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Abstract.

The remarkable advances in SAT solving achieved in the last years have allowed
to use this technology in many real-world applications of Artificial Intelligence,
such as planning, formal verification, and scheduling, among others. Interestingly,
these industrial SAT problems are commonly believed to be easier than classical
random SAT formulas, but estimating their actual hardness is still a very challeng-
ing question, which in some cases even requires to solve them. In this context, re-
alistic pseudo-industrial random SAT generators have emerged with the aim of re-
producing the main features shared by the majority of these application problems.
The study of these models may help to better understand the success of those SAT
solving techniques and possibly improve them.

In this work, we present a model to estimate the temperature of real-world SAT
instances. This temperature represents the degree of distortion into the expected
structure of the formula, from highly structured benchmarks (more similar to real-
world SAT instances) to the complete absence of structure (observed in the clas-
sical random SAT model). Our solution is based on the Popularity-Similarity (PS)
random model for SAT, which has been recently presented to reproduce two crucial
features of application SAT benchmarks: scale-free and community structures. The
PS model is able to control the hardness of the generated formula by introducing
some randomizations in the expected structure. Our solution is a first step towards
a hardness oracle based on the temperature of SAT formulas, which may be able to
estimate the cost of solving real-world SAT instances without solving them.
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1. Introduction

Despite the remarkable progress in SAT solving techniques in the last years, determining
the time required to solve a given SAT instance by a certain algorithm is still today one
of the most interesting and challenging questions in the SAT community. The simplest
solution is to run that algorithm until termination, but unfortunately this task may be
extremely costly, and hence infeasible. An alternative solution would be to accurately
estimate its solving time.

Most of the traditional approaches on the study of the hardness of SAT instances
have focused on the so-known classical random model of SAT formulas [28], where a
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random formula Fk(n,m) is a set of m clauses over n variables, and clauses are cho-
sen uniformly and independently among all the 2k

(n
k

)
non-trivial clauses of length k.2

The empirical hardness of this model has been extensively studied [28,35]. In particu-
lar, for any fixed n and k > 2, there exists an easy-hard-easy pattern depending on the
clause/variable ratio m/n, which is also related to the satisfiability of the formula. There-
fore, the hardness of random SAT formulas simply depends on k, n and m. The natural
question is whether a simple hardness characterization also exists for real-world SAT in-
stances, which is the question that motivates our work. Far from providing such a charac-
terization, in this work we analyze the relation between the hardness of real-world SAT
instances and a simple parameter of them, as a first step toward facing this challenge.

Although the reasons of the success of CDCL SAT solvers on the heterogeneous set
of application SAT instances are not completely understood yet [34,6], there have been
some recent attempts to study common features on these industrial problems [1] with
the aim of explaining the good performance of these solvers on this benchmark. Because
of this heterogeneity, realistic pseudo-industrial random SAT instances generators have
emerged, stated as one of the most important challenges in propositional search [32]. The
cornerstone of these models is to produce random formulas with computational proper-
ties similar to real-world instances. The Popularity-Similarity (PS) random model [20]
has been proposed as one of these realistic random SAT generators.

The PS model defines an expected structure composed of scale-free structure [3] (the
number of variables occurrences follows a power-law distribution, i.e., a few variables
occurs a lot whilst most of them occur very little) and community structure [5] as a result
of high clustering (the set of variables can be split into disjoint communities such that
variables mostly occur in clauses with other variables of the same community). They
are two common features in most real-world SAT benchmarks. Inspired by the entropy
of physical systems, the PS model uses the temperature T as a parameter to control the
degree of distortion into this structure. This is, at T = 0 the model produces that structure
with high probability (hence the generated formula is more similar to real-world SAT
instances), whereas at high temperature the model behaves like the classical random SAT
model (hence the generated formula does not exhibit any structure at all).

In practice, it has been observed that CDCL solvers focus on frequent variables and
on variables of the same community [6,4,19,7,2]. Using the synthetic PS model, it has
been also observed that CDCL solvers perform better on PS formulas with low tempera-
ture. On the contrary, SAT solvers specialized in classical random SAT formulas perform
better on PS formulas with high temperature [20]. We conjecture that the hardness of
real-world SAT formulas depends on a notion of temperature, which characterizes the
distortion into the structure of a particular formula from the structure exhibited in most
real-world SAT benchmarks. To this end, we consider a real-world SAT problem as an
instantiation of the PS model [20], and its temperature corresponds to the value of T in
this instantiation. We emphasize that this does not require the real-world instance to have
any structure (e.g., high T ).

In order to test our hypothesis, we need first to compute the temperature of a given
SAT formula. Unfortunately, there is no known analytical method to this purpose [31]. In
our work we present an extensive study of Machine Learning (ML) regression methods to
estimate it. In particular, we analyze the performance of different ML techniques trained

2A non-trivial clause of length k contains k distinct, non-complementary literals.

J. Giráldez-Cru and P. Almagro-Blanco / On the Temperature of SAT Formulas 47



with PS formulas generated at distinct temperatures, and measure their accuracy in the
estimation. We also evaluate the robustness of each ML technique when the training
set is altered with perturbations in the generation step. Empirically, we show that ML
techniques based on ensembles (e.g., random forest) are the most accurate approaches,
and they remain robust to perturbations.

2. Related Work

There are in the literature other realistic SAT generators, such as the scale-free SAT
model [4], which generates purely scale-free SAT instances, and the community attach-
ment model [18], which is able to produce formulas with clear community structure. We
recall that both features can be observed in PS formulas. The hardness of scale-free SAT
formulas [4] also depends on the exponent β of the power-law distribution that charac-
terizes them [15,16,30].

A seminal contribution on ML applied to SAT solving is SATzilla [36,23]. A SAT
solver unlikely dominates all others on unrestricted SAT instances, but it may show a
particularly good performance on a certain class of problems [26]. On this idea, SATzilla
proposes a per-instance algorithm portfolio that estimates the best solver to solve a given
formula from a predefined set. This portfolio approach has also been successfully applied
in other works [24,27].

3. The PS Random SAT Model

In this section we provide a brief description of the Popularity-Similarity (PS) random
SAT model [20]. For further details, we address the reader to the original reference.

The PS model is able to generate random SAT formulas with both scale-free and
community structure as the result of two orthogonal forces: popularity and similarity. To
model them, every variable i is assigned radial and angular coordinates ri and θi, repre-
senting respectively its popularity and its similarity to other variables. Popular variables
have a small radius and similar variables have close angles. These two coordinates are
also assigned to every clause j. In this model, the probability P(i ↔ j) of a variable i
occurring in a clause j (with any sign) is:

P(i↔ j) =

⎛
⎜⎝1+

⎛
⎝ rβ

i · r′β ′
j ·θi j

R

⎞
⎠

1/T
⎞
⎟⎠

−1

where ri and r j represent the radiuses of i and j respectively, θi j is the angular distance
between them, β and β ′ are respectively the exponents of the power-law distributions
for variables occurrences and clauses length, R is a normalization constant ensuring the
expected formula size, and T is the temperature of the model. Therefore, the temperature
T precisely controls the entropy of the system, i.e., the degree of distortion into the ex-
pected probabilities. The aforementioned structures are the result of this probability dis-
tribution, which is clearly non-uniform at low T : it is more likely that a clause j contains
a popular variable (low ri) or a variable similar to it (low θi j). In contrast, the probability
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distribution becomes (close to) uniform for high values of T , as in the classical random
SAT model.

4. ML-based Regression Techniques

In this section, we provide a general overview of the regression problem to solve, and the
techniques we use for that task.

Let us consider an instance φ , which is characterized by a vector xφ = [x1
φ , . . . ,x

n
φ ] of

n features. Being x∗ �∈ x the target feature to estimate, the problem consists of finding the
function f s.t. f (x) = x∗ ± ε that minimizes ε . In our case, φ represents a SAT instance,
x its features, and x∗ its temperature T . Since the temperatures of the PS instances used
in the training step are known a priori, we use supervised ML techniques to estimate f .
In the following section, it is discussed the set of features x used in our experiments.

In our problem, the target estimation x∗ is a continuous value. Although there exist
many different ML algorithms to predict these values, the no-free-lunch theorem [21]
states that it cannot be known a priori which techniques show a good performance in a
particular problem, and finding them usually requires a trial and error process.

In our experimental analysis, we evaluate a total of 13 distinct regression meth-
ods. They can be grouped into the following categories. (1) Linear regression: LR (or-
dinary least squares linear regression), SGD (Stochastic Gradient Descent), PassiveA-
gressive [10], RANSAC (Random Sample Consensus) [11], Theil-Sen (TS) [11], Hu-
ber [22], and Bayesian Ridge [33]. (2) Ensemble methods: RandomForest (RF) [8], Ex-
traTrees (ET) [17], AdaBoost (AB) [14], and XGBoost (XGB) [9]. (3) Neural networks:
FNN (Feed-forward Neural Network) with one hidden layer, 64 hidden neurons, and
Adam optimizer [25]. (4) Other methods: K-neighbors. For all these methods, we use the
implementation in sklearn [12].

For space constraints, we only give a general overview of these techniques. Linear
regression methods will help us to evaluate possible linear relations between the set of
features used to represent a formula and its temperature. Ensemble methods construct
a set of weak regressors and aggregate their predictions reducing the overfitting that
would be obtained when applying the regressors individually. It is well known that a
feed-forward network with a single hidden layer containing a finite number of neurons
can approximate continuous functions. Due to the already good performance achieved
by the FNN used in our experiments, we have not considered more complex FNN, or
even other graph neural network architectures. However, it would be interesting to study
them and analyze their performance in future works.

In our experiments, we also use Bayesian optimization [29] to tune the hyperparam-
eters of the ML techniques in order to increase their accuracy. In order to evaluate each
regression model, we perform a 10-folds cross-validation.

5. Analysis of the Temperature Estimation

In this section, we present an exhaustive experimental analysis of regression techniques
to estimate the temperature of SAT instances.
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5.1. Experimental Set-Up

Generation of SAT formulas. The training set is composed of an heterogeneous set of
PS random SAT formulas, differing in their number of variables n ∈ [100 . . .5000], and
their clause/variables densities m/n ∈ [2 . . .8]. For each value of n and m/n, we generate
100 random PS formulas with distinct temperatures. Our main benchmark results into
a total of 7200 SAT instances, containing both satisfiable and unsatisfiable formulas.
All formulas are 3-CNF and much smaller than real-world SAT instances. However, we
found experimentally that the formula size has no impact on the performance of ML
methods.

The popularity and similarity of the generated formulas is controlled by the param-
eter β . In the main batch of experiments, we use β = 1, i.e., a very clear scale-free struc-
ture. We also evaluate the robustness of the regression techniques exposing the training
set to some perturbations on β (see Section 5.3.1)
Values of Temperature. In the PS model, a small difference of T at low tempera-
tures may result in major differences in the resulting structure of the generated formula,
whereas at high temperatures this structure is almost unaltered. For this reason, instead
of working directly with the temperature, we sample and estimate its logarithm. In par-
ticular, for each formula size we sample 100 uniformly distributed random values in the
interval [−1,1]. These values correspond to the logarithm of the temperature of the gen-
erated formulas, and they are the values used to train the regression models and to be
estimated. Therefore, the actual temperature ranges in the interval [1/e,e]. Although this
generates a reasonable range of temperatures, we also evaluate some perturbations on
this interval in Section 5.3.2.
Set of features. Every SAT instance is characterized by a vector of features. Ideally,
this vector contains a set of uncorrelated, fast-to-compute features of the formula. In our
experiments, we use the extended and well-known set of features used in the SATzilla
toolkit [36]. In particular, we use a total of 101 features,3 including formula size, graph
characteristics, and solver statistics. In Section 5.4 we evaluate the impact of reducing the
number of features used to train the regression models, in order to analyze their feature
importance.
Filtering out trivial instances. Random PS SAT instances at low temperatures may
be very easy [20]. This is especially relevant in small formulas (e.g., n = 100), which
might be even solved by simple preprocessing techniques. For this reason, we filter out
those trivial instances from the benchmark because some SATzilla features include solver
statistics. We observed that the resulting unbalance does not affect the performance of
the regression models with the best accuracy, due to the already large number of formulas
in the benchmark.
Accuracy of the model. In order to evaluate each regression technique, we use the well-
known coefficient of determination R2 between the actual temperature and its prediction.
Recall that R2 ∈ [−∞,1] with positive values indicating the existence of a certain corre-
lation between the observed data and their predictions (the higher the value of R2, the
better the prediction).

In our experiments we use the value R2 ≥ 0.8 to distinguish those regression methods
achieving a strong correlation (i.e., a good accuracy in the prediction), although any other

3We skip the computation of LP-based and SLS-based features due to their long execution time for some
formulas. We also skip diameter features, as done in the last SATzilla version.
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Figure 1. Predicted temperature versus actual temperature, for some regression techniques with a small stan-
dard deviation.

reasonable high value of R2 could have been used instead. It is worth noticing that all
methods with such a strong correlation also show a very small standard deviation of R2,
always lower than 0.15 (and usually much lower).

5.2. Performance of Regression Methods

The first natural question in our analysis is whether a regression method is able to esti-
mate the temperature of a given PS SAT formula given the vector of SATzilla features
for this formula.

In Table 1, we summarize the performance of each regression method on this prob-
lem, with both default and optimized hyperparameter settings, measuring the average
and standard deviation of the coefficient of determination R2.

Regression Method Default Optimized

LR 0.789 ± 0.35 0.789 ± 0.35
SGD -1.230 ± 2.24 -2.5e8 ± 3e8
PassiveAggressive -181.7 ± 271 -1.072 ± 0.13
RANSAC -0.982 ± 1.53 0.511 ± 1.20
TS -8.272 ± 25.3 0.898 ± 0.03

Huber -0.085 ± 0.14 -0.076 ± 0.15
BayesianRidge 0.760 ± 0.46 0.694 ± 0.66
RF 0.921 ± 0.01 0.931 ± 0.01

ET 0.922 ± 0.01 0.935 ± 0.01

AB 0.878 ± 0.02 0.896 ± 0.01

XGB 0.924 ± 0.01 0.935 ± 0.00

FNN 0.687 ± 0.07 0.912 ± 0.01

Kneighbors 0.795 ± 0.03 0.796 ± 0.02
Table 1. Avg. coefficient of determination R2 for different regression methods, with default and optimized
hyperparameters.

We can observe that many of the methods with default settings are able of predicting
the temperature of the formulas with a high accuracy, hence showing the robustness of
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Baseline Perturbations on β Perturbations on T interval
β β = 1 β = 5/6 β = 4/6 β = 3/6 Union(β )

logT [−1,1] [−2,2] [−3,3]

LR 0.789 ± 0.35 -3.199 ± 12.4 -0.568 ± 4.45 0.856 ± 0.13 0.785 ± 0.02 0.936 ± 0.02 0.907 ± 0.01

TS 0.898 ± 0.03 -2.223 ± 9.40 -6.625 ± 22.3 -197.1 ± 241 -213.6 ± 270 0.939 ± 0.01 0.904 ± 0.02

RF 0.931 ± 0.01 0.932 ± 0.01 0.942 ± 0.01 0.958 ± 0.00 0.858 ± 0.01 0.955 ± 0.01 0.945 ± 0.01

ET 0.935 ± 0.01 0.935 ± 0.01 0.946 ± 0.01 0.960 ± 0.01 0.861 ± 0.01 0.956 ± 0.01 0.947 ± 0.01

AB 0.896 ± 0.01 0.882 ± 0.01 0.883 ± 0.01 0.904 ± 0.01 0.678 ± 0.01 0.928 ± 0.00 0.904 ± 0.01

XGB 0.935 ± 0.00 0.937 ± 0.01 0.948 ± 0.01 0.963 ± 0.01 0.872 ± 0.01 0.956 ± 0.01 0.943 ± 0.01

FNN 0.912 ± 0.01 0.904 ± 0.02 0.915 ± 0.01 0.927 ± 0.01 0.780 ± 0.02 0.917 ± 0.01 0.874 ± 0.02

Table 2. Avg. coefficient of determination R2 for different regression methods (with optimized hyperparame-
ter), varying the training data in: (i) the value of β , and (ii) the interval of the temperatures.

our approach. Those accurate methods are based on ensembles, which are commonly
more robust to hyperparameter tuning. FNN and Kneighbors present an acceptable ac-
curacy with a low standard deviation. Although models LinReg and BayesianRidge
also obtain an acceptable R2 average, we cannot draw definitive conclusions due to their
high deviation.

After optimizing hyperparemeters, we observe noticeable improvements in most of
the methods, especially in FNN and TheilSen. In the case of FNN, the method shows
a considerable improvement after adjusting the number of neurons in the hidden layer,
the optimizer and the batch size. In the case of TheilSen, this linear method is able
to learn from different subsets of the training data, and with an optimal configuration
acquires resistance against outliers. This fact suggests a certain linear relation between
SAT features and the temperature T . It is worth noticing that, in general, linear methods
do not outperform (non-linear) methods based on neural networks and ensembles.

In Figure 1, we depict the predicted temperature versus the actual temperature of
random PS formulas for six regression techniques. Notice that when R2 is close to 1, the
points on the figure must be close to the diagonal.

5.3. Robustness to Benchmark Perturbations

Regression Met. All Basic Graph CDCL Union

(baseline) (A) (B) (C) A∪B∪C

LinReg 0.789 ± 0.35 0.118 ± 2.14 0.808 ± 0.08 0.330± 0.07 0.749± 0.41
TheilSen 0.898 ± 0.03 -0.058 ± 2.62 0.832 ± 0.03 0.336± 0.06 -0.143± 3.11
RandomForest 0.931 ± 0.01 0.911 ± 0.01 0.917 ± 0.01 0.579± 0.04 0.927± 0.01

ExtraTrees 0.935 ± 0.01 0.918 ± 0.01 0.924 ± 0.01 0.565± 0.05 0.933± 0.01

AdaBoost 0.896 ± 0.01 0.863 ± 0.02 0.864 ± 0.01 0.331± 0.06 0.876± 0.02

XGBoost 0.935 ± 0.00 0.916 ± 0.01 0.923 ± 0.02 0.554± 0.02 0.932± 0.01

FNN 0.912 ± 0.01 0.889 ± 0.01 0.932 ± 0.02 0.535± 0.06 0.911± 0.01

Table 3. Avg. coefficient of determination R2 for different regression methods (with optimized hyperparame-
ter), for different features sets.

The next natural question is whether the accuracy of our approach is robust to per-
turbations. In particular, we consider perturbations in the training step modifying the
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parameters values of the generated PS random SAT formulas varying: (i) the scale-free
structure of the benchmark, and (ii) the interval used to sample the values of the temper-
ature.

5.3.1. Varying the Scale-Free Structure

In our main benchmark, all PS random formulas are generated with β = 1, i.e., with a
clear scale-free structure. Now we analyze the performance robustness of the regression
models in benchmarks just differing in the value of β used in the generation of the SAT
formulas. In particular, we evaluate the cases with β = {5/6,2/3,1/2}, and the union of
these four. In this experiment, we use the regression models with optimized parameters
computed for β = 1. We restrict our analysis to the regression methods that already
showed a good performance in the previous experiment, and adding LinReg as baseline.
In Table 2, we summarize the results of this experiment.

We observe that, in all cases, the regression methods showing the best performance
in all benchmarks (with any value of β ) are techniques that already showed a very good
performance with default parameters in the benchmark with β = 1, i.e., (non-linear)
methods based on ensembles of decision trees: RandomForest, ExtraTrees and XG-
Boost. Therefore, these techniques seem to be robust to this perturbation, and hence they
are good candidates to build a promising temperature estimator. Surprisingly, the Lin-
Reg method is able to obtain a good result in the case of the union of the different sets.
This can be due to the fact that this set of instances is larger than the others, allowing the
linear method to learn more effectively. In the case of TheilSen, the optimization made
for β = 1 does not generalize correctly, thus this model is not robust.

5.3.2. Varying the Interval of Temperatures

Another perturbation to study the robustness of the regression methods is the interval
used to sample the values of the temperature of the random PS formulas in the bench-
mark. We recall these values represent the logarithm of the temperature of the generated
formulas. In the main benchmark, we use the interval [−1,1] (i.e., the temperature ranges
in [1/e,e]). In this experiment, we generate two similar benchmarks only differing in this
interval: [−2,2] and [−3,3]. In Table 2 we also summarize the results of this perturbation.

We observe that all regression methods show a very good accuracy, suggesting that
they all are robust to this kind of perturbation in the temperature. Interestingly, there
seems to be a peak of performance in the intermediate interval [−2,2], i.e., using a rela-
tively ample interval is beneficial, but using a too ample one is not.

5.4. Features Set and Feature Importance

In this section we analyze the relation between the set of features used by the regression
techniques and their predictive capacity.

The set of features provided by the SATzilla toolkit can be divided into the follow-
ing categories: (a) Basic features, (b) Graph features, (c) CDCL (and DPLL) features,
and (d) other solving and timing statistics. In our analysis, we focus on the first three
subsets, which respectively have 26, 25, and 24 features. We use the original SATzilla
tool to produce all these features [36].

In Table 3, we summarize the coefficient of determination R2 of different regression
methods using a different set of features to train the models and compute the regres-
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sion. Again, we use the models with optimized hyperparameter settings from the main
experiment (see Table 1).

We observe that the set of features used to compute the regression may have dra-
matic consequences in its performance. In particular, we observe a very poor perfor-
mance when only CDCL features are used. On the contrary, the performance is gen-
erally good using the set of Graph features. Surprisingly, the linear methods (LinReg
and TheilSen) have very good performance when they are trained using Graphs features
only, whilst their performance gets worse with the rest of the feature sets. This shows
that these graph characteristics are able to linearize the relation between the SAT for-
mula and its temperature. Linear estimators are less sensitive to overfitting than others.
Therefore, the combination between this small set of features and these linear methods
must be emphasized.

In the case of CDCL features, the determination coefficient R2 of linear methods
is similar to the one of the remaining non-linear regression techniques. This suggests a
second linear relation between the set of features and the temperature. Nevertheless, it
is much weaker. Basic features only produces good results with non-linear regression
methods based on neural networks and ensembles, and this may explain the worse per-
formance of linear methods when using them.

6. Conclusions

In this work, we have presented an extensive analysis of ML regression techniques in
order to estimate the temperature of real-world SAT instances. Our experimental results
show that ML methods based on ensembles (e.g., random forest) show the best per-
formance, remaining robust to perturbations in the training step. Additionally, we have
showed that a successful application like SATzilla is able to indirectly infer the temper-
ature of the formulas using only a subset of (graph) features. As future work, we plan
to extend this analysis with more sophisticated neural networks, including graph neural
networks, and other automated ML techniques [13], and use these regression methods to
estimate the temperature of real-world SAT instances.
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[18] J. Giráldez-Cru and J. Levy. Generating SAT instances with community structure. Artificial Intelligence,
238:119–134, 2016.
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