
Applied Radiation and Isotopes 179 (2022) 109997

A
0

S
F
a

b

A

K
O
F
R
S
C
S

1

O
i
b
r
o
r
t
i
t
w
r
e
a
r
w
g
a
t
i
t

h
R

Contents lists available at ScienceDirect

Applied Radiation and Isotopes

journal homepage: www.elsevier.com/locate/apradiso

OLIDUSS: Solid-state diffusion software for radiation protection
. Ogallar Ruiz a,b,∗, C. Theis a, I. Porras b, H. Vincke a

European Organization for Nuclear Research (CERN), Geneva, Switzerland
Universidad de Granada, Granada, Spain

R T I C L E I N F O

eywords:
ut-diffusion
ire
adionuclide
ource term
ERN-FLUKA
OLIDUSS

A B S T R A C T

The out-diffusion of radionuclides from activated material in case of a fire may represent a non-negligible
contribution to the radiological source term of such an event. In order to assess the contribution of this
phenomenon, a software package has been designed and implemented. In the present document we briefly
introduce the numerical treatment used to tackle the problem prior to the explanation of the software’s logic.
The document ends with an exemplary simulation and a study carried out to validate the implementation of
the algorithm.

The presented tool has been named SOLIDUSS, it is mainly written in C++ and uses a Monte Carlo
based approach to simulate the diffusion of radioisotopes within solid materials. It is designed to run coupled
with CERN-FLUKA, taking advantage of its geometry kernel to carry out diffusion calculations in arbitrarily
complex geometries. The user can provide 3D temperature maps along with many other parameters that allow
the program to target a wide range of different scenarios. As results SOLIDUSS provides 3D radionuclide
concentration maps as well as the amount of radionuclides out-diffused from the selected materials. So far,
this software has undergone numerical validation which will be discussed in this paper. Benchmarking against
experimental data is currently ongoing.
. Introduction

A fire in an activated area, such as those of the CERN (European
rganization for Nuclear Research) accelerator complex, could result

n the release of radionuclides to the environment. In the past the com-
ustion of activated material was considered as the only radionuclide
elease mechanism due to fire in most studies. Yet, the requirement
f exhaustive radiological source terms for this type of scenarios has
evealed the need to evaluate the contribution of a second mechanism:
he out-diffusion of radionuclides due to the high temperatures reached
n the fire and surroundings (i.e. radionuclides being liberated from
heir original host material). A complete neglection of this phenomenon
ould probably underestimate the radiological hazard but an assumed

elease scenario of 100% could be grossly over-conservative. This paper
xplains the problem and the tool we have designed which aims at more
ccurately estimating the contribution of radioisotope out-diffusion to
adiological source terms in case of fires in arbitrary geometries. This
as done in the context of the FIRIA (Fire Induced Radiological Inte-
rated Assessment) project (FIRIA, 2018; Gai, 2021) at CERN, which
ims to develop an integrated approach to quantitatively assess po-
ential discharges of radioactive substances induced by a fire accident
n particle physics’ experimental facilities. To this end, state-of-the-art
ools and methods are used to study the radioactive source term, fire

∗ Corresponding author at: European Organization for Nuclear Research (CERN), Geneva, Switzerland.
E-mail address: francisco.ogallar.ruiz@cern.ch (F.O. Ruiz).

dynamics, evacuation, intervention time, environmental dispersion and
dose assessment.

2. Theoretical summary

In this section we aim to give a general but not exhaustive in-
troduction to diffusion in solids that shall help us to understand and
eventually overcome the aforementioned problem. Diffusion in solids
is a well-known topic adequately addressed by many sources. To name
but one, Ref. Mehrer (2007) by H. Mehrer is regularly consulted by the
authors. Also, a gentle introduction can be found online in Ref. Föll
(2019) by H. Föll.

2.1. Diffusion

From a microscopic perspective, diffusion in solids is nothing other
than Brownian motion of atoms or molecules. They move due to their
thermal energy, which makes them vibrate around their equilibrium
position following a Maxwell–Boltzmann velocity distribution. Most of
the hops of the vibrating atoms will find the potential well driving the
atoms back to their equilibrium position, but sometimes their energy
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will be sufficient to overcome it, ending up in a different location. The
success rate of the jumps follows an exponential dependence on the
medium temperature since the probability for an atom to be found
with a thermal energy above 𝐸 [J] is given by exp

[

−𝐸∕(𝑘𝐵𝑇 )
]

, with
𝑘𝐵 [J K−1] the Boltzmann’s constant and 𝑇 [K] the absolute tempera-
ture. As a result, atomic migration in a solid is, in general, the result
of successive jumps of fixed lengths.

From the phenomenological perspective, the equations governing
diffusion are known as Fick’s laws (Crank, 1975). These laws describe
the macroscopic manifestation of the microscopic processes outlined
above. Fick’s laws as they will be shown here are applicable to isotropic
media, which is not a major constraint for our purposes. Fick’s first
law relates the diffusion particle flux 𝐽 (𝑟, 𝑡) [cm−2 s−1] and the particle
concentration gradient ∇𝐶(𝑟, 𝑡) [cm−4] in a point 𝑟 for a given time 𝑡 as
shown below:

𝐽 (𝑟, 𝑡) = −𝐷∇𝐶(𝑟, 𝑡). (1)

The factor 𝐷 [cm2 s−1] is known as the diffusion coefficient and it will
depend, in general, on the diffusing particles, the host material and the
temperature in a way that will be detailed later. Fick’s second law, also
called diffusion equation, relates the particle concentration evolution
with its gradient divergence.

𝜕𝐶(𝑟, 𝑡)
𝜕𝑡

= 𝐷∇2𝐶(𝑟, 𝑡), (2)

Eq. (2) is the one to be solved in order to calculate the temporal
evolution of our radionuclide concentrations in case of fire.

The connection between microscopic and phenomenological visions
can be illustrated using a very simple random walk model as shown in
Appendix A.

2.2. Diffusion coefficient

The diffusion coefficient, 𝐷, tells us how fast a given species diffuses
within a host material at a certain temperature. It has dimensions of
[length2/time] and is commonly expressed in [cm2 s−1]. Typically, for
metals it is a function of temperature following the Arrhenius formula
as the one below:

𝐷 = 𝐴 exp
(

− 𝑄
𝑅𝑇

)

, (3)

where 𝐴 [cm2 s−1] is the so-called frequency factor, 𝑄 [J mol−1] is the
activation energy, T [K] is the absolute temperature and 𝑅 [J K−1 mol−1]
is the gas constant.1 The activation parameters 𝐴 and 𝑄 depend on
the host materials and the diffusing species. Also, depending on the
medium of consideration, the diffusion coefficient may not follow a
simple Arrhenius behaviour, but is the addition of several of them.

3. Numerical treatment

In Appendix A it is shown that random walks emulate the diffusion
process under certain assumptions. This well known result suggests that
we can simulate diffusion processes using stochastic methods, avoiding
the need for deterministic solutions of the diffusion equation often
based on the use of Finite Elements Methods that for us would pose
a number of difficulties – especially considering diffusion of radionu-
clides produced in an arbitrary geometry following the interaction of
the primary particle beam with material – such as:

• The simulated geometry used to obtain the radionuclide inven-
tory and its spatial distribution via particle physics simulation
packages such as CERN-FLUKA (Battistoni et al., 2015; Bohlen
et al., 2014) would need to be recreated from scratch as the

1 Depending on the units of 𝑄, it is common to find Eq. (3) written in terms
f 𝑘 , since 𝑅 = 𝑁 𝑘 , with 𝑁 the Avogadro number.
2

𝐵 𝐴 𝐵 𝐴
input format is not compatible. Finite Element packages generally
create their meshes from standard CAD (Computer-Aided Design)
models that are usually surface-based boundary representation
models, whereas particle transport codes require a full volumet-
ric description and typically use Boolean Combinatorial Solid
Geometry (CSG) to describe complex objects.

• Results are susceptible to meshing quality, boundary conditions
and step sizes of the implemented solver. Therefore, the results
need to be accompanied by sensitivity studies assessing the im-
pact of these parameters. For general studies, it would require
users with experience in the handling of these tools, which is not
common within the Radiation Protection (RP) community.

• Simulations have to be carried out with different packages, one
for obtaining the radionuclide inventory and another one for sim-
ulating its diffusion, which requires data handling and a perfect
duplicate of the simulated system, making the whole process more
prone to errors.

Considering all the above, we deem the development of a Monte Carlo
based diffusion model internally linked to CERN-FLUKA as the best
strategy to overcome these difficulties.

3.1. Wiener process

To simply use random walks to simulate each single atomic jump of
the radionuclides would obviously be straightforward but very cumber-
some for reasons of computational effort. At the same time, it will not
be necessary since we can infer a more suitable numerical treatment
to be implemented in our tool. Let us have a look at the probability
distribution associated to the radionuclide’s position after 𝑛 → ∞
atomic jumps (Theis and Vincke, 2016; Evans, 2019; Lalley, 2019).
Consider an atom that could jump to the right or to the left with the
same probability a distance 𝛥𝑥 every 𝛥𝑡 seconds. Its position after 𝑛
jumps would be 𝑋(𝑡) = 𝑆𝑛𝛥𝑥, with 𝑆𝑛 =

∑𝑖=𝑛
𝑖=1 𝜖𝑖 and 𝜖𝑖 = ±1 (both

values with probability 1∕2). From this we can see that:

𝜇(𝜖𝑖) = 0, (4a)

𝜎2(𝜖𝑖) = 1. (4b)

where 𝜇(𝜖𝑖) is the mean of the distribution associated to 𝜖𝑖 and 𝜎2(𝜖𝑖)
its variance. Since 𝜖𝑖 are real, independent and identically distributed
variables, and 𝜎2(𝜖𝑖) is positive, we know that because of the Central
imit Theorem, the following is true for all −∞ < 𝑎 < 𝑏 < +∞:

lim
𝑛→∞

𝑃

(

𝑎 <
𝑆𝑛 − 𝑛𝜇(𝜖𝑖)
√

𝑛𝜎(𝜖𝑖)
< 𝑏

)

= 1
√

2𝜋 ∫

𝑏

𝑎
𝑒−

𝑥2
2 𝑑𝑥. (5)

Consequently the position of our atom after 𝑛 jumps can be expressed
as follows:

𝑋(𝑡) = 𝑆𝑛𝛥𝑥 =

(

𝑆𝑛 − 𝑛𝜇(𝜖𝑖)
√

𝑛𝜎(𝜖𝑖)

)

√

𝑛𝜎(𝜖𝑖)𝛥𝑥, (6)

where we have used Eq. (4a). We can see that:

lim
𝑛→∞
𝑡=𝑛𝛥𝑡

𝑃 (𝑎 < 𝑋(𝑡) < 𝑏)

= lim
𝑛→∞
𝑡=𝑛𝛥𝑡

𝑃

(

𝑎
√

𝑛𝜎(𝜖𝑖)𝛥𝑥
<

𝑆𝑛 − 𝑛𝜇(𝜖𝑖)
√

𝑛𝜎(𝜖𝑖)
< 𝑏

√

𝑛𝜎(𝜖𝑖)𝛥𝑥

)

.
(7)

If we substitute 𝑛 = 𝑡∕𝛥𝑡 and apply Eqs. (4b) and (5):

lim
𝑛→∞
𝑡=𝑛𝛥𝑡

𝑃 (𝑎 < 𝑋(𝑡) < 𝑏)

= lim
𝑛→∞

𝑃

⎛

⎜

⎜

⎜

⎝

𝑎
√

𝑡
𝛥𝑡𝛥𝑥

<
𝑆𝑛 − 𝑛𝜇(𝜖𝑖)
√

𝑛𝜎(𝜖𝑖)
< 𝑏

√

𝑡
𝛥𝑡𝛥𝑥

⎞

⎟

⎟

⎟

⎠

= 1
√

2𝜋 ∫

𝑏

𝛥𝑥
√

𝑡
𝛥𝑡

𝑎
√

𝑡

𝑒−
𝑥2
2 𝑑𝑥.

(8)
𝛥𝑥 𝛥𝑡
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after a simple variable substitution we obtain2:

lim
𝑛→∞
𝑡=𝑛𝛥𝑡

𝑃 (𝑎 < 𝑋(𝑡) < 𝑏) = 1

𝛥𝑥
√

2𝜋𝑡
𝛥𝑡

∫

𝑏

𝑎
𝑒
− 𝑥2

2𝑡(𝛥𝑥)2∕𝛥𝑡 𝑑𝑥. (9)

ased on the relation 𝛥𝑡 → 0 and 𝛥𝑥 → 0, one can define (as mentioned
n Appendix A) the diffusion coefficient as follows:

∶= lim
𝛥𝑥→0
𝛥𝑡→0

(

(𝛥𝑥)2

2𝛥𝑡

)

, (10)

inally obtaining the expression:

lim
𝑛→∞
𝑡=𝑛𝛥𝑡

𝛥𝑥→0, 𝛥𝑡→0

𝑃 (𝑎 < 𝑋(𝑡) < 𝑏) = ∫

𝑏

𝑎
𝜙(𝑥, 𝑡)𝑑𝑥, (11)

where 𝜙(𝑥, 𝑡) = 1
√

4𝜋𝐷𝑡
𝑒−

𝑥2
4𝐷𝑡 is the probability density function (PDF) of

normal distribution with 𝜇 = 0 and 𝜎2 = 2𝐷𝑡. This equation demon-
trates that the probability of finding an atom in a given position after
large number of jumps converges towards the result obtained from a
ormal distribution centred on the atom’s initial position whose vari-
nce is proportional to the diffusion coefficient and the diffusion time.
t is easy to prove, via simple substitution, that the aforementioned
istribution is a fundamental solution of the 1-D diffusion equation.

In light of the previous derivation, we can make use of a standard
iener process to simulate diffusion. This process is a real valued

ontinuous-time stochastic process with normally distributed and in-
ependent increments and can be understood as the scaling limit of
andom walks (Donsker’s theorem Donsker, 1951).

In practice this means that if the diffusion coefficient is known,
ne can sample the position of a radionuclide after a given diffusion
ime (big enough to accommodate a large number of atomic jumps)
sing a multivariate normal distribution. Of course, by doing this we
ould overlook the presence of boundaries during this step, which are
f major importance to us because we are interested in the number
f radionuclides reaching an object’s surface. In order to resolve this
roblem, we can split the total diffusion time into a suitable number
f sub-steps that are sampled in sequence. This allows for checking
he position of the radionuclide after each of them, as schematically
hown in Fig. 1, and therefore detecting if a given radionuclide reached
surface during its trajectory through the host material.

. SOLIDUSS: implementation and logic

The pursued aim is the creation of a simple and reliable soft-
are that could be used in the context of radiation protection studies
henever it is important to evaluate the potential out-diffusion of

adionuclides from arbitrarily complex geometries in case of fire. The
eveloped diffusion software has been named SOLIDUSS, which stands
or SOLID-state diffUSion Software, and it is mainly written in C++.

This tool takes advantage of the CERN-FLUKA geometry kernel to
perform out-diffusion calculations in arbitrarily complex geometries.
Using it we can obtain the amount of radionuclides out-diffused from
a given source material into an arbitrary number of target materials in
ny area of interest of our geometry. This is done for a set of diffusion
eriods as defined by the user3 and, in addition, the software will
lso provide a 3-D map of the radionuclide concentration for each
f them. It also offers the possibility of performing multiple diffusion
alculations while running a single CERN-FLUKA simulation, which
s especially useful if we need to assess the out-diffusion of multiple
adionuclide species, or if we need to perform a sensitivity analysis

2 This can be proven using the change of variable 𝑦 = 𝑥 ⋅ 𝛥𝑥
√

𝑡
𝛥𝑡

.
3 For instance, we could be interested in studying how out-diffusion evolves

during a fire, so we would need to request different diffusion times such as
10 min, 30 min, 60 min, etc.
3

over a certain parameter. In addition, SOLIDUSS can make use of a 3-
D map of temperatures provided by the user to track the radionuclides
accordingly, allowing the user to evaluate out-diffusion based on more
realistic scenarios where the temperature is not found to be the same
all over the area of interest. To make this possible, SOLIDUSS is linked
to CERN-FLUKA at two different levels:

• We make use of CERN-FLUKA user routines to trigger different
actions of the diffusion software. Upon creation of a radionuclide
in a region of interest (ROI) a hook into SOLIDUSS is activated
which then takes care of the actual diffusion calculation.

• For the actual tracking SOLIDUSS calls back into the geometry
kernel of the Monte Carlo software, which allows for reusing the
identical geometry model used already for simulating the creation
of radionuclides.

4.1. How to use the software

In order to use the software to simulate diffusion in addition to the
standard CERN-FLUKA calculations, one must carry out the following
actions:

• Create the so-called diffusion input file (see Appendix B for an
example), which will include all the information needed to sim-
ulate diffusion according to the user preferences (radionuclide
of interest, host-material, activation parameters, diffusion times,
temperature maps, concentration mesh boundaries, etc.).

• Make sure the CERN-FLUKA input file includes the necessary
options to simulate radioactive decays according to the user’s
needs.

• Compile SOLIDUSS and link it against CERN-FLUKA.

nce this setup is accomplished, the procedure to run the simulation is
dentical to that of a standard CERN-FLUKA simulation.

.2. Further considerations

There are few things that should be kept in mind by the user:

1. We are currently always considering isotropic host materials.
This is justified for our applications since diffusion is isotropic
in the majority of the materials we are interested in. Extension
of the methodology towards anisotropic diffusion is in principle
easily possible. However, it would depend on the crystalline
structure of the material which generally is not known to the
user.

2. Regarding materials that are liquid at typical fire temperatures.
Although the numerical treatment should still be valid for static
liquids if proper diffusion parameters are provided, the modelled
geometry of the originally solid objects would no longer be appli-
cable. Also, for non-static liquids, their flow would significantly
impact the out-diffusion fraction in ways that SOLIDUSS cannot
predict.

3. It is important to stress the stochastic nature of the tool we
are describing and pay attention to the number of histories
simulated (amount of nuclides followed for each particular case)
as it will be of extreme importance to ensure the statistical
significance of the results.

4. The current model does not include any surface effect and every
nuclide will be considered as out-diffused from its host material
as soon as it reaches the surface. Future versions of the software
will address this scenario as optional features.

5. After a given diffusion time, the total amount of radionuclides
may have been significantly reduced due to decay. This is taken
into account by the software, which provides the user with the
fraction of radionuclides remaining after the diffusion time by
means of a message printed in the output file.
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Fig. 1. Schematic example of the 2-D path followed by a radionuclide and the path that would be obtained by sampling multivariate normal distributions for a given number of
time steps. Note that the variances of the normal distributions have been reduced here for illustration purposes, normally these distributions would present a significant overlap.
6. Chemical reactions are not simulated by SOLIDUSS and there-
fore the diffusion of potential compounds containing radioactive
elements is not automatically accounted for. Nonetheless, the
diffusion of this type of compounds could be simulated by pro-
viding its diffusion parameters to SOLIDUSS and requesting the
simulation of a given radionuclide as if it was the compound.
Note that volatile elements are simulated like any other and their
higher diffusivity will be accounted for by using their diffusion
coefficient.

5. Outputs post-processing: out-diffusion fraction estimation

The fraction of radionuclides out-diffused from a given object, what
we call the out-diffusion fraction (ODF), will always be underestimated
when calculated using simulated step lengths greater than the real
atomic step lengths of the atoms in the solid lattice. This is because
even if we check (sample) the position of a radionuclide often, it may
happen that the radionuclide’s path would reach a boundary and come
back to the host material region between two consecutive position
checks. If the final position is known to be inside the material, then we
would wrongly consider the radionuclide as not out-diffused. Of course,
this underestimation is less significant as we reduce the simulated step
length approaching the atomic scale. In the limit of simulated steps
of the size of real atomic steps we say that the simulation is per-
formed with a perfect path resolution. However, this type of simulation
is unpractical or even impossible for bulky objects, due to its high
consumption of CPU resources, as mentioned earlier.

The discrepancy between the estimator and the accurate result is
therefore influenced by the chosen size of the step lengths, which
directly influences the reliability of the final result. A dedicated study
showed that the ODF follows a well defined function of the time
step used to sample the radioisotopes paths. The extrapolation of this
function could be used to obtain a more accurate estimation of the ODF.
This behaviour can be observed using a simple random walk simulation,
as explained below.

Imagine a 1-D crystal lattice and a radionuclide located at the
origin (𝑥 = 0) that can make a jump every second to the right or
to the left with same probability. Let us place a boundary at a given
position 𝑥𝑏. If at some point we find out that the radionuclide has
crossed this boundary, we will consider it as out-diffused from the
lattice. Now, we can let the radionuclide move during a time period 𝑡
and check its position every 𝛥𝑡 seconds. By doing this we will see
whether the radionuclide is still inside the lattice or, on the contrary,
it has traversed the boundary and therefore we must consider it as out-
diffused. The radionuclide will keep moving unless we detect it beyond
the boundary 𝑥𝑏 during one of the checks performed every 𝛥𝑡 s. It might
very well cross 𝑥 (𝑥 > 𝑥 ) and come back (𝑥 < 𝑥 ) within 𝛥𝑡 s. In
4

𝑏 𝑏 𝑏
Fig. 2. Out-diffusion fraction as a function of the time interval 𝛥𝑡 between consecutive
checks of the radionuclide position for a 1-D random walk considering one jump per
second and 𝑁 = 220 jumps per radionuclide in total. A radionuclide is considered
out-diffused if found beyond the position 𝑥𝑏. The fit of these data using Eq. (12) is
also shown.

such a case, it will not be observed beyond the boundary and therefore
not accounted for as out-diffused. We performed different simulations
for different values of 𝛥𝑡 in order to compare the fraction of out-diffused
radionuclides that we obtain for each of them.

The results considering 𝑁 = 220 jumps per radionuclide and a
boundary placed at 𝑥𝑏 =

√

𝑁 ⋅ 𝛥𝑥∕24 (where 𝛥𝑥 is the length of a single
jump) are shown in Fig. 2, where we can see that the out-diffusion
fraction we obtained does depend on how often we check the position
of the radionuclides. This dependence perfectly obeys the following
function:

𝑂𝐷𝐹 (𝛥𝑡) = 𝑎 ⋅ erfc
(

𝑏 ⋅
√

𝛥𝑡
)

+ 𝑐, (12)

where erfc is the complementary error function and 𝑎, 𝑏 and 𝑐 are the fit
parameters. This is a remarkable result since it will allow us to estimate

4 Note that after 𝑁 steps, the position of the radionuclide will follow a
normal distribution centred on its initial position and with a standard deviation
given by 𝜎 =

√

𝑁 ⋅ 𝛥𝑥. Therefore, we have located the boundary at a distance
of 𝜎∕2 from the initial position of the radionuclides. It can be shown, using the
reflection principle for a Wiener process (Jacobs, 2010), that the out-diffusion
fraction (as defined here) would be approximately at 61.8% of the total
number of radionuclides, coinciding with our simulation result for 𝛥𝑡 → 0
(see Fig. 2).
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Fig. 3. Out-diffusion fraction as a function of the time step used in the tracking of
the radionuclides for several diffusion times. As expected, the smaller the time step
used, the larger the out-diffusion fraction we obtain, saturating as it gets closer to the
real value. The curves represent fits to the data obtained using Eq. (12). The statistical
uncertainties of the simulation results are also plotted, but they are too small to be
visible.

the ODF for tiny time steps just by knowing it for larger ones. In other
words, if we have enough data to fit the curve, we can obtain the ODF
for any time step, including 𝛥𝑡 → 0. The same behaviour has been
observed in 2-D and 3-D, as well as for non-trivial boundaries.

Similar results can be observed using SOLIDUSS. Fig. 3 shows the
ODF of 32P from a Fe cylinder at 1273 K as a function of the time step
sizes used when sampling the radionuclides’ paths. The initial distri-
bution of radionuclides was considered as uniform within the cylinder
and the results are shown for several total diffusion times, which are the
duration of the material exposure to high temperatures (i.e. to fire). As
we can see, the agreement between the fitting function [Eq. (12)] and
the simulation results is excellent, which corroborates the hypothesis of
using it to estimate the real ODF: the one we would obtain for 𝛥𝑡 → 0.
Nevertheless, using a fitted function for extrapolation purposes should
be done with extreme caution; in particular, one should make sure that
the tendency of the fitted data in the fit region remains unchanged in
the region of interest (Wolberg, 2006 pp. 96–99). We are convinced
that we should expect nothing else than an asymptotic behaviour of
the simulated ODF towards the real value when 𝛥𝑡 → 0. To test this
assumption, we performed the pure random walk simulation presented
earlier, in which this asymptotic tendency has been proven as true
down to the minimum time step size possible, that one needed for an
isotope to perform a single atomic jump. This is why we believe the
use of this fit for extrapolation is justified. Once the fit parameters have
been obtained, we can estimate the out-diffusion fraction as follows:

𝑂𝐷𝐹 (𝛥𝑡 → 0) = 𝑎 ⋅ erfc
(

𝑏 ⋅
√

0
)

+ 𝑐 = 𝑎 + 𝑐, (13)

since erfc (0) = 1. One may suspect that the behaviour shown in Fig. 3
is just a consequence of the uniform initial distribution of radionuclides
that we have used; or even that this behaviour would be distorted
in the presence of non-uniform temperatures. In order to study these
hypotheses we have performed a number of tests involving different
pairs radionuclide — host material, geometries, temperature gradients
and non-uniform initial distributions. The aforementioned behaviour
remains present in all of them, which allow us to estimate the ODF
whenever we have several estimated values for different time steps,
even if these values are far from the real fraction. As a consequence,
the CPU time needed to estimate an ODF is largely reduced,5 and we
obtain a much better approximation of the real ODF. The associated
confidence intervals can be estimated using the covariance matrix

5 The larger the time step, the smaller the number of steps and hence, the
smaller the number of calculations to be performed.
5

resulting from the fit and scaling the obtained variance according to
the critical values of the Student’s t-distribution to account for the small
number of data points involved in the fit (Wolberg, 2006 pp. 15–16).

6. Exemplary calculation

In the present section we show an exemplary case which aims at
illustrating some of the software’s capabilities. In particular, let us
consider a warm quadrupole from the Large Hadron Collider (LHC) at
CERN to investigate the out-diffusion of several radionuclides produced
in its yoke and coils. We have assumed the yoke to be made of Fe, and
the coils of Cu. A cross section of the quadrupole is shown in the left
part of Fig. 4, together with a zoom to better observe the coils. These
coils consist of rectangular Cu cells with a cylindrical cavity in their
centre through which cooling water flows. An insulation layer wraps
each of those cells.

We assume the temperature map provided in the upper right image
of Fig. 4, with 1000 ◦C at the outer surface of the quadrupole and
a reduction of the temperature as a function of the distance to this
surface. As a consequence, we find the lowest temperatures in the inner
part of the quadrupole.

In the lower right image of the same figure, we can see the initial
distribution of 55Fe in the magnet yoke. It was produced for this
example by simulating the collision of 7 TeV protons with an LHC
collimator some metres away from the quadrupole, which generates
the particle showers that activate the materials in the magnet. The
residual radionuclides produced in this simulation by CERN-FLUKA are
internally passed to SOLIDUSS, triggering the diffusion calculation ac-
cording to the user specifications. The isotope 55Fe has been arbitrarily
chosen, similar concentration maps are found for other species.

The resulting ODF for different radionuclides from yoke and coils
is shown in Table 1. The selection of radionuclides for this example
is arbitrary. One can perform these calculations for any radionuclides
of interest, provided they are produced in the irradiation scheme
simulated with CERN-FLUKA and the necessary diffusion parameters
have been communicated to SOLIDUSS by means of the diffusion input
file. In the aforementioned table it can be observed that we have
divided the radionuclides out-diffusing from the Cu coils into those
entering the insulation and those entering the water cooling. This can
be very easily done with SOLIDUSS and may be of interest to assess
the portion entering the cooling system and that one that could be
released if the coil insulation is burnt during an hypothetical fire in
the area. The computational time spent by SOLIDUSS to carry out the
presented calculation in a 3.40 GHz Intel Core i7-6700 CPU was 46 h.
Considering 4 CPUs running in parallel, the diffusion calculation could
be performed in approximately 11.5 h using a desktop PC. Note that
the example shown here is a very exigent one in terms of CPU time
due to the quadrupole yoke, which is a very bulky object, resulting
in very low ODFs. As a consequence, longer run times are needed to
achieve sufficiently small uncertainties. In addition, statistical uncer-
tainties are also affected by the number of radionuclides followed. For
radioisotopes with lower production yields one will typically find ODF
with larger uncertainties, two examples of this in Table 1 are 32P in Fe
and 48V in Cu to a lesser extent.

The diffusion coefficient parameters used for this simulation has
been extracted from Brandes and Brook (1992).

7. Bootstrapping test

In this section we explain the study carried out to check SOLIDUSS’
implementation and the numerical treatment on which it is based.
To simulate the diffusion of radionuclides, one of the most important
input parameters that needs to be provided to the code is the diffusion
coefficient. This quantity, which is available in the literature for a
large variety of species and materials, is usually obtained experimen-
tally (Brandes and Brook, 1992). One of the typical procedures to
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Fig. 4. Cross section of the simulated geometry of a LHC warm quadrupole (left), together with the temperature map assumed (upper right) and the concentration of 55Fe obtained
with CERN-FLUKA (lower right). The pictures have been created using Flair (Vlachoudis, 2009).
Table 1
Out-diffusion fraction for some residual nuclei generated in the quadrupole yoke and
coils. Radionuclides are generated in the source material and out-diffused into the
target material. We have considered two diffusion times: 30 min and 1 h. Results are
provided in parts-per-million (ppm) and its uncertainties correspond to 2𝜎 confidence
intervals.

Source material Target material Isotope ODF [ppm]

30 min 1 h

Fe Air

55Fe (2.3 ± 0.4) ⋅ 101 (3.3 ± 0.4) ⋅ 101
54Mn (3.3 ± 0.4) ⋅ 101 (4.7 ± 0.4) ⋅ 101
48V (3.2 ± 0.4) ⋅ 101 (4.6 ± 0.4) ⋅ 101
32P (6 ± 5) ⋅ 101 (9 ± 5) ⋅ 101

Cu Insulation

65Zn (2.52 ± 0.05) ⋅ 103 (3.61 ± 0.05) ⋅ 103
64Cu (1.48 ± 0.04) ⋅ 103 (2.11 ± 0.05) ⋅ 103
60Co (9.7 ± 0.4) ⋅ 102 (1.39 ± 0.05) ⋅ 103
54Mn (2.58 ± 0.10) ⋅ 103 (3.68 ± 0.13) ⋅ 103
48V (1.8 ± 0.2) ⋅ 103 (2.6 ± 0.3) ⋅ 103

Cu Cooling water

65Zn (8.5 ± 0.4) ⋅ 102 (1.23 ± 0.05) ⋅ 103
64Cu (5.0 ± 0.3) ⋅ 102 (7.1 ± 0.3) ⋅ 102
60Co (3.3 ± 0.2) ⋅ 102 (4.7 ± 0.3) ⋅ 102
54Mn (8.5 ± 0.7) ⋅ 102 (1.22 ± 0.09) ⋅ 103
48V (5.2 ± 1.3) ⋅ 102 (7.8 ± 1.9) ⋅ 102

obtain the diffusion coefficient, and in particular the activation parame-
ters 𝐴 and 𝑄, are the so-called tracer diffusion experiments (Mehrer, 2007
pp. 215–223). In such experiments a specific radioactive isotope – the
tracer – of the element whose diffusion coefficient is to be obtained,
is deposited on the material of interest. This material is then heated
up to a certain temperature to promote diffusion and the resulting
concentration profile of the tracer inside the material is analysed in
order to extract the activation parameters. The boundary conditions
of the experiment (material geometry, tracer deposition, temperature
gradient, etc. are chosen in such a way that the diffusion equation
can be solved analytically and hence, the shape of the tracer’s profile
inside the host material is known beforehand. One can then obtain the
best fit to the experimental results using the analytical solution of the
diffusion equation with the diffusion coefficient 𝐷 as the free parameter
6

of the fit. In this way, 𝐷 can be determined for a given temperature.
Repeating the process, several values of 𝐷 can be obtained for different
temperatures. Since the dependence of the diffusion coefficient with the
temperature is given by Eq. (3) or similarly, one can fit the obtained
diffusion coefficients using this expression with 𝐴 and 𝑄 as the free
parameters of the fit. Using this approach, both quantities can be
derived from the experimental data.

We can emulate this procedure by replacing the diffusion exper-
iment with a diffusion simulation. The idea is to set up a simple
problem that can be solved analytically, give the diffusion coefficient
parameters 𝐴 and 𝑄 to SOLIDUSS and simulate the system’s evolution.
The simulation will return the radionuclide’s concentration profile after
a given diffusion time and we will treat these results as if they were
experimental ones. Our goal would be to determine 𝐴 and 𝑄 using those
results and compare the obtained values with the ones we provided
to SOLIDUSS in the first place. If the resulting values are compatibles
with the input ones, we can be fairly confident about the correctness
of SOLIDUSS’ implementation and underlying numerical simulation
method.

Let us consider a 1-D scenario in which the initial concentration of
radionuclides is given by:

𝐶(𝑥, 0) =

{

𝐶0 if 𝑥 ≤ 0,
0 if 𝑥 > 0,

(14)

with 𝑥 denoting the spatial coordinate. It can be shown that the solu-
tion to the diffusion equation for this particular case is the following
(Mehrer, 2007 pp. 41–42):

𝐶(𝑥, 𝑡) =
𝐶0
2

erfc

(

𝑥

2
√

𝐷𝑡

)

, (15)

where 𝐷 is the diffusion coefficient and 𝑡 the diffusion time.
The concentration profiles of 48V after 2 h of diffusion in Cu

at different temperatures have been calculated using SOLIDUSS and
reported in Fig. 5. Note that the initial concentration of radionuclides
for 𝑥 ≤ 0 is 𝐶0 = 2 ⋅ 10−3 cm−3. In the same figure, we can see the best
fits of Eq. (15) for the different temperatures. The free parameter in the
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Fig. 5. Radionuclide concentration profiles returned by SOLIDUSS for 48V in Cu as
well as their best fits using Eq. (15) with 𝐷 as the free parameter.

Fig. 6. Diffusion coefficients for different temperatures and different species extracted
from SOLIDUSS results, together with the best fits of Eq. (3) for each pair radionuclide
— host material, being 𝐴 and 𝑄 the free parameters.

fits has been defined as 𝐷, and its best fitting values are reported in the
figure’s legend.

Repeating the process for further temperatures and radionuclides,
we obtained the results shown in Fig. 6. There we also show the best
fits of the diffusion coefficient expression for each pair radionuclide —
host material.

From each of these fits, we can get 𝐴, 𝑄 and their uncertainties,
which are intrinsic to the stochastic nature of our simulation and to the
fitting process. We deemed it convenient to repeat the entire process
considering different amounts of tracked radionuclides to verify if the
obtained results converge to the input values when the number of
histories increase. The extracted values are reported in Fig. 7, together
with the original activation parameters provided to SOLIDUSS.

We can observe a clear convergence towards the input values in all
cases, as well as a good compatibility of input and extracted values
within the error bars. Therefore, we conclude that the software imple-
mentation and the numerical treatment of diffusion on which it is based
work as intended to the best of our knowledge. Note that SOLIDUSS
does not make explicit use of the diffusion equation, yet its results are
in excellent agreement with those of the diffusion equation.

8. Conclusion

Through the previous sections we have tried to show that SOLIDUSS
is conceived as a versatile and reliable tool to perform solid-state
7

Fig. 7. Frequency factors (a) and activation energies (b) for different radionuclides
derived from SOLIDUSS simulations. The results are reported for various number of
histories simulated. The original input values given to SOLIDUSS are also shown for
comparison. The error bars correspond to 2𝜎 confidence intervals.

diffusion calculations for radiation protection purposes involving arbi-
trary geometries, temperatures and radionuclide distributions. It can be
used for overall and detailed diffusion studies and allows for multiple
calculations during a single run, facilitating a complete assessment of
the out-diffusion impact in complex scenarios.

The software’s limitations have been pointed out along this docu-
ment and the reader is encouraged to carefully read Sections 3 and 4,
paying particular attention to Section 4.2, where we have identified
a number of considerations that could help to understand the current
scope of the software.

SOLIDUSS has been designed and built in such a way that allows for
an easy introduction of future improvements and, in particular, those
related to the underlying physical model.

The experimental benchmarking of this tool is currently ongoing.
Preliminary results show the need to equip the software with the means
to simulate the desorption of those radionuclides reaching the object’s
surface. A thoroughly description of the benchmarking will be provided
in a future publication.
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Appendix A. Random walks and the diffusion equation

The use of random walks is a very pedagogical way of showing the
connection between the microscopic and the phenomenological visions.
Let us outline it in a similar way as in Ref. Evans (2019) pp. 36–37,
starting by a single atom that can jump a distance 𝛥𝑥 to the left or to the
right (we constrain ourselves to 1-D for simplicity) each time interval
𝛥𝑡, with probability 1∕2 for both directions (here we are assuming
isotropic media). Let us then define 𝑃 (𝑚, 𝑛) as the probability of finding
the particle at a position 𝑚𝛥𝑥 at a time 𝑛𝛥𝑡 with {𝑚 = 0,±1,±2,… ,±𝑛;
𝑛 = 0, 1, 2,…}. Then, considering 𝑃 (0, 0) = 1 (we place the atom initially
at the origin), we can see that:

𝑃 (𝑚, 𝑛 + 1) = 1
2
𝑃 (𝑚 − 1, 𝑛) + 1

2
𝑃 (𝑚 + 1, 𝑛). (A.1)

In plain words: the probability of being at a given position at a given
time is the probability of being next to it just before [𝑃 (𝑚 − 1, 𝑛) + 𝑃
(𝑚 + 1, 𝑛)] multiplied by the probability of jumping to it (1∕2). We can
now add −𝑃 (𝑚, 𝑛) to both sides of the equation and multiply them by
(𝛥𝑥)2∕𝛥𝑡, getting the following:
𝑃 (𝑚, 𝑛 + 1) − 𝑃 (𝑚, 𝑛)

𝛥𝑡

=
(𝛥𝑥)2

2𝛥𝑡
𝑃 (𝑚 − 1, 𝑛) + 𝑃 (𝑚 + 1, 𝑛) − 2𝑃 (𝑚, 𝑛)

(𝛥𝑥)2
.

(A.2)

We would like to move from our discrete description to a continuous
one, and this can be done by means of the continuous limit considering
very small 𝛥𝑥 and 𝛥𝑡, which means 𝛥𝑥 → 0 and 𝛥𝑡 → 0. In this case,
𝛥𝑡 → 𝑡, 𝑚𝛥𝑥 → 𝑥 and 𝑃 (𝑚, 𝑛) → 𝜙(𝑥, 𝑡), where 𝜙(𝑥, 𝑡) is the continuous

probability density function of finding the atom in a position 𝑥, at a
time 𝑡. The definition of derivative tells us that:
𝜕𝜙(𝑥, 𝑡)

𝜕𝑡
= lim

𝛥𝑡→0

𝜙(𝑥, 𝑡 + 𝛥𝑡) − 𝜙(𝑥, 𝑡)
𝛥𝑡

, (A.3)

and
𝜕2𝜙(𝑥, 𝑡)

𝜕𝑥2
= lim

𝛥𝑥→0

𝜙(𝑥 + 𝛥𝑥, 𝑡) + 𝜙(𝑥 − 𝛥𝑥, 𝑡) − 2𝜙(𝑥, 𝑡)
(𝛥𝑥)2

. (A.4)

Using all of this, Eq. (A.2) becomes:

𝜕𝜙(𝑥, 𝑡)
𝜕𝑡

= lim
𝛥𝑥→0
𝛥𝑡→0

(

(𝛥𝑥)2

2𝛥𝑡

)

𝜕2𝜙(𝑥, 𝑡)
𝜕𝑥2

. (A.5)

The similarities between Fick’s second law [Eq. (2)] and Eq. (A.5) are
now clear. Identifying 𝜙(𝑥, 𝑡) as the particle concentration 𝐶(𝑥, 𝑡) and
defining a positive constant 𝐷 such as:

𝐷 ∶= lim
𝛥𝑥→0
𝛥𝑡→0

(

(𝛥𝑥)2

2𝛥𝑡

)

, (A.6)

we obtain the diffusion equation in 1-D:

𝜕𝐶(𝑥, 𝑡)
𝜕𝑡

= 𝐷
𝜕2𝐶(𝑥, 𝑡)

𝜕𝑥2
. (A.7)

In 3-D, we would obtain Eq. (2). This approach is one of the many
variants that can be used to show the link between microscopic and
phenomenological descriptions of diffusion.

Appendix B. Diffusion input file

The diffusion input file is a card-based text file specifying the in-
formation necessary to perform the diffusion calculations. An example
consisting of two different sections can be found below. Please note
that only a sample of the available options is used in this example and
it is therefore not intended to show the full flexibility of the software.
A brief explanation on the meaning and usage of the different entries
employed is given after it.
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∗ Section 1 deals with Mn-54 coming out from iron. Since the
∗ diffusion coefficient parameters are different for
∗ different temperatures ranges we need to include several
∗ entries in the file.

SECTION 1
RADIOISOTOPE = Mn-54
HOST_MATERIAL = IRON
DIFFUSION_TIME = 600 1800 3600 7200
GLOBAL_TEMPERATURE = 1173
DIFFUSION_COEFFICIENT = 1.49 233600 0 0 0 1043
DIFFUSION_COEFFICIENT = 0.16 261700 0 0 1043 1667
DIFFUSION_COEFFICIENT = 0.35 219800 0 0 1667 1811
CONCENTRATION_GRID = -16 -41.5 -17602 86 31.5 -17262 100 100
20
FAST_TRACKING = Yes
TEMPERATURE_MAP_FILE = ../TempFile

∗ Section 2 deals with Co-60 coming out from copper, but we
∗ only want to take into account the amount not out-diffused
∗ into water.

SECTION 2
RADIOISOTOPE = Co-60
HOST_MATERIAL = COPPER
DIFFUSION_TIME = 100 500 1000 2000 4000
GLOBAL_TEMPERATURE = 900
DIFFUSION_COEFFICIENT = 0.74 217200 736 312800 0 1358
CONCENTRATION_GRID = 2.84 -20.65 -17617 67.16 10.65 -17247 50
50 100
FAST_TRACKING = Yes
EXCLUDE_TARGET_MATERIALS = Water
TEMPERATURE_MAP_FILE = ../TempFile

• SECTION unused_variable

Example: SECTION 1

Description: we can perform multiple diffusion calculations while
running a single CERN-FLUKA simulation. To do this, we must
organize the diffusion parameters corresponding to different cal-
culations in different sections. Each of these sections must start
with this card.

• RADIOISOTOPE = "chemical element symbol"-"mass number"

Example: RADIOISOTOPE = Mn-54

Description: specify the radioisotope whose out-diffusion needs to
be assessed.

• HOST_MATERIAL = "CERN-FLUKA material name"

Example: HOST_MATERIAL = Iron

Description: it allows us to select the material in which diffusion
will take place.

• DIFFUSION_TIME = Time_1 < Time_2 Time_3 ... >

Example: DIFFUSION_TIME = 600 1800 3600 7200

Description: using this card the user can request an arbitrary
number of diffusion times and the program will provide the
results for each of them.

• GLOBAL_TEMPERATURE = Temperature

Example: GLOBAL_TEMPERATURE = 1173

Description: selects the temperature of the environment where
diffusion need to be simulated.

• DIFFUSION_COEFFICIENT = A1 Q1 A2 Q2 Ti Tf
Example:
DIFFUSION_COEFFICIENT = 1.49 233600 0 0 0 1043

Description: card used to specify the diffusion coefficient to be
used in the simulation. In particular, the user can provide up to
two pairs of activation parameters (A1, Q1, A2 and Q2) for a given
range of temperature [Ti, Tf].

• CONCENTRATION_GRID = MinX MinY MinZ MaxX MaxY MaxZ NrBinsX NrBinsY

NrBinsZ

Example: CONCENTRATION_GRID = -16 -41.5 -17602 86 31.5 -17262

100 100 20

Description: we can define our area of interest specifying the
structural characteristics of the radioisotope concentration grid
that will be generated by the program using this card. MinX,

MinY and MinZ are the minimum coordinates in the 𝑋, 𝑌 and 𝑍
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axes respectively, while MaxX, MaxY and MaxZ are the maximum
ones. The parameters NrBinsX, NrBinsY and NrBinsZ represent the
number of bins into which the delimited volume will be divided
in each direction.

• FAST_TRACKING = "Yes/No"
Example: FAST_TRACKING = Yes
Description: if selected, we will make use of an optimization pro-
cedure aimed to reduce the computation time of the radioisotope
tracking whenever possible.

• TEMPERATURE_MAP_FILE = "path to file"
Example:
TEMPERATURE_MAP_FILE = ../temperatures_1.dat

Description: we can provide a temperature map by means of an
external file. This card enable this option and provide the file
path.

• EXCLUDE_TARGET_MATERIALS = "Material1" < "Material2" ... >
Example: EXCLUDE_TARGET_MATERIALS = Water
Description: this card allows us to exclude an arbitrary number of
materials from a list of target materials. In the example provided,
the program results will tell us the amount of radioisotopes
out-diffused from the host material into any material but Water.
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