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ABSTRACT

The pace of population ageing is increasing and is currently becoming one of the challenges our
society faces. The introduction of Cyber-Physical Systems (CPS) has fostered the development of
e-Health solutions that ease the associated economic and social burden. In this work, a CPS-based
solution is presented to partially tackle the problem: a Deep Multimodal Habit Tracking system. The
aim is to monitor daily life activities to alert in case of life-threatening situations improving their au-
tonomy and supporting healthy lifestyles while living alone at home. Our approach combines video
and heart rate cues to accurately identify indoor actions, running the processing locally in embedded
edge nodes. Local processing provides inherent protection of data privacy since no image or vital
signs are transmitted to the network, and reduces data bandwidth usage. Our solution achieves an
accuracy of more than 80% in average, reaching up to a 95% for specific subjects after adapting the
system. Although, the average F1-score improves by 2.4% compared to only using video informa-
tion, the precision and recall for critical actions such as falls reaches up to 93.75%. Critical action
detection is crucial due to their dramatic consequences, it helps to reduce false alarms, leading to
building trust in the system and reducing economic cost. Also, the model is optimized and inte-
grated in a Nvidia Jetson Nano embedded device, reaching real-time performance below 3.75 Watts.
Finally, a dataset specifically designed for indoor action recognition using synchronized video and
heart rate pulses has been collected.

Keywords Cyber-Physical System · e-Health ·Multimodal Machine Learning · User-adaptive · Edge computing

1 Introduction

E-Health brings together healthcare and Information and Communication Technologies (ICT) to tackle some of the
most relevant challenges that our society is currently facing [1, 2]. One of these challenges is our aging population: due
to the increasing life expectancy, by 2050 25% of the population in Europe and North America is expected to be over
65 years old [3]. At the same time, there is a growing interest for tools that enable users to take active control of their
well-being by monitoring their lifestyle and health [4]. Particularly, Habit Tracking (HT) systems play a crucial role
in increasing the efficiency of healthcare systems. For example, by the early detection of risks such as home accidents,
contributing to the independent living of the elderly at their own homes [5], or by promoting healthier lifestyles [6].

The evolution of the Internet of Things (IoT), the ICT, and the introduction of Systems-on-a-Chip (SoC) devices have
acted as catalysts for the development of Cyber-Physical Systems (CPS) that provide cost-efficient distributed and



Figure 1: Multimodal DL architecture for human action recognition. The proposed Two-Stream model combines (top)
RGB videos and (bottom) heart rate data from a SpO2 monitor (a medical Pulse Oximeter [12] that measures pulse
rate and oxygen saturation, although the latter is not used in this work). The action prediction (inference) takes place
in power-efficient embedded devices - Nvidia Jetson Nano -, reaching real-time performance.

scalable e-Health solutions for assisting people with needs [7, 8, 9]. CPS integrate distributed computation at their
processing nodes, communication and physical processes that respond to their environment, potentially with humans
in the loop [6, 10]. Particularly for e-Health, CPS provide distributed solutions for remote care and thus, they are the
best-suited candidates for lifestyle monitoring systems [11].

The core processing of lifestyle monitoring systems is action recognition. HAR (Human Activity Recognition) au-
tomatically labels human actions from images, videos, or inertial data from wearable devices [13]. With the recent
exponential development of Machine Learning, state-of-the-art solutions address action recognition using Deep Learn-
ing (DL) models [14, 15]. Multimodal DL architectures provide more robust and accurate HAR by taking advantage of
heterogeneous data sources [16]. In particular, previous works have combined video with inertial sensors information
[17], or audio and video [18].

In our work, two data sources are combined to develop a Two-Stream multimodal architecture for action recognition.
The model integrates two streams from: RGB video and heart pulse rate. The video stream analysis is performed
using an optimized version of the RGBI3D network [19] which is among the state-of-the-art works in recognition per-
formance. The second stream processes the heart pulse rate information collected from a SpO2 telemedicine module
from RGB Medical [12]. A few works have already described solutions that use heart rate data to perform action
recognition using Convolutional operations and Recurrent Neural Networks [20, 21]. However, these approaches are
limited to ambulatory activities such as walking or running. To the best of our knowledge, this work represents one of
the first approaches that combines these data modalities for action recognition.

Furthermore, edge computing has recently gained importance on distributed CPS [22], specially with the novel edge-
cloud paradigms [23]. Local edge processing enables distributed computing, reducing network bandwidth usage
and shortening latency, while inherently ensuring the privacy of sensitive information [24]. Our CPS uses high-
performance power-efficient embedded devices that provide a good performance vs power consumption trade-off:
Jetson Nano SoMs (System on Module) [25, 26]. These cost-optimized embedded devices have limitations in terms
of computation capabilities compared to high-performance workstations, generally used for machine learning applica-
tions. Therefore, this work proposes optimized DL models that reach real-time performance with the limited available
resources while maintaining good accuracy rates for human action recognition tasks.

In this paper, we present an optimized Multimodal DL architecture for a CPS that monitors Habit Tracking. Next, the
contributions of the work are summarized: 1) a custom dataset for indoor action monitoring is collected, including two
modalities namely, video and heart rate data; 2) a novel Two-Stream DL architecture for HAR is developed, combining
cues from video and heart rate (see Fig. 1); 3) optimized models for low-power embedded devices that reach real-time
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processing are presented; 4) finally, an optimized DL model is described to obtain an enhanced user-adaptive system
towards the improvement of accuracy, specifically for the crucial recognition of critical actions.

2 Related Methods

In this section, we describe the state-of-the-art for habit tracking systems and HAR applications, and methods that use
telemedicine modules to monitoring vital signs.

Generally speaking, Habit Tracking is a component of remote healthcare monitoring systems with a significant socio-
economic impact. HT systems aim at improving the users quality of life and it is also able to alert caregivers in case of
emergency. Approaches that include Habit Tracking are currently of interest for reducing healthcare costs at nursing
homes and hospitals [27]. Additionally, Habit Tracking applications enable the monitoring of people with care needs
at their own homes, especially relevant for the elderly and people with disabilities that live alone [28]. On the one
hand, Habit Tracking systems help to detect potential risks and consequently to trigger alarms [29] offering safety
and promoting the user autonomy. On the other hand, these systems also foster healthy lifestyle habits and are able
to detect the progressive deterioration of the users [30], a convenient feature for doctors. Regarding some examples
of the state of the art on habit tracking: in [31] authors focused on fall detection, proposing a system that notifies
caregivers when falls occur using data from inertial sensors; in [32], the work is limited to the monitoring of medical
parameters; or in [33], authors describe a system that uses wireless passive sensors that monitor energy consumption,
temperature, and motion in order to find out about the behavior of the person at home.

2.1 Human Activity Recognition

Human Activity Recognition (HAR) pursues the analysis and recognition of human actions from different data sources
[13]. Based on the kind of source, HAR systems are split into two main categories: 1) systems recognize human
actions from data collected from smartphones, accelerometers in wrist-worn smart devices, or other wearable devices
[20, 34]; 2) video-based systems [35]. Both alternatives offer good results in terms of recognition performance using
Deep Learning [34, 36]. However, video-based HAR is a less intrusive approach since it merely analyzes video streams
from cameras, avoiding the need to wear any device. It also represents an important advantage when considering the
reluctance of some users to wearable devices [37].

Regarding the wearable sensors approach, CNNs (Convolutional Neural Networks) and RNNs (Recurrent Neural
Networks) are two of the most effective approaches when analyzing signals [38]. Concretely, [39] proposes a model
based on RRN layers such as LSTM (Long short-term memory) [40] to extract the temporal patterns of the signals
retrieved from body-worn sensors such as accelerometers and gyroscopes to identify daily activities. Moreover, in [41]
authors use CNN to extract the salient patterns of signals obtained from body-worn and ambient sensors to identify
human actions.

Regarding video-based approaches, the introduction of the 3D Convolutional networks for video processing boosted
action recognition performance in terms of accuracy [42]. 3D Convolutional operations simultaneously allow extract-
ing spatial and temporal information from video streams. However, this comes with a high cost in terms of compu-
tational requirements compared to conventional 2D Convolutions, more common for single image frame analysis. In
particular, action recognition based on 3D convolutions has been addressed through: 3D Residual Network [43] that
proposed a 3D ResNet model [44] improving the state of the art for general action recognition; Temporal 3D ConvNet
[45] that incorporated 3D filters to a modified DenseNet [46] architecture focusing on the only-temporal cues more
than the traditional spatio-temporal approaches; or RGBI3D network [19] that inflates the Inception [47] network with
3D operations. Concretely, the RGBI3D network [19] is a very interesting approach that achieves high accuracy at a
reasonable computational budget for the Kinetics [48] dataset, a widely used dataset for action recognition. Conve-
niently, the pre-trained weights of the RGBI3D model for the Kinetics dataset are publicly available. The availability
of the pre-trained model enables boosting the performance of action recognition on smaller datasets through Transfer
Learning, also benefiting generalization [49].

2.2 Telemedicine modules

Telemedicine modules such as electrocardiograms (ECG) or pulse oximeters (SpO2) contribute to decentralize patient
care, moving it outside the hospital, favoring the decrease of hospitalization costs, and increasing equality of care for
people that live in isolated environments through e-Health [50][51].

Our paper describes a solution with a pulse oximeter [12], a module that monitors the heart rate and oxygen saturation
of patients through pulse oximetry [52]. Pulse oximetry is a non-invasive technique used to continuously measure
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the arterial oxygen saturation of the patient [53]. This measurement is performed via photoplethysmography: since
arterial blood contains basically two main oxygen absorbents (oxyhemoglobin and reduced hemoglobin), this method
uses light emitters with two different wavelengths (red and infra-red) to capture the changes of arterial blood volume
and to obtain the oxygen saturation and heart rate information [54]. The set of signal data obtained through this method
is called a photoplethysmogram (PPG) or pulse rate signal. In summary, PPG signals provide information related to
cardio-pulmonary system [53].

The information extracted by PPG sensors can be analyzed through Deep Learning for a wide variety of applications
such as: in [55, 56], authors analyze pulse rate signal to provide a precise heart rate estimation; biometric identification
[57]; emotion recognition [58]; or Activity recognition [20, 21], identifying ambulatory activities such as: sitting,
walking, jogging, or running.

2.3 SpO2 pulse oximeter

In this work, we have selected the wireless battery-powered SpO2 (pulse oximeter) module [12] from RGB medical
devices for measuring the vital signs of the subjects in a non invasive way. This pulse oximeter generates the Photo-
plethysmogram (PPG) wave or pulse rate signal that provides information about the changes of pressure in the blood
vessels. Its sampling frequency is 66.67Hz (about 15 ms).

Based on the physiological signal, the module outputs two main measures: 1) Oxygen Saturation (SpO2) in arterial
blood (0-100%); and 2) Heart Rate (30-250 bpm). This telemedicine module provides high resolution and accuracy
of the measurements: for Oxygen saturation values, it offers a resolution of 1% step with an accuracy of ±2 digits
for 70-100% SpO2; for the heart rate, it offers a resolution of 1 bpm step and an accuracy of ±3%. Additionally, the
oximeter alerts the user when the sensor is disconnected or the signal is weak.

For our model, we analyze the PPG signal (pulse rate) to infer indoor human actions. Although other devices can be
used to obtain the pulses rate information, this SpO2 pulse oximeter also monitors the oxygen saturation, enabling the
early detection of hypoxemia: the condition of an abnormal below level of oxygen in the blood (< 93%)[52].

3 Our Approach

We present a Two-Stream DL model for recognizing human actions from two modalities: video and heart rate infor-
mation. First, the two streams are separately developed: a DL model that uses video and another that uses the vital
signs (heart pulse rate). Next, a new model that combines both streams is proposed to create a Multimodal architec-
ture that obtains the best recognition rates. With the improved performance, we plan to enhance the recognition of
critical actions, in order to reduce false alarms. Afterwards, a user-adaptive approach is studied to evaluate the bene-
fits of specializing the DL model to different subjects in terms of recognition performance. This additional adaption
is reasonable considering that the system will be of personal use and will also enable the possibility of continuous
refinement over time. Finally, to train the DL architectures, a dataset has been collected with synchronized data from
both sources of information.

3.1 Deep Learning models for HAR

The proposed solution for activity recognition is a Two-Stream DL model. The first stream takes care of the video
input, and the second analyzes the heart rate. The first stream runs the RGBI3D network and uses resource-intensive
operations such as 3D convolutions to extract spatio-temporal information from the video. The second stream is a
1DCNN + LSTM network that extracts temporal patterns from the 1D PPG signal. The latter stream requires signif-
icantly less computational requirements than the other one, although the former is more accurate (video information
is more discriminant for action recognition). Additionally, the final layers combine features from both data modal-
ities using a custom layer (WeighPerClass) that weighs the contribution of the streams to every action for the final
prediction. The code will be publicly available on GitHub1.

3.1.1 RGB video stream

The architecture for the video-based HAR stream is based on the RGBI3D network (see Fig. 2) [19]. This model
performs action recognition from a regular video stream recorded at 25 fps with a resolution of 224 × 224. However,
it is a resource-demanding network, mainly due to the use of the 3D Convolutional layers. Since our CPS nodes are
low-power embedded processors with limited resources, an adaptation of the model is required. The spatial resolution
and temporal framerate are downsampled, reducing the operations of the input layers.

1https://github.com/DaniDeniz/deep-multimodal-action-recognition
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Figure 2: The RGBI3D-based stream for action recognition from Video is based on the Inception model [47]. It uses
3D convolutional layers to analyze spatio-temporal information from the video, pooling layers to reduce data resolution
(and thus, the computation and total parameters of the network), and dropout layers to avoid overfitting. Refer to [19]
to inspect the operations carried out on the Inception blocks. This is a complex DL model with more than 12 million
weight parameters. f : Number of filters, k: kernel size, p: pool size, rate: fraction of dropped connections between
layers.

Transfer learning [49] and specifically fine tuning [59] is applied to prevent overfitting and reduce training time, not
requiring large amount of training data. Transfer learning and fine tuning are methods to reuse pre-trained DL models
for similar tasks, taking advantage of the knowledge extracted by the DL models by retraining them for a few epochs.

Concretely, the model is fed with a stream of 64 frames with a spatial resolution of 112 × 112 (2560 ms of video).
Next, the network is trained following these steps:

• A data augmentation procedure is added to prevent overfitting. A spatio-temporal window of each video is
randomly cropped and fed to the network every epoch. The video is also randomly flipped and rotated.

• Transfer learning is applied using the RGBI3D network [19] to take advantage of the pre-trained weights
that extracted the knowledge from the Kinetics dataset. This dataset includes all kind of actions such as
human-object or human-human interactions ranging from e.g. people playing sports or instruments to people
hugging.

• Finally, fine tuning is performed to obtain a faster convergence to our own indoor actions, for which we use
the dataset presented in [11] for training. The training is done for 40 epochs with a batch size of 8, using the
Adam optimizer.

Moreover, after training and in the pursue of creating a more accurate model that adapts to the user behavior, the model
is fine tuned again for the user during an initial configuration phase. Specializing the DL model for each user makes
the system learn the user model, concerning to the relevant features for action recognition. It is a simple approach for
a user-adaptive system [60] that achieves significant improvement in accuracy for action recognition.

3.1.2 Pulse rate stream

A medical pulse oximeter measures pulse rate, a 1D signal whose frequency indicates the heart-rate of the patient. The
amplitude and frequency of the pulse signal varies according to the activity that the user is performing [56].

We propose a novel model (see Fig. 3) to analyze pulse rate data and infer indoor human actions. This DL model is
formed by two main types of layers: 1) 1D Convolutions and 2) LSTM layers. The 1D Convolution layers are used to
extract the local variations of the points of the signal. LSTM is a Recurrent Neural Network (RNN) that extracts the
temporal information at a global scale via memory to learn sequences of patterns. This DL network also uses dropout
layers: it drops some connections between the 1D Convolution layers at training time to prevent overfitting.
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Figure 3: 1DCNN + LSTM DL stream for action recognition from pulses. It uses 1D convolutional layers to analyze
local variations of the pulses, LSTM layers to learn temporal patterns, and dropout layers to avoid overfitting. This DL
model amounts to a total of 650000 weight parameters (approximately 20x less complex than the video-based stream
architecture). f : Number of filters, k: kernel size, rate: fraction of the dropped connections between layers.

Furthermore, the DL model is designed to accept an input of variable size. Thus, the network is fed at training and
inference with a variable number of points. In this way, the network is enabled to learn for adaptive time intervals,
ensuring a better generalization of the model.

As for the training procedure, it is done as described below:

• First, data augmentation is performed sampling a temporal window in a different location of the pulses mea-
sure at every time. Data augmentation contributes to increasing the accuracy while also preventing overfitting,
and it is very helpful when, as in our case, the amount of available data is scarce for DL training. It is ensured
that at least, the last 2.5 seconds of the selected signal correspond to the actual action that is being analyzed.
The rest of the sample can partially overlap with the previous action (actions in the dataset are recorded in a
continuous batch).

• The 1DCNN + LSTM stream is trained from scratch for 100 epochs, using the Adam optimizer with a batch
size of 4. Then, the weights that correspond to the epoch with the lowest validation loss are selected. The
input is in average 6.6 seconds long (approximately 440 points).

Similarly to the video-based approach, the DL model is specialized in an initial configuration phase, to adapt to the user
features, behavior, and scenario. The final stage of specialization makes the system become a user-adaptive solution
that achieves better accuracy results.

3.1.3 Two-Stream DL network for HAR

The proposed multimodal architecture for the Habit Tracking system integrates information from the video and pulse
rate streams. Two approaches are followed to combine the streams: 1) the addition of a layer that sums up logits output
from both streams; 2) the addition of a new (WeighPerClass) layer that learns to weigh the individual contributions for
every action. The first simple approach consists in aggregating the unnormalized logit predictions from both streams
and pass them to a softmax activation function. The second approach follows the next procedure: the logit predictions
from both streams are concatenated (L), and passed into a custom layer named WeighPerClass. This layer is built
using a weighing matrix W (NClasses × NStreams), initialized to 1 (in our case, NStreams is 2 and NClasses
is 10). Then, a softmax function combines the contribution from each stream and for each class (see Eq. 1)

WeighPerClass(W,L)i,j =
eWi,j∑nstreams

k=1 eWi,k
· Li,j

∀i∈{1,...,nclasses}

∀j∈{1,...,nstreams}

(1)

After the weighing phase, another softmax activation function is applied to obtain the final output of the Multimodal
DL architecture.
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Figure 4: Samples of the IAPV dataset. It shows three of the subjects performing the following actions: walking,
watching tv, and falling down. Note how pulses are synchronized with the video stream and how they greatly vary
depending on the specific action.

The WeighPerClass layer of the DL model is trained only for 5 epochs, starting with a learning rate of 0.01 that is
reduced by a factor of 2 after every epoch. Note that the learning rate (lr) has a huge impact on the result: large
learning rates may lead the network to suboptimal solutions while too small values result in insignificant variations on
the original weights, causing the process to last very long or in the worst case, to get stuck.

As a result, the Two-Stream DL model improves action recognition performance, especially for the critical actions
such as falling down or lying on the floor reducing false positives, benefiting from features extracted from both video
and heart rate data.

4 Discussion and Results

In this section, we first describe the collection of our custom IAPV dataset for lifestyle monitoring systems and its
structure. Next, we present results to prove the benefits of specializing the DL model for each user, supporting our
decision to build a user-adaptive system. Also, we present an ablation study of our multimodal DL model using our
IAPV dataset, assessing the independent contributions of the video and pulse rate streams. Finally, since our our goal
is a CPS with nodes that perform HAR, the DL models are optimized and their performance and power consumption
(essential qualities for embedded edge nodes) are discussed.

4.1 Multimodal Indoor Action Dataset - IAPV

Since Machine Learning systems learn from examples, one of the most important elements when building a Machine
Learning is the availability of datasets for the application field. The quantity and quality of the data is crucial and
has a direct impact on the system recognition performance [61]. Currently, there are publicly available datasets for
performing activity recognition from video [62, 48] and pulses rate information [55]. However, there are no available
datasets that provide video and pulses data synchronously for action recognition.

To overcome this problem, we collected a multimodal Indoor action recognition dataset (IAPV), gathering synchro-
nized videos and pulse rate information. This dataset contains indoor scenes of people performing actions at different
scenarios at home such as bedrooms, living rooms and kitchens. The dataset was recorded by 5 actors (3 men and 2
women) at home. Actions were recorded in continuous batches of ten minutes, using the RGB Medical telemedicine
(SpO2) module for the pulse rate data. Actors carried out different actions relevant for lifestyle monitoring as listed
in Table 1 such as cleaning, eating, sitting down, walking, or watching tv. Also, some critical actions were included
such as falling down or lying on the floor that are useful to identify whether a subject has suffered a life-threatening
situation that requires assistance. Fig. 4 shows three examples that illustrate some of these actions performed by
different actors.
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Table 1: Number of clips of the IAPV Dataset
Action name Train Val. Test Total

blowing nose or sneezing 38 10 15 63
cleaning 55 17 34 106
eating 57 18 32 107

falling down 34 11 16 61
lying on the floor 53 12 36 101

sitting down 66 22 29 117
standing up 95 30 41 166

walking 158 34 90 282
watching tv 60 19 43 122
no action 57 14 32 103

Total 673 187 368 1228

Table 2: Number of clips recorded by each actor (IAPV)
Actor ID Gender Train Val. Test Total

0 M 406 92 123 621
1 M 32 0 85 117
2 M 70 25 29 124
3 F 70 0 63 133
4 F 95 70 68 233

Table 3: Two-Stream evaluation
Model name Accuracy F1-score
Two-Stream 79.34 76.35

(naive approach)
Two-Stream 80.70 78.27

(weighing custom layer)

Regarding the data preparation, videos were first manually segmented in clips and then labeled. Next, pulse data were
also automatically labeled since they are synchronized with videos during collection. As mentioned, Table 1 shows
the nine action labels contained in the dataset. The no action class represents scenes of empty rooms without people to
help the DL model focus on humans when recognizing the actions instead of focusing on the environment. This class
was not taken into account for the pulse rate stream (no humans are involved).

Multimodal instances were manually assigned to each split approximately: 55% training, 15% validation, and 30%
testing. Data is carefully split guaranteeing that all data from a batch of actions is assigned to the same set, ensuring
the fairness of the experiment.

Furthermore, Table 2 shows the number of clips recorded per actor. The actor ID is used to perform individual analysis
of the recognition performance depending on the subject, and to enable the user-adaptive system.

4.2 Evaluation of the DL architecture

In this section, the performance of the model using the IAPV dataset is presented, focusing mainly in two metrics:
accuracy, and macro F1-score. The macro F1-score is the harmonic mean of the precision TP

TP+FP and recall TP
TP+FN

values. This metric equally weighs the contribution of every class, thus it takes into account the issues of unbalanced
dataset (as happens in our case with the IAPV dataset).

Firstly, an evaluation of the recognition performance of the Two-Stream multimodal architecture is shown. Next, an
evaluation of the customization stage that is added to specialize the system to make it respond better to a specific user
is presented. Finally, an ablation study has been included to understand the independent contributions of the streams.

4.2.1 Two-Stream multimodal network evaluation

The Two-Stream network processes input data from two different sources (video and pulses rate). Evaluation is ad-
dressed using a sliding window of 64 frames and averaging the inference confidence along the video clip, for every
action instance. Regarding the pulse rate signal, inference uses chunks of 6.6 seconds (440 points) synchronized with
the video.

This network fuses the information retrieved by the streams following two approaches: 1) A naive approach that
sums up the predictions of both streams; 2) An approach that uses the custom layer WeighPerClass to weigh the
contribution of every stream on the prediction of every class. Table 3 shows that if the model uses the WeighPerClass
layer, it reaches better results in terms of accuracy and F1-score, obtaining 1.7% and 2.5% higher values respectively
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Figure 5: Confusion matrix of the evaluation of the Two-Stream model using the weighing custom layer over the
IAPV dataset. Note how the DL model obtains a F1-score of 93.75% when identifying the critical action falling down.
The model also successfully recognizes other actions useful for habit monitoring such as: walking or watching tv.
Recognition is slightly degraded for actions such as blowing nose or sneezing, but this usually occurs when the subject
is simultaneously carrying out other activities (eg. cleaning or watching tv).

compared to the naive approach. This improvement in performance when using the weighing custom layer is due to
the network learning the right contribution of each stream per action.

In particular, using the custom weighing layer, for standing up action the video stream has a contribution of 71% for
the prediction of this class, meaning that the video is a much more discriminant feature for this action. However, pulse
rate data brings relevant information for identifying people falling down or lying on the floor. For these actions, the
video stream contribution is reduced to approximately 60% and the pulse rate network reaches 40% of the contribution
for the confidence of the predicted action.

Finally, observe in the confusion matrix (Fig. 5) that the Two-Stream model obtains 93.75% of precision and recall
values for the class falling down, and the F1-score for lying on the floor reaches 72%. This model also reaches great
recognition performance for the actions walking or cleaning among others. For example, it offers a high recall for
watching tv and reasonable accuracy when identifying people eating, two relevant actions towards the definition of
strategies for promoting healthy lifestyles. However, it has misleading classifications between some actions. Note also
that the top 2 accuracy of the DL model is 89.9%. This means that with high probability, the carried action will be
identified as one of the top 2 with higher confidence.

The presented performance values show how this model offers good results for indoor action recognition, enabling the
lifestyle monitoring application. It also provides very high recognition accuracy for potentially risky situations such
as falling down or lying on the floor. This minimizes the triggering of false alarms and increases the probability of
accurate identifications, reducing cost and building social trust in these systems.

4.2.2 Evaluation of the user-adaptive system

The presented Two-Stream DL model is trained using the whole IAPV dataset. However, one of the objectives of
this work is to study the effect of specializing the DL model for each actor. As mentioned in the introduction, after a
first user-adaptation stage, the overall recognition rate of the system is significantly improved leading to a higher user
engagement.
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Table 4: User-adaptive evaluation

Subject Before specialization After specialization
Accuracy F1 Accuracy F1-score

0 67.47 57.34 82.92 76.71
1 78.82 72.57 91.76 87.34
2 62.06 41.88 72.41 51.74
3 61.90 58.06 68.25 57.53
4 76.47 71.80 95.58 95.15

Table 5: Performance on the NVidia Jetson Nano

DL model Inference time (ms) GPU (W) Device (W) F1 Score
RGBI3D 1604.15± 0.702 1.24± 0.87 3.68± 0.97 76.41

1DCNN + LSTM 16.60± 0.480 0.09± 0.02 2.42± 0.05 30.48
Multimodal network 1626.96± 2.812 1.25± 0.87 3.75± 0.97 78.27

The specialization is addressed in a two-step procedure: firstly, each model is trained leaving one actor out; secondly,
DL model is fine-tuned using the whole IAPV dataset (including training data of the new subject). Although the
second step could achieve better results when training the specialized DL model using only the selected actor’s clips,
this was rejected due to the lack of training data. Building a larger dataset with more actors and samples would be
crucial for the latter.

Table 4 presents the results of the user-adaptation procedure; accuracy and F1-score are evaluated only for the test set
of the selected actor before and after the specialization phase with the Two-Stream architecture. The accuracy after
specialization is increased in average approximately 18%, and the F1-score in 21.85%. This shows how adapting the
model to the user remarkably improves recognition rates.

Let us point out, for example, the case of Subject 0 and Subject 4. Both subjects accounts for the largest number of
samples (see Table 2) and consequently, the greatest improvements in terms of F1-score (around 33%) are found for
these two subjects. Obviously, the number of samples has an impact on this user-adaptive approach but even a small
number of samples (such as the 32 clips from Subject 1) may lead to a substantial improvement (20% for the F1-score).
In any case, using the samples from other subjects at training benefits generalization, leading also to better recognition
performance rates.

4.2.3 Ablation study

This section discusses the contribution of each stream to the results of the Two-Stream multimodal architecture.

Figure 6 shows precision-recall curves for the Two-Stream architecture and the separated streams. PR-curves show the
trade-off between the precision and recall metrics for different thresholds. The area under the curve (AUC) is related to
precision-recall values: larger AUC denotes better results. Note how the 1DCNN+LSTM reaches poor values of AUC
when evaluated independently. However, it contributes to improve the AUC of the Two-Stream architecture by 2.8%
with respect to the RGBI3D stream. Since values shown here are the average for all the actions, one could consider this

Table 6: Evaluation of individual streams per class

Action 1DCNN+LSTM RGBI3D
Precision Recall Precision Recall

blowing nose or sneezing 0.00 0.00 58.33 46.67
cleaning 41.67 29.41 64.70 97.05
eating 13.63 9.37 85.18 71.87

falling down 20.00 56.25 93.75 93.75
lying on the floor 33.33 41.67 66.67 55.55

sitting down 16.67 10.34 92.00 79.31
standing up 38.00 46.34 82.05 78.04

walking 50.68 41.11 94.73 80.00
watching tv 47.45 65.11 64.51 93.02
no action - - 76.67 71.87
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Figure 6: Macro-average Precision-Recall curves for the Two-Stream architecture and the two separated streams.
Although the pulse rate stream (1DCNN+LSTM) obtains poor precision-recall values, this computationally efficient
stream brings gains in terms of AUC (2.8%) for the Two-Stream network compared to the RGBI3D model, and helps
increasing recognition for critical actions.

contribution not very relevant. However, the substantial improvement in the recognition for certain actions justifies the
combination (see Table 6 and clarification in the next three paragraphs).

The 1DCNN+LSTM stream analyzes the pulse rate signal using 1D convolutions and LSTM layers. The low complex-
ity of this architecture coupled with the one-dimensional signal feeding the network makes it computationally efficient
and thus, it offers very fast inference. The analysis of Table 6 shows that using only this stream is not enough for
recognition. This is mainly due to the lack of distinctive features in the pulse rate for some actions such as eating
or sitting down. However, the model is much more accurate to discriminate between actions such as walking, falling
down or lying on the floor.

Regarding the RGBI3D stream, it provides great recognition results at the expense of high computation requirements,
mainly due to the use of 3D convolutional operations. Note that it has 20x more weight parameters compared to the
1DCNN+LSTM model. Nevertheless, it achieves high recognition performance for lifestyle monitoring. In contrast to
the pulse rate stream, it accurately recognizes actions such as eating, sitting down or watching TV. Remarkably, the
video model achieves an F1-score of 93.75% for the critical action falling down. In average, it reaches an accuracy
of 78.26% for the IAPV dataset. Despite of this, it presents significant confusion between lying on the floor and no
action. Obviously, in both cases the network does not detect any motion in the scene.

As shown, both streams are complementary and their combination boosts the model performance, including the critical
actions with most interest for our case. For example, the F1-score of lying on the floor improves by 18%. Additionally,
F1-score of daily activities such as walking or cleaning are also improved by 3% and 8.9% respectively (see also Fig.
5). Therefore, despite its low performance when evaluated independently, the 1DCNN+LSTM network delivers more
robust predictions for the Two-Stream architecture at a very low cost.

4.3 Edge processing nodes

The proposed Two-Stream multimodal DL architecture for action recognition has been designed and optimized to be
integrated on a CPS for Habit Tracking system that runs on low-powered execution boards. Concretely, we use the
NVidia Jetson Nano [26] embedded systems.

As mentioned in the introduction, local processing in a distributed CPS presents advantages such as inherent data
privacy, or reduction of data bandwidth usage and latency. However, it presents limitations in terms of energy and
resource availability that lead to design solutions that provide good performance vs accuracy trade-offs. As described
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in Section 4.2.1, the proposed Two-Stream architecture offers great results for the recognition of critical actions and
thus, it would minimize false alarms.

The presented DL models were optimized through TensorRT 7 [63] to embed them on the Jetson Nano devices.
TensorRT allows the DL model to be optimized quantizing the parameter bitwidths (eg. INT8 - 8-bit integers, or
FP16 - 16-bit floating point, instead of the standard 32-bit floating point values) of weights and activation functions.
It also enables additional resource savings by fusing layers, or reusing memory to reduce communication latencies.
The overall optimization reduces inference time and minimizes GPU memory usage. Table 5 compares inference
times, energy consumption, and F1-scores for the two streams independently and the final multimodal solution. The
multimodal architecture reaches real-time performance with inference times under 1.7 s using input batches of 64
frames or 2560 ms. The efficient 1DCNN + LSTM stream is able to analyze a 6.6-second long signal in just 16 ms
at a very low energy budget. As a result, fusing the video and pulses rate streams leads the solution to an enhanced
recognition performance in terms of F1-score of 2.4% with a low cost in terms of time performance and energy.

Finally, in order to illustrate the power consumption, the Multimodal network would continuously run on a
5V 25.000mAh battery-powered Jetson Nano for more than 30 hours.

5 Conclusions

In this work we have presented a Deep multimodal (Two-Stream) neural network for an e-Health CPS for monitoring
the elderly at their home. This solution fuses video and heart rate information to recognize human daily activities
with high accuracy. In particular, the IAPV dataset was introduced to train and evaluate the performance of the
habit tracking system on a real-world scenario where the subject is monitored using a video camera and a device that
monitors the pulse rate (eg. the SpO2 telemedicine module from RGB Medical devices). The proposed multimodal
Two-Stream architecture reaches a very high recognition performance improving the only-video action recognition,
specially for critical actions that are of utmost interest for our case. Additionally, the performance improvements
comes at a very low cost in terms of energy and inference time.

The correct recognition of critical actions is crucial to trigger alarms in case of accident, for example. Particularly,
our Two-Stream model is able to recognize people falling down and lying on the floor with a F1-score of 93.75% and
72%. Additionally, we have proposed a one-time user-adaptive stage that improves further the recognition of these
critical actions. This stage shows how by recording only a few samples and refining the DL model for a few epochs,
the recognition performance (F1-score) for a new subject is boosted in average by 21%.

Finally, in our CPS, the multimodal Two-Stream model runs on power-efficient NVidia Jetson Nano devices. These
embedded devices enable local processing and allow our CPS to reach real-time inference, consuming less than 3.75
W. This means that in a battery-powered device it would continuously run for more than a day.

Our e-Health cost-efficient solution has multiple applications helping with adapted habit monitoring of patients with
a specific disease pathology, or assisting health-care professionals to enhance tailored activity programs for healthy
lifestyle to their patients, or in general helping people with needs to safely live autonomously. In future works, we plan
to include new telemedicine modules for concrete medical conditions such as heart arrhythmias. We are also interested
in working on monitoring systems that evaluate the deterioration of patients or recovery after serious injuries, to help
medicine professionals create improved targeted therapies based on the evolution of the collected data.
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