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Abstract: 

A powerful time series analysis modeling technique is presented to describe 

cycle-to-cycle variability in memristors. These devices show variability linked 

to the inherent stochasticity of device operation and it needs to be accurately 

modeled to build compact models for circuit simulation and design purposes. 

A new multivariate approach is proposed for the reset and set voltages that 

accurately describes the statistical data structure of a resistive switching 

series. Experimental data were measured from advanced hafnium oxide 

based devices. The models reproduce the experiments correctly and a 

comparison of the multivariate and univariate approaches is shown for 

comparison. 

 

 

 

 

 

Index Terms—Memristors, Variability, Resistive switching memory, 

Conductive filaments, Time series modeling, Compact modeling, 

Autocovariance. 
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I.-INTRODUCTION 

 

Memristors in general, and in particular those linked to resistive switching 

(RS) operation, are being scrutinized both by the Academy and the industry 

to explore their outstanding potential in the non-volatile memory realm [1, 

2]. These nanometric electron devices show inherent stochasticity in their 

operation that leads to different flavors of variability: device-to-device, 

connected to technological differences that might show up in the fabrication 

process; and cycle-to-cycle, associated to the random physical mechanisms 

behind their operation. This latter phenomenon can hinder the memristor 

massive industrial exploitation for non-volatile memory circuits; however, on 

the contrary, it could pave the way to employ these devices as entropy 

sources in the context of hardware cryptographic applications. In this respect, 

recent interesting works have been published [3-5].  

Memristors are also key actors in the neuromorphic circuit playground since 

they can easily mimic biological synapses that facilitate hardware neural 

networks fabrication [6-10]. This research topic is drawing attention at all 

levels due to the need for efficient, low power and fast artificial intelligence 

solutions to process the huge data amounts generated currently by social 

networks, internet-of-things devices, e-commerce… Memristor fabrication is 

fully compatible with Complementary Metal-Oxide-Semiconductor (CMOS) 

technology and, consequently, it can be used to push forward chips devoted 

to neuromorphic computing, a term coined by Carver Mead [11] when the 

basis for hardware neural network implementation was laid out in the late 

eighties.  
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There are many types of devices, since their structure (two electrodes with a 

dielectric in between) can be fabricated with a wide range of materials, 

including 2D materials, such as graphene oxide [11], h-BN [1], etc. Although 

RS phenomena for some devices are relatively well-known, there is a long 

way to go to fully unveil the physics behind resistive switching and the 

corresponding variability; on this issue, many experimental, modeling and 

simulation analysis have been published in the last few years [2, 13-25]. 

Electronic design automation (EDA) tools are essential for circuit design in 

electronics; therefore, the maturity of a technology is linked to the availability 

of physical simulation tools and compact models. From the modeling view 

point, different approaches can be found in the literature for memristors [20, 

18, 14, 21, 26, 27]. Variability issues need to be addressed in the modeling 

context by the scientific community since, at this moment, they are key for 

circuit design. It is interesting to point out that neuromorphic applications are 

more tolerant to the inherent stochastic nature of resistive switching (RS) 

[28, 29]. In fact, this stochasticity can be used to build true random number 

generators in the context of integrated circuit cryptography [3]. 

Most memristors are based on resistive switching of filamentary nature [1, 

2]. In these devices, the creation (set process) and destruction (reset 

processes) of conductive filaments (CFs) allows RS. Both, reset and set 

events are linked to random processes connected to physical mechanisms: 

diffusion, redox and nucleation…, both for valence change memories and for 

conductive bridge RAMs [25, 17, 2, 23, 21, 1, 19, 20]. That is why RS 

stochasticity, experimentally clear in terms of device resistance and set and 

reset voltages, produce the cycle-to-cycle (CTC) variability in long RS series 

(the series consists of repetitive cycles of set and reset events).  
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Among the different strategies employed to deal with the statistical analysis 

of CTC variability, the use of Weibull distribution (a weakest-link type 

distribution employed in reliability studies [30]) can be counted [31, 32, 2]. 

One of the drawbacks of Weibull distribution to analyse memristors RS data 

is the assumption of independent times to failure (voltages to reset or to set 

processes in our case). As reported in Roldán et al. [33], stochasticity linked 

to successive observations could show data dependence (CFs are reformed 

using the remnants of previous ones as starting point). Taking into 

consideration this fact, we stepped forward and changed the modeling 

approach into the time series playground [33, 34, 35, 36]. Time series 

analysis (TSA) has been successfully employed to characterize RS in different 

device types: conductive bridge RAMs with Ni electrodes and HfO2 as a 

dielectric [33] and graphene oxide based devices [12]. Indeed, memristor 

CTC cycle-to-cycle variability can be modeled by TSA, assuming that the 

experimental measurements (consecutive reset and set voltages) were 

obtained successively in time for a RS long series.  

G.U. Yule introduced modern TSA to model the temporal movement of a 

pendulum [37]. This modeling technique allows the description of RS inertia 

in memristors. In our first approach, univariate TSA was employed for reset 

and, separately, for set processes. However, in this manuscript we tackle with 

a multivariate strategy for the first time that is more appropriate since the 

set process starts making use of the remnants of the CFs destroyed in the 

previous cycle (a reset process). In this respect, the reset voltage has 

dependencies on the values of neighbouring cycles (previous cycles reset 

voltages) and also on previous cycles set voltages, keeping the system 
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“memory” in a long RS series. As explained in [33], this means that 

consecutive RS cycles can be correlated in a series. Therefore, the concept of 

autocorrelation has to be accounted for. The time series stationarity was also 

studied in the context of memristors in [33] as a needed tool for TSA [34, 

35]. In this new TSA modeling approach, we deal with a higher numerical 

intricacy in order to obtain a more truthful description; in this sense, and 

comparing with the monovariate TSA presented in [33], we face a different 

scenario in the usual trade-off of accuracy and complexity within the modeling 

paradigm.  

Prior to the application of a multivariate strategy, the causality between the 

univariate series has to be studied [37]. This property checks for the 

improvement obtained when the modeling of one variable (the set or reset 

voltage, as we shall show below in Figure 1) includes, in addition to past 

values of the same variable (univariate model, as reported in [33]), values of 

other variables; i. e. a reset voltage model would include past values of the 

reset and set voltages. In the case of a multivariate approach, the model is 

selected using the extended correlation matrix. This matrix provides the p-

values of multivariate Ljung-Box statistics of a vector series [39]. The model 

proposed here will be used for forecasting more accurately the values of set 

and reset jointly. 

The devices studied here are obtained from bipolar valence change memories 

based on a TiN/Ti/HfO2/W/Ti stack. The Ti layer in the top electrode works as 

an oxygen ion reservoir [1, 20]. The manuscript is organized as follows: in 

section II the fabricated devices and measurement process are described, the 

statistical procedure is given in section III and the main results and discussion 
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are included in section IV. Finally, in section V we draw the main conclusions 

up. 
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II.-FABRICATED DEVICES AND MEASUREMENT 

 

The memristors top electrode is made of a bi-layer stack (200 nm TiN/10 nm 

Ti), the bottom metal consists of a 50 nm thick W layer over a Ti layer. The 

dielectric (a 10 nm HfO2 layer) was deposited by ALD. More details on the 

fabrication process can be found in [40]. For the configuration of the 

measurement set-up, the bottom electrode was grounded and a voltage 

signal with a (0.8V/s) ramp was applied to the top electrode (the voltage step 

was 0.01V). A RS series of 1000 cycles (consecutive reset and set events) 

were carried out after a forming process, see Figure 1. The devices were 

square-shaped with an area of 15×15 µm2. 

The set (Vset) and reset (Vreset) voltages were obtained following the numerical 

procedures in line with [20, 16], see Figure 1.  

 

Figure 1. Experimental I-V curves for 3 set/reset consecutive cycles showing Vset, Vreset, Iset 
and Ireset. The layer stack scheme for the devices under study is shown in the inset.  
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The set (Iset) and reset (Ireset) currents are the current values where Vset and 

Vreset take place. The latter parameters have been plotted in Figure 2 for the 

cycles considered in the measured RS series. 

 
 

Figure 2. Experimental values of Vset (a) and Vreset (b) versus cycle number for a series of 
continuous RS cycles under ramped voltage stress for memristors based on TiN/Ti/HfO2/W/Ti 

stacks. 

 

 

 

III.-STATISTICAL METHODOLOGY 

 

III.A.-MULTIVARIATE TSA DESCRIPTION  

 

In the time series analysis we are presenting here, Vset and Vreset of the devices 

under study are modeled. Other RS parameters could also be modeled such 

as the reset and set currents (see Figure 1). As already stated in [33-35], 

finding the model order is key; i.  e. how many set and reset voltage values 

from previous cycles we need to accurately forecast the current cycle (see 

Equation 1). The model order depends on the physics underlying RS; 

nevertheless, all the information for our modeling is extracted from just the 

measured data and their probabilistic structure, no other assumptions have 

to be considered in our analysis. 
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The TSA numerical procedure also helps to find the weights (Φ1…Φp) of the 

autoregressive (AR) model we are seeking (see Equation 1). Henceforth, for 

simplification purposes, we work with the absolute value of Vreset. 

𝑉𝑟𝑒𝑠𝑒𝑡𝑡
= Φ0 +  Φ1𝑉𝑟𝑒𝑠𝑒𝑡𝑡−1

+ Φ2𝑉𝑟𝑒𝑠𝑒𝑡𝑡−2
+ ⋯ + Φ𝑝𝑉𝑟𝑒𝑠𝑒𝑡𝑡−𝑝

+ 𝜀𝑡 (1) 

The term εt, accounts for the model error (the difference between the 

measured value and the modeled value), it is known as the residual.  

Equation 1 shows an autoregressive model, but sometimes a more 

complicated expression is needed to predict experimental data; e. g. an 

autoregressive moving average (ARMA) model that includes AR and moving 

average (MA) parts [34-35]. MA models are a linear combination of past 

residuals [34-35]. The general expression ARMA(p,q) model is given by the 

following expression, 

 

𝑉𝑟𝑒𝑠𝑒𝑡𝑡
= Φ0 + Φ1𝑉𝑟𝑒𝑠𝑒𝑡𝑡−1

+ ⋯ + Φ𝑝𝑉𝑟𝑒𝑠𝑒𝑡𝑡−𝑝
− 𝜃1𝜀𝑡−1 + ⋯ − 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡 ( 2 ) 

 

The algebraic equations above can be used for device compact modeling [33]. 

The mathematical expressions of a compact model implemented in a circuit 

simulator allow to account for the device behaviour at the circuit level and, 

consequently, circuit designers can have an invaluable tool to carry out their 

tasks. So, the developments to be presented here should be contextualized 

within circuit simulation applications and the great added value behind this 

type of models should be noticed, since the inherent cycle-to-cycle variability 

of these devices can be accounted for.  

Both, Equations 1 and 2 show a univariate approach, which was presented in 

depth in [33]. However, successive reset and set processes could be 



11 
 

connected in a RS series, therefore the appropriateness of a multivariate 

model is clear and physically reasonable. We deal with this issue here; in 

particular, we deal with Vreset and Vset values in expressions similar to 

Equations (1) and (2) but accounting for crossed dependencies (i.e., we will 

use mathematical expressions for Vreset and Vset that include in both cases 

previous values of the two different magnitudes; in this manner, Vreset 

depends on previous values of Vreset and Vset and the other way around).   

 

III.B.-CAUSALITY STUDY 

 

Causality studies shed light on the goodness of a multivariate model 

implementation. This means the evaluation of a certain variable (e. g. the 

reset voltage) regression series involving past values of another variable (e. 

g. the set voltage) to scrutinize if there is an improvement in the 

representation model; thus is, if the model depicted below in Equation 3, 

  𝑉𝑟𝑒𝑠𝑒𝑡𝑡
= Φ0 +  Φ1𝑉𝑟𝑒𝑠𝑒𝑡𝑡−1

+ ⋯ + Φ𝑝𝑉𝑟𝑒𝑠𝑒𝑡𝑡−𝑝
+  α1𝑉𝑠𝑒𝑡𝑡−1

+ ⋯ + α𝑝𝑉𝑠𝑒𝑡𝑡−𝑝
+ 𝜀𝑡     (3) 

presents a significant contribution compared to the model described by 

Equation 1. A direct analysis on the measured values seems straight forward; 

nevertheless, a better manner to evaluate this issue stands upon a 

comparison of the residuals of the corresponding univariate models. Thus, 

using a model ARIMA(0,1,2) for the set voltage and ARIMA(0,1,1) for the 

reset voltage, which are the more compact options we found for the 

univariate approaches, the Granger test [38] output indicates a non-

negligible causality (statistical connection) among these variables. A p-value 

of 0.0152 is obtained for the decision between Equation 1 and 3 for Vreset, and 
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in a parallel calculation a p-value of 0.00364 for the equations for Vset (notice 

that a p-value lower than 0.05 indicates that a model based in Equation 3 is 

more appropriate than a model linked to Equation 1). 

Another tool to check causality consist of the Cross Correlation Function (CCF) 

among the residuals of the univariate models. The cross correlation function 

between Vset and Vreset is given by the following expression, 

𝐶𝐶𝐹(𝑘) = 𝑐𝑜𝑟𝑟(𝑉𝑠𝑒𝑡𝑡+𝑘
, 𝑉𝑟𝑒𝑠𝑒𝑡𝑡

) =
𝐶𝑜𝑣(𝑉𝑠𝑒𝑡𝑡+𝑘

, 𝑉𝑟𝑒𝑠𝑒𝑡𝑡
)

√𝑉𝑎𝑟(𝑉𝑠𝑒𝑡𝑡+𝑘
) 𝑉𝑎𝑟(𝑉𝑟𝑒𝑠𝑒𝑡𝑡

)

 
(4) 

                     

where Cov stands for the covariance and Var for the variance [33]. A 

significant value of CCF(k) compared to the threshold bounds (calculated as 

±
1.96

√n
, where n is the number of measured data, i. e. the number of cycles in 

our case [Brockwell02]. We have employed 1000 cycles of consecutive set 

and reset I-V curves in the RS series, therefore n=1000 and the 

corresponding threshold bounds are ±0.06198) for k<0 implies that including 

Vset values would model better Vreset because the past values of the set voltage 

are correlated with the actual value of the reset voltage (a significant value 

of 𝑐𝑜𝑟𝑟(𝑉𝑠𝑒𝑡𝑡−𝑙
, 𝑉𝑟𝑒𝑠𝑒𝑡𝑡

) implies that the Vset past improves Vreset modeling). On 

the contrary, if a significant CCF(k) value is obtained for k>0, it implies that 

Vset can be better explained relating the variable also with Vreset; (a significant 

value of  𝑐𝑜𝑟𝑟(𝑉𝑠𝑒𝑡𝑡+𝑙
, 𝑉𝑟𝑒𝑠𝑒𝑡𝑡

) = 𝑐𝑜𝑟𝑟(𝑉𝑠𝑒𝑡𝑡
, 𝑉𝑟𝑒𝑠𝑒𝑡𝑡−𝑙

)  implies that the Vreset past 

values improve Vset modeling). As noted previously, the cross correlation 

function (CCF, as defined in (4)) points out better results when it is computed 
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over the univariate residuals, removing the intrinsic correlation over each 

variable. 
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Figure 3. Cross correlation function (CCF) for the Vset and Vreset univariate time series 

residuals. The CCF minimum threshold bounds for the experimental data we are employing 

are ±0.06198, shown with dashed lines.  

 

Only the values corresponding to the lags k=-11, k=-1 and k=1 pass the 

threshold bound (0.06198) in Figure 3. This result implies that both variables 

Vset and Vreset show a causality relationship, and consequently a multivariate 

model will perform better than univariate models. 

 

III.C.-MODEL ORDER SELECTION 

The ARMA multivariate model (or vector model, VARMA) is described by the 

following equation, 
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(
𝑉𝑠𝑒𝑡

𝑉𝑟𝑒𝑠𝑒𝑡
)

𝑡
=  (

Φ𝑠𝑒𝑡

Φ𝑟𝑒𝑠𝑒𝑡
) + ∑ 𝐴𝑘 (

𝑉𝑠𝑒𝑡

𝑉𝑟𝑒𝑠𝑒𝑡
)

𝑡−𝑘

𝑝

𝑘=1

+ ∑ 𝐵𝑘 (
𝜀1

𝜀2
)

𝑡−𝑘

𝑞

𝑘=1

+ (
𝜀1

𝜀2
)

𝑡
 

(5) 

 

where Φ𝑠𝑒𝑡 and Φ𝑟𝑒𝑠𝑒𝑡 are constant values, and 𝐴𝑘and 𝐵𝑘 are 2x2 matrices. 

The section objective is to develop a procedure to decide if the constants Φ 

need to be included in the model, and how many matrices A and B have to 

be estimated. 

There are many criteria to select the model [41]. The most frequently used 

are based on the likelihood and the needed number of parameters over some 

selected model candidates. These criteria tend to overestimate the model. 

For example, in our case, for VAR models (in this case B matrices are not 

employed) the value of p is equal to 10 using the AIC criterion (Akaike's 

Information Criterion) [41].  

Another criterion is based on the use of extended cross-correlation matrices. 

This criterion computes the p-values of the multivariate Ljung-Box statistics 

[39]. The statistics computed are a multivariate version of Ljung-Box test 

that evaluates if the first “L” values of the ACF function are equal to 0 or not. 

In this context, to determine the parsimonious (the simpler and with the lower 

number of terms) model order, it must be used a p-values table of Extended 

Cross-correlation Matrices. This table can be calculated using the R-function 

ECCM [39].  In particular, in the p-values table, it must be found a triangle 

corner with all the elements higher than 0.05 (see Table I). Table I suggests 

the possibility of models VARMA(0,2) (yellow) or VARMA(1,1) (green) using 

the differenced time series, i. e. a time series accounting for values, once a 

variable change has been taken into consideration (for example, 𝐷𝑉𝑠𝑒𝑡𝑡
=
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𝑉𝑠𝑒𝑡𝑡
− 𝑉𝑠𝑒𝑡𝑡−1

).  This variable change is performed when the original data series 

is not stationary. Many times a simple variable change like this leads us to a 

stationary data series, a needed condition to be able to develop a time series 

model [33].   

 
 

 
 
Table I. p-values table of Extended Cross-correlation Matrices. Triangles with all elements 

greater than 0.05 suggest the type of model to be used (yellow corresponds to a VARMA(0,

2), green corresponds to a VARMA(1,1)). 
 

 

The likelihood obtained for the modeling approach described above is very 

similar, as can be deduced by the residuals correlation matrices. The selected 

model in the first case is of VARMA(1,1) kind, providing  the estimated model 

expressed in Equation 6, 

(
𝐷𝑉𝑠𝑒𝑡

𝐷𝑉𝑟𝑒𝑠𝑒𝑡
)

𝑡
=  (

0.102983 −0.550028
0.019652 −0.085120

)  (
𝐷𝑉𝑠𝑒𝑡

𝐷𝑉𝑟𝑒𝑠𝑒𝑡
)

𝑡−1
+ (

𝜀1

𝜀2
)

𝑡

− (
0.921835 0.201058

0 −0.662339
) (

𝜀1

𝜀2
)

𝑡−1
 

(6) 

 

 

This vector equation is equal to the following single equations: 

𝑉𝑠𝑒𝑡𝑡 = 1.102983  𝑉𝑠𝑒𝑡𝑡−1 − 0.102983 𝑉𝑠𝑒𝑡𝑡−2

− 0.550028 (𝑉𝑟𝑒𝑠𝑒𝑡𝑡−1 − 𝑉𝑟𝑒𝑠𝑒𝑡𝑡−2) − 0.921835 𝜀1𝑡−1

− 0.201058 𝜀2𝑡−1 + 𝜀1𝑡 

𝑉𝑟𝑒𝑠𝑒𝑡𝑡 = 0.91488  𝑉𝑟𝑒𝑠𝑒𝑡𝑡−1 + 0.08512 𝑉𝑟𝑒𝑠𝑒𝑡𝑡−2

+ 0.019652 (𝑉𝑠𝑒𝑡𝑡−1 − 𝑉𝑠𝑒𝑡𝑡−2) + 0.662339 𝜀2𝑡−1 + 𝜀2𝑡 

 

 

 

 

(7) 

 

The variance of the errors is given by 0.001739279 for 𝜀1 and 0.00008128950 

for 𝜀2.   
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The corresponding univariate models are given by the expressions below 

(Equations 8) 

𝑉𝑠𝑒𝑡𝑡 = 𝑉𝑠𝑒𝑡𝑡−1 − 0.8136 𝜀1𝑡−1 − 0.0965 𝜀1𝑡−2 + 𝜀1𝑡 

𝑉𝑟𝑒𝑠𝑒𝑡𝑡 = 𝑉𝑟𝑒𝑠𝑒𝑡𝑡−1 − 0.7095 𝜀2𝑡−1 + 𝜀2𝑡 

 

(8) 

 

The error variance is higher than in the multivariate case. Therefore, the 

multivariate modeling provides a better fit to the measured values. 
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Figure 4. Cross correlation function for residuals of the VARMA(1,1) model for Vset and Vreset. 

The CCF minimum threshold bounds for the experimental data we are employing are 
±0.06198, shown with dashed lines.  

 

The ACF and PACF for the residuals show that they are uncorrelated. All the 

values of the cross-correlation function (Figure 4) are between the threshold 

bounds (only the value -11 cross the line) and the variance of the residual 

series are lower than the univariate variances. Then, the multivariate 

predictions are closer than the univariate ones. 
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IV.-RESULTS AND DISCUSSION 

We have employed Equations 7 and 8 to model the cycle-to-cycle variability 

of Vset and Vreset as described in the previous section. Figure 5 shows the 

evolution of Vset along a RS series we are considering here (1000 cycles), the 

corresponding univariate and multivariate models are also plotted for 

comparison. The multivariate model works better, as can be seen in the 

corresponding Figures (b)-(d) were different intervals of the RS series are 

selected. 

 

Figure 5. Experimental and modeled (in the univariate and multivariate cases) Vset data for 

the whole RS series (a) and different cycle number intervals (b)-(d). 

 

 

The accuracy of the multivariate approach was also reported in the previous 

section in terms of a comparison of the error variance. A similar conclusion 
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can be noticed in Figure 6 where the Vreset and the corresponding models are 

plotted. 

 

Figure 6. Experimental and modeled (in the univariate and multivariate cases) absolute value 

of Vreset data for the whole RS series (a) and different cycle number intervals (b)-(d). 

 

See in Figures 5 and 6 that the time series model designed here follows the 

RS series evolution of Vreset and Vset in a reasonable manner. The adequacy of 

this type of models to account for cycle-to-cycle variability for circuit 

simulation is remarkable since, to the best of our knowledge, no other 

modeling approaches can be obtained. There are other modeling options [26, 

42], formulated in terms of means, variances and distribution functions, but 

no resistive switching series past values, or putting it into different words, 

resistive switching “inertia”, are taken into consideration in the model, as it 

is the case here. 
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V.-CONCLUSIONS 

 

A new modeling methodology based on the time series analysis is introduced 

here to account for cycle-to-cycle variability in memristors. A multivariate 

approach is employed to model the reset and set voltages to enhance a 

univariate procedure previously developed. Experimental data from hafnium 

oxide based devices have been used for the model development; the modeled 

data are compared to experiments, a comparison of the univariate and 

multivariate approaches has been shown. The model accuracy is reasonable 

to be used in the context of circuit simulation to account for variability within 

resistive switching series linked to the inherent stochasticity of device 

operation. 
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