be interpreted
s a sight of dentin demineralization and further degradation,

ndicating scarce remineralization potential at the intrafib-
illar part [20,39] after 6 m of storage. Structural porosity,
emineralization and collagen degradation are closely related
HAp peaks.

[40]. Thereby, though both types of NPs provided similar val-
ues of Hi at 6 m storage, ML-NPs can be considered as a drug of
long-lasting or durable effect, meanwhile undoped NPs pro-
voked a treatment of unstable or degraded effect (Fig. 2). As
a consequence, the null hypothesis that ML-NPs application
did not affect, at the short term or overtime nanohardness,

crystal morphology and structure of radicular dentin must be
partially rejected.

https://doi.org/10.1016/j.dental.2021.09.001
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Fig. 4 – The Debye–Scherrer rings are observed in insets (A) and (D) (AH Plus/control), (B) and (E) (Undoped NPs), (C) and (F)
ong 
(ML-NPs). Double arrows and pointers indicate week and str

In a previous work [12], the release profile of melatonin
has been studied, and it was found that the concentration
of melatonin immobilised on the particles surface is around
10% (10/90, w/w, NPs/Melatonin). It has been done the fol-
lowing FTIR spectra: Nanoparticles without melatonin (NPs),
Nanoparticles functionalised with melatonin (ML-NPs), and
melatonin (Fig. S2). But due to the low concentration of mela-
tonin on the particles surface (10/90, w/w, NPs/Melatonin), the
intensity of the characteristic FTIR-bands of melatonin: (1)
Amine: NHtension = 3300−3500 cm−1, NHdeformation = 1500−1640
cm−1, (2) Amide: NHtension = 3180−3500 cm−1, NHdeformation

= 1500−1650 cm−1, C Otension = 1600−1680 cm−1, is much
lower than the intensity of the FTIR-bands of NPs: (1) Alco-
hol (OH) = 3300−3500 cm−1, (2) Carboxylic acid: OHtension =
2400−3400 cm−1, OHdeformation = 2400−3400 cm−1, C Otension =
1700−1750 cm−1, C Otension = 1200−1320 cm−1, (3) Ester (C O)
= 1600−1750 cm−1. Therefore, due to the overlapping between
the FTIR-bands of the melatonin (low intensity: 10/90, w/w,
Melatonin/NPs) and the FTIR-bands of the NPs (high intensity),
the amine and amide groups of melatonin cannot be identified
in the FTIR spectrum of ML-NPs (Fig. S2).

Concerning the melatonin liberation profile curve, the
highest melatonin liberation was produced at the first 24
h. Then, the expected effect needs to be evaluated at this
time-point and the long-term effect (6 m)  is also crucial, to
appreciate the durability of the impact produced by melatonin
[12]. The presence of ML  also conditioned the high PDI val-
ues (0.230) that were obtained in the present research when
ML-NPs were used. Particle accumulation is less likely to hap-
pen when the zeta potential is high. Electrostatic stability with

zeta potential (�) higher than -30 mV  is desirable, as it engen-
ders physical stability [30]. In our research, � was 38.5 mV,
that prevents particles from accumulation [30]. This fact was
diffraction rings, respectively.

corroborated after TEM observations (Fig. 1), in the present
research.

Crystallinity strongly influences the mechanical per-
formance of minerals [41], enhancing their clinical role.
Crystallinity can be understood as the grade of long-range
command in materials. The FWHM of the XRD profile is
used to characterize different material properties and sur-
face integrity features, and it is sensitive to the variation in
microstructure and stress–strain accumulation in the material
[42].

Then, the presence of hydroxyapatite crystals with low
FWHM values, determines high crystallinity which suggests
a moderately lower degree of substitutions and imperfection.
In general, higher degree of mineral crystallinity is correlated
with narrower spectral peak width [43]. Higher crystallinity
denoted improved crystallographic, as narrower peaks advo-
cate minor essential disparity in angles and distances [44].
Otherwise, the relationship between poor crystallinity and
peak broadening [45] indicates non-stoichiometry, amorphous
phase and existence of higher amounts of impurities [46]. Poor
crystallinity, broadening of the Bragg peaks, and overlapping
of the diffraction peaks are commonly associated and would
make the phase identification ambiguous. To avoid this over-
lapping 002 and 310 Bragg peaks were used, as they do not
overlap [47], though the highest peak (112) was also measured
and reported in the present research. This is normally linked
to lower mechanical properties [48], and to a low chemical sta-
bility leading to an ion-rich environment, likely related with
an improved bioactivity and increased solubility [49,50]. In line
with this assertion, undoped NPs provoked, in general, peak

broadening (high FWHM)  and poor crystallinity (Table 1) with
a decrease of Hi over time (Fig. 2). This amorphous state was
likely linked to the intake of carbonate into the apatite crystal
[51].

https://doi.org/10.1016/j.dental.2021.09.001
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Fig. 5 – (A), Bright-field of an assembly of starry needle-like apatite crystals of cervical root dentin treated with ML-NPs at 24
h of storage. The arrows show the principal direction of the c-axes. The pointer denotes the cut domains with the sectioned
crystals seen face-on. (B), Bright-field of an assemblage of block-like and needle-like apatite crystals of apical root dentin
treated with ML-NPs at 24 h of storage. Crystals tracked parallel alignment respect to one another (arrows). The particles
have multiple domains of nearby aligned crystal arrangements (pointer). (C, D), Show a selected area electron diffraction
(SAED) image got by HRTEM of the crystals (+) perceived in (A and B, respectively), at nanoscale. Both depict some relative
weak halo rings, specifying amorphous structure and a strong diffraction orbital, signifying the existence of remnant
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rystallite matter; d-spaces characteristics of hydroxyapatite

Diffractography patterns generally transformed from
harper and more  crystalline peaks at cervical dentin treated
ith ML-NPs at 24 h, to broad diffuse peaks after 6 m (Table 1)

Fig. S3). This assures that amorphous stage itself, in nature,
s dynamic. The resulted broadening also indicates the state
f HAp as ultrafine nano-crystalline [52] at 6 m,  that shows
he finest biodegradability, biocompatibility and bioactivity
hen compared with the stoichiometric HAp [49] at 24 h. This

rystallization was set after TEM evaluation of HAp, which

howed starry needle-like apatite crystals at cervical dentin
Fig. 5A), and parallelized alignments block-like crystals at api-
al dentin (Fig. 5B). These crystals appeared less criystalline
indicated.

in nature (Fig. 5C, D) than the crystalline polyhedral apatite
(Fig. 6A) characteristics of dentin treated with ML-NPs at 6
m. There were observed remarkable halo rings which char-
acterized the crystalline matter (Fig. 6B, F, H), in comparison
with specimens treated with undoped NPs. A crystal is made
up of small repeat entities called unit cells that are stacked
in multiples along all possible axes and this is how a crystal
shape is determined. Unit cells for most crystal structures are
parallelepipeds or prisms having three sets of parallel faces;

one is drawn within the aggregate of spheres which happens
to be a cube [53]. In the present research and after using
ML-NPs, in bright-field (BF) TEM images, HAp showed poly-

https://doi.org/10.1016/j.dental.2021.09.001
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Fig. 6 – (A), Bright-field of an assemblage of block-like and needle-like apatite crystals ordered in three-dimensional
agglomerated crystals (pointers) of cervical root dentin treated with ML-NPs at 6 m storage. Some areas of the crystal
denoted organization in plate-like polygons (arrows). (B), Shows a particular area electron diffraction (SAED) image got by
HRTEM of the crystals (+) observed in (A), at nanoscale. Clear and bright diffraction rings are observed, indicating the
existence of crystallite matter. (C, D, E), Bright-field of an assemblage of polyhedral or drop-like shaped apatite crystals,
organized in plate-like polygons (arrows), of apical root dentin treated with ML-NPs at 6 m storage. Different tilt angles after
tomographic reconstructions, at 0o (C), −15o (D), and +15o (E) are shown by the collage. (F), Shows a specific area electron
diffraction (SAED) of the crystals (+) shown in (C), at nanoscale, unveiling a highly polycrystalline structure. (G), Bright-field
of an assemblage of a square polygonal block-like apatite of apical root dentin treated with ML-NPs at 6 m time point. The
frame of the square figure is composed of an assembly of tiniest and aligned polyhedral grains of apatite crystals (arrows).
(H), Selected area electron diffractions (SAED) image obtained by HRTEM of the crystals (+) observed in (G) shown at
microscale. They exhibit clear lined up bright spots and diffraction d spacing values of submicron size crystals (nm),
correlative with crystalline matter. (I), Representative Energy-dispersive X-ray spectroscopy (EDX) of the crystals (+) observed
in (G) showing the nanometer-sized apatite composition of calcium and phosphate as part of the elemental analysis;

, F a
d-spaces characteristics of hydroxyapatite are indicated in B

hedral (Fig. 6A), square polygonal block-like apatite (Fig. 6G) or

drop-like apatite crystals (Fig. 6C). Thereby, the null hypothe-
sis must be again, partially rejected. Previously, crystallinity
not only has become associated to high mechanical prop-
nd H.

erties [49], but with maturity [54] and specific crystallites

morphology as drop/rounded-like shaped crystals, polyhedral
or even polygons plate-like [46]. When ML was used, polycrys-
talline lattices were noticed, appearing transparent (Fig. 6D)

https://doi.org/10.1016/j.dental.2021.09.001
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Fig. 7 – (A), Bright-field of an assemblage of polymorph/polyhedral apatite crystals formed by plate-like overlapped crystals
(arrows) of cervical root dentin treated with AH Plus at 6 m storage. Aligned crystal arrays may be shown (pointer). Some
areas of the crystal denoted organization in plate-like polygons (arrowhead). At cervical dentin, the plate-like apatite
minerals of the nanometer-sized particles with poor crystallinity and diffuse halos were adverted (B). This image was
obtained by HRTEM of the crystals (+) observed in (A), at microscale. (C), Bright-field of an assemblage of block-like apatite of
apical root dentin treated with undoped NPs at 6 m time point, showing the polyhedral apatite presence of the overlapped
crystallites (arrows). (D), Selected area electron diffractions (SAED) image got by HRTEM of the crystals (+) observed in C,
shown at microscale. They unveil lined up bright spots in junction with diffuse halo rings which denote relative
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nd stable for tilt series acquisition (Fig. 6C, D, E). Profiles
f XRD analysis stated higher intensities of ML-NPs treated
pecimens, denoting high crystallinity and maturity [54], that
esponds affirmatively to the research question. At 002 peak
nd cervical dentin (Fig. 3A), and at 211 and 112 peaks at apical
entin (Fig. 3B), diffractography unveiled HAp with remark-
ble presence (red vertical bars) of sharp and narrow peaks.
imilarly, brighter Debye–Scherrer rings were seen at the anal-
sis of diffractions, i.e.,  greater crystallinity, than in the other
pecimens when using ML-NPs (Fig. 4F).

The morphology and dimensions of the formed HAp crys-
als may affect the mechanical properties. In calcified tissues,
ider and shorter crystallites are linked to high crystallinity,
aturity and mineralization of the new HAp [36]. The crys-

allite size resulting from Eqs. (1) and (2), is not necessarily

he same as apatite particle size, and is considered as the
oherently diffracting domains size [22,56]. Table 1 reports a
ualitative assessment of the crystallite size. �002 (H) means
dicated in B and D.

crystallite size along the c-axis; �310 (L) denotes the crystallite
size mean perpendicular to it [57]. The Scherrer equation, that
determines the crystallite thickness, reflects equivalent width
data (6.02 nm in the control group, (Table 1) with those attained
by Kinney et al. [58] who stated ∼5.0 nm thickness. Therefore,
considering the present outcomes, (i) an association between
both contraction along the c-axis in cervical dentin treated
with ML-NPs and higher crystallinity can be established; (ii) it
can be assumed that the highest crystallites thickness, at any
kind of dentin treated with ML-NPs at 6 m (6.62-cervical and
6.85-apical nm,  respectively) (Table 1), complies with a major
maturity and mineralization in dentin specimens treated with
ML-NPs [12].

Multiple stress concentration, strain and deformations
occur at cervical root dentin [59], meanwhile apical dentin has

shown the maximal tensile strength and a strong reduction
of fracture strength after instrumentation [60,61]. The applied
Scherrer–Wilson equation measuring the grain size showed

https://doi.org/10.1016/j.dental.2021.09.001
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that dentin crystals turned into smaller (∼1.05-fold) in api-
cal dentin treated with ML-NPs (22.01 nm)  than in samples
treated with undoped NPs (23.12 nm)  (Table 1), at (002) reflec-
tions. In cervical dentin, and at (310) reflections it did occur
the opposite (Table 1). Most strain was concentrated in apical
root dentin treated with AH Plus and undoped NPs (7.2 and 7.3
× 10−7, respectively), in 002 plane. In 310 plane similar perfor-
mance, though with lower strain values, was attained (Table 1).
The strain distribution indicates the stiffness of the tooth as
strength bearing tissue at biting [24]. It is speculated that these
bigger strain data accounted for the peaks broadening (0.0242)
in spite of the lowest grain size (6.40 nm)  [57] at 310 plane after
6 m of storage. The influence of the strain to the broadening
of the peaks will also condition the different mean crystal-
lite sizes [57] (Fig. 7B, D), i.e., lesser crystallite size (Fig. 7A, B)
with augmented microstrain data and lattice distortion [45,62]
(Table 1). Distortion of the phosphate tetrahedron is correlated
with the well-known lattice disorder caused by the carbonate
for phosphate (�-type) substitution in HAp, named as ‘car-
bonate substitution problem’ [47]. This was the characteristic
performance of specimens treated with undoped NPs at any
kind of dentin. At these locations, FWHM and microstrain have
shown the highest values (Table 1).

The alignment and orientation of the apatite crystals are
related with the mechanical behavior of macroscopic dentin
[63]. Texture correlates with the supply of crystallographic
alignment of a polycrystalline specimen. Texture highly deter-
mines the materials performance, as the resistance to crack
[64]. Therefore, texture indices (Rhkl) were calculated. Ran-
dom orientation is established when R ≈ 1 [36,49]. Thereby, it
may be advocated that dentin treated with ML-NPs has shown
the most randomly oriented polycrystalline lattices within the
HAp structure, at cervical (1.105) and apical dentin (1.093), at
6 m time point and 310 plane (Table 1). These crystal nets are
associated to highly crystalline structures with low solubil-
ity and high stability of the new minerals [48]. The preferred
orientation of the crystallites are indicated by indices greater
than 1 [36,49]. At 002 reflections, all measurements were below
1.0 (R < 1), but all groups attained minor variation than at
310 reflection, with occasional nano-degradation [49,65]. This
indicates scarce gradation in texture at dentin structure, pro-
viding poor hardness and stress-bearing capability [49].

Melatonin is a potent anti-inflammatory agent as it par-
tially neutralizes reactive oxygen species (ROS), in which OH−

plays a pivotal role [66]. It has been further proposed that
when the crystal size decreases, the grade of hydroxylation
or the integration of OH− in the HAp also diminishes [49]. ML-
NPs produced the highest crystallite size, in general (Table 1).
Thereby, it is speculated that the new crystallites created after
ML-NPs application will integrate OH- radicals into the apatite
structure. Crystal order may be inducted by a gain of OH− in
nanocrystalline HAp. It has been demonstrated that the incor-
poration OH− radicals to apatite, in order to form HAp, follows
a crystallization pathway via an amorphous calcium phos-
phate (ACP) precursor [67,68]. However, the transformation
mechanism of the ACP precursor to HAp remains unknown

and it is a subject of active debate and future research [69]. It
may be considered as a limitation of the current research. The
ACP transformation into HAp, following the classical crystal-
 ( 2 0 2 1 ) 1698–1713

lization theory, is governed by chemical potentials, normally
by dissolution-reprecipitation pathway. It has been previously
described that the presence of additives in this process, can
modify the kinetics of transformation of APC into HAp [69].
Thereby, it is speculated that the new crystallites created after
ML-NPs application will integrate OH− radicals into the apatite
structure, forming HAp. The polar nature of the HAp may
be favored by the OH− ions which are more readily incor-
porated into the apatite with a big lattice. The high degree
of alignment of crystallites is clearly determined by polarity.
At the same time, a relative degree of crystal disorder com-
ing from the random alignment of crystallites is due to the
lack of polarity and OH− produced by the ML  effects. It seems
that nature carry out some disorder of crystals by changing
the OH− concentration to improve the facility of biological
apatite to accomplish their functions [70]. Further research
to clarify this point is required. Thereby, it may be assumed
that the apatite crystals inducted after ML-NPs application,
at 6 m of storage, do have a relative degree of mixed pre-
ferred and randomly oriented crystallites that provide both
amorphous and crystalline features to the new minerals, ele-
mentally composed of calcium and phosphate (Fig. 6I). Even
more, as observed in the presented research, as demonstrated
by the broadening of the crystals due to ML treated NPs, are not
only the measure of the degree of mineralization. There are
other connected factors such as higher numbers of planar car-
bonate groups substituting for the tetrahedral phosphate ions
in the apatite structure that account for the increased crys-
tal structure disorder and reduction of the crystallinity [47].
Future and complementary research should be provided in
this line. The purpose of the present research was achieved in
the current manuscript, as undoped NPs provoked peak broad-
ening (high FWHM)  and poor crystallinity with a decrease
of nanohardness over time. This amorphous state was likely
associated to the intake of carbonate into the apatite crystal.
The amorphization process created crystals imperfections, i.e.,
lesser crystallite size and lattice distortion with augmented
microstrain data; this was the characteristic performance of
specimens treated with undoped NPs at any kind of dentin.
Decrease of the a-lattice parameter in amorphous (carbonate)
apatite is associated with an increase in carbonate content
[47]. This is biologically important, as the raise in carbonate
content involves an augmentation in solubility of the HAp,
and as result, the formation of ACP that change the mineral
composition [47]. Nevertheless, most strain was concentrated
in apical root dentin treated with AH Plus and undoped NPs.
On the other hand, samples treated with ML-NPs showed HAp
with remarkable presence of sharp and narrow peaks through
diffractography. Brighter Debye–Scherrer rings were seen at
the analysis of diffractions, i.e.,  higher crystallinity. The high-
est crystallites thickness, at any kind of dentin treated with
ML-NPs at 6 m,  complies with a major maturity and min-
eralization in dentin specimens treated with ML-NPs. These
crystal nets are associated to highly crystalline structures with
low solubility and high stability of the new minerals.

These are the only existing outcomes from both XRD and

TEM/EDX/SAED joined methodologies applicable to evaluate
radicular dentin submitted to ML-NPs treatment. Dark-field
TEM and Scanning Transmission Electron Microscopy should
be methodologically integrated, for future approaches of

https://doi.org/10.1016/j.dental.2021.09.001
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esearch. It is a recognized limitation of the present research.
ervical root dentin is a site of potential failure due to stress
oncentration, strain and deformation [59]. Meanwhile, apical
entin has shown the maximal tensile strength and a strong
eduction of fracture strength after instrumentation [60,61].
herefore, the use of ML-NPs should be applied in endodon-

ics, as they reinforce both cervical and apical radicular dentin
n comparison with both the control and undoped NPs groups
hich showed a Hi decreased over time (Fig. 2). In summary,

pplication of ML-NPs in radicular dentin has been greatly
ffective. High hydrophilicity, smaller size of NPs and con-
rolled release of ML  may have contributed to the analyzed
erformance of these ML  nanocarriers. The hydrophobicity
roperty of ML  may also have facilitated its release from the
Ps in the root dentin [30].

.  Conclusions

entin treated with ML-NPs preserved its original mechani-
al performance over time attaining higher crystallinity, being
hese crystals organized with randomly oriented lattices.
owever, undoped NPs induced HAp amorphization (poor
rystallinity, high impurities degree, imperfections and non-
toichiometric crystals).
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Gedikli S, et al. Melatonin prevents radiation-induced
oxidative stress and periodontal tissue breakdown in
irradiated rats with experimental periodontitis. J Periodont
Res 2017;52:438–46, http://dx.doi.org/10.1111/jre.12409.

[17] Fernández-Ortiz M, Sayed RKA, Fernández-Martínez J,
Cionfrini A, Aranda-Martínez P, Escames G, et al.
Melatonin/Nrf2/NLRP3 connection in mouse heart
mitochondria during aging. Antioxidants (Basel) 2020;9,
http://dx.doi.org/10.3390/antiox9121187.

[18] Fernández-Gil B, Moneim AEA, Ortiz F, Shen Y-Q,

Soto-Mercado V, Mendivil-Perez M, et al. Melatonin protects
rats  from radiotherapy-induced small intestine toxicity. PLoS
One  2017;12, http://dx.doi.org/10.1371/journal.pone.0174474.

https://doi.org/10.1016/j.dental.2021.09.001
https://doi.org/10.1016/j.dental.2021.09.001
https://doi.org/10.1016/j.dental.2021.09.001
dx.doi.org/10.1007/5584_2020_578
dx.doi.org/10.2147/JPR.S141366
dx.doi.org/10.1016/j.joen.2018.06.009
dx.doi.org/10.4103/ijdr.IJDR_227_18
dx.doi.org/10.4317/medoral.20904
dx.doi.org/10.1007/s00018-017-2610-1
dx.doi.org/10.3390/ijms140510063
dx.doi.org/10.1111/j.1440-169x.2005.00790.x
dx.doi.org/10.1177/154405910808700206
https://www.nature.com/scitable/topic/cell-communication-14122659/
https://www.nature.com/scitable/topic/cell-communication-14122659/
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
http://refhub.elsevier.com/S0109-5641(21)00245-1/sbref0055
dx.doi.org/10.1016/j.dental.2021.03.007
dx.doi.org/10.1016/j.lfs.2018.09.056
dx.doi.org/10.1016/j.jmbbm.2019.103606
dx.doi.org/10.1016/j.actbio.2020.05.002
dx.doi.org/10.1111/jre.12409
dx.doi.org/10.3390/antiox9121187
dx.doi.org/10.1371/journal.pone.0174474


 s 3 7
1712  d e n t a l m a t e r i a l

[19] Bertassoni LE, Habelitz S, Pugach M, Soares PC, Marshall SJ,
Marshall GW. Evaluation of surface structural and
mechanical changes following remineralization of dentin.
Scanning 2010;32:312–9, http://dx.doi.org/10.1002/sca.20199.

[20] Kinney JH, Habelitz S, Marshall SJ, Marshall GW. The
importance of intrafibrillar mineralization of collagen on the
mechanical properties of dentin. J Dent Res 2003;82:957–61,
http://dx.doi.org/10.1177/154405910308201204.

[21]  Bertassoni LE, Orgel JPR, Antipova O, Swain MV. The dentin
organic matrix — limitations of restorative dentistry hidden
on  the nanometer scale. Acta Biomater 2012;8:2419–33,
http://dx.doi.org/10.1016/j.actbio.2012.02.022.

[22]  Toledano M, Aguilera FS, López-López MT, Osorio E,
Toledano-Osorio M, Osorio R. Zinc-containing restorations
create amorphous biogenic apatite at the carious dentin
interface: a X-ray diffraction (XRD) crystal lattice analysis.
Microsc Microanal 2016;22:1034–46,
http://dx.doi.org/10.1017/S1431927616011697.

[23]  Wang F, Guo E, Song E, Zhao P, Liu J. Structure and properties
of bone-like-nanohydroxyapatite/gelatin/polyvinyl alcohol
composites. Adv Biosci Biotechnol 2010;1,
http://dx.doi.org/10.4236/ABB.2010.13026.

[24]  Fujisaki K, Todoh M, Niida A, Shibuya R, Kitami S, Tadano S.
Orientation and deformation of mineral crystals in tooth
surfaces. J Mech Behav Biomed Mater 2012;10:176–82,
http://dx.doi.org/10.1016/j.jmbbm.2012.02.025.

[25]  Kinney JH, Nalla RK, Pople JA, Breunig TM, Ritchie RO.
Age-related transparent root dentin: mineral concentration,
crystallite size, and mechanical properties. Biomaterials
2005;26:3363–76,
http://dx.doi.org/10.1016/j.biomaterials.2004.09.004.

[26]  Bertassoni LE, Stankoska K, Swain MV. Insights into the
structure and composition of the peritubular dentin organic
matrix and the lamina limitans. Micron 2012;43:229–36,
http://dx.doi.org/10.1016/j.micron.2011.08.003.

[27]  Toledano-Osorio M, Aguilera FS, Osorio R, Muñoz-Soto E,
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