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A B S T R A C T

The latest Deep Learning (DL) models for detection and classification have achieved an unprecedented
performance over classical machine learning algorithms. However, DL models are black-box methods hard to
debug, interpret, and certify. DL alone cannot provide explanations that can be validated by a non technical
audience such as end-users or domain experts. In contrast, symbolic AI systems that convert concepts into rules
or symbols – such as knowledge graphs – are easier to explain. However, they present lower generalization
and scaling capabilities. A very important challenge is to fuse DL representations with expert knowledge.
One way to address this challenge, as well as the performance-explainability trade-off is by leveraging the
best of both streams without obviating domain expert knowledge. In this paper, we tackle such problem by
considering the symbolic knowledge is expressed in form of a domain expert knowledge graph. We present
the eXplainable Neural-symbolic learning (X-NeSyL) methodology, designed to learn both symbolic and deep
representations, together with an explainability metric to assess the level of alignment of machine and human
expert explanations. The ultimate objective is to fuse DL representations with expert domain knowledge during
the learning process so it serves as a sound basis for explainability. In particular, X-NeSyL methodology involves
the concrete use of two notions of explanation, both at inference and training time respectively: (1) EXPLANet :
Expert-aligned eXplainable Part-based cLAssifier NETwork Architecture, a compositional convolutional neural
network that makes use of symbolic representations, and (2) SHAP-Backprop, an explainable AI-informed
training procedure that corrects and guides the DL process to align with such symbolic representations in
form of knowledge graphs. We showcase X-NeSyL methodology using MonuMAI dataset for monument facade
image classification, and demonstrate that with our approach, it is possible to improve explainability at the
same time as performance.
. Introduction

Currently, Deep Learning (DL) constitutes the state-of-the art models
n many problems [1–5]. These models are opaque, complex and hard
o debug, which makes their use unsafe in critical applications such
s healthcare and high-risk scenarios. Furthermore, DL often requires
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a large amount of training data with over-simplified annotations that
obviate an important part of centuries-long knowledge from domain
experts. At the same time, DL generally uses correlation shortcuts
to produce their outputs, which makes them finicky and difficult to
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correct. On the contrary, most classical symbolic AI approaches are
interpretable but do not reach neither similar levels of performance nor
scalability.

Among the potential solutions to clarify the decision process of a DL
model, the topic of eXplainable AI (XAI) emerges. Given an audience,
an XAI system produces details or reasons to make its functioning
clear or easy to understand [6,7]. To make black box Deep Learning
methods more interpretable, a large amount of works exposed their
vulnerabilities and sensitivity and came up with visual interpretation
techniques, such as attribution or saliency maps [8–10]. However, the
explanations provided by these methods, often in form of heatmaps,
are not always enough, i.e. they are not easy to quantify, correct, nor
convey to non technical audiences [11–17].

Having both specific and broad audiences of AI models contributes
toward inclusiveness and accessibility, both part of the principles for
responsible [6] and human-centric AI [18]. Furthermore, as advocated
in [19], broadening the inclusion of different minorities and audi-
ences can facilitate the evaluation of AI models when the objective is
deploying human-centered AI systems.

A very critical challenge is thus to blend DL representations with
domain expert knowledge. This leads us to draw inspiration from
Neural-Symbolic (NeSy) learning [20,21], a learning paradigm com-
posed by both neural (or sub-symbolic) and symbolic AI components.
An interesting challenge consists of bringing explainability in this
fusion through the alignment of such learned and symbolic representa-
tions [22]. In order to pursue this idea further, we approach this quest
by considering the expert knowledge to be in form of a KG.

Since our ultimate objective is fusing DL representations and do-
main expert representations, to fill this gap we propose the eXplainable
Neural-symbolic (X-NeSyL) learning methodology, to bring explainabil-
ity in the process. X-NeSyL methodology is aimed to make neural-
symbolic models explainable, while providing more universal expla-
nations for both end-users and domain experts. X-NeSyL methodology
is designed to enhance both performance and explainability of DL, in
particular, a convolutional neural network (CNN) classification model.
X-NeSyL methodology is constituted by three main components:

1. A symbolic processing component to process symbolic represen-
tations, in our case we model explicit knowledge from domain
experts with knowledge graphs.

2. A neural processing component to learn neural representations,
EXPLANet : eXplainable Part-based cLAssifying NETwork archi-
tecture. EXPLANet is a compositional deep architecture that
allows to classify an object by its detected parts.

3. An XAI-informed training procedure, able to guide the model
to align its outputs with the symbolic explanation and penalize
it accordingly when this is not the case. We propose SHAP-
backprop to align the representations of a deep CNN with the
symbolic one from a knowledge graph, thanks to a SHAP Attri-
bution Graph (SAG) and a misattribution function.

The election of these components is designed to enhance a DL model
by endowing its output with explanations at two levels:

• Enhancement of the explanation at inference time: We extend the
classifier inference procedure to not only classify, but also detect
what will serve as basis for the explanation. These components
should be possible to be specified through the symbolic compo-
nent, e.g., a knowledge graph that acts as gold standard expla-
nation from the expert. EXPLANet is proposed here to classify an
object based on the detected object-parts, and thus, has the role
of facilitating the mapping of neural representations to symbols.

• Enhancement of the explanation at training time: We penalize the
original model at this second training phase, aimed toward im-
proving the original classifier, thanks to an XAI technique called
Shapley analysis [23] that assesses the contribution of each fea-
ture to a model output. SHAP-backprop training procedure is
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presented to adjust the model using a misattribution function
that quantifies the error coming from the contribution of fea-
tures (object-parts) attributed to the output (expressed in a SHAP
Attribution Graph, SAG) not in agreement with the theoretical
contribution expressed by the expert knowledge graph.

Together with the X-NeSyL methodology, this paper contributes
an explainability metric to evaluate the interpretability of the model,
SHAP GED (SHAP Graph Edit Distance), that measures the degree
of alignment between the symbolic (expert) and neural (machine)
representations. The objective of this metric is to gauge the alignment
between the explanation from the model and the explanation from the
human target audience that validates it.

We illustrate the use of X-NeSyL methodology through a guiding
use case on monument architectural style classification and its dataset
named MonuMAI [24]. We selected this dataset because it includes
object-part-based annotations which make it suitable for assessing our
proposal.

The pipeline components of the X-NeSyL methodology are sum-
marized in Fig. 1. They are meant to complete a versatile template
architecture with pluggable modular components to make possible the
fusion of representations of different nature. X-NeSyL methodology can
be adapted to the needs of the use case, and allows the model to train
in a continual learning [25] setting.

The experiments to validate the X-NeSyL methodology make evident
the well known interpretability-performance trade-off with respect to
traditional training with an improvement of 3.6% with respect to
the state of the art (MonuNet [24]) on MonuMAI dataset. In terms
of explainability, our contributed interpretability metric, SHAP GED,
reports a gain of up to 0.38 — from 0.93 to 0.55. The experimental
study shows that X-NeSyL methodology makes it possible for CNNs to
gain explainability and performance.

The rest of this paper is organized as follows: First we present
the literature around XAI, and compositional, part-based classifiers
in Section 2. We present a set of frameworks on Neural-Symbolic
integration as a basis and promising body of research to attain XAI
in Section 3. We describe X-NeSyL methodology in Section 4. Its core
components are presented therein, Section 4.1.1 presents the symbolic
component, i.e., how KGs can be used to represent symbolic expert
knowledge to be leveraged by a DL model, Section 4.2 presents the
neural representation component describing EXPLANet architecture,
and Section 4.3 the XAI-guided training method SHAP-Backprop. X-
NeSyL methodology is evaluated through the proposed explainability
metric SHAP GED, presented and illustrated in Section 5. The com-
plete methodology pipeline is illustrated through a driving use case
on MonuMAI cultural heritage application in Section 6. Section 7 we
discuss results, alternative perspectives, and open research avenues for
the future. Finally, the Appendix includes additional experiments with
an extra dataset, PASCAL-Part.

2. Related work: Explainable deep learning and compositional
part-based classification

An increasing number of reviews and surveys is providing diverse
classifications of XAI methods [6,7,26]. We particularly focus on at-
tribution methods, i.e. XAI methods that relate a particular output of a
DL model to their input variables. The most popular methods are model
agnostic and provide visual explanations in form of heatmaps, saliency
maps or class activation methods.

This section reviews three types of XAI attribution methods [6,
10], (1) local explanations, (2) saliency maps and (3) compositional
part-based classification models.
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Fig. 1. Proposed X-NeSyL methodology for eXplainable Neural-Symbolic learning. We illustrate the components of the methodology with examples of MonuMAI use case processed
with EXPLANet part-based object detection and classification model, knowledge graphs, and SHAP-Backprop training procedure.
2.1. Local explanations

These methods are increasingly model agnostic, i.e., independent of
the underlying black box model. The main intuition behind this type of
methods is that they start from any specific point in the input space and
explore its neighborhood to understand what has caused the prediction.

One of the simplest approaches in this context is LIME [27]. It
explains the decision of the model by example. That is, in image
classification, LIME segments the input image into super-pixels and
then generates a data set of perturbed instances by turning some of the
super-pixels into gray color. Each perturbed instance is then analyzed
by the machine learning model to get a decision. Afterward, a simple
linear locally weighted model is trained on this data set. As result, the
super-pixel with the highest weight is presented as explanation. One of
the limitations of this approach is that it cannot generalize to unseen
instances.

To increase generalization to unseen images, the same researchers
introduced Anchors [28]. Instead of using a simple linear model, An-
chors use reinforcement learning techniques in combination with a
graph search algorithm. They express the explanation using simple
𝑖𝑓 − 𝑡ℎ𝑒𝑛 rules applicable to other instances.

Following the same philosophy, Minimal input deformation [29], uses
blur as perturbation technique to learn the perturbation mask that min-
imizes the class score. This can be seen as a counterfactual explanation
strategy. The authors showed that the obtained image masks pro-
vide better explanations than the obtained by previous gradient-based
saliency methods and their variants.

SHAP (SHapley Additive exPlanation) [23] is a framework for inter-
preting predictions based on coalitional game theory and theoretically
optimal Shapley Values. It explains the prediction of an instance 𝑥
by computing the contribution of each feature to the prediction. The
feature values of 𝑥 act as players in a coalition. The computed Shapley
values tell us how to fairly distribute the prediction among the features.
A player can be an individual feature value for tabular data, or a
set of feature values, i.e., a vector of values. In general, SHAP is not
applied directly to images but can be applied to a vector of intermediate
features, i.e., the output of a high-level layer of a neural network.

DeepLIFT [30] main specificity is that it computes importance scores
based on differences with a reference (in case of images, a black image).
There is a connection between DeepLIFT and Shapley values. The
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Shapley values measure the average marginal effect of including an
input over all possible orderings in which inputs can be included. If we
define ‘‘including’’ an input as setting it to its actual value instead of its
reference value, DeepLIFT can be thought of as a fast approximation of
the Shapley values. It can as well be seen as an extension of SHAP for
images.

2.2. Explanations using saliency maps

Saliency maps based post-hoc explanation methods have been a
very powerful tool in explaining deep CNNs, as they propose an easily
interpretable map. A saliency map is actually a heatmap that is usually
superimposed over the input image to emphasize the pixels of the image
that were more important for the prediction.

DeconvNet & Guided Backpropagation [8,31] are the first approaches
for saliency maps based methods. DeconvNets [32] consist of running
the model backwards to map the activations from intermediate convo-
lution layers back to the input pixel space. Guided backpropagation is
a variant of the standard deconvolution approach that is meant to work
on every type of CNNs, even if no pooling layers are present. The main
difference lies on the way ReLU functions are handled in the different
cases.

LRP (layer-wise relevance propagation): [33,34] introduce a novel
way to consider the operation done inside a neural architecture with
the concept of relevance. Given their definition of relevance and adding
certain properties, relevance intuitively corresponds to the local contri-
bution to the prediction function f(x). The idea of LRP is to compute
feature relevance thanks to a backward pass and thus, it yields a
pixel-wise heat map.

PatternNet & PatternAttribution [35] take the previous work a step
further by applying a proper statistical framework to the intuition
behind. More precisely, they build on slightly more recent work called
DTD (deep Taylor decomposition) as introduced in [36]. The key
idea of DTD is to decompose the activation of a neuron in terms of
contributions from its inputs. This is achieved using a first-order Taylor
expansion around a root point 𝑥0. The difficulty in the application of
DTD is the choice of the root point 𝑥0, for which many options are
available. PatternAttribution is a DTD extension that learns from data
how to set the root point. This way the function extracts the signal from
the data, and it maps attribution back to the input space, which is the
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same idea of relevance. PatternNet yields a layer-wise back-projection
of the estimated signal to the input space.

CAM (Class Activation Mapping) [37] has as goal to leverage the
effect of Global Average Pooling layers to a localization of deep rep-
resentations for CNNs. A class activation map for a particular category
indicates the discriminative image regions used by the CNN to identify
that category. The process for the basic CAM approach is to put a
Global Average Pooling layer on top of the convolution network and
then perform classification. The layer right before the Global Average
Pooling is then visualized.

Grad-CAM & Grad-CAM++ [9,38] emerged from the need to go
faster than CAM and avoid a training procedure to happen. The idea of
class activation mapping is kept, but to build weights on the features
maps (convolution layers) it is using a backpropagated gradient from
the score given to a specific class. The advantage is that no architec-
tural changes or re-training is needed, contrary to the architectural
constrains of the CAM approach. With a simple change, Grad-CAM
can similarly provide counterfactual activations for a specific class.
Grad-CAM++ expands Grad-CAM with an improved way to process the
weights of the feature maps. Grad-CAM is widely used for interpreting
CNNs.

Score-CAM [39] is a novel approach in between CAM-like ap-
proaches and local explanations. The main idea behind this new ap-
proach is that it does not need to backpropagate any signal inside the
architecture and as such, only a forward pass is needed.

Integrated gradient [40] proposes a new way to look at the issue. The
underlying idea relies on the complexity of ensuring that a visualization
is correct besides being visually appealing and making sense. Here it
introduces two axioms that attribution methods should follow, called
sensitivity and implementation invariance.

Sensitivity : An attribution method satisfies Sensitivity if for ev-
ery input and baseline that differ in one feature but have different
predictions, the differing feature is given a non-zero attribution.

Implementation invariance: Two networks are functionally equiva-
lent if their outputs are equal for all inputs, despite having very
different implementations. Attribution methods should satisfy Imple-
mentation Invariance, i.e., attributions should always be identical for
two functionally equivalent networks.

Some easily applicable sanity checks can be done to verify that
a method is dependent on the parameters and the training set [16].
For instance, integrated gradient stems from path methods, and verify
both precedent axioms. We consider the straight line path (in 𝑅𝑛)
from the base line between 𝑥0 and 𝑥 in the input, and compute the
gradients at all points along the path. Integrated gradients are obtained
by accumulating these gradients. Specifically, integrated gradients are
defined as the path integral of the gradients along the straight line path
from the baseline 𝑥0 to the input 𝑥.

All these methods seem visually appealing, but most of them rely
on heuristics about what we want to look at, more or less well de-
fined. Some works have been proposed to check the validity of such
methods as tools to understand the underlying process inside neural
architectures.

It has also been highlighted by the research community that saliency
methods must be used with caution, and not blindly trusted, given their
sensibility to data and training procedures [13,17].

2.3. Compositional part-based classification models

Compositionality [41] in computer vision refers to the capacity to
represent complex concepts (from objects, to procedures, to beliefs) by
combining simpler parts [41,42]. Despite CNNs being not inherently
compositional, compositionality is a desirable property for them to
be learned [43]. For instance, hand-written symbols can be learned
from only a few examples using a compositional representation of the
strokes [44]. The compositionality of neural networks has also been
61

regarded as key to integrate symbolism and connectionism [45,46].
Part-based object recognition is an example of semantic compo-
sitionality and a classic paradigm, where the idea is to gather local
level information to make a global classification. In [47], the authors
propose a pipeline that first groups pixels into superpixels, then does
segmentation at the superpixel-level, transforming this segmentation
into a feature vector and finally classifying the global image thanks
to this feature vector. Similar work is proposed by [48], where they
extend it to 3D data. Here the idea is to classify part of the image into a
predefined class, and then use those intermediate predictions to provide
a classification of the whole image. The authors of [49] also define mid
level features that capture local structure such as vertical or horizontal
edges, Haar filters and so on. However they are closer to dictionary
learning than to the work we propose in this paper.

One of the most well known object parts detection model is [50]. It
provides object detection based on mixtures of multiscale deformable
part models, based on data mining of hard negative examples with
partially labeled data to train a latent SVM. Evaluation is done in
PASCAL object detection challenge (PASCAL VOC benchmark).

Finally, more recently, semi-supervised processes were developed
such as [51]. They are proposing a two step neural architecture for
fine-grained image classification aided by local detections. The idea is
that positive proposal regions are highlighting varied complementary
information, and that all this information should be used. In order to
do that, first an unsupervised detection model is made by alternatively
applying a CRF and Mask-RCNN (given an initial approximation with
CAM). Then having a detection model and thus the positive region
proposal they are fed to a Bi-Directional LSTM that will produce a
meaningful feature vector accumulating information across all regions
and then be able to classify the image. It can be seen as unsupervised
part-based classification.

3. Neural-symbolic (NeSy) integration models

One of the most promising approaches to merge deep representa-
tions with symbolic knowledge representation that allows explainabil-
ity to deep neural networks (such as CNNs) is the Neural-Symbolic
(NeSy) integration. NeSy integration aims at joining standard symbolic
reasoning with neural networks in order to achieve the best of both
fields and soften their limitations. A complete survey of this method
is provided in [20,52]. Indeed, symbolic reasoning is able to work in
presence of few data as it constrains entities through relations. How-
ever, it has limited robustness in data errors e and requires formalized
background knowledge. On the other hand, neural networks are fast
and able to infer knowledge. However, they require a lot of data
and have limited reasoning properties. Their integration overcomes
these limitations and, as stated by [53,54], improves the explainability
of the learned models. In the following, we present the main NeSy
frameworks.

Many NeSy frameworks treat logical rules as constraints to be
embedded in a vector space. In most of the cases these constraints
are encoded into the regularization term of the loss function in or-
der to maximize their own satisfiability. Logic Tensor Networks [55]
and Semantic Based Regularization [56] perform the embedding of
First-Order Fuzzy logic constraints. The idea is to jointly maximize
both training data and constraints. Both methods are able to learn in
presence of constraints and perform logical reasoning over data. In
Semantic Based Regularization the representations of logical predicates
are learnt by kernel machines, whereas Logic Tensor Networks learn the
predicates with tensor networks. Other differences regard the dealing
of the existential quantifier: skolemization for Logic Tensor Networks,
or conjunction of all possible groundings for Semantic Based Regular-
ization. Logic Tensor Networks have been applied to semantic image
interpretation by [57] and to zero-shot learning by [58]. Semantic
Based Regularization has been applied, for example, to the prediction
of protein interactions by [59] and to image classification [56]. Both
Logic Tensor Networks and Semantic Based Regularization show how
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background knowledge is able to (i) improve the results and (ii) coun-
terbalance the effect of noisy or scarce training data. Minervini et al.
proposed a regularization method for the loss function that leverages
adversarial examples [60]: the method firstly generates samples that
maximize the unsatisfaction of the constraints, then the neural network
is optimized to increase their satisfaction. Krieken et al. [61] proposed
another regularization technique applied to Semi-Supervised Learning
where the regularization term is calculated from the unlabeled data.
In the work of [62], propositional knowledge is injected into a neural
network by maximizing the probability of the knowledge to be true.

Other works use different techniques but keep the idea of defining
logical operators in terms of differentiable functions (e.g., [63,64]).
Relational Neural Machines [65] is a framework developed that inte-
grates neural networks with a First-Order Logic reasoner. In the first
stage, a neural network computes the initial predictions for the atomic
formulas, whereas, in a second stage, a graphical model represents
a probability distribution over the set of atomic formulas. Another
strategy is to directly inject background knowledge into the neural
network structure as done in [66]. Here, the knowledge is injected in
the model by adding new layers to the neural network that encode
the fuzzy-logic operator in a differentiable way. Then, the background
knowledge is enforced both at inference and training time. In addition,
weights are assigned to rules as learnable parameters. This allows for
dealing with situations where the given knowledge contains errors or
it is softly satisfied by the data without a priori knowledge about the
degree of satisfaction.

The combination of logic programming with neural networks is
another exploited NeSy technique. Neural Theorem Prover [67] is an
extension of the logic programming language Prolog where the crisp
atom unification is soften by using a similarity function of the atoms
projected in an embedding space. Neural Theorem Prover defines a dif-
ferentiable version of the backward chaining method (used by Prolog)
with the result of learning a latent predicate representation through
an optimization of their distributed representations. DeepProbLog [68]
integrates probabilistic logic programming (ProbLog [69]) with (deep)
neural networks. In this manner, the explicit expressiveness of logical
reasoning is combined with the abilities of deep nets.

Finally, NeSy systems have also shown to be effective for learning
logical constraints from KGs [70], for inferring causal graphs from time
series [71], for learning to explain logic inductive learning [72] and for
generating symbolic explanations of DL models [73–75].

4. Explainable neural-symbolic (X-NeSyL) learning methodology

One challenge of the latest DL models today is producing not only
accurate but also reliable outputs, i.e., outputs whose explanations
agree with the ground truth, and even better, agree with a human
expert on the subject. X-NeSyL methodology is aimed at filling this
gap, and getting model outputs and experts explanations to coincide. In
order to tackle the concrete problem of fusing DL representations with
domain expert knowledge in form of knowledge graphs, in this sec-
tion we present the three main ingredients that compose the X-NeSyL
methodology: (1) the symbolic knowledge representation component,
(2) the neural representation learning component, and (3) the align-
ment mechanism for both representations to align, i.e., correct the
model during training or penalize it when disagreeing with the expert
knowledge.

First, in Section 4.1 we present the symbolic component that serves
to endow the model with interpretability – which will be in form
of knowledge graphs –, then in Section 4.2 the neural representation
learning component – that will serve to reach the best performance –
and finally, in Section 4.3 the XAI-guided training procedure that makes
both components align with SHAP-Backprop during training of the DL
model.
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4.1. Symbolic knowledge representation for including human experts in the
loop

Symbolic AI methods are interpretable and intuitive (e.g. they use
rules, language, ontologies, fuzzy logics, etc.). They are normally used
for knowledge representation. Since we advocate for leveraging the best
of both, symbolic and neural representation learning currents, in order
to make the latter more explainable, here we choose a simple form
of representing expert knowledge, with knowledge graphs. Right after,
in order to demonstrate the practical usage of X-NeSyL methodology,
we present the running use case using knowledge graphs that will
demonstrate the usage of this methodology thorough the paper.

4.1.1. Knowledge graphs
Different options exist to leverage a KG as a versatile element to

convey explanations [76]. We inspire ourselves by NeSy frameworks for
XAI using ontologies and KGs [22,77,78], on explanations of image and
tabular data-based models and, more broadly, on the XAI literature [7].
We focused more precisely on attribution methods that try to measure
the importance of the different parts of the input toward the output.
We provide a formalization of the domain expert data into a semantic
OWL2-based KG that is actually leveraged by the detector and classifier
DL model.

In this work we present a new training procedure to enhance inter-
pretability of part-based classifier, given an appropriate KG. It is based
on Shapley values (or SHAP) [23] which outputs feature attribution
of the various part elements toward the final classification, which we
compare with the KG. We use the SHAP information to weight the loss
that we backpropagate [79] at training time.

Alongside standard images and annotations we have in our various
datasets, we also have expert knowledge information. This information
is usually encoded in knowledge graphs (KGs), such as the one in Fig. 7.

A knowledge graph  is formalized as a subset of triples from
××  , with  the set of entities and  the set of relations. A single

triple (𝑒𝑖, 𝑟, 𝑒𝑗 ) means that entity 𝑒𝑖 is related to 𝑒𝑗 through relation 𝑟. In
the context of part-based classification, such graph encodes the 𝑝𝑎𝑟𝑡𝑂𝑓
relationship (that is,  = {𝑝𝑎𝑟𝑡𝑂𝑓}) between elements (parts) and the
(whole) object they belong to.

Therefore, since we have || = 1, and to relate to various attribution
functions presented in Sections 2.1 and 2.2, we can see the KG as the
theoretical attribution graph.

The attribution graph encodes whether an element contributes pos-
itively or negatively toward a prediction. This way the 𝐾𝐺 can be
rewritten as 𝐾𝐺 = (𝐾𝐺1,… , 𝐾𝐺𝑛) (one entry for each macro label)
with 𝐾𝐺𝑖 = (𝐾𝐺𝑖,1, 𝐾𝐺𝑖,2,… , 𝐾𝐺𝑖,𝑚) (one entry for each element that
is part-of the object), 𝐾𝐺𝑖,𝑘 = {−1, 1}.

If a link between an element and a macro (object-level) label exists
in the theoretical KG, then it means such element is typical of that label
and should count positively toward this prediction, thus, its entry in
the matrix representing the 𝐾𝐺 is equal to 𝑡. If no such link exists,
then it means it is not typical of the macro label and should contribute
negatively, thus its entry in the matrix 𝐾𝐺 is equal to −𝑡. In our case
we choose values of the KG edges to be binary, and since we set |𝑡| =
, 𝐾𝐺𝑖,𝑘 = {−1, 1}. Seeing a KG as a feature attribution graph is not the
nly way to model a KG; we can also encode KGs as ontologies. It is
orth mentioning that ontologies can be seen as a set of triples with the

ormat (subject, predicate, object) or (subject, property, value) where
dges can have varying semantic meaning following constraints from
escription Logics [80].

Modeling the graph as an adjacency matrix is not appropriate
ince architectural style nodes and architectural elements nodes are
laying two very different roles. Instead, we model the graph as a
irected graph, with edges from the architectural element toward the
rchitectural styles.
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Table 1
Characteristics of the architectural styles dataset, where count is the number of
occurrences of an element in the dataset, and element rate is the ratio between the
number of occurrences of an element and the total number of all elements.

Architectural element Count Element rate (%) Architectural style

Horseshoe arch 452 9.86 Hispanic-muslim
Lobed arch 131 2.86 Hispanic-muslim
Flat arch 105 2.29 Hispanic-muslim
Pointed arch 322 7.03 Gothic
Ogee arch 154 3.36 Gothic
Trefoil arch 47 1.03 Gothic
Triangular pediment 586 12.79 Renaissance
Segmental pediment 184 4.01 Renaissance
Serliana 62 1.35 Renaissance
Porthole 356 7.77 Renaissance/Baroque
Lintelled doorway 898 19.59 Renaissance/Baroque
Rounded arch 706 15.40 Renaissance/Baroque
Broken pediment 388 8.47 Baroque
Solomonic column 192 4.19 Baroque

4.1.2. A driving use case on cultural heritage: MonuMAI architectural style
facade image classification

The latest deep learning models have focused on (whole) object
classification. We choose part-based datasets as a straight forward way
to leverage extra label information to produce explanations that are
compositional and very close to human reasoning, i.e., explaining a
concept or object based on its parts.

In this work, we interested ourselves in the MonuMAI (Monument
with Mathematics and Artificial Intelligence) [24] citizen science ap-
plication and corresponding dataset collected through the application,
because it complies with the required compositional labels in a object
detection task, based on object parts. At the same time, facade classifi-
cation by pointing relevant architectonic elements is an interesting use
case application of XAI. We use this example thorough the article as
a guiding application use case that perfectly serves to demonstrate the
usage of our part-based model and pipeline for explainability.

The MonuMAI project has been developed at the University of
Granada (Spain) and has involved citizens in creating and increasing
the size of the training dataset through a smartphone app.2

The MonuMAI dataset
MonuMAI dataset allows to classify architectural style classification

from facade images; it includes 1092 high quality photographs, where
the monument facade is centered and fills most of the image. Most
images were taken by smartphone cameras thanks to the MonuMAI app.
The rest of images were selected from the Internet. The dataset was
annotated by art experts for two tasks, image classification and object
detection as shown Fig. 6. All images belong to facades of historical
buildings that are labeled as one out of four different styles (detailed
in Tables 1 and 2): Renaissance, Gothic, Baroque and Hispanic-Muslim.
Besides this label given to an image, every image is labeled with key
architectural elements belonging to one of fourteen categories with a
total of 4583 annotated elements (detailed in Table 1). Each element
is supposed to be typical of one or two styles, and should almost not
appear inside facade of the other styles. Examples for each style and
each element are in Figs. 2 and 3, while the MonuMAI dataset labels
used are shown in Figs. 4 and 5.

Apart from MonuMAI dataset, and in order to draw more gen-
eral conclusions on our work, we used a dataset with similar hierar-
chy to MonuMAI. Additional results for PASCAL-Part [81] dataset are
in Appendix.

MonuMAI’s Knowledge Graph
The original design of MonuMAI dataset and MonuNet baseline

architecture [24] use the KG exclusively as a design tool to visualize
the architectural style of a monument facade based on the identified

2 Mobile App available in the project website: monumai.ugr.es.
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Table 2
Characteristics of MonuMAI architectural style classification dataset (#images
represents the number of images).

Architectural style #Images Ratio (%)

Hispanic-Muslim 253 23.17
Gothic 238 21.79
Renaissance 247 22.62
Baroque 354 32.42

parts, but it is not explicitly used in the model. In contrast, we change
that to go further, in order to guarantee a reproducible and explainable
decision process that aligns with the expert knowledge. We will see in
Section 4.3.3 how KGs can be used in a detection + classification ar-
chitecture, during training, since EXPLANet is designed to incorporate
the knowledge in the KG. Besides the trust gain, we aim at easing the
understanding of flaws and limitations of the model, along with failure
cases. This way, requesting new data to experts would be backed up
by proper explanations and it would be effortless to target new and
relevant data collection.

The KG corresponding to MonuMAI dataset has only fourteen object
classes and four architectural styles. Each architectural element is
linked to at least one style. Each link between the two sets symbolizes
that an element is typical and expected in the style it is linked to.

• Renaissance: rounded arch, triangular pediment, segmental pedi-
ment, porthole, lintelled doorway, serliana.

• Baroque: rounded arch, lintelled doorway, porthole, broken pedi-
ment, solomonic column.

• Hispanic-muslim: flat arch, horseshoe arch, lobed arch.
• Gothic: trefoil arch, ogee arch, pointed arch.

MonuMAI’s KG is depicted in Fig. 7, where the root is the Archi-
tectural Style class (which inherits from the Thing top-most class in
OWL). Note there is one more dimension in the KG, the leaf level of the
original MonuMAI graph in [24] that represents some characteristics of
the architectural elements, but it is not used in the current work.

We also explored the possibility of rewriting the looser structure
captured in the KG as an ontology, using the OWL2 format. We did
not limit ourselves to copying the hierarchy of the original KG, but
rather added some categories to keep the ontology flexible to allow
further expansions in the future. Three main classes are modeled in this
ontology: A Facade represents an input image as a concept. A facade
is linked to one and only one3 ArchitecturalStyle through the relation
exhibitsArchStyle, for which four styles can we used (others could be
added by defining new classes). A facade can be linked to any number
of ArchitecturalElement identified on it through the relation (i.e. OWL
object property) hasArchElement.

ArchitecturalElement represents the class of architectural elements
identified before, and is divided in subcategories based on the type of
elements such as ‘‘Arch’’ or Window’’. This subcategorization, which
does not exist in the original KG, was designed with the possibility of
adding constraints between subcategories, such as an ‘‘arch’’ is probably
higher in space than a ‘‘column’’, or an arch’s lowest point is higher
than a column’s lowest point. Such geometrical or spatial constraints
were not explored further, as it required extra expertise modeling from
architecture experts, but could be easily added in future work.

Finally, the concept ArchitecturalElement is linked to an Architec-
turalStyle object through the object property isTypicalOf.

This multi-type edge ontology formulation allows us to see the
roblem of style classification as a problem of KG edge detection or link
rediction among two nodes, in our case, between a facade instance

3 In this study, as in MonuMAI, we represent the predominant one. Future
ork could consider the blend of more than one present style.

https://monumai.ugr.es/
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Fig. 2. Extract from MonuMAI dataset. From left to right and top to bottom: hispanic-muslim, gothic, renaissance, baroque (architectural style classes).
and a style instance. This approach was unsuccessful (discussed in
Section 6.4).

The KG formulation presented in Section 4.1.1 can be seen as a
semantic restriction of the ontology we propose, where we kept only
the triples including isTypicalOf relation and expanded the KG with
a virtual relation isNotTypicalOf, to link together all elements with all
the styles. This way the KG is a directed graph with edges going from
the architectural element toward the architectural style. Because we
restrict ourselves to only one relational object property and its inverse,
the edges bear either positive or negative information, which motivates
our modeling choice of having value ±1 for formulated 𝐾𝑖,𝑗,𝑘 edges.

4.2. EXPLANet: Expert-aligned eXplainable part-based cLAssifier NETwork
architecture

Previous section detailed the symbolic representation mechanism
within the X-NeSyL methodology. While KGs serve the purpose of
interpretable knowledge, in this section we present the neural represen-
tation learning component, mainly responsible for high performance in
today’s AI systems.
64
Our ultimate goal in this work is making DL models more trust-
worthy when it comes to the level of their explanations, and their
agreement with domain experts. We will thus follow a human-in-the-
loop [82] approach.

Typically, to identify the class of a given object, e.g., an aeroplane, a
human first identifies the key parts of that object, e.g., left wing, right
wing, tail; then, based on the combination of these elements and the
importance of each single element, he/she concludes the final object
class.

We focus on compositional part-based classification because it pro-
vides a common framework to assess part- and whole object based ex-
planations. To achieve this we want to enforce the model to align with
a priori expert knowledge. In particular, we built a new model called
EXPLANet : Expert-aligned eXplainable Part-based cLAssifier NETwork
Architecture, whose design is inspired by the way humans identify the
class of an object.

EXPLANet, is a two-stage classification model as depicted in Fig. 8.
The first stage detects the object-parts present in the input image and
outputs an embedding vector that encodes the importance, quantity and
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Fig. 3. 14 architectonic elements (object parts to be detected) from MonuMAI dataset used in our experiments as object-part explanation to classify a whole facade architectural
style. From left to right and top to bottom: horseshoe arch, pointed arch, ogee arch, lobed arch, flat arch, serliana, solomonic column, triangular pediment, segmental pediment,
broken pediment, rounded arch, trefoil arch, porthole, lintelled doorway. The dataset shows that there are architectural elements very distinctive. Even with a very low number
of instances in the dataset, object detectors are able to recognize them, e.g., lobed arch, or solomonic column.
Fig. 4. Distribution of style classes in MonuMAI dataset.
combinations of the detected object-parts. This information is used by
the second stage to predict the class of the whole object present in the
input image. More precisely:

1. The first stage is a detection module, which can be an object
detector such as Faster R-CNN [83] or RetinaNet [84]. Let us
consider that there are 𝑛 object-part classes. This module is
trained to detect the key object-part classes existent in the input
image, and outputs 𝑀 predicted regions. Each one is represented
by its bounding box coordinates and a vector of size 𝑛 repre-
senting the probability of the 𝑛 object-part classes. Let us denote
𝑝𝑚 ∈ R𝑛 (with 𝑚 ∈ [1,𝑀]) the probability vector of detecting
object-part 𝑚. First we process all 𝑝𝑚 by setting non maximal
probabilities to zero, and denoting this new score 𝑝′𝑚, being 𝑝′

also a vector of size 𝑛. Let us denote vector 𝑣 the final descriptor
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of the image. We build 𝑣 by accumulating the probabilities of 𝑝′𝑚
such that:

𝑣 =
𝑀
∑

𝑚=1
𝑝′𝑚 , 𝑣 ∈ R𝑛 (1)

where vector 𝑣 aggregates the confidence of each predicted
object-part. 𝑀 is the amount of bounding box regions predicted.
In the case of MonuMAI dataset, to classify 4 object classes
(i.e., architectural styles), we have 𝑛 = 14 (object-part) labels,
but this can be extended to an arbitrary 𝑛 and 𝑀 .
Large values in 𝑣 mean that the input image contains a large
number of object-part 𝑖 elements with a high confidence pre-
diction, whereas a low value means that predictions had low
confidence. Intermediate values are harder to interpret, as they
could be a small amount of high confidence predictions or a
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Fig. 5. Distribution of object-parts in MonuMAI dataset.
Fig. 6. Illustration of the two annotation levels of architectural style and elements
on MonuMAI dataset. This image is labeled as Hispanic-Muslim and includes different
annotated elements, e.g., two lobed arches.
Source: [24]

large amount of low confidence predictions, but the idea is that
there is probably some objects of these kinds in the image. This
object-parts vector can be seen as tabular data where each object
part can be considered a feature (to be explained later by an XAI
method). We will see in next section how a SHAP analysis can
study the contribution of each actual object part present in the
image to the actual final object classification.
Note that this probability aggregating scheme is for Faster R-
CNN. For each object detected, Faster R-CNN keeps only one
prediction (the most likely), whereas RetinaNet keeps all predic-
tions (the whole probability vector). We found this to be more
stable for training the RetinaNet framework.

2. The second stage of EXPLANet is a classification network, which
is actually a two-layer multi-layer perceptron (MLP), that uses
the embedding information (i.e., takes the previous detector
output as input) to perform the final classification. This stage
outputs the final object class based on the importance of the
present key object parts detected in the input image.

The goal of such design is to facilitate the reproduction of the
thought process of an expert, which is to first localize and identify
key elements (e.g., in the case of architectural style classification of
a facade, various types of arches or columns) and then use this in-
formation to deduce the final class (e.g., its overall style). However,
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EXPLANet architecture alone does not control for expert knowledge
alignment. Next section introduces the next step of the pipeline, an XAI
based training procedure and loss function to actually verify that this
happens, and when this is not the case, correct the learning.

4.3. SHAP-Backprop: An XAI-informed training procedure and XAI loss
based on the SHAP attribution graph (SAG)

After having presented the symbolic and neural knowledge process-
ing components of X-NeSyL, we proceed to detail the XAI-informed
training procedure to make the most of the best of both worlds,
interpretable representations, and deep representations.

More concretely, this section presents how to use a model agnostic
XAI technique to make a DL (CNN-based) model more explainable
by aligning the test-set feature attribution with the expert theoretical
attribution. Both knowledge bases will be encoded in KGs.

4.3.1. SHAP values for explainable AI feature contribution analysis
SHAP is a local explanation method [23,85] that for every singular

prediction it assigns to each feature an importance value regarding the
prediction. It tells if a feature contributed to the current prediction
and gives information about how strongly it contributed. These are
the Shapley values of a conditional expectation function of the original
model. In our case we computed them with Kernel SHAP [23].

Similarly to LIME [27], Kernel SHAP is a model agnostic algorithm
to compute SHAP values. In LIME, the loss function, weighting kernel
and regularization term are chosen heuristically, while in SHAP they
are chosen in a way that they satisfy the SHAP properties. See details
in [23].

The idea of computing SHAP is to check whether object parts have
the expected importance on the object class prediction (e.g. whether
the presence of a horseshoe arch contributes to Hispanic-Muslim class).
SHAP computation happens always in a per class basis, as the com-
putation is regarding binary classification (belonging to class 𝐶 vs
not).

In our part-based pipeline, we apply SHAP at the tabular data
level, i.e., after the aggregation function. As such, SHAP’s only input
is the feature vector that contains the information about parts detected
before. Throughout this section, when we refer to feature value, we
refer to this feature vector, and a feature value means one entry of
this vector. As such, each feature value encodes the information about
one element (either an architectural element for MonuMAI or an object
part for PASCAL-Part) from our knowledge model. The final class
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Fig. 7. Simplified MonuMAI knowledge graph constructed based on art historians expert knowledge [24].
Fig. 8. Proposed EXPLANet architecture processing examples from MonuMAI dataset.
prediction performed afterward is done by the classification module of
our part-based model, given such a feature vector.

In Figs. 9 and 10 we performed the SHAP analysis over the whole
validation set. In practice it means that SHAP values were computed for
each element of the validation set and plotted on the same graph. Then
for each feature of the feature vector, in our case for each architectural
element, we plot all SHAP values for this specific element found in
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the dataset, and we color them based on the feature value. They are
plotted line-wise and each dot represents the feature value of a specific
datapoint, i.e., image. High feature values (regarding the range they
can take) are colored pink and low feature values in blue. Here, if an
element is detected several times or with high detection confidence, it
will be pink (blue for less detection confidence or less frequency). Then,
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horizontally, are shown the SHAP values, where high (absolute) values
have high impact on the prediction.4

If we compare the SHAP plots with the KG, here we do not observe
any large amount of outliers or datapoints not coinciding with the
domain expert KG acting as ground truth (in Fig. 12 right). We now
need to be able to use this information automatically. Pink and blue
(high and low) values of datapoint features can appear both in right
and left sides of the plots, meaning its value can contribute toward
predicting the considered class or not, respectively. However, in our
case, only pink datapoints being on the positive (right) side of SHAP
plot represent the correct behavior if such element is also present in the
KG. In that case, their feature value loss will not be penalized during
training, as they match the expert KG (considered as GT). The rest of
datapoints’ SHAP values (blue in right side, pink and blue in left side)
will be used by SHAP-Backprop to correct the predicted object class.

An example of computation of SHAP values on a single feature
vector is in Table 3. On the right there is the feature vector, and on
the left the SHAP values for each object class for each object part. We
highlighted in green positive values and in red negative values.

4.3.2. SAG: SHAP attribution graph to compute an XAI loss and explain-
ability metric

By measuring how interpretable our model is, in the form of a KG,
we want to be able to tell if the decision process of our model is similar
to how an expert mentally organizes its knowledge. As highlighted in
the previous section, thanks to SHAP we can see how each feature value
impacts the predicted macro label and thus, how each part of an object
class impacts the predicted label. Based on this, we can create a SHAP
attribution graph (SAG). In this graph, the nodes are the object (macro)
labels, and the parts are linked to a macro label if according to the
SHAP algorithm, it played a contribution role toward predicting this
label.

Building the SAG is a two step process. First we extract the feature
vector representing the attributes detected (float values). Thanks to the
detection model we get the predicted label from it. Feature vectors are
the output of the aggregation function that are fed to the classification
module.

Using as hyperparameter a threshold 𝑠5 on each feature value, we
identify which architectural element we have truly detected in the
image. Then, using the SHAP values computed for this feature vector,
we create a SAG per image in the test set, and thus we link together
feature values and predicted label probabilities inside the SAG. This
way we use SHAP to analyze the output for all classes, not only the
predicted one:

• Having a positive SHAP value means the detected feature con-
tributes to predicting this label, given a trained classifier and an
image. We thus add to the SAG such edge representing a present
feature contribution.

• Having a negative SHAP value and a feature value below the
threshold 𝑠 means that this element is considered typical of this
label and its absence is detrimental to the prediction. As such, we
can link the object label and the part label in the SAG, as a lacking
feature contribution.

Lacking feature contributions or present feature contributions in the
form of edges in the expert KG are obtained through a projection of the
SHAP attribution graph, obtained from a SHAP analysis of the trained
model, on the theoretical expert KG.

4 See tutorial https://christophm.github.io/interpretable-ml-book/shap.
tml and SHAP source code in https://github.com/slundberg/shap.

5 Default thresholds used in our case for detection were 𝑠 = 0.05 for both
Faster R-CNN and RetinaNet, as they showed to work best for numerical
stability.
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An example of SAG for the architectural style classification problem
is in Fig. 12.

M, R, G, B means Hispanic-Muslim, Renaissance, Gothic and Baroque,
respectively. The pseudo code to generate the SAG can be found in
Algorithm 1.

Algorithm 1 Computes the SHAP attribution graph (SAG) for a given
inference sample.
Require: feature_vector, shap_values, Classes, Parts, part detected

threshold 𝑠
𝑆𝐴𝐺 ←{}
for class in Classes do

𝑙𝑜𝑐𝑎𝑙_𝑠ℎ𝑎𝑝 ← 𝑠ℎ𝑎𝑝_𝑣𝑎𝑙𝑢𝑒𝑠[𝑐𝑙𝑎𝑠𝑠]
for part in Parts do

𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑎𝑙 ← 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟[𝑝𝑎𝑟𝑡]
𝑠ℎ𝑎𝑝_𝑣𝑎𝑙 ← 𝑙𝑜𝑐𝑎𝑙_𝑠ℎ𝑎𝑝[𝑝𝑎𝑟𝑡]
if feature_val > 𝑠 then
if shap_val > 0 then

ADD (part, object) edge to 𝑆𝐴𝐺
end if

else
if shap_val < 0 then

ADD (part, object) edge to 𝑆𝐴𝐺
end if

end if
end for

end for
return 𝑆𝐴𝐺

In practice this allow us to have an empirical attribution graph, the
SAG (built at inference time), and a theoretical attribution graph, the
KG (representing prior knowledge). We can then compare both of them.

4.3.3. SHAP-Backprop to penalize misalignment with an expert KG
In order to improve performance and interpretability of the model,

we hypothesize that incorporating the SHAP analysis during the train-
ing process can be useful to fuse explainable information and improve
interpretability.

The underlying idea is that SHAP helps us understand on a local
level what features are contributing toward what class. In our case,
SHAP links elements to a label by telling us if it contributed toward
or against this label, and how strongly. Besides this analysis, we have
the KG that is embedding basically the same information. We can see
the KG as a set of expected attributions, i.e., if an element is linked to
the object label in the KG, it should contribute to it, otherwise it should
contribute against.

Given these two facts, we can compare real attribution via SHAP
analysis, that gives us the empirical attribution graph, with the theo-
retical attribution found in the KG. If there is a discrepancy, then we
want to penalize this feature, either in the classification process or in
the detection process.

Misattribution, which happens when a feature attribution is un-
expected or absent, can stem from various origins. One would be a
recurrent misdetection inside the dataset. As such, penalizing misat-
tribution at detection time could help us correct those. Penalizing the
classification process could be considered as well, but has not been
done in this work.

A schema of this approach is presented in Fig. 11. A new misattri-
bution loss requires an intertwined training of the classification model
with the detection model to compute the SHAP analysis; however the
extra required training time in practice is not a big issue. Indeed, in
the initial training protocol, one would fully train the detection and
then the classification. Here, we have to train the classification at each
detection epoch. We expect the explainability metric, i.e., the SHAP
GED between the KG and the SAG to increase thanks to this SHAP signal
backpropagation.

https://christophm.github.io/interpretable-ml-book/shap.html
https://christophm.github.io/interpretable-ml-book/shap.html
https://github.com/slundberg/shap
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Fig. 9. SHAP analysis (global explanation as SHAP summary plot) for Renaissance (up) and Baroque (down) architectural styles. Each feature (horizontal row) represents a global
summary of the distribution of feature importance over the validation set. Features with asterisk in their name represent the expert ground truth (nodes with a positive value 𝑡 in
the expert KG). Example: In this case, there are features not representing the GT for the class Renaissance, e.g., flat arch (dintel adovelado) is contributing to the prediction, while
the KG says it should not. Other than this, generally, datapoints reflecting the GT for an accurate model such as this one, acknowledge properly attributed object part contributions
to the classification in the right side of the plot, in pink. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4.3.4. 𝑆𝐻𝐴𝑃 : A new loss function based on SHAP values and a misattri-
bution function 𝛽

Let 𝑁 be the number of training examples and let 𝐼 = (𝐼1, 𝐼2,… , 𝐼𝑁 )
be the training image examples.

Let 𝐷 be the detector function such as:

𝐷(𝐼𝑖) = (𝐵𝐵𝑖, 𝐶𝑜𝑛𝑓𝑖, 𝐶𝑙𝑎𝑠𝑠𝑖), (2)

where 𝐵𝐵𝑖 = (𝐵𝐵1, 𝐵𝐵2,… , 𝐵𝐵𝑁𝑖
) are the bounding boxes detected by

D, 𝐶𝑜𝑛𝑓𝑖 the confidence associated to each predicted box, and 𝐶𝑙𝑎𝑠𝑠𝑖
the predicted class of each box. The associated ground truth label is
used for standard backpropagation, but we will not need it for the
weighting process.

Faster R-CNN [83] object detector uses a two terms loss:

 =  +  , (3)
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𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑅𝑃𝑁 𝑅𝑂𝐼
where 𝑅𝑂𝐼 is the loss corresponding to predicting the region of interest
and is dependent on the class predicted for each BB. It is computed
at the output class level, whereas 𝑅𝑃𝑁 is the loss function from the
region proposal network, and it is computed at the anchor level.6 We
use a weighted 𝑅𝑂𝐼 , since the SHAP information is computed at the
output class level and not the anchor level. We can write the loss as the
sum of the losses for each image, and within an image, for each BB:

𝑅𝑂𝐼 = 𝛴𝑁
𝑖=1𝛴

𝑁𝑖
𝑘=1(𝐼𝑖, (𝐵𝐵𝑘, 𝐶𝑜𝑛𝑓𝑘, 𝐶𝑙𝑎𝑠𝑠𝑘)), (4)

6 Anchors are a set of predefined bounding boxes of a certain height and
width. These boxes are defined to capture the scale and aspect ratio of specific
objects. Height and width of anchors are a hyperparameter chosen when
initializing the network.
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Fig. 10. SHAP analysis (global explanation as SHAP summary plot) for Muslim (up) and Gothic (down) architectural styles. Each feature (horizontal row) represents a global
summary of the distribution of feature importance over the validation set. Features with asterisk in their name represent the expert ground truth (nodes with a positive value 𝑡
in the expert KG). Generally, datapoints reflecting the GT for an accurate model such as this one, acknowledge properly attributed object part contributions to the classification
in the right side of the plot, in pink. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
where 𝑖 is the index of the considered image, 𝑘 the index of a BB
predicted within that image, and  is a weighted sum of cross entropy
and smooth 𝐿1 loss.

We now introduce the SHAP values, which are used as a constrain-
ing mechanism of our classifier model to be aligned with expert knowl-
edge provided in the KG. SHAP values are computed after training the
classification model.

Let 𝑆 = (𝑆1, 𝑆2,… , 𝑆𝑁 ) with 𝑆𝑖 = (𝑆𝑖,1,… , 𝑆𝑖,𝑚), with 𝑚 the number
of different object (macro) labels, and let 𝑆𝑖,𝑘 = (𝑆𝑖,𝑘,1, 𝑆𝑖,𝑘,2,… , 𝑆𝑖,𝑘,𝑙)
be the SHAP values for each training example 𝑖, where 𝑘 is the macro
object label, and 𝑙 is the detected part. Each SHAP value is thus of size 𝑙,
with 𝑙 being the number of parts in the model. Furthermore, due to the
nature of the output of the classification model, which are probabilities,
and the way SHAP values are computed, they are bounded to be a real
number in [−1, 1].
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The KG was already modeled as an attribution graph and corre-
sponding matrix (in order to compute the embedding out of the KG)
in Section 4.3.2, and we will be using the same notation.

Introducing the misattribution function 𝛽
To introduce SHAP-Backprop into our training, we first need to be

able to compare the SHAP values with a ground truth, which here is
represented by the expert KG. We thus introduce the misattribution
function to assess the level of alignment of the feature attribution SHAP
values with the expert KG.

The goal of the misattribution function is to quantitatively compare
the SHAP values computed for the training examples with the KG. For
that we assume the SHAP values are computed for all feature vectors.
A misattribution value is then computed for each feature value of
each feature vector. Before considering the definition of misattribution
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Fig. 11. Diagram of proposed X-NeSyL methodology focused on the new SHAP-Backprop training procedure (in purple). In yellow the input data, in green the ground truth
elements, in red predicted values (including classes and bounding boxes), and in blue trainable modules. Red blocks are the output of the various algorithms and gray blocks
are untrainable elements. The purple block is the proposed X-NeSyL procedure. Thin arrows link together outputs of trainable modules along with reference elements used for
backpropagation. Initially two thin arrows exist, one between the object (macro) label and the output of the classification model, and one between elements (object parts) and the
output of the detection module. We add a third arrow (i.e., feedback signal) between the SHAP misattribution and the output of the object part detector as the new SHAP-penalized
loss is leveraging this misattribution to penalize misalignment with the expert. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
function, we can distinguish two cases when comparing these two
elements, depending on the feature values observed:

(A) The feature value considered is higher than a given hyperpa-
rameter 𝑣, i.e., the positive case. 𝑣 symbolizes the value above which
we consider a part is detected in our sample image. In our case 𝑣 = 0.

(B) The feature value is lower or equal to 𝑣: in this case we assume
there is no detected part, i.e., the negative case.

Case A: In the first case, given the KG, for a SHAP attribution to
be coherent, it should have the same sign as the KG. If it is the case,
the misattribution is 0, i.e., there is no correction to be made and
backpropagate. Otherwise, if it has opposite sign, the misattribution
will depend on the SHAP value. In particular, it will be proportional
to the absolute value of the SHAP attribution. We thus propose the
following misattribution function:

𝛽(𝑆,𝐾𝐺, 𝑖, 𝑘, 𝑗) = (−𝐾𝐺𝑘,𝑗 × 𝑆𝑖,𝑘,𝑗 )+, (5)

where 𝑖 is the index of the considered image, 𝑘 is the index of a given
object (macro) label and 𝑗 is the index of a given (object) part. This way
𝐾𝐺𝑘,𝑗 correspond to the edge value between the macro label 𝑘 and the
part 𝑗, where (.)+ is the positive part of a real number. 𝐾𝐺𝑘,𝑗 = ±1, and
thus 𝛽 ∈ [0, 1] due to the bounding of the SHAP values. The detector
output feature values are bounded due to the nature of the classification
output which is in [0, 1]. However, SHAP values are naturally bounded
in [−1, 1] [23].
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Case B: Since we choose 𝑣 to be 0 and 𝑣 has only real values, if
𝑣 = 0, we therefore should not backpropagate any error through the
loss function, since no BB is detected for the object part.

Given the prior information in the KG, the posterior information
(SHAP values post-training), and a way to compare them (attribution
function 𝑏𝑒𝑡𝑎), we suggest two new versions of a weighted loss, 𝑆𝐻𝐴𝑃 ,
that will substitute the former ROI loss.

- Bounding Box-level weighting of the 𝑆𝐻𝐴𝑃 loss
This first weighted loss is at the bounding box (BB) level, meaning

each BB will be weighted individually based on its label and the
associated SHAP value. We propose the following loss:

𝑆𝐻𝐴𝑃 = 𝛴𝑁
𝑖=1𝛴

𝑁𝑖
𝑘=1𝛼𝐵𝐵𝑜𝑥(𝑆,𝐾𝐺, 𝑖, 𝐶𝑖, 𝐶𝑙𝑎𝑠𝑠𝑘)

× (𝐼𝑖, (𝐵𝐵𝑘, 𝐶𝑜𝑛𝑓𝑘, 𝐶𝑙𝑎𝑠𝑠𝑘)),
(6)

where 𝑁𝑖 is the number of BBs predicted in image 𝐼𝑖, and 𝐶 =
(𝐶1,… , 𝐶𝑁 ) the ground truth (GT) labels for instance images 𝐼 =
(𝐼1, 𝐼2,… , 𝐼𝑁 ). We propose two possible loss weighting options, de-
pending on ℎ, a balancing hyperparameter (equal to 1 in our experi-
ments), that can be linear:

𝛼𝐵𝐵𝑜𝑥(𝑆,𝐾𝐺, 𝑖, 𝐶𝑖, 𝐶𝑙𝑎𝑠𝑠𝑘) = ℎ ∗ 𝛽(𝑆,𝐾𝐺, 𝑖, 𝐶𝑖, 𝐶𝑙𝑎𝑠𝑠𝑘) + 1 (7)

or exponential:

𝛼 (𝑆,𝐾𝐺, 𝑖, 𝐶 , 𝐶𝑙𝑎𝑠𝑠 ) = 𝑒ℎ∗𝛽(𝑆,𝐾𝐺,𝑖,𝐶𝑖 ,𝐶𝑙𝑎𝑠𝑠𝑘), (8)
𝐵𝐵𝑜𝑥 𝑖 𝑘
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with 𝑖 the index of the considered image, 𝐶𝑖 its associated class, 𝐶𝑙𝑎𝑠𝑠𝑘
the considered part class, 𝐾𝐺 the KG and 𝑆 the SHAP values. Either
way, if 𝛼 is equal to 1, then the misattribution is 0 in order to maintain
the value of the original loss function. Thus, 𝛼 ∈ [1,∞): the larger the

isattribution, the larger the penalization.
- Instance-level weighting of the 𝑆𝐻𝐴𝑃 loss
This second weighted loss is at the instance-level, meaning we are

eighting all the BBs for a given dataset instance (i.e., image) with the
ame value:

𝑆𝐻𝐴𝑃 = 𝛴𝑁
𝑖=1𝛼𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑆,𝐾𝐺, 𝑖, 𝐶𝑖)𝛴

𝑁𝑖
𝑘=1(𝐼𝑖, (𝐵𝐵𝑘, 𝐶𝑜𝑛𝑓𝑘, 𝐶𝑙𝑎𝑠𝑠𝑘)), (9)

where

𝛼𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑆,𝐾𝐺, 𝑖, 𝑘) = 𝑚𝑎𝑥𝑗∈[1,𝑙](𝛼𝐵𝐵𝑜𝑥(𝑆,𝐾𝐺, 𝑖, 𝑘, 𝑗)) (10)

i.e., the instance-level weighting of the loss function considers the max
BBox misattribution function value. Just as the BB level weighting, the
aggregation of terms in the misattribution function can either be linear
or exponential.

5. X-NeSyL methodology evaluation: SHAP GED metric to report
model explainability for end-user and domain expert audiences

Detection and classification modules of EXPLANet use mAP and
Accuracy, respectively, as standard evaluation metric. In order to eval-
uate explainability of the model in terms of alignment with the KG,
we propose the use of the SHAP Graph Edit Distance (SHAP GED) at
test time. This metric has a well defined target audience: the end-user
(in our case, of a citizen science application) and domain experts (art
historians), i.e., users with non-technical background necessarily.

Even if the SAG above can be computed for any set of theoretical
and empirical feature attribution sets, we are interested in using the GT
KG in order to compute a explainability score on a test set.

The simplest way to compare two graphs is applying the GED [86].
Using straight up the GED between a KG and the SAG does not work
very well, since the number of object parts (architectural elements in
our case) detected vary too much from an image to another. What we
do is to compare the SAG to the projection of the KG given the nodes
present in the SAG. More precisely, given a SAG, we compute a new
graph from the KG, where we take the subgraph of the KG that only
contains the nodes in the SAG. As, such they will have the same nodes,
but with the potential addition of new edges.

An example of such projection can be seen in Fig. 12 (right). This
way, the projection serves to only compute the relevant information
given a specific image.

Once SHAP-Backprop procedure penalizes the misalignment of ob-
ject parts with those of the KG (detailed in next section), we will use the
SAG to compute the SHAP GED between the SAG and its projection in
the KG. This procedure basically translates into counting the number of
‘‘wrong’’ edges in the SAG given the reference KG, i.e., the object parts
that should not be present in this data point, given the predicted object
label.

After detailing all necessary components to run the full pipeline
of X-NeSyL methodology, together with an evaluation metric that
facilitates the full process evaluation, we are in place to set up an
experimental study to validate each component. It is worth noting
that each component can be adapted to each use case. Next section
experiments will demonstrate, with a real life dataset, how X-NeSyL
methodology can facilitate the learning of explainable features, by
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fusing the information from deep and symbolic representations. d
6. MonuMAI case study: Classifying monument facades architec-
tonic styles

In order to evaluate the X-NeSyL methodology, and all inherent
components including the detection and classification module within
the proposed EXPLANet architecture, as well as the XAI training pro-
cedure, we perform two main studies. In the first study, we evaluate
the full SHAP-Backprop training mechanism by testing the detection
module followed by the classification one. In other words, we test
and assess the full EXPLANet architecture. In the second study, as an
ablation study to assess the influence of the detector’s accuracy on
the overall part-based classifier, we evaluate the detection module of
EXPLANet model with two different detection models, Fast-RCNN [83]
and RetinaNet [84].

In both evaluation studies, we used two datasets, MonuMAI and
PASCAL-Part. For simplicity, we focus on MonuMAI dataset mainly
in this section, while additional results for PASCAL-Part can be seen
in Appendix. For the remainder of the paper, we will use elements
and object parts interchangeably, and macro object labels will be used
to refer to the classification labels, i.e., the style of the macro object.

6.1. Experimental setup

To evaluate the classification performance we use the standard
accuracy metric (Eq. (11)).

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
#𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

, (11)

where # represents the number for correct and total predictions. To
evaluate the detection performance, we use the standard metric mean
average precision mAP (Eq. (12)).

𝑚𝐴𝑃 =
∑𝐾

𝑖=1 𝐴𝑃𝑖

𝐾
𝐴𝑃𝑖 =

1
10

∑

𝑟∈[0.5,…,0.95]
∫

1

0
𝑝(𝑟)𝑑𝑟 (12)

here given 𝐾 categories of elements, 𝑝 precision and r 𝑟𝑒𝑐𝑎𝑙𝑙 define
(𝑟) as the area under the interpolated precision–recall curve for class
.

We initialized Faster R-CNN [83] and RetinaNet with the pre-
rained weights on MS-COCO [87] then fine-tuned both detection ar-
hitectures on the target datasets, i.e., MonuMAI or PASCAL-Part. The
ast two layers of Faster R-CNN were fine-tuned on the target dataset.
s optimization method, we used Stochastic Gradient Descent (SGD)
ith learning rate of 0.0003 and a momentum of 0.1. We use Faster R-
NN implementation provided by native PyTorch’s torchvision library.
oncretely, Faster R-CNN is implemented using PyTorch packages torch
.7.0, torchvision 0.8.1. The classifier after the detector uses Tensorflow
.15 (tensorflow-gpu 1.15.0).

For the classification module, we also fine-tuned the two layer
LP with 11 intermediate neurons. We used the Adam [88] optimizer

rovided by Keras.
To perform an ablation study on the element or part-based detector,

he original dataset is split into three categories (train, validation and
est), following a 60/20/20 split. Reported results are computed on the
est set.

The compositional part-based object classification with RetinaNet
s trained in two phases. First the detection is trained by finetuning a
etinaNet-50 pretrained on MS COCO. We use Adam optimizer with
tarting learning rate (LR) of 0.00001 and a scheduler of learning rate
o reduce on plateau with a patience of 4.7 We train this way for 50
pochs. Then we freeze the whole detection weights and train only the
lassification. We use Adam optimizer with starting LR = 0.001 and a

7 Patience is the number of epochs taken into account for the scheduler to
ecide the network converged. Here, the last four.
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Table 3
Feature vector of a sample image and its SHAP analysis used for the construction of the SAG in Fig. 12,
according to Algorithm 1. Red represents negative attribution while green represents positive attribution.
(For interpretation of the references to color in this legend, the reader is referred to the web versionof this
article.)

Hisp.-Muslim Gothic Renaissance Baroque Feature vector

Horseshoe arch −0.16 0 0.08 0.03 0
Lobed arch 0 0 0 0 0
Flat arch 0 0 0 0 0
Pointed arch 0 −0.15 0.07 0.04 0
Ogee arch 0 −0.08 0.01 0 0
Trefoil arch 0 0 0.04 0 0.2
Triangular pediment 0 0 0 0.06 0
Segmental pediment 0 0 0 0 0
Serliana 0 0 0 0 0
Rounded arch 0 0 0 0.03 1.35
Lintelled doorway 0 0 0 0 0
Porthole 0 0 0 0 0
Broken pediment 0 0 0.14 −0.16 0
Solomonic column 0 0 0.04 0 0
Fig. 12. Example of applying SHAP analysis after training an architectural style classifier based on an architectural element detector, and computing a SHAP attribution graph
(SAG, on the left). Given the nodes present in such SAG, the projection on the KG is performed (on the right) to get the non matching edges (and the graph Edit distance, GED)
and compute the misattribution function 𝛽. The latter penalizes the model for assigning feature attribution that conflicts with the attribution of features an expert would assign
(represented in Fig. 7 expert KG).
scheduler of LR to reduce on plateau with a patience of 4. We train this
way for 25 epochs.

Even if our objective was having a fully end-to-end training, the
need for a quite different LR between the detection and classification
modules led us to train separately for convenience, at the moment.

6.2. EXPLANet model analysis

In order to assess the advantages of EXPLANet, we consider three
baselines: (1) MonuNet [24]: the architecture proposed with MonuMAI
dataset, designed as a compressed architecture that is able to run in
embedded devices such as smartphones.8 (2) A simple object classifier
based on vanilla ResNet-101 [89]. MonuNet is a different classification
architecture to ResNet, it uses residual and inception blocks but with a

8 Since MonuMaiKET detector and MonuNet classifier are not connected,
MonuNet does not provide object detection.
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more static architecture than EXPLANet that does not allow modifica-
tions or is not meant to be scalable. (3) A KG Deterministic classifier
baseline, based on the same pipeline as EXPLANet, but using solely
the expert KG. It first computes the detection scores and uses the same
aggregation function (Eq. (1)) as EXPLANet, but then the classification
is done by summing for each class the contribution of all related object-
parts that are typical of this object class, according to the expert KG.
The resulting vector is normalized (to resize the output between 0 and
1 so it sums to 1) and an arg max is applied to decide the style, without
any training. For an image 𝐼 , the KG Deterministic classifier (𝐷𝐶𝐾𝐺) is
defined as follow:

𝐷𝐶𝐾𝐺(𝐼) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘∈[1,𝑚](𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑘(𝐼)) (13)

where

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑘(𝐼) =
∑ 1 +𝐾𝐺𝑘,𝑗

2
𝑣𝑗 (𝐼) (14)
𝑗∈[1,𝑙]
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Table 4
Compositional vs direct (traditional) classification: Results of two backbone variants of
XPLANet (using object detector Faster R-CNN and RetinaNet) on MonuMAI dataset,
nd comparison with embedded version of the baseline model MonuNet, a vanilla
lassifier baseline with ResNet, and an expert KG-based deterministic (non-trained)
lassifier. In this baseline, the same results are obtained using majority voting based on
he detection output of both object detectors, Faster R-CNN and RetinaNet (i.e., despite
oncrete examples having different confidence scores, the total right guesses are the
ame and result in the same accuracy). EXPLANet versions use the standard procedure,
o SHAP-Backprop, to demonstrate that a part-based compositional classifier improves
ver a straight classifier (i.e., without a connected object-part detector as input).

mAP Accuracy SHAP GED
(detection) (classification) (interpretability)

EXPLANet using Faster R-CNN
backbone detector

42.5 86.8 0.93

EXPLANet using RetinaNet
backbone detector

49.5 90.4 0.86

ResNet-101 classifier baseline N/A 84.9 N/A
MonuNet classifier baseline N/A 83.11 N/A
KG Deterministic classifier baseline N/A 54.79 N/A

with 𝑣 the image descriptor based on the detected object parts defined
n Eq. (1), 𝐾𝐺 the knowledge graph defined in Eg. 5, and 𝑘 ∈ [1, 𝑚] the

object index out of 𝑚 classes and 𝑗 ∈ [1, 𝑙] the object-part index.
The results of EXPLANet classification model based on Faster R-

CNN and RetinaNet detector backbones, together with these baseline
classification networks are shown in Table 4 for MonuMAI dataset.

Both versions of EXPLANet outperform the three baselines. Here
results are shown with a Faster R-CNN baseline, but accuracy remains
the same for RetinaNet, given that the majority voting on different
attribute detection confidence scores results in the same final accuracy.
In average, RetinaNet produces a detection and classification of better
quality.

MonuNet [24], the baseline provided by MonuMAI dataset authors,
is an architecture designed for being used in mobile devices in real
time. Because of its compressed design that targets embedded systems,
its performance is not fully comparable with EXPLANet. However, we
report it for reference as, to the best of our knowledge, it is the only
previous model trained on the novel MonuMAI dataset to date.

Due to the naturally simpler nature of RetinaNet, the latter is faster
to train than Faster R-CNN.9

We can see the confusion matrix computed on MonuMAI for EX-
PLANet, using both Faster R-CNN and RetinaNet object detectors as
backbones, in Fig. 13. Although a better detector (better mAP) could be
intuitive to encourage a better GED, it is not expected, because the mAP
evaluates the spatial location and the presence or not of a descriptor
(object part), while the GED evaluates just the presence. Moreover,
having no correlation among mAP and GED is reasonable, specially
because mAP evaluates only one part of the model (detection), and thus
it makes more sense that accuracy correlates with SHAP GED, as our
results show for MonuMAI.

The object part detector module of MonuNet baseline, i.e., Monu-
MAIKET detector (based on Faster R-CNN detector – using ResNet101
– as backbone) reaches slightly higher performance. We assume this
minor difference due to the different TensorFlow and PyTorch default
implementations of Faster R-CNN’s inherent ResNet module versions in
MonuNet and EXPLANet, respectively).

Interpretability-wise, EXPLANet with RetinaNet approach outper-
forms EXPLANet with Faster R-CNN. This probably stems from the
object parts aggregation functions that are slightly different. In the

9 We use the RetinaNet 100% PyTorch 1.4 (torch 1.7.0, torchvision 0.8.1)
mplementation from https://github.com/yhenon/pytorch-retinanet. Ease of
se stems from the fact that if we wanted to modify the aggregation function,
hether its analytical form or at the end of the detector, at which we should
ttach the classifier, it would be much simpler.
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Table 5
Impact of the new SHAP-Backprop training procedure on the mAP (detection), accuracy
(classification) and SHAP GED (interpretability). Results on MonuMAI dataset with
EXPLANet architecture show a positive improvement on interpretability by using SHAP-
Backprop with linear instance-level weighting. SHAP GED is computed between the SAG
and its projection in the expert KG. (Standard procedure means a sequential typical
pipeline of (1) train detector, (2) train classifier with no SHAP-Backprop).

mAP Accuracy SHAP GED
(detection) (classification) (interpretability)

Standard procedure (baseline, no
SHAP-Backprop)

42.5 86.8 0.93

Linear BBox-level weighting 42.4 86.3 0.69
Exponential BBox-level weighting 42.3 88.6 1.16
Linear instance-level weighting 41.9 87.2 0.55
Exponential instance-level
weighting

44.2 88.6 1.09

Faster R-CNN version of EXPLANet, only the probability for the highest
scoring label is kept, whereas in the case of using RetinaNet as part
detector, the latter aggregates over all the scores for each example, with
the sum function. This way RetinaNet is probably more robust to low
score features as it always contemplates the several labels detected for
each example.

At the moment minimal work is done to process the aggregating
vector (i.e., vector accumulating the probabilities of each bounding
box), but that could be explored in the future.

We observe that the more accurate the detector is, the more ac-
curate the classification model is, and the more interpretable (lower
SHAP GED) it becomes. However, future work should further inves-
tigate more complex tasks and datasets (as appendix will show on
PASCAL-Part experiments), since not having annotations with suffi-
cient quality can be detrimental to interpretability, and reinforce the
interpretability–explainability trade-off.

The takeaway message from this experiment is that overall, both
part-based models outperform the regular classification for MonuMAI,
which means that detecting prominent and relevant object parts helps
the classifier (a MLP) focusing on the important elements to draw
a decision. In other words, detecting object parts helps the model
putting attention on the parts of the image that matter, and making
the prediction more interpretable. Furthermore, since ResNet is highly
non interpretable on its own, tabular data is much easier to process for
XAI methods.

6.3. SHAP-Backprop training analysis

Once assessed the EXPLANet architecture as a whole, and once
performed an ablation study with respect to dependency on the ob-
ject detector, we assess the different ways of weighting the training
procedure penalization.

Table 5 displays the computed results of X-NeSyL methodology
SHAP-Backprop method on MonuMAI [24] dataset (see additional re-
sults for PASCAL-Part [90] in Appendix). In bold are the best results for
each metric, and in italics the second best. We tested on what we call
Standard procedure, which is the typical pipeline of training first the
detection module and then the classification module in two different
steps, sequentially, without SHAP-Backprop nor any other interference.

The four other cases are methods computed with SHAP-Backprop.
At each epoch in the detection phase, we train a classifier and use it
to compute the SHAP values. These are then used to weight the de-
tection loss with the misattribution function presented in the previous
subsection.

Table 5. Applying SHAP-Backprop has little effect on accuracy and
mAP. Nonetheless, all but the linear BBox-level weighting increase the
classifier accuracy around 1%–2%. These instabilities could probably
be stabilized with further domain specific fine-tuning. Furthermore, we

have to take into account the stochastic nature of the training process,

https://github.com/yhenon/pytorch-retinanet
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Fig. 13. Confusion matrix of EXPLANet using Faster R-CNN (left) and EXPLANet using RetinaNet (right) on MonuMAI dataset for each architectural style class.
Fig. 14. Distribution of classes in PASCAL-Part dataset.
Fig. 15. Distribution of object-parts in PASCAL-Part dataset.
since the SHAP value computation is approximated using a random

subset of reference examples, to be more computationally efficient.
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On the other side, in terms of interpretability, we do have a more

sensible improvement, (reducing SHAP GED from 0.93 to 0.55) in the

case of linear instance weighting.
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Fig. 16. Extract from PASCAL-Part dataset (I).
The takeaway of this experiment is that there are other ways
to improve interpretability than a good detector. For instance, us-
ing SHAP-Backprop. In particular, its linear weighting scheme here is
stronger than exponential.

The gain obtained in both dimensions is large enough to con-
clude that the X-NeSyL methodology helps improving interpretability
in terms of SHAP GED to the expert KG.

6.4. Lessons learned

In order to create a NeSy deep learning model that is explainable,
we chose the expert as target audience of the model output explanation.
We then proposed a training procedure and metric to qualitatively as-
sess domain expert based explanations. Although further explainability
metrics beyond SHAP GED could be studied depending on the audience
of the explanation, we showed explainability, in terms of alignment of
the conceptual match with the domain expert KG is increased.

The X-NeSyL methodology with pluggable components is meant to
be a generic and versatile one, i.e., a template architecture that can
be adapted and customized to each use case: the symbolic compo-
nent for knowledge representation, the neural component based on a
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compositional architecture such as EXPLANet, and the XAI-informed
misattribution procedure to be applied during training. Furthermore,
our experiments verified our hypotheses:

1. Overall, X-NeSyL methodology brings explainability in the fusion
of deep learning representations with domain expert knowledge.
X-NeSyL did have the expected effect on the MonuMAI dataset,
and SHAP-Backprop improves the explainability metric (SHAP
GED) on the model.

2. The intermediate learned representation of EXPLANet allows to
remove noisy information. Learning to classify by detecting ob-
ject parts first shows to be more interpretable can also improve
precision. For instance, some monuments are defined by a single
element (e.g., broken pediment), to which the system learns to
give an importance greater than the others.

3. Not always more accurate means more interpretable. However,
we showed with the MonuMAI use case that it is possible that
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Fig. 17. Extract from PASCAL-Part dataset (II).
the more accurate EXPLANet classifier model is, the more inter-
pretable (lower SHAP GED) it becomes.10 Even if different error

10 As explained in the PASCAL-Part dataset experiments, this is due to a
debility of PASCAL-Part dataset and its label names not being specifically
designed for a compositional whole-part classification task (since they be-
come noisy as they use the same object part label for semantically different
concepts).
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weighting schemes in SHAP-Backprop display this phenomenon
is not always the case, we encourage future avenues of research
to further explore this hypothesis on more complex tasks.

4. Despite some weighting schemes confirming the interpretability-
performance trade-off (some improve SHAP GED while worsen-
ing accuracy, and vice versa), if the main objective is improving
interpretability, we recommend using SHAP-Backprop with the
linear instance-level weighting scheme. This is able to improve
over both interpretability and performance.
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Fig. 18. Extract from PASCAL-Part dataset (III).
5. Linear weighting yields better results than exponential due to
the distribution of the misattribution function depending on the
SHAP value. Exponential weighting focuses on examples that are
extremely wrong, whereas the linear one gives a similar impor-
tance to all wrong examples. As SHAP GED does not take into
account the SHAP value, but only whether there is a connection
in the attribution graph, negating or correcting all examples
similarly is the best approach when seeking explainability. Re-
garding bounding box aggregation function, instance-level works
better than the BBox-level because the latter might slightly
overfit each box, whereas instance-level gives a more average
value to each image.
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As there is no consensus on how to measure explainability, es-
pecially because methods are achieving different goals, the lack of
unification moved us to develop and contribute our own metric, SHAP
GED, because as far as we know no other work explicitly incorporates
the use of expert domain KGs in an image classification process to
produce explanations for end-users and domain experts. We encourage
researchers to put effort to further explore expert knowledge alignment
models and develop richer metrics beyond this scope.

When it comes to the semantic modeling of the KG, we explored
the possibility of using the ontology OWL format, but compared to
standard ontologies such as ArCo [91] or the Google Knowledge Graph,
our domain knowledge on architectonic styles is rather flat in terms of
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Fig. 19. Extract from PASCAL-Part dataset (IV).
hierarchies of triples. We therefore did not need in this case the addi-
tional semantics modeling power of the Web Ontology Language (OWL)
and limited ourselves to explain partOf relationships. This permitted us
to simplify the explanations and edge semantics. Future work should
consider more complex semantic constraints natural of OWL format.

Regarding the reproducibility or scalability of X-NeSyL methodol-
ogy, manually constructing KGs for a given dataset in our case was not
hard, given the scale of MonuMAI or PASCAL-Part datasets. For larger
datasets where no domain expert KG is available, one debility of X-
NeSyL methodology, in concretely of using KGs as symbolic knowledge
representation, is the needs for the domain expert to design the KG.
This may require, if experts are limited, or data is disperse and sparse,
to previously recur to knowledge engineering tasks, among others,
automatic knowledge base construction and datatype learning [92,93],
relation learning [94], link prediction [95,96], concept induction [97]
or entity alignment [98].

7. Conclusions and future work

With the presented work we open up different research horizons and
future avenues of work that we detail in this section.

We extensively considered what is one of the most crucial points to
be addressed while developing XAI methods. Within the general needs
for producing more trustworthy outputs, we tackled the challenge of
fusion and alignment of deep learning representations with domain
expert knowledge. To achieve this we proposed a new methodology,
X-NeSyL, to fuse deep and symbolic representations thanks to an ex-
plainability feedback mechanism that facilitates the alignment of both
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deep and symbolic features. The part-based detection and classifica-
tion, EXPLANet, and XAI-informed training procedure SHAP-Backprop
leverage expert information in form of a knowledge graph. X-NeSyL
could be seen as one way to attain explainable and theory-driven data
science [6].

We demonstrated the full pipeline of X-NeSyL methodology on
MonuMAI and PASCAL-Part datasets, and the EXPLANet model with
two variants of object detectors. The fusion of learned representations
of different nature through the addition of an XAI technique component
facilitates the model to learn with a human expert in the loop.

X-NeSyL methodology was also validated through a contributed
audience-specific explainability metric, SHAP GED, that quantifies the
alignment of the X-NeSyL methodology neural model (EXPLANet)
with the symbolic representation of the expert knowledge. All mod-
els, datasets, training pipeline and metric of the showcased X-NeSyL
methodology are available online.11

This approach targeted compositional object recognition based on
explaining the whole through the object-parts on deep architectures.
However, other non compositional semantic properties of description
logics could be further modeled in order to assess, and further con-
strain the level of alignment of a DL model with symbolic knowledge
representing the expert.

Given the diverse contributions of this work, there is a broad set of
options that can follow up to improve X-NeSyL methodology. In terms
of evaluation of our work, the assessment was limited by the number

11 Models available online: https://github.com/JulesSanchez/X-NeSyL.

https://github.com/JulesSanchez/X-NeSyL
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of available datasets that contain part-based data, which is not large,
since they must include a corresponding KG as well.

The explainability metric may be refined, since the proposed vanilla
version of SHAP GED might not take into account all explainable factors
an expert would like to see reflected in a black box model explanation.
Future work includes assessing the SHAP GED metric itself, as the
most suitable graph comparison metric, and including more elaborated
datasets with finer grained object-part labels.

The ontology alignment with the deep model predictions can be
refined in many ways. For instance, instead of using a simple KG,
representing the expert knowledge in a rich ontology that incorpo-
rates extra axiomatic restrictions between elements, such as spatial
relations or geometric constraints, could be useful to further improve
SHAP-Backprop.

One way to improve the model along these lines may be inducing
spatial structure in the embedding space (e.g. with approaches such
as ConvE [99], which uses CNNs on embeddings for link prediction).
Works along these lines could be explored to make possible that a KG
would be learned (instead of being given to the DL model).

An actionable future work that could be very valuable for the XAI
field is providing textual explanations of the output, since even limiting
the model to describe the SAG could help build trust in the model
output.

To conclude, we invite researchers and domain experts to be part
of the XAI debate and contribute to democratize XAI, and to collabo-
ratively design quantitative metrics and assessment methods aimed at
developers, domain experts and end-users, as target audiences of DL
model explanations.

CRediT authorship contribution statement

Natalia Díaz-Rodríguez: Conceptualization, Methodology, Writing
– review & editing, Validation. Alberto Lamas: Software, Method-
ology, Writing – original draft. Jules Sanchez: Software, Methodol-
ogy, Writing – original draft. Gianni Franchi: Software, Methodology.
Ivan Donadello: Resources, Data curation, Writing – original draft.
Siham Tabik: Conceptualization, Writing – review & editing, Valida-
tion. David Filliat: Validation, Project administration. Policarpo Cruz:
Resources, Project administration. Rosana Montes: Project administra-
tion, Validation. Francisco Herrera: Supervision, Conceptualization,
Writing – review & editing, Validation, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research was funded by the French ANRT (Association Na-
tionale Recherche Technologie — ANRT) industrial Cifre PhD contract
with SEGULA Technologies, the Andalusian Excellence project P18-
FR-4961 and the Spanish National Project PID2020-119478GB-I00. S.
Tabik was supported by the Ramon y Cajal Programme (RYC-2015-
18136). N. Díaz-Rodríguez is currently supported by the Spanish Gov-
ernment Juan de la Cierva Incorporación contract (IJC2019-039152-I).

Appendix

In this appendix we extend the results obtained with MonuMAI
dataset to a second dataset, PASCAL-Part, to further validate our re-
sults. We detail such datasets and the results obtained in the following
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sections.
A.1. Additional results: PASCAL-Part dataset

In order to validate results with more than one part-based dataset,
we expanded experiments to use an adapted version of PASCAL-
Part [81] which provides two level of annotations: element annotations
for the detection level (object-parts), and the macro (whole) level with
image level labels.

PASCAL-Part Dataset
PASCAL VOC 2010 dataset is a popular dataset for the task of object

detection. It is organized into 20 object classes [90]. PASCAL-Part
dataset extends PASCAL VOC-2010 dataset with additional annotations
by providing segmentation masks for each object part [81].

In this work, we use a curated version of the PASCAL-Part provided
by [100].12 The idea is to reduce the number of elements of the original
PASCAL-Part by collapsing categories together such as ‘‘upper arm’’ and
‘‘lower arm’’ inside a single category ‘‘arm’’.

We created a second curated version of the dataset, as in the
PASCAL-Part there can be several ‘‘macro’’ objects labeled within a
single image, whereas we want to consider, to ease evaluation pur-
poses, only images with one image-level label.13 The total of 1448
remaining images include 20 macro categories and 44 different parts,
whose distribution and some samples are shown in previous sections
of Appendix.

PASCAL-Part dataset classes and parts are in the following list. The
first element represents each class, and it is followed by its correspond-
ing part classes14:

• Bird: Torso, Tail, Neck, Eye, Leg, Beak, Animal Wing, Head
• Aeroplane: Stern, Engine, Wheel, Artifact Wing, Body
• Cat: Torso, Tail, Neck, Eye, Leg, Ear, Head
• Dog: Torso, Muzzle, Nose, Tail, Neck, Eye, Leg, Ear, Head
• Sheep: Torso, Tail, Muzzle, Neck, Eye, Horn, Leg, Ear, Head
• Train: Locomotive, Coach, Headlight
• Bicycle: Chain Wheel, Saddle, Wheel, Handlebar
• Horse: Hoof, Torso, Muzzle, Tail, Neck, Eye, Leg, Ear, Head
• Bottle: Cap, Body
• Person: Ebrow, Foot, Arm, Torso, Nose, Hair, Hand, Neck, Eye,

Leg, Ear, Head, Mouth
• Car: License plate, Door, Wheel, Headlight, Bodywork, Mirror,

Window
• DiningTable: DiningTable
• Pottedplant: Pot, Plant
• Motorbike: Wheel, Headlight, Saddle, Handlebar
• Sofa: Sofa
• Boat: Boat
• Cow: Torso, Muzzle, Tail, Horn, Eye, Neck, Leg, Ear, Head
• Chair: Chair
• Bus: License plate, Door, Wheel, Headlight, Bodywork, Mirror,

Window
• TvMonitor: Screen, TvMonitor

Labels for PASCAL-Part dataset used are shown in Figs. 14 and 15,
and image samples are in Figs. 16–19.

Since explicitly using the ontology built for MonuMAI, in the case
of object classification yielded no significant advantage, we did not
pursue this direction further for PASCAL-Part dataset. A thorough
work to convert PASCAL-Part into an ontology could be done, but the
variety of elements inside it could make it difficult to (1) group them
in meaningful categories, (2) extend the additional data and object

12 Available online at github.com/ivanDonadello/semantic-PASCAL-Part/.
13 Therefore, we discarded all images where there was more than one macro

object.
14 In OWL language, the latter would be placed in their hasPart object
property range.

https://github.com/ivanDonadello/semantic-PASCAL-Part/
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Table 6
Results of two backbone variants of EXPLANet (using Faster R-CNN and RetinaNet) on
PASCAL-Part dataset.

mAP Accuracy SHAP GED
(detection) (classification) (interpretability)

EXPLANet using Faster R-CNN
backbone detector

36.5 82.4 0.45

EXPLANet using RetinaNet
backbone detector

39.3 80.3 0.59

ResNet-101 baseline classifier N/A 87.2 N/A

properties of such richer ontology to a KG that can be compared with an
attribution graph. Since such extension to an ontology can complicate
the ontology-misattribution matching process, we leave such extension
to future work. (See Figs. 18 and 19.)

PASCAL-Part’s Knowledge Graph
In analogy to MonuMAI previous application, where architectural

elements play the role of object parts and macro labels correspond to
the architectural styles, we also used the KG provided by the PASCAL-
Part dataset [100].15

A.2. Results for PASCAL-part dataset

Results for PASCAL-Part dataset are compiled in Table 7. Applying
SHAP-Backprop has almost no effect on the accuracy and interpretabil-
ity, but it had detrimental effect on the detector mAP. This could be
explained due to this particular KG being very sparsely populated,
and the fact that object parts have large overlap in the object labels
they theoretically contribute to. For instance, consider the following
concrete example: We have a person in an image, for which we detect
the legs, and let us assume the background is such that sheep legs are
detected. According to our expert KG data, detecting legs makes sense
toward predicting a person, and thus the sheep legs detection inside the
background would not be discouraged. Future work should consider the
distinction among syntactically equal (e.g. in image captioning tasks,
the word leg) but semantically different parts of objects (an animal vs
a human leg). In other words, the isPartOf relationship could be further
specialized in our KG to (a) have as range the class Leg, with subclasses
AnimalLeg and HumanLeg (instead of just Leg as PASCAL-Part dataset
has it now), or (b) having isPartOfAnimal, isPartOfHuman as extra
specialized object properties in our ontology (right now PASCAL-Part
and MonuMAI only have one kind of object property, hasPart).

The overall lower score in mAP we obtain for PASCAL-Part stems
from the fact that this dataset makes it harder for smaller objects to be
detected, and the Faster R-CNN model we used was not fine-tuned to
be fairly comparable in both settings.

When considering the different weighting schemes of
SHAP-Backprop, for the PASCAL-Part, the vanilla ResNet classifier
baseline performs better than that one for EXPLANet, which means
that the object-part-based classifier EXPLANet underperforms in this
case. It can be explained by several factors, but the predominant one is
probably that images contain valuable information that the part-label
model does not. It becomes quite clear when studying the PASCAL-Part
KG, as we do in Appendix A.1, since several labels are made of the
same part names, but represent distinct things, i.e., parts from different
object provenance (e.g. leg of a person and leg of an animal; both car
and bus have the same object-parts). The part-based model has thus
trouble differentiating such categories whereas a purely image-based
model (and not attribute based) would have no issue with those.

While the linear weighting appears to have a more positive effect on
improving explainability of the model, it may not be significant, given

15 Curated PASCAL-Part Dataset and KG available github.com/
vanDonadello/semantic-PASCAL-Part/. We do not provide a visualization of
his KG as it would be unreadable.
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Table 7
Impact of the new SHAP-Backprop training procedure on the mAP (detection), accuracy
(classification) and SHAP GED (interpretability). Results on PASCAL-Part dataset with
EXPLANet architecture. GED is computed between the SAG and its projection in the
expert KG. (Standard procedure: sequential typical pipeline of (1) train detector, (2)
train classifier without SHAP-Backprop).

mAP Accuracy SHAP GED
(detection) (classification) (interpretability)

Standard procedure (baseline, no
SHAP-Backprop)

36.5 82.4 0.45

Linear BBox-level weighting 33.0 79.7 0.65
Exponential BBox-level weighting 32.0 81.0 0.55
Linear instance-level weighting 33.4 80.3 0.42
Exponential instance-level
weighting

34 82.7 0.56

that it does not always improve interpretability when applied on the
more specific (but with lack of signal) PASCAL-Part dataset.

The discordance in performance (for mAP and Accuracy in the
detector task) in Tables 5 and 7 for RetinaNet being superior than Faster
R-CNN only in MonuMAI but not for PASCAL-Part can be explained
due to PASCAL-Part dataset labeling procedure (joining elements not
unifiable with the same identifier). For instance: the same label is used
for object parts of different semantic and visual meaning: sheep’s legs
and cow’ legs, or car’s wheel and bike’s wheel. Therefore, it is worth
highlighting the differences in the labeling process of both datasets,
as the classification based in parts with the same name but different
semantics and visual appearance in PASCAL-Part is not designed for a
neural network that only takes attributes as input. Thus, as PASCAL-
Part lacks highly discriminative features, accuracy and SHAP GED are
not obviously nor directly connected, specially in RetinaNet where, due
to its inherent architecture aggregation function, all probabilities are
used (i.e., summed) to perform a prediction, not just the highest one.

As micro and macro level labels are not appropriate (as designed
in MonuNet dataset), the interpretability metric fails to reflect reality ,
independently of the quality of the detector.

The take away message from the ablation study assessing the impact
of the object detector on EXPLANet (Table 6) is that even if X-NeSyL
methodology showed slightly differently results in datasets designed
with different purpose,16 having worse default results when using EX-
LANet with RetinaNet instead of with Faster R-CNN could be due
o (1) hyperparameter choice, since Faster R-CNN uses pretraining on
S-COCO while RetinaNet uses pretraining on ImageNet, and (2) both

oarse grained MonuMAI dataset and fine-grained PASCAL-Part are of
ifferent nature in terms of the overlap among part classes. Lacking dis-

criminative dataset labels in PASCAL-Part results in insufficient signal
for EXPLANet to leverage. Thus, dataset label noise is not appropriate
to capture the compositional part-based hierarchy in the data nor to
100% assess SHAP-Backprop.
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