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Abstract This work proposes a Cyber-Physical Sys-

tem (CPS) for protecting Smart Electric Grid Criti-

cal Infrastructures (CI) using video surveillance while

remotely monitoring them. Due to the critical nature

of Smart Grid, it is necessary to guarantee an ade-

quate level of safety, security and reliability. Thus, this

CPS is back-boned by a Time-Sensitive Network so-

lution (TSN) providing concurrent support for smart

video surveillance and Smart Grid control over a single

communication infrastructure. To this end, TSN deliv-

ers high-bandwidth communication for video surveil-

lance and deterministic Quality of Service (QoS), la-

tency and bandwidth guarantees, required by the time-

critical Smart Grid control. On the one hand, the CPS

utilizes High-availability Seamless Redundancy (HSR)

in the control subsystem via Remote Terminal Units
(RTU) guaranteeing seamless failover against failures in

Smart Grid. On the other hand, the smart video surveil-

lance subsystem applies machine learning to monitor se-

*corresponding author: jisern@ugr.es

Juan Isern · Gabriel Jimenez-Perera · Francisco Barranco
Computer Architecture and Technology CITIC,
University of Granada, Granada 18014, Spain
Tel.: +34-958-241-775
E-mail: jisern@ugr.es
E-mail: gabrieljimenez@ugr.es
E-mail: fbarranco@ugr.es

Luis Medina-Valdes
Seven Solutions,
Granada 18014, Spain
E-mail: luis.medina@sevensols.com

Pablo Chaves · David Pampliega · Francisco Ramos
Schneider Electric España S.A.,
Sevilla 41092, Spain
E-mail: pablo.chaves@se.com
E-mail: david.pampliega@se.com
E-mail: francisco.ramos@se.com

cured perimeters and detect people around the Smart

Grid CI. Moreover, it is also able to directly interoper-

ate with RTUs via MODBUS protocol to send alarms

in case of e.g. intrusion. The work evaluates the accu-

racy and performance of the detection using common

metrics in surveillance field. An integrated monitoring

dashboard has also been developed in which all CPS

information is available in real time.

Keywords Smart Grid · Time Sensitive Network ·
Smart video surveillance · High-availability Seamless

Redundancy · Remote Terminal Unit

1 Introduction

The far-reaching EU Security Union Strategy includes

energy infrastructures: individuals rely on key infras-

tructures in their daily lives, to travel, to work, to bene-

fit from essential public services such as hospitals, trans-

port, energy supplies, or to exercise their democratic

rights. If these infrastructures are not sufficiently pro-

tected and resilient, attacks can cause huge disruption

(physical or digital) [8].

Over the last decades, the requirements for the sta-

bility and reliability of the power supply have increased

with the continuous development of our society [14].

The control and monitoring of the electric network is

of great importance to secure the stability of the elec-

tricity supply and to guarantee the needs of the citi-

zens and the industry. Such control of CI is a task of

great complexity, as a consequence of the several risks

that the security personnel has to supervise. It has been

shown that investing on preventive equipment and se-

curity personnel resources is often insufficient. Thus,

autonomous surveillance systems that improve the pro-

tection and reduce cost are needed [29]. Preferably, in-
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tegrated systems that enable seamless interoperation

across the subsystems in electrical substations and al-

low for joint strategies are the aim of future solutions

[2].

The main elements of the electrical distribution net-

work are the substation automation systems (SAS) [1]

which monitor and control the electrical infrastructure.

Distribution networks comprise from distribution sub-

stations to the service entrance of the the electricity

consumers, including distribution substations, primary

feeders, distribution transformers, and secondary sys-

tems [38]. A substation is a high-voltage electric system

facility used to switch generators, equipment, and cir-

cuits or lines in and out of the system. It is also used

to change voltages levels or to switch between alternat-

ing and direct current. A key element of the SAS are

the RTUs which play an important role in the mon-

itoring and control of the infrastructure deployed at

those substations. Communications are also essential

for a proper operation, and redundant technologies such

as High-availability Seamless Redundancy contribute to

the reliability by decreasing probability of communica-

tion failures [18].

While intelligent video analytics is the most widely

used technology globally in security, the use of this tech-

nology is not widely deployed in electric substations in

general, and in final distribution substations in particu-

lar [19]. Non-scheduled service interruptions come at a

significant cost, both economic and of reputation, posi-

tioning supply, quality, reliability and cost penalties at

the forefront of interests for utilities [10]. Therefore, the

electric companies benefit from designing and building

their substations with built-in video surveillance sys-

tems [40,14]. However, this continuous on-line moni-

toring produces vast volumes of surveillance data that

must be analyzed in a timely and efficient manner, while

avoiding the interference with the electric control and

monitoring.

The first part is achieved thanks to powerful and

efficient embedded devices, part of the data is locally

processed, reducing bandwidth usage and latency spe-

cially in isolated or limited connection scenarios. How-

ever, the rest of data analysis that gathers local data is

usually offloaded to high-performance machines [35].

The second part is achieved by establishing data

traffics priority and guaranteeing specific bandwidth

usage to the critical data. Having an integrated and

stable communication flow between the video surveil-

lance subsystem and the electrical substation control

subsystem reinforces and increases the safety and secu-

rity level of Smart Grid CI. Time Sensitive Network-

ing is a set of extensions of the IEEE 802.1 and 802.3

standards adding deterministic QoS to bridged Eth-

ernet networks, such as bounded latency and guaran-

teed bandwidth [22]. The well-known interoperability

between different applications and equipment provided

by Ethernet is extended to integrate conventional best-

effort data flows with hard real-time communication on

one network infrastructure. This deterministic QoS is

ultimately supported by sub-millisecond time synchro-

nization.

The aim of this work is to propose an active video-

surveillance CPS for the prevention of potential harms

to CI such as the Smart Electric Grid. Therefore, the

main contributions are: 1) the integration of a bandwidth-

intensive subsystem such as video surveillance sharing

the same TSN with Smart Grid traffic, without com-

promising the operation of both subsystems; 2) real-

time video processing and automation of surveillance

of Smart Grid CI, using distributed computing between

local edge nodes and a central cloud server; 3) the de-

velopment of a video surveillance pipeline tested with

a state-of-the-art benchmark dataset and whose GPU-

intensive tasks embedded for local processing at the

edge with similar results; 4) the integration of alarms

from video surveillance and the SAS, making it possible

to automatically perform actions to protect people in

the substation and equipment accordingly; 5) the im-

plementation of a dashboard displaying real-time het-

erogeneous information from the three different subsys-

tems.

2 Material and methods

This section analysis the state-of-the-art regarding the

different subsystems previously presented: smart grid

control, video-surveillance, and TSN.

2.1 Smart grid control and monitoring

An RTU, controlled by a microprocessor, connects de-

vices in the physical world to a distributed control sys-

tem or SCADA system by transmitting telemetry data

to a master system, and by using messages from the

master supervisory system to control connected devices.

A variety of protocols are used to communicate with

RTUs [9]. For this specific implementation, an RTU

counts with a control unit and an acquisition module.

The head control unit of the RTU performs the con-

trol functions for the complete system, centralizes the

information acquired by other modules, executes pro-

grammable logic operations, and manages the commu-

nication protocols and the specific user applications.

The acquisition module of the RTU performs the mon-
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Fig. 1 Overview of our Smart Grid critical infrastructure protection CPS: At the control level, RTUs are responsible for
the monitoring and control of the electrical substation infrastructure and implementing the HSR ring to withstand single
communication failures. Regarding the smart surveillance subsystem, the distributed local edge nodes process the video in
embedded high-performance SoCs (System-on-Chip Nvidia Jetson devices [26]). They perform human detection via Deep
Learning (DL). The cloud server carries out the management of multiple edge data to track people and monitor the substation
limits and desired perimeters. Simultaneously, the cloud server also determines the optimal edge configuration based on
information from QRM system. All of the aforementioned devices are connected via the TSN network by means of Z7030 TSN
Bridges.

itoring and control of the electrical equipment, trans-

formers, or sensors.

HSR is an Ethernet network protocol standardized

by the IEC 62439-3 [12]. It allows zero-time recovery in

a single failure, and the redundancy communication is

transparent to the application level.

2.2 Smart video surveillance

One of the main challenges faced by security systems is

the inability to automatically operate without the su-

pervision of a human operator [4]. As a result, there has

recently been a growing interest in smart video surveil-

lance systems that automatically detect certain events

such as intrusions [16], abandoned objects [23] or fires

[33] without requiring constant human observation [30].

Humans cannot operate around the clock, they need to



4 Juan Isern∗ et al.

sleep and even when they are awake they do not remain

undistracted for long [4].

With high-resolution video cameras, increased mem-

ory and processing capacities and greater Internet avail-

ability, the ability to report construction and mainte-

nance of an asset has been radically improved [24]. In

the case of Smart Grid infrastructures and substations

in particular, security is a fundamental requirement due

to the high voltage. Thus, it is required to efficiently

detect and track workers, intruders or pedestrians near

the substation based on video surveillance to ensure

people and infrastructure safety [31]. Among the lead-

ing techniques in recent years, the most prominent in-

clude the use of convolutional neural networks (CNN)

[39].

2.3 Time Sensitive Networks

The Time Sensitive Network (TSN) solution implements

the key standards to deliver deterministic QoS (bounded

latency with low jitter and guaranteed bandwidth) for

time-critical traffics in the presence of best-effort traf-

fic. Different data streams are differentiated and prior-

itized by means of IEEE 802.1Q VLAN tagging. At-

tending to the specified VLAN priority, data streams

are queued and forwarded following the Time-Aware

traffic Shaper scheme defined on the IEEE 802.1Qbv,

based on a strict time-driven cyclic schedule. The gener-

alized Precision Time Protocol (gPTP, IEEE 802.1AS)

enables the stringent coordination between network ele-

ments and time-critical distributed applications to pro-

vide the required end-to-end bandwidth and latency

guarantees. Despite the novelty of TSN, this technology
is being applied to different fields such as the aerospace

[37] and on automotive [15] industries, industrial au-

tomation [21] or IIoT applications [25].

3 Proposed Approach

This work proposes a heterogeneous CPS that combines

the electrical substation control and the video surveil-

lance subsystems using the TSN network. Both services

operate using the same network and without interfer-

ing with each other. In this way, low latency transmis-

sion of critical substation control traffic is guaranteed

in the presence of bandwidth-intensive video transmis-

sion. Fig. 1 illustrates an overview of the deployment

proposing three different levels:

– The Smart Grid control subsystem is in charge

of the control and monitoring of the substation equip-

ment (via the IEC 60870-5-104 protocol and SAS

[32,20]. It is also responsible for the monitoring of

alarms triggered by the surveillance subsystem (via

Modbus/TCP) if a restricted perimeter violation is

detected. This information is used to discharge the

electrical substation and to change the operating

mode of all RTUs installed in the electrical substa-

tion with the aim of guaranteeing the security and

safety of the CI and the intruder. The operating

modes are:

– Remote: The control of the equipment is re-

motely operated from a SCADA (supervisory

control and data acquisition) system [36]

– Local: The operator is allowed to take control

and avoid the need to interact or accept remote

supervisory commands. One should take into ac-

count that local in this context always refers to

the locality of the actual equipment. This mode

avoids safety risks for intruders in the electrical

substation [36]

Additionally, this subsystem ensures the reliability

through High-availability Seamless Redundancy (HSR).

– The smart video surveillance subsystem de-

tects and tracks workers or intruders, or monitors

secured perimeters or protection zones within the

substation. An intrusion detection causes an alarm

that leads to sending Modbus/TCP commands to

the Smart Grid control subsystem. Computation in

this subsystem is distributed between a cloud server

and networked SoC (System on Chip) nodes: video

surveillance tasks such as person detection are car-

ried out in the local edge nodes, while the cloud

server is used for people tracking and facility perime-

ter control.

– The TSN guarantees the coexistence of the two pre-

vious subsystems sharing the same network: for SAS

monitoring and substation control tasks, it provides

low latency and low deviation. For smart surveil-

lance control messages, TSN guarantees necessary

bandwidth usage. Finally, TSN bounds the latency

of SAS alarm network traffic triggered by the surveil-

lance subsystem.

3.1 Smart Grid control subsystem

The smart grid subsystem ensures the reliability, mon-

itors, and controls the SAS, particularly enabling the

local and remote modes. It also manages alarms trig-

gered by the video surveillance subsystem. Specifically,

when an intruder is detected in a restricted perimeter

of the electrical substation an alarm is received on the

Smart Grid control subsystem from the Smart surveil-

lance subsystem via the MODBUS protocol. At this

very moment, a discharge for the electrical substation
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Fig. 2 Flow chart for the local/remote modes management
on the Smart Grid control subsystem, processing alarms gen-
erated by the Smart surveillance subsystem. When an intru-
sion detection is triggered by the Smart surveillance subsys-
tem, the Smart Grid control subsystem manages the discharge
of the affected substation, if the intrusion is still active the
remote mode is disabled and the local mode is blocked. Only
when the intrusion alarm ceases, the remote mode is enabled
again.

and a redistribution of its load around the Smart Grid

is managed by the SCADA system with the RTUs using

IEC 60870-5-104 protocol, in order to:

– Prevent the electricity supply to be affected if there

is any damage to the physical infrastructure on the

electrical substation by the intruder

– Guarantee the safety of the intruder if any element

with high electrical risk is touched

Then a command is received by all RTUs disabling the

remote mode, to reject any remote command that may

be executed in the electrical substation that could harm

the intruder, and blocking local mode to ensure the in-

truder cannot execute commands within the substation.

Fig.2.

In order to ensure that all RTUs receive the previ-

ously mentioned command to disable the remote mode

when an intrusion is detected (even during single point

communication failure situations), a High-availability

Seamless Redundancy (HSR) protocol is used. In this

case, the deployed topology is an HSR ring in which

command messages are duplicated to guarantee that

e.g. alarms from the SCADA to perform the substation

discharge are reliably transmitted to all RTUs. Simul-

taneously, HSR nodes continuously check for duplicates

to avoid performing an action twice.

3.2 Smart surveillance subsystem

Smart video surveillance tasks are distributed in multi-

ple processing platforms: at the edge, local nodes con-

nected to the surveillance cameras perform image ac-

quisition and preprocessing and detection of persons,

extracting their location and their appearance features.

The cloud server, on the other hand, firstly gathers

all results from edges. Then, it tracks locally detected

people within the substation facility and monitors the

perimeters under supervision. Finally, the cloud server

is also responsible for the communication with the smart

grid subsystem when alarms are triggered.

3.2.1 Camera calibration and surveillance ROI

adjustment

When placing a video camera within the facility to

be video monitored, the camera tilt, pan and height

must be taken into consideration in order to optimize

the captured area of the scene. If the camera is placed

higher with little tilt, it points to a smaller area of the

ground than if it is placed lower, pointing parallel to

the ground plane. The latter camera configuration cov-

ers more ground plane area and consequently, captures

areas that might not be interesting for video surveil-

lance tasks.

Thus, in order to define the region of the image that

is relevant for each camera, a preprocessing stage to de-

fine the area of interest of their field of view (FOV) is

performed. This operation consists of estimating the

area on the scene ground plane that are able to contain

up to 2-meter height targets, filtering out targets that

are far away or partially outside the image. The process

of this calculation and its result for one of the deployed

cameras is shown in Fig. 3. For this height estimation,

it is necessary to take the horizon line as a reference.

Thus, when the surveillance subsystem deployed cam-

eras are calibrated [13], the homographic transforma-

tion matrix between the camera perspective plane in

pixels and the aerial map view with cartographic coor-

dinates is applied. Then, having the cartographic longi-

tude and latitude lines in the camera scene, the horizon

line is estimated, namely where these lines converge. By

taking the height of an object in the image as a refer-
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Fig. 3 Process for calculating ROIs (Region of Interest) for
surveillance cameras. From top to bottom and from left to
right: 1) View from one of the surveillance cameras. 2) Result
after adjustment, showing the ground plane area considered
as the ROI, where a full-body person is detected (up to 2
meters height). The frame shows the successful detection of
a person (in green) inside the region of interest and a missed
person detection that is outside the region and partially out-
side the image boundaries (in red). 3) Adjustment process
shown graphically. Where: Lon. lines and Lat. lines are lon-
gitude and latitude cartographic lines respectively; Vlon and
Vlat are the longitude and latitude vanishing points; l is the
horizon line; b is the base point and r the higher point or
height of the reference object; b0 is the base point and t0 the
higher point of the object to measure; t is the projection of
t0 in the reference object and v is the vanishing point of the
object to measure. 4) Comparison on map between the origi-
nal camera viewing area (light blue) and adjusted area (dark
blue).

ence and projecting it on the horizon, the measurement

of any other part of the image can be found.

In line with the nomenclature shown in the mid-

dle picture of Fig. 3, we get Vlon and Vlat where the

longitude and latitude lines converge respectively and l

is obtained from connecting this two vanishing points.

Vanishing point v is formed by connecting b0 and b

points with a line and intersecting it with the l line. And

t is the projection of t0 point on the reference object,

using v point as centre of projection. Taking into con-

sideration the aforementioned values, the target height

is estimated as in Eq. 1, where h is the reference object

height and h′ is the target height to be estimated.

||t− b|| ∗ ||vz − r||
||r − b|| ∗ ||vz − t||

=
h

h′
(1)

3.2.2 Edge processing

As mentioned before, our proposed CPS for CI protec-

tion is a heterogeneous distributed system whose edge

nodes are NVIDIA Jetson TX2 and NVIDIA Jetson

Xavier SoCs [26]. On these local nodes, video acqui-

sition from the cameras and video processing for ini-

tial surveillance tasks are carried out. These compute-

intensive tasks require GPU hardware acceleration to

be performed in real time. This makes the NVIDIA Jet-

son TX2 and NVIDIA Jetson Xavier SoCs very good

candidates since they are equipped with GPUs with 256

and 512 CUDA cores [26] respectively. The following are

details of the surveillance tasks performed at each local

node:

– Person detection: The objective is to find and de-

fine the parts of the image that corresponds to a per-

son. Initially, a background subtraction method is

used to differentiate the objects in the moving fore-

ground from the rest of the scene, which is known

as background and remains static. The background

subtraction method is based on Mixture of Gaus-

sians (MOG) model [44]. As the name suggests, this

method mixes multiple weighted Gaussian distribu-

tions to model each pixel in the background of an

image. The mixture weights represent the propor-

tions of time these colors remain in the scene. The

most likely background colors are those that remain

the longest and most static in the scene. In contrast,

the foreground is the area where potential targets

will be located.

Locations in the foreground are our regions of inter-

est (ROI), where people are detected using a classifi-

cation technique based on Machine Learning. Through

a deep convolutional neural network (DCNN) model

[13,34], trained with large datasets of images show-

ing people [28,11], the each ROI is assigned a prob-

ability to contain a person. This DCNN model is

based on Google’s MobileNetV2 [34] structure and

optimised for embedded devices through TensorRT

SDK [27], which reduces the size and complexity

of the model. A ROI is marked as a person if the

DCNN model assigns it a likelihood p ≥ 0.85.

– Deep feature extraction: In order to reidentify

people detected in previous frames, it is necessary

to define the different unique identities. By estimat-

ing a feature identifying vector, the main physical
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visual attributes based on appearance are stored in

a summarized container for later comparison. This

feature vector is a numeric array in which each ele-

ment matches a different area of the ROI marked as

a person. A specific combination of values is unique

to a person’s image and it is enough for a success-

ful identification. In order to get this feature vec-

tor, a DCNN model [41] calculates through aggre-

gation and weighting operations the importance of

the different areas of the image of a person such as:

pixel RGB values, edges, patterns found at a higher

level, etc. After applying this step, the original ROI

marked as a person is reduced to a 128-length float

vector. This DCNN model has also been optimized

for better performance on embedded devices using

the TensorRT SDK.

3.2.3 Cloud processing

The cloud server provides greater computing power and

dedicated GPU for improving processing performance.

With this, the scalability of the system is guaranteed

with local nodes on the edge processing and transmit-

ting a large amount of data. The cloud server takes care

of the tasks listed below:

– Multi-person tracking: Using the detection infor-

mation and the person feature descriptor collected

from the local nodes, people are tracked around the

whole substation [41]. The tracking method looks

for matches of the new detection values with those

of a tracks database, that are continuously updated.

The similarities between detection features as ap-

pearance and location and the same features of the

tracks are used to create a distance matrix. The as-

signment to the correct track is solved using the

classic Hungarian algorithm [17].

– Perimeter monitoring: By knowing the real-time

location of each person tracked inside the substation

it is possible to trigger alarms when secured perime-

ters or protection zones are violated. A perimeter

database is available on the cloud server. Each database

entry stores the points (lat, lon) that form the poly-

gon area contained within the perimeter.

– Communication with the substation control

subsystem: When a person is detected or an in-

truder breaks into a secured perimeter an alarm is

directly sent to the substation control RTU via the

MODBUS/TCP protocol. The cloud server acts as

the master in the connection, reading the RTU sta-

tus registers and writing the alarms in its memory.

3.2.4 FIVIS monitoring dashboard

Data processing and visualization is an important as-

pect of CPS, specially regarding monitoring of complex

critical infrastructures with multiple subsystems. FIVIS

is an extension of the IVIS-CORE framework [7] that

supports storage, analysis, and visualization of moni-

toring data. This tool makes it possible to run custom

analyses on data from multiple sources, whose results

are used as input information for dashboards (see Fig.

4) and specialized reports or formatted data streams

for other machines. In this CPS there are data from

multiple sources and at different levels:

– Hardware statistics: Status and resource utiliza-

tion of the different platforms of each of the subsys-

tems of the CPS.

– TSN network status: Synchronization between

network nodes and port status of each node.

– Surveillance information: Location and trajec-

tory of workers/intruders within the substation, perime-

ter security status and surveillance alarm notifica-

tion.

3.3 TSN for Smart Grid

In our system, the Time Sensitive Network component

delivers deterministic bounded latency and guarantees

bandwidth for time-critical traffics, while in the pres-

ence of best-effort video traffic from multiple cameras

that consumes most of the data bandwidth. In our CPS,

three TSN bridges have been deployed creating a ring

topology. Each TSN bridge is based on a Zynq-7000

FPGA, supporting four 100/1000-Base-T interfaces. Each

interface VLAN classifies the different traffic types on

transmission and route ingressing VLAN-tagged data

streams.

Firstly, in our case, the correct synchronization be-

tween the components is ensured via gPTP. Regarding

reliability, it is enabled through the IEEE 802.1AS stan-

dard that defines adaptation mechanisms to face net-

work failures. Besides the link status provided by the

1000-Base-T physical layer, the link propagation delay

is continuously monitored to assure, on one hand, accu-

rate recovering of the remote time reference and, on the

other hand, support of hard real-time communication.

The interface is considered faulty if the link propaga-

tion delay reaches a threshold or if the remote peer can-

not cooperate on the measurement. If unreachable, the

grand Master or network time reference is re-elected,

and the role of the interfaces are adapted to receive

(Slave) or re-transmit (Master) the synchronization in-

formation. Synchronization may be received from dif-
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Local Node

Smart Grid substation surveillance CPS dashboard

Person 
detected

Intrusion not 
detected

Fig. 4 Final CPS dashboard: Monitoring information is dis-
played for each of the subsystems (top: video surveillance;
middle: TSN; bottom: smart grid monitoring and control), as
well as hardware information for the different platforms. As
can be observed, depending on the type and nature of the
information to be represented, a different kind of represen-
tation is used: Numerical data that require their evolution
over time are represented in line charts or scatter plots. Data
whose importance is limited to the moment it is generated is
displayed as a KPI with its own value. Data that is relevant
because it has already been processed is shown in a text log.

ferent paths, in case of redundant network topologies.

A network interface may behave as Passive, to back the

slave interface in case of failure.

Secondly, this implementation considers up to four

different traffic priorities. Attending this our system ap-

plication traffics, each output interface manages up to

four VLAN-priority queues (time-synchronization mes-

sages, time-critical commands, control traffic and best

effort). The Time-Aware traffic Shaper has been imple-

mented on forwarding to provide deterministic QoS for

the highest priorities, and isolation against best-effort

data streams. Network time synchronization is required

for the stringent coordination between time-triggered

Smart Grid distributed nodes and the TSN bridges par-

ticipating along the transmission path. Besides, Smart-

grid Modbus commands and smart-surveillance detec-

tion streams are object of bandwidth guarantee QoS.

Finally, the best-effort traffic is used for video stream-

ing.

4 Results

All the data collected in the CPS is aggregated and dis-

played in a dashboard within the FIVIS platform (see

Section 3.2.4). This dashboard displays both surveil-

lance and alarm information (top), as well as the status

of the substation control platforms (bottom), and the

status of the TSN network and its nodes (middle). This

dashboard, shown in Figure 4, collects the following in-

formation from each of the subsystems:

– Surveillance: Node, perimeter and person locations

within the substation; power consumption, temper-

ature, frequency and bandwidth usage for the dif-

ferent local node hardware components; alarm sta-

tus (person detection and intrusion); text log for

relevant events (e.g. alarms, broken perimeters, or

communication messages with the substation con-

trol RTUs).

– TSN status: Synchronization status and delay of
each network node, as well as delays between the

nodes. Time since last network failover.

– Substation control RTUs: Connection and syn-

chronization status of the HSR ring RTU compo-

nents; configuration status, RAM, and CPU usage

of each RTU device.

4.1 Human detection and tracking evaluation

As already discussed, the main smart video surveillance

tasks performed in our system are detection and track-

ing of multiple people. Both tasks are performed con-

secutively and, in order to compare their quality with

state-of-art methods, these tasks are evaluated with the

Camera Network Tracking Dataset (CamNeT) [42]. Be-

sides, to compare the results of our people detector +

tracker with this dataset, the MOT Challenge metrics

are used. Those metrics are common in the Multiple

Object Tracking (MOT) problem and include [6]:
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– Multi-object tracking accuracy (MOTA): over-

all tracking accuracy in terms of false positives, false

negatives and identity switches

– Multi-object tracking precision (MOTP): over-

all tracking precision in terms of bounding box over-

lap between ground-truth and reported location

– Mostly tracked (MT): percentage of ground-truth

tracks that have the same label for at least 80% of

their life span

– Mostly lost(ML): percentage of ground-truth tracks

that are tracked for at most 20% of their life span

– Identity switches (ID): number of times the re-

ported identity of a ground-truth track changes

Table 1 MOT results for CamNeT dataset

MOTA ↑ MOTP ↑ MT ↑ ML ↓ FN ↓ FP ↓ ID ↓

Ours 86.9% 88.2% 84.8% 10.2% 7.2% 4.3% 6.9%
Tracktor [5] 88.1% 91.6% 86.3% 7.5% 6.4% 3.2% 5.4%
FairMOT [43] 91.9% 93.4% 90.1% 5.7% 5.5% 1.9% 2.8%

The results of our detection + tracking method are

shown in Table 1 and compared with two state-of-the-

art methods (Tracktor [5] and FairMOT [43]). The re-

sults are similar to the other methods, considering that

our solution works in real-time (> 30 FPS) and in a

distributed manner. Also, our method is embedded in

local edge devices, adapted and optimized to deal with

limited resources. Fig. 5 shows some qualitative results

for our method on the dataset used for testing. The in-

ferior quality of our system that is shown on the metrics

is partially justified due to the optimization to low re-

source devices. In addition, as mentioned previously in

Section 3.2.1, our system does not consider people who

are partially out of the scene, as they are not fully de-

tectable. However, this is not the case for the other two

comparative methods. As a consequence, part of the

track’s path is omitted when they are leaving or com-

ing into the scene and as a result there is, for example,

a higher number of false negatives.

4.2 HSR redundancy frames

As mentioned before, control and monitoring traffic within

the electric substation is critical. No packages are to be

missed and high-availability and fast recovery are re-

quired for smart grid communication. In this section,

the smart grid subsystem is implemented using an HSR

ring that ensures that at any time, two different paths

reach a single node. In this way, the redundant path de-

livers a copy of any original command message. Finally,

for the normal operation of the electric substation, du-

plicates are filtered out.

a)

c) d)

b)

Fig. 5 Detection + MOT results for the CamNeT dataset
[42]. a, b and d show the correct track results for people
in scene, including unique identifiers and bounding boxes; c
shows a detection fail of a partially occluded persons, result-
ing in a detection bounding box containing two people.

Fig. 6 shows two real duplicate frame messages on

the HSR ring of the Smart Grid control subsystem, en-

suring the redundancy in a single communication net-

work failure. The Smart Grid control communications

are properly encapsulated on two identical frames with

the same sequence number and sent through two differ-

ent paths of the HSR ring to prove the reliability of the

network. The two messages are identical except for the

origin (different paths and lane ids).

4.3 Demonstration scenario in the event of an alarm

Fig. 7 shows an example of the CPS operation, where

a person is detected within the substation limits and

the subsequent alarm is triggered. This alarm causes

the substation to switch to an operating mode and dis-

charge in order to protect the well-being of the person

and the electric substation equipment.

In detail, on the left side a camera view of the sub-

station is shown that is processed to remove the back-

ground (foreground in white and background in black).

Next, the foreground ROIs are passed to a classifier that

detects if a person is included within them. In the ex-

ample, both ROIs are analyzed but only the one on the

top, that contains a person in a yellow vest with his back

turned (likely an operator) is selected. The second ROI

contains a moving car that is therefore discarded. The

CNN-based model extracts the person descriptor (fea-

ture vector) that is sent along with its location (pixel co-

ordinates) to the cloud server. This information is then

compared with the tracks in the database at the cloud

server. If the detection feature vector or its location is
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a)

b)

Fig. 6 Traffic sniffed on eth0 (a) and eth1 (b), two network
interfaces of an HSR node. Captures prove the redundant
messages that ensure the reliability of the critical communi-
cation: both traces are identical, having the same sequence
number except that they have been captured from two differ-
ent paths/lanes of the HSR ring.

similar to one of the saved tracks, the track is automati-

cally updated. In the example, the worker attributes are

already in this database and are updated. If this was

not the case, a new track is added and initialized with

such information. Anyway, with the track location up-

to-date, it is verified that it does not exceed the limits

of any of the perimeters stored in the database. In this

situation, as in the example, a MODBUS command is

sent to the SAS RTU master as an alarm. The MOD-

BUS frame includes some interesting fields: The MB

slave field indicates the slave id we are communicating

with (slave 01 in the example); The Function field spec-

ifies the type of operation performed (01 - read coils);

And the result of that read with the alarm value is re-

ported in Alarm value field (01 - Perimeter violated, in

the example).

5 Conclusions

Surveillance is essential for the safety of substations and

personnel or intruders. The proposed CPS guarantees

the security of the electricity supply and the safety of

people in the facility. In our case, this is demonstrated

through the automatic management of: Smart video

surveillance that generates alarms, the electric control

that acts performing substation discharges and switch-

ing remote/local mode of the SAS.

The coexistence of the different subsystems ensures

that: IEC 60870-5-104 traffic from the Smart Grid sub-

system is not affected, corrupted, lost or delayed due

to the integration of the three subsystems. Modbus

communications between the smart video surveillance

and the Smart Grid subsystems are possible, delivering

alarms to the Smart Grid subsystem to act accordingly.

Finally, the integration of HSR allows communications

even in situations with a single communication failure.

This integrated video surveillance and substation

control CPS improves the security of the Smart Grid

CI. Smart video surveillance, whose tasks have been op-

timised for the processing platforms used, makes it pos-

sible to provide real-time danger alarms. Furthermore,

by using a TSN, the communication of these alarms

with the SAS is guaranteed. This work opens the door

to the use of heterogeneous subsystems within the same

network, while facilitating intercommunication between

in advance, independent systems without compromising

the operation of any of them.
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