
1.  Introduction
Globally, floods are the most common natural hazard and have major economic, social, and ecological 
impacts on communities (CRED & UNISDR, 2015). Coastal river areas concentrate population, infrastruc-
ture, and economic activity, all of these highly vulnerable to floods (Koks et al., 2015). The effects of global 
warming in such already flood-prone areas raise concerns about future flood conditions, making imperative 
the need for reliable methods for their analysis (Seneviratne et al., 2012) and innovative approaches to their 
planning and management.

These challenges, however, have been insufficiently addressed by regulations and policies. In the Euro-
pean Union (EU), the EU Floods Directive (2007/60/CE) and the Water Framework Directive (2000/60/
EC) establish the framework for assessing and managing flood risks. It defines a cycle that includes a pre-
liminary assessment to identify areas at risk of flooding, the creation of flood hazard and risk maps, and 
the establishment of flood risk management plans focused on prevention, protection, and preparedness. It 
also establishes that these steps need to be reviewed every 6 years, and acknowledges the need to take into 
account the likely impact of climate change on the magnitude and frequency of floods. The European Wa-
ter Framework Directive does not go beyond these procedural obligations, leaving open the question as to 
which methodological approaches are most appropriate for such flood risk assessments.

The prediction of flooding in coastal river areas is not an easy task due to the complexity and interaction of 
the underlying physical processes. Elevated water levels in coastal reaches originate from the interaction 
of several coastal and inland drivers, such as storm surge and river discharge. These flood drivers are often 
not independent since they share a common meteorological forcing. For example, the combined effects of 
low atmospheric pressure and strong winds associated with synoptic-scale storms can induce storm surges 
along the coast. Concurrently, or in close succession, heavy precipitation increases freshwater runoff, and as 
a result leads to high river discharge. Elevated sea levels can block or slow down river drainage into the sea, 
leading to increased upstream water levels. Compared to flood events caused by a single driver, compound 
floods can usually be expected to yield higher impacts, as evidenced, for example, in the recent floods in 
Ravenna (Italy) (Bevacqua et al., 2017) or in the Hurricane Harvey Flood in Houston Area (Valle-Levinson 
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et al., 2020). In fact, many recent studies have underlined the importance of considering the dependencies 
and interactions of drivers when assessing flood risk (Bevacqua et al., 2019, 2020; Couasnon et al., 2020; 
Hendry et al., 2019; Paprotny et al., 2020; Ward et al., 2018). For further details on the drivers of compound 
flooding events, the reader is referred to the above studies.

Adding the effects of global warming to compound flood hazard involves obtaining future projections of the 
different flood drivers in a physically consistent way. Mean sea-level rise (SLR) is one of the best-established 
consequences of global warming, which directly impacts the risk of coastal flooding. It implies not only 
an increase in the level of permanent inundation (i.e., the area underwater at high tide), but also a larger 
flood extent in areas far from the coast, since the tide can propagate further upstream the river (Ensign & 
Noe, 2018; Ganguli & Merz, 2019). As a result, water level exceedances above flooding thresholds, such as 
the nuisance flood levels established by NOAA’s National Weather Service at U.S. tide gauges, are increas-
ing in time (Sweet & Park, 2014). Projections of extreme water levels also suggest that today’s century level 
floods might become decadal by 2050 (Tebaldi et al., 2012).

Although the observed increase in extreme high water levels in coastal areas has been attributed largely to 
the SLR (Menéndez & Woodworth, 2010), changes in storminess itself can also play a role in future extreme 
water levels (Vousdoukas et al., 2017). This is the case in regions where flood hazard is driven not only by 
sea levels but also by inland drivers such as precipitation, which will likely undergo a variety of changes 
in extreme values (Tabari, 2020). Global climate model (GCM) projections are typically used to quantify 
future changes in atmospheric variables and run local flood inundation models. But methodologies are far 
from straightforward, given the mismatch between the spatial and temporal scales of the GCM output and 
those needed to drive local flood inundation models (van den Hurk et al., 2018). Downscaling techniques, 
either statistical or dynamical, are typically used to obtain higher resolution climatic projections (Fowler 
et al., 2007; Maraun et al., 2010). For a review of the skills and limitations of different downscaling methods, 
see (Ekström et al., 2015).

In the present study, we propose a new methodology for a robust assessment of compound flooding in coast-
al river areas, considering the effects of future climate change on rainfall and river discharge, storm surge, 
and mean sea level. The method differs from other existing methodologies in: (a) using a continuous simu-
lation approach that considers the dependencies and interactions of the most relevant flood drivers, in order 
to represent the simultaneous occurrence of extreme water levels correctly, and (b) obtaining local-scale 
physically consistent projections of flood drivers to account for future climate change effects on compound 
flood hazard. Future changes in river morphology and land uses in the floodplains are not considered. The 
study is limited to the effect of climate change in atmospheric patterns, assuming that their impact on river 
morphology is negligible. The methodology is tested in a coastal river reach located in NW Spain. The river 
reach flows through a consolidated urban area with a well-established river encroachment, and hence only 
small changes in the river morphology are expected to occur during this century.

2.  Study Site
The mouth of the river Mandeo, which flows into the estuary of Betanzos (NW Spain), has been used as the 
study site to show the application of the proposed methodology (Figure 1). Due to the industrialization and 
urbanization of the floodplains in recent decades, as well as the construction of a train embankment that 
crosses the estuary, this river reach suffers from recurrent flooding, especially when high tidal ranges occur 
simultaneously with high river discharges. The confluence between the river Mandeo and its tributary Men-
do is located just before the mouth, and it is included in the study area.

The catchment area of the rivers Mandeo and Mendo is 450  km2, of which 350  km2 correspond to the 
Mandeo basin and 100 km2 to the Mendo basin. The average annual rainfall in both catchments is about 
1,250 mm, while the average maximum annual discharges are of the order of 200 and 20 m3/s respectively 
in the Mandeo and Mendo rivers (Cea & Fraga, 2018; Sopelana et al., 2018).

The spring tidal range in the estuary of Betanzos is about 4.5 m, and is therefore a macrotidal coastal area 
according to the classification proposed by Davies (1964), which defines macrotides as those with a tidal 
range greater than 4 m. Moreover, due to the bathymetry of the estuary, the tidal range has a significant 
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effect on inundation levels. On the other hand, the maximum values of storm surge registered in the estuary 
are roughly 40 cm and have a lower effect on flooding than the astronomical tide (Bermúdez, Cea, & Sopela-
na, 2019). In fact, the Northwest region of Spain, where the estuary is located, has been classified by Rueda 
et al. (2017) as a macrolevel tide-dominant region, with an average relative contribution of the astronomical 
tide to the annual maxima of sea level above 80%.

Twelve control points distributed along the Mandeo and Mendo rivers were chosen for a detailed analysis 
of the results (Figure 1). Depending on their distance to the mouth, the relevance of sea level and river dis-
charge on the water depth during a flood varies from one control point to another. Control points 1 to 3 are 
located downstream of the confluence of both rivers. Control points 4 to 8 are located in the Mandeo river 
(control point 8 being located more upstream). Control points 9 to 12 are located in the Mendo river (control 
point 9 being the nearest to the upstream boundary).

3.  Methodology
3.1.  General Description of the Methodology

The procedure used for obtaining future projections of water depths in a coastal river reach is schematically 
depicted in Figure 2. The methodology is based on the future projections of temperature, rainfall, sea level 
pressure, wind and sea-level rise given by GCMs. Together with the tidal range, which is a deterministic 
variable that is not affected by climate change, these variables are considered to be the main atmospheric 
and oceanographic drivers of floods in coastal river reaches. Since GCMs only provide projections of these 
variables at a coarse spatial and temporal resolution (typically in the order of 100 km and 1 day), a weath-
er-typing based statistical downscaling method is applied to produce local projections of rainfall from the 
large-scale values of temperature, rainfall and sea-level pressure. Regression-based statistical downscaling 
is also used to transform the large-scale sea level pressure and wind values into local values of storm surge. 
The downscaling techniques applied are further described in Section 3.3 and 3.4.

The downscaled time series of rainfall and temperature are then fed into a hydrological model to obtain lo-
cal-scale projections of river discharge. The description of the hydrological model used, and its calibration, 
is included in Section 3.6.

Figure 1.  (Left) Location of the study site and aerial image of the study area showing the town of Betanzos and the control points along the rivers Mandeo 
and Mendo. (Right) Study catchments and location of the 11 meteorological stations used to estimate the rainfall and temperature time series for the whole 
catchments.
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The downscaled river discharge and storm surge time series, together with the projected sea-level rise and 
the deterministic astronomical tidal range, are then used as external forcings in a 2D flood model to obtain 
time series of water depth at the river reach scale. This is done by means of the continuous simulation ap-
proach presented in Sopelana et al. (2018). This approach consists of running a flood inundation (hydraulic) 
model over a long period of time (several years) driven by simultaneous time series of the flood drivers, in 
order to reconstruct the time series of maximum daily water depth in the study area. By using simultaneous 
time series of the flood drivers, the method implicitly considers their statistical dependence.

The main differences between the implementation used in this research and the original study by Sopelana 
et al. (2018) lie in the flood drivers considered, as well as in the generation of the time series of river dis-
charge and storm surge. In the present study, we have incorporated the mean sea level rise as an additional 
driver in order to account for global warming in future scenarios, which was not included in the original 
methodology. At the same time, we have not considered the influence of the time lag between peak dis-
charge and high tide, because in this river reach the high part of the flood hydrographs is maintained for 
several hours, with discharges similar in magnitude to the peak discharge. Thus, during a typical flood, the 
discharge at the time of high tide is in general very similar to the peak discharge. Moreover, not considering 
the time lag between the peak river discharge and high tide in the analysis of compound flooding on this 
site is justified if we look at the findings of Bermúdez, Cea, and Sopelana (2019), who concluded that the 
effect on the inundation levels of the timing between maximum river discharge and high tide was close to 
zero in this catchment.

Regarding the generation of the time series of discharge, Sopelana et al. (2018) used for this purpose a re-
gression regional hydrological model based on the mean annual precipitation, catchment area, mean catch-
ment slope and mean SCS curve number, which was calibrated using observed discharge data at 18 gauge 
stations located in the hydrological region where the study site is located. Instead of doing that, we have 
used the hydrological model described in Section 3.6 in order to transform the downscaled time series of 
precipitation and temperature into discharge time series. This procedure allows us to consider the effect of 
climate change on river discharge through the projections of precipitation and temperature given by GCMs. 

Figure 2.  Flow diagram of the proposed methodology to obtain time series of maximum daily water levels in the study 
area for future RCP scenarios.
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On the other hand, the approach used in Sopelana et al. (2018) to generate the discharge time series cannot 
be used to evaluate the effect of climate change, since it is based entirely on observed historical discharges.

Regarding the time series of storm surge, these have been generated using a linear regression with the 
inverted sea level pressure (SLP) given by the GCMs for the future period, as detailed in Section 3.4. This 
allows us to account for the effect of future climate changes on SLP, as well as for the seasonality and cor-
relation between river discharge and storm surge, since the projected time series of rainfall and SLP are ob-
tained from the same GCMs, and thus they are physically correlated. On the other hand, the procedure fol-
lowed in Sopelana et al. (2018) to generate the surge time series was based wholly on the observed mean and 
standard deviation of the daily surge, and hence it cannot be used to evaluate the effects of climate change.

Consequently, the methodology applied in the current study accounts for the joint probability of occurrence 
of different sources of flooding and their mutual interaction, as well as the seasonal variability of the vari-
ables involved.

In order to evaluate changes in flood hazard due to climate change, the above methodology was applied not 
only to the future period (2071–2100), but also to a historical period (2001–2017). The only difference in ap-
plying the method to the two periods is the way in which the time series of the flood drivers were obtained. 
In Section 3.2, we describe the sources and the methodology used to obtain continuous time series of the 
large-scale variables in both periods. We then explain the procedure used to estimate local-scale projections 
of rainfall (Section 3.3), storm surge (Section 3.4), and astronomical tidal range (Section 3.5). The descrip-
tion of the hydrological model used to obtain the time series of discharge is described in Section 3.6. The 
hydraulic model that provides water levels in the study area is described in Section 3.7.

3.2.  Large-Scale Flood Drivers

Temperature, rainfall and sea level pressure time series were obtained from an ensemble set of GCM climate 
projections, comprising 19 GCMs and 2 RCPs (4.5 and 8.5), in the grid cell containing the catchment cen-
troid, with a time resolution of 1 day. Additional variables can be incorporated in the methodology in cases 
where other flood drivers have an influence on inundation levels. This is the case with wind, which appears 
in Figure 2 for the sake of generality, but has little influence on the storm surge levels in the studied area, 
as shown in Section 3.4.

Mean SLR time series for the study area, relative to the average sea level in the period 1986–2005, were ob-
tained from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR5) 
through the Integrated Climate Data Center website hosted at the University of Hamburg. The time series 
of mean sea level rise for RCP8.5 and RCP4.5 obtained from the ensemble of GCMs were used in this study 
(Figure S4 in Supporting Information S1).

For the historical period, temperature time series in the study catchment were generated by combining the 
observations of 11 meteorological stations located around the rivers Mandeo and Mendo (Figure 1), and 
operated by the regional meteorological agency Meteogalicia (Table 1). The temperature at the centroids 
of the catchments was estimated from the hourly temperature data registered at these stations, using an 
inverse distance interpolation. Daily SLP observations for the historical period were obtained from a buoy 
close to the studied area (Table 1).

3.3.  Weather Typing-Based Statistical Downscaling of Rainfall

The weather typing-based statistical downscaling method SD-B-7 (Willems & Vrac,  2011) was used to 
downscale rainfall from the ensemble set of 38 GCM climate projections. Compared to other downscal-
ing methods, it has the advantage of being computationally efficient to use with multi-model projections 
while yielding physically interpretable links between the large-scale circulation and local precipitation. The 
method relies primarily on the simulated large-scale atmospheric circulation to obtain future precipitation 
series. The ability of the selected GCMs to reproduce the large-scale atmospheric circulation in this area was 
verified in Bermúdez et al. (2020), by comparing the WT classification obtained from the control runs of the 
GCMs (1961–1990 period) and that obtained from the ERA-Interim data set.
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The downscaling method is described in detail in Willems and Vrac (2011), and thus only a brief explana-
tion is given in the following. First, the large-scale atmospheric circulation affecting the study area was clas-
sified into 10 weather types (WTs) based on the Jenkinson Collison system (Jenkinson & Collison, 1977), 
as explained in Bermúdez et al. (2020). Daily mean SLP from the ERA-Interim dataset and SLP projections 
from the set of GCMs were the input for this classification step (Table 1) in the historical and future periods, 
respectively. Second, daily rainfall time series were taken from the GCM grid cell containing the catchment 
centroid. For each day in the future scenario period (2071–2100), the WT, the season and the exceedance 
probability of the daily precipitation amount were used to identify analogue days from the historical series. 
The exceedance probability was computed after sorting all daily precipitation values for that season and 
WT, and calculating the empirical exceedance probability for each of these daily precipitation values. The 
latter was done for both the historical data and the GCM data. The analogue day was selected as the day 
where the exceedance probability of the daily precipitation value for the historical period was closest to the 
exceedance probability of the daily precipitation value in the GCM data (for the same season and WT). The 
method did not involve bias correction as it uses the high-resolution data from the analogue day in the past, 
which is based on real (so no biased) observations. The projected downscaled precipitation time series at 
10-minute resolution were constructed by combining the precipitation amount sequences for the analogue 

Variable Type Time resolution Period Source Aim

Precipitation Observations 10 min 2008–2016 Meteo stations of MeteoGaliciaa Calibration and validation 
of hydrological model

2001–2017 Meteo stations of MeteoGaliciaa Computation of historical 
discharge series / 
WT-based rainfall 

downscaling

Models 1 day 2071–2100 CMIP5 (19 models, 2 RCPs)b WT-based rainfall 
downscaling

Temperature Observations 1 hr 2008–2016 Meteo stations of MeteoGaliciaa Calibration and validation 
of hydrological model

2001–2017 Meteo stations of MeteoGaliciaa Historical discharge series 
/ WT-based rainfall 

downscaling

Models 1 day 2071–2100 CMIP5 (19 models, 2 RCPs)b WT-based rainfall 
downscaling

Sea level pressure Observations 1 day 1998–2017 Buoy Vilano-Sisargas REDEXT networkc Computation of historical 
surge series / Surge 

downscaling

Models 1 day 1979–2015 ECMWF-Era Interimd WT-based rainfall 
downscaling

2071–2100 CMIP5 (19 models, 2 RCPs)b WT-based rainfall 
downscaling / Surge 

downscaling

Storm surge Observations 1 day 1998–2017 Tidal gage A Coruña—REDMAR networkc Computation of historical 
surge series / Surge 

downscaling

Sea level rise Models 1 year 2071–2100 IPCC-AR5 (ICDC—Hamburg University)e Future SLR series

Tidal constituents Observations – – Tidal gage A Coruña—REDMAR networkc Historical and future tidal 
range series

Discharge Observations 1 hr 2008–2016 Stream gauges of Augas de Galiciaf Calibration and validation 
of hydrological model

aGalician Meteorological Agency: http://www.meteogalicia.gal/observacion. bCoupled Model Intercomparison Project Phase 5. cPuertos del Estado: http://
www.puertos.es/es-es/oceanografia/. dEuropean Centre for Medium-Range Weather Forecasts: https://www.ecmwf.int. eIntegrated Climate Data Center: 
http://icdc.cen.uni-hamburg.de/. fGalician Water Administration: https://augasdegalicia.xunta.gal/.

Table 1 
Input Data and Sources
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days. Finally, they were rescaled following the Clausius-Clapeyron rela-
tion, which assumes an intensification of extreme precipitation amounts 
by 7% per degree temperature increase. The variable considered in this 
step was the temperature rise from the control to the scenario period and 
not the direct GCM temperature results. Therefore, the future precipita-
tion time series are not affected by potential biases in the GCM tempera-
ture simulations (assuming, of course, that any climate model biases are 
time-invariant).

Historical rainfall time series in the study catchment were generated by 
combining the observations of the 11 meteorological stations of Mete-
ogalicia shown in Figure 1 (Table 1). The rainfall data registered by the 
pluviometers were spatially interpolated with a spatial resolution of 1 km 
and a time resolution of 10 minutes, using a natural neighbor interpola-
tion, and then averaged over the whole catchment to obtain a basin-aver-
aged time series of rainfall that was used in the hydrological model.

3.4.  Regression-Based Statistical Downscaling of Storm Surge

A regression-based statistical downscaling method was used to obtain 
storm surge projections from the set of GCMs. To do so, an empirical 
relationship between surge, atmospheric pressure and wind was sought 

using observed data from these variables in the period 1998–2017. The comparison between surge, wind 
and sea level pressure records showed that storm surge in the studied area is driven mostly by SLP (Fig-
ure 3), which can be explained by the narrow continental shelf of the Spanish Atlantic coast. No significant 
correlation between surge and wind was found. Daily SLP observations, obtained from a buoy close to the 
studied area, were thus used to establish the relationship with the storm surge. A linear regression was used 
to compute the mean daily storm surge, with the inverted SLP series representing the independent variable. 
The Pearson coefficient for the period 1998–2017 was 0.761 (Figure 3). This regression was applied to the 
future period, using the SLP projections of the set of GCMs (Table 1).

Storm surge observations for the historical period were obtained from a tidal gauge located near the mouth 
of the river (Table 1).

3.5.  Astronomical Tidal Range

The astronomical tide is a deterministic process; therefore, the tidal range time series was generated from 
the tidal harmonic constituents at the study site, these obtained from historical records of sea level measured 
at a tidal gauge located in the outer estuary (Pérez Gómez & Begoña, 2014) (Table 1). Since the astronomical 
factors that cause the tides are not affected by climate change, the same tidal constituents were used for the 
historical and future scenarios. The tidal dynamics can, however, be altered by non-astronomical factors 
such as increases in water depth due to SLR or variations in stratification due to increased surface water 
temperatures (Devlin et al., 2017). The modeling study of Pickering et al. (2017) projects a slight decrease in 
the M2 amplitude (∼2 cm) around the study area in response to a 2 m SLR. Tide gauge analysis also shows 
a downward trend in tidal amplitude of 0.6 mm/y between 2000 and 2015 (Serrano et al., 2020). Based on 
the above, the changes in tidal range are expected to be two orders of magnitude lower than the SLR at this 
location, and have been neglected in this study.

3.6.  Hydrological Modeling

A hydrological model was used to transform rainfall and temperature time series into discharge time series. 
The model used was an adaptation of the Modello Idrologico SemiDistribuito in continuo (MISDc) (Camici 
et al., 2011). The original version of this model was designed to simulate flood events by coupling a soil wa-
ter content model with an event-based hydrological model. The soil moisture is computed continuously and 
used to estimate the initial soil moisture conditions before a flood event. The adaptation of the model used 

Figure 3.  Inverted sea-level pressure (1/HPa) versus mean storm surge 
(m) for the period 1998–2017.
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in this study implements a baseflow component by introducing a power function that relates the soil mois-
ture to the baseflow, as proposed in Brocca et al. (2013). Detailed descriptions of the model are available in 
Brocca et al. (2013) and Camici et al. (2011). The application of the model requires rainfall and temperature 
time series with an hourly resolution as input data to compute the discharge time series at the basin outlet. 
The model has seven physically based parameters that need to be calibrated with observed data (Table 2). 
The typical range of variation of these parameters is also shown in Table 2.

The physically based hydrological model was applied within an ensemble model approach. Ensemble mod-
eling consists of selecting the results of a number of different model simulations and combining them to 
reduce model uncertainties in the discharge predictions (Andraos & Najem, 2020). An ensemble approach 
might be built by using the results obtained from the same hydrological model and different parameter sets 
(single-model ensemble) or by combining the results obtained from different hydrological models (mul-
ti-model ensemble). Several methods to combine the results of the different model runs have been proposed, 
including the arithmetic average, the weighted average, multiple linear regression approaches, and soft 
computing techniques such as artificial neural networks (ANNs) (Kumar et al., 2015; Viney et al., 2009). 
As a result, a new ensemble hydrograph is obtained, in which the deficiencies of each model run are com-
pensated for by the other model runs in the ensemble (Li & Sankarasubramanian, 2012). In this way, the 
ensemble hydrograph is more accurate than the hydrographs obtained by each model run.

In this study, we built a single-model ensemble by using the hydrographs computed with different parame-
ter sets of the MISDc model (Table 2). The MISDc hydrographs were used as the input of an ANN, in order 
to combine them into a single hydrograph. The ANN used to combine the MISDc hydrographs had one 
hidden layer with three neurons and the hyperbolic tangent as transfer function. The ANN was trained 
using the Bayesian Regularization algorithm. First, the hydrological model was run in the calibration pe-
riod (from October 2008 to September 2013) with 5,000 different combinations of the parameters shown 
in Table 2, these randomly generated using the Latin Hypercube Sampling technique. From the results of 
these 5,000 model runs, a small number of output hydrographs (those with the highest Pearson coefficient 
when compared against field observations) were selected in order to build the single-model ensemble. The 
number of hydrographs used as input for the ANN was 10 in the Mandeo basin and 15 in the Mendo basin 
(this number was found after a trial and error process). The ANN was trained with observed data in the 
calibration period, and then the whole ensemble model was validated in the period from October 2013 to 
September 2016 (validation period). A more detailed description of the single-model ensemble technique is 
provided in Viney et al. (2009) and Gourley and Vieux (2006), and is not detailed here for the sake of con-
ciseness. More details about the application of ANN to ensemble modeling can be found in Andraos and 
Najem (2020); Farfán et al. (2020); Li et al. (2018).

Once the model was calibrated and validated, it was applied to reconstruct the discharge series for the 
period 2001–2017 with a time resolution of 1 hr, using the precipitation and temperature information for 
this period as input data. For the future scenarios, the downscaled projected precipitation time series and 
temperature projections of GCMs were used to obtain the projected time series of discharge for each GCM 
and RCP considered. No downscaling was applied to the time series of temperature since those were only 
used to evaluate the daily rate of potential evapotranspiration. They thus play a less relevant role than 

Description Units Range

Maximum water capacity of the soil layer mm 100–1000

Pore size distribution index – 0.05–0.5

Saturated hydraulic conductivity mm/hr 1.1–20.0

Baseflow to drainage ratio – 0.1–1.0

Lag-area parameter – 0.5–6.5

Correction factor for evapotranspiration – 0.4–2.0

Coefficient to compute soil max retention from soil water content – 1.0–4.0

Table 2 
Description of the Physically Based Parameters of the Hydrological Model, From Camici et al. (2011)
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the precipitation series in driving the model output, and the spatial and temporal resolution provided by 
the GCMs is enough. It is also worth noting that the potential evapotranspiration is computed from daily 
average temperature values (not sub-daily extremes), which are usually well-represented in CMIP5 GCMs 
(Sillmann et al., 2013), and that we are using a multi-model ensemble of GCMs which can compensate 
deficiencies of individual models (Pierce et al., 2009). However, it would also have been possible to apply a 
separate bias correction method to improve the GCMs’ skill in simulating daily mean temperature.

3.7.  Hydraulic Modeling

The two-dimensional shallow water equation model Iber+ (Bladé et al., 2014; García-Feal et al., 2018) was 
used to compute the spatial distribution and temporal evolution of water levels in the study area. The Iber 
model has been validated extensively and applied to a number of river inundation studies, showing its abil-
ity to represent 2D free surface shallow flows and river inundation processes, and to deal efficiently with 
some of the main numerical difficulties that arise in the modeling of overland flow, such as the presence of 
highly unsteady wet-dry fronts, small water depths, and high bed friction (Areu-Rangel et al., 2019; Bermú-
dez et al., 2017; Cea & French, 2012; Sopelana et al., 2018). The performance of the hydraulic model was 
not validated in the study area because insufficient historical water depth data were available. Nevertheless, 
the model solves the full 2D shallow water equations on a high-resolution grid (up to 1 m resolution in 
areas with large elevation gradients), using very detailed LIDAR data (1 m resolution). In this way, small-
scale structural elements (e.g., buildings, walls) and small topographic variations are explicitly represented 
and not parameterized. The only model parameter is the Manning roughness coefficient, which is set to 
represent only small-scale roughness, its calibration being less important than for low spatial resolution 
models. Plausible values were established from River Engineering Manuals, considering the land uses in 
the study area. A sensitivity analysis of the simulated water levels to Manning’s values was also conducted 
to verify that the uncertainty in the results due to a lack of field calibration is low. Based on the above, the 
model is considered to provide high fidelity hydraulic simulations of the inundation process in this area for 
the purposes of this work. For a detailed description of the model’s configuration for this river reach, see 
Bermúdez et al. (2020).

The hydraulic modeling was implemented within the continuous simulation framework proposed in 
Sopelana et al. (2018) for the estimation of compound inundation in coastal river reaches. The steps of the 
method were as follows: (a) generate time series of the relevant flood drivers in the study site for a period 
of several years at a daily scale (these series must be concurrent and must reflect the seasonality and cor-
relations between predictors, in order to represent the simultaneous or closely successive occurrence of 
extreme values correctly); (b) convert the time series of the flood drivers to time series of maximum daily 
water depth at relevant control points located within the study site; (c) perform a statistical analysis of the 
reconstructed water depth time series in order to obtain the desired extreme value estimators.

The generation of the time series of the local flood drivers (river discharge, storm surge, astronomical tide, 
and mean sea level) from the GCMs large scale projections has already been explained in the previous sec-
tions. The flood drivers at the daily scale considered in the continuous simulation approach are the astro-
nomical tidal range (TR), the daily mean storm surge (S), the daily peak discharge (Q), and the mean SLR. 
Figure S3 in Supporting Information S1 shows an example of the time series that are generated following 
this methodology.

Following the framework proposed in Sopelana et al. (2018), the hydraulic inundation modeling was done 
on a daily basis, that is, one model run for each day in the time series. This is justified because flood events 
in this reach last between 12 and 24 hr. The boundary conditions for each model run were defined from the 
daily flood drivers. In order to do so, the astronomical tide and the river discharge were further downscaled 
to a time resolution of 15 min, as explained in (Sopelana et al., 2018). On the other hand, the storm surge 
and the sea level rise were assumed to be constant during each day, and thus the sum of both values was im-
posed as an offset elevation to be added to the astronomical tide time series. The storm surge in this coastal 
region is generated by low-pressure systems coming from the North Atlantic Ocean that create a relatively 
stable surge over several hours. For each model run (i.e., for each day), the daily maximum water depth at 
12 control points distributed along the Mandeo and Mendo rivers (Figure 1) was extracted from the results 
for a detailed analysis of the inundation levels.
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Given the computational cost that running the 2D inundation model every day for several years would 
imply, a surrogate model based on least squares support vector machines (LS-SVM) regression was devel-
oped to reconstruct the time series of daily maximum water depths at the 12 control points. The suitability 
of the LS-SVM regression technique as a surrogate of the 2D shallow water equations in flood inundation 
applications was previously evaluated in detail in Bermúdez, Cea, and Puertas (2019). In order to build the 
LS-SVM surrogate model, we first grouped the time series of the flood drivers in triplets of concurrent river 
discharge, tidal range and storm surge plus sea level rise. The reason for merging surge and sea level rise is 
that, as mentioned above, it is the sum of both that is introduced in the hydraulic model. From these series, 
we selected two representative samples of 250 and 50 characteristic days, which were used respectively 
to calibrate and validate the LS-SVM regression model (Figure S1 in Supporting Information S1 shows a 
scatter plot of the samples). Both samples were extracted applying the Maximum Dissimilarity algorithm 
(Camus et al., 2011; Kennard & Stone, 1969). This clustering algorithm identifies a subset of points com-
prising the most dissimilar data and, at the same time, distributed fairly evenly across the whole space 
of variables. It includes, therefore, average and extreme values of the variables. This is important for the 
calibration of the LS-SVM model, since during the whole time series it will be applied to both average and 
extreme flow conditions.

Therefore, only a representative sample of 300 characteristic days were simulated with the 2D inundation 
model and used to calibrate and validate the LS-SVM surrogate model. The use of simulation data instead of 
field measurements is a common approach when developing surrogate models, due to the need for enough 
training data to achieve appropriate generalization. However, if enough monitoring data were available, 
the surrogate model could be trained directly to this data, and the use of a 2D hydraulic model would be 
avoided. The maximum water depth at each control point obtained with Iber + constituted the dependent 
variables of the regression models, whereas the predictor variables were derived from the discharge and 
sea-level time series prescribed at the open boundaries. Based on a previous study in a nearby area (Bermú-
dez, Cea, & Puertas, 2019), a combination of three parameters was selected to serve as predictors: (a) the 
maximum daily discharge either in the Mandeo or Mendo rivers, depending on the location of the control 
point considered; (b) the tidal range; and (c) the sum of the storm surge and the sea-level rise.

The LS-SVM technique has already been used successfully in previous studies (Bermúdez, Cea, & Puer-
tas, 2019; Bermúdez, Cea, & Sopelana, 2019). In this case, the predictions of daily maximum water surface 
elevation obtained with the LS-SVM model also showed a good agreement with those obtained with the 2D 
inundation model. The mean and 90th percentile absolute errors were below 10 and 21 cm, respectively, at 
all points in calibration and validation (Figure S2 in Supporting Information S1). The global mean absolute 
error (i.e., considering all runs and control points) was 2.5 cm. This demonstrates the suitability of the tech-
nique to reconstruct the time series of maximum daily water levels from the time series of the flood drivers.

4.  Results and Discussion
4.1.  River Discharges

The hydrological model was calibrated and validated with data from the period 2008–2016, as explained in 
Section 3.6. The results in both the calibration and validation periods were evaluated by means of the follow-
ing goodness-of-fit coefficients: the Nash-Sutcliffe Efficiency (NSE), the Adapted for high flows Nash-Sut-
cliffe Efficiency (ANSE), the squared Pearson correlation coefficient (R2) and the Kling and Gupta Efficien-
cy (KGE). The reader is referred to Gupta et al. (2009); Hoffmann et al. (2004) and Moriasi et al. (2007) for 
a detailed description of each coefficient.

The simulated hydrographs at an hourly time scale compare well with the observed ones (Figure 4) and are 
able to capture all the high discharge events, with good estimates of the peak discharge. The NSE and R2 
coefficients are above 0.8, the NSE for high flows is above 0.85, and the KGE is above 0.90 in the validation 
period. Further details on the model performance are given in Table S1 in Supporting Information S1.

Flow duration curves were computed for the historical and future discharge series (Figure 5 and Figure S5 
in Supporting Information S1). All GCMs indicate a future decrease in the medium-low range flows with 
respect to the historical data. As expected, the magnitude of this decrease is more significant in the RCP 8.5 
than in the RCP 4.5 scenario. If we look at the median of the results obtained with the different GCMs (red 
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lines in Figure 5), we find that the discharge of 1 m³/s is exceeded 70% of the time in the RCP 8.5 scenario 
and around 77% of the time in RCP 4.5. The same discharge is exceeded 85% of the time in the historical 
period. If we look at even lower discharges, as those that are exceeded 90% of the time, we find values of 0.8, 
0.5, and 0.3 m3/s for the historical, RCP 4.5 and RCP 8.5 scenarios, respectively.

Since low flows in this basin occur in the summer, these results point to a decrease in future flows in this 
season. On the contrary, maximum discharges in the winter season tend to increase in the future scenarios, 
as can be deduced from the flow duration curves. For example, the discharge exceeded 1% of the time in the 
historical series is 62 m³/s, while in the future period, according to the median of all the GCMs results, this 
discharge is exceeded 1.6% and 1.8% of the time in RCP 4.5 and RCP 8.5, respectively.

In order to analyze the extreme values of discharge, the annual maxima extracted from the time series were 
used to derive extreme value estimates by fitting a Gumbel distribution to the historical data and to the 
future scenarios (Figure 6). In the case of the RCP 4.5 and RCP 8.5 future scenarios, the annual maxima 
were extracted for each GCMs projection, and then the Gumbel distributions were fit to the 10th, 50th, and 
90th percentiles of the point estimates for each return period. The projections obtained with the majority of 
GCMs agree in predicting an increase in extreme river discharges for all return periods up to 30 years, but 
the magnitude of this increase varies widely between GCMs, and thus so does the difference between the 
10th and 90th percentile estimates. Changes are in general stronger for the RCP 8.5 scenario, with median 
projections showing roughly a ratio of 1.5 with respect to the historical scenario (i.e., a 50% increase in the 
discharge for a 25-year return period). Figure 6 can be used to evaluate the future increase in the frequency 
of occurrence of high discharges. For instance, according to the historical data, in the Mandeo basin the 
discharge of 400 m3/s will occur on average once every 26 years. However, in the future period the same 
discharge will occur, on average, once every 9 years according to the RCP 4.5 median estimate. If we look at 
the RCP 8.5 median estimate, the 400 m3/s discharge will occur every 6 years. Similar trends are obtained in 

Figure 4.  Hydrographs of the calibration and validation of the hydrological model for the Mandeo river (left). Simulated versus observed relative peak flows 
over threshold corresponding to the 75th percentile (right).
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the smaller Mendo catchment (Figure 6), although the relative increase in the magnitude and frequency of 
high discharges is not as high as in the Mandeo.

So, despite the uncertainties in the projections obtained with the different GCMs for the two RCP scenarios, 
these results clearly point toward an increase in the frequency and magnitude of high flows in both basins.

4.2.  Sea Levels

Extreme sea levels in the area are driven by the astronomical tide and storm surge. In this study, the same 
tidal range series were applied for both the historical and future scenarios, which are based on present-day 
tidal harmonic constituents. Although the propagation of tides in certain estuaries and rivers can be affect-
ed by changes in water depth due to SLR (Schindelegger et al., 2018), the change is expected to be minor in 
the estuaries of this region, according to the trend in the tidal amplitude of −0.6 mm/yr observed between 
2000 and 2015 (Serrano et al., 2020) and the results of modeling studies (Pickering et al., 2017).

On the other hand, future storm surges were calculated by downscaling GCM projections of SLP, and can 
therefore differ from present conditions. A statistical analysis of the entire reconstructed storm surge series 
was performed, and extreme values were calculated (Figure 7). Similarly to the analysis of river discharges, 
a Gumbel distribution was fitted to the annual maxima of the historical and future scenarios, and 10th, 
50th, and 90th percentiles of all the GCMs projections were calculated for each return period in the RCP 
4.5 and RCP 8.5 scenarios. The results suggest that the extreme storm surge heights will remain stable or 
decrease slightly, which is consistent with previous studies in the Atlantic coast of Europe (Vousdoukas 
et al., 2016). In most GCM projections, the differences with respect to the historical return period value are 
less than 10 cm. Minor differences are also found between RCP4.5 and 8.5 scenarios.

Despite the minor changes in tide and storm surge, extreme sea levels will also change due to the expected 
SLR in the upcoming years. According to the projections used in this study (Section 3.2), the mean sea level 
at this location is predicted to rise 0.50 m in RCP4.5 and 0.69 m in RCP8.5 by 2100. Based on the above, the 
SLR constitutes the main driver of future changes in sea-level at the study site. It should also be noted that 
we are considering the ensemble mean of the SLR projections for the two RCP scenarios. The consideration 

Figure 5.  Flow duration curve for the Mandeo river in the historical and future scenarios: RCP4.5 (up) and RCP8.5 (down).
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of the upper limit of the confidence intervals (see Figure S4 in Supporting Information S1), or even more 
extreme scenarios outside that likely range (Church et al., 2013), would enhance the dominant role of the 
SLR in the future frequency of extreme sea levels.

4.3.  Water Depth

The trend of future change in flood levels at this site can be inferred from the changes in sea level and dis-
charge presented in Sections 4.1 and 4.2. However, these drivers need to be jointly simulated with a flood in-
undation model in order to quantify the changes in water depths. The methodology described in Section 3.7, 
which combines a 2D inundation model with a LS-SVM model, was followed in this study for this purpose.

The simulated water surface elevation (WSE) values were plotted as a function of the following flood driv-
ers: the river discharge (Figure 8a), the sum of the storm surge and sea-level rise (Figure 8b), and the tidal 
range (Figure S6 in Supporting Information S1). The water level at the control points located downstream 
the confluence of Mandeo and Mendo is driven by storm surge and tides (Figure 8b and Figure S6 in Sup-
porting  Information  S1), as well as the sea-level rise in the case of the future scenarios. Thus, at those 
control points, high water levels can occur under any discharge condition (Figure 8a) associated with high 
sea levels. On the contrary, further upstream, high water levels are always associated with high discharges. 
The role played by the river discharge significantly increases as we move upstream along the river reach 
(from P4 to P8 on the river Mandeo, and from P11 to P9 in river Mendo), as shown by the steeper slopes of 
the scatter plots. Although this behavior can be seen in the historical records, it is more evident in future 
estimates due to the significant increase in the projected discharges. In this upper part of the reach, high 
water levels can occur even during low tidal range conditions and low surges, driven only by very high river 
flows, as reflected in the large spread in the high water level region of the S + SLR scatter plots (Figure 8b).

Figure 6.  Annual peak discharge frequency curves for the historical data (2001–2017) and future projections (2071–2100) according to scenarios RCP 4.5 and 
RCP 8.5, in the Mandeo (left) and Mendo (right) rivers. Dashed lines Q90, Q50, and Q10 are the 10th, 50th, and 90th percentiles of the point estimates for each 
return period.
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The behavior observed in the upstream points of both rivers (Mandeo and Mendo) is very similar. However, 
in the river Mendo, a stronger relationship with little scatter is evident between Q and WSE for the upper 
range of discharges (approximately for Qs larger than 50 m3/s). The flow rate exerts almost total control 
over the WSE values in this range. This can be explained by the steeper bed slope of this river reach, with 
bottom levels located at a higher elevation, which is less affected by backwater effects due to high sea levels. 
The behavior is otherwise very similar to that of the river Mandeo, so that in the following analyses, in the 
interests of clarity, only the results of the river Mandeo are presented.

The potential future changes in the normal and extreme WSE values at the different control points were 
analyzed. A statistical analysis of the entire reconstructed WSE series was performed, and the median and 
the 99.7th percentiles were compared as relevant estimators (Table 3). The results show similar future in-
creases in the median water levels for all points, which are in the order of 0.4 m for RCP4.5 and 0.5 m for 
RCP8.5 scenarios. These increases reflect the projected rise in the mean sea level and the backwater propa-
gation at the reach. As explained in Section 4.2, we consider the ensemble mean of the SLR projections for 
the two scenarios. The consideration of upper SLR projections would result in significantly higher increases 
in the median water levels. On the contrary, there are significant differences between points in the 99.7th 
percentile values obtained from the reconstructed WSE series. The upstream points (P5 to P8) present great-
er water level increases than locations further downstream, since they are more affected by the projected 
increases in river discharges (Figure 8a).

Figure 7.  Annual storm surge frequency curves for the historical data (2001–2017) and future projections (2071–2100) 
according to scenarios RCP 4.5 and RCP 8.5. Dashed lines 90, 50, and 10 are the 10th, 50th, and 90th percentiles of the 
point estimates for each return period.
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In a subsequent step, the annual maxima at each control point were extracted from the reconstructed wse 
time series. They were used to obtain the mean annual maximum water level (MAM) (Figure 9) and to de-
rive extreme value estimates for return periods up to 30 years (Figure 10).

MAMs at all points are predicted to increase in the future (Figure 9). At points close to the sea (P1 to P3), the 
MAM projections are relatively similar between RCPs. The SLR drives the increases in MAMs with respect 
to the historical scenario, and the differences in MAMs between RCPs respond to the differences in SLR 
magnitude between the scenarios. MAM projections exhibit very little spread between GCM runs in each 
scenario due to the minor differences in storm surge projections between runs, as shown in Section 4.2. 
Further inland (points P4 to P8), extreme water levels are dominated by the discharge, which is predicted 
to increase significantly, and the differences in MAMs with respect to the historical scenarios are larger. As 

Figure 8.  Daily maximum water surface elevation at the different control points versus: (a) discharge and (b) sum of 
the storm surge and sea-level rise, for historical and RCP4.5 and RCP8.5 scenarios. Note: the discharge plotted is the 
one used as predictor in the LS-SVM model, which corresponds to the Mandeo river for points P1-P8 and P12, and the 
river Mendo for points P9-P11.
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shown in Section 4.1, discharge projections also display a large spread between models. As a consequence, 
there is a higher variability in the MAM projections at these upstream points.

Similar observations can be made on the flood frequency analysis (Figure  10). The direction of future 
change in extreme value estimates is consistent between GCMs, showing a general increase in water levels, 
especially for the RCP8.5. At the inland points, the magnitude of change varies widely between GCMs, since 
they strongly influence the river discharge projections.

5.  Conclusions
High water levels in coastal river areas originate from complex interactions between coastal and inland 
drivers. In the context of changing climate, reliable methods capable of dealing with this complexity are 
urgently needed to assess future flood conditions in these already flood-prone areas. The method proposed 
in this study involves an assessment of historical and future flooding conditions in coastal river areas by 
using a continuous simulation approach that considers seasonality and the correlation between flood driv-
ers. It can be used to evaluate potential future changes in flood hazard and to identify the drivers that are 

WSE (m) P1 P2 P3 P4 P5 P6 P7 P8

Median Historical 1.71 1.71 1.71 1.72 1.73 1.75 1.77 1.84

  RCP4.5 2.09 2.10 2.10 2.10 2.11 2.11 2.13 2.19

  RCP8.5 2.22 2.23 2.23 2.23 2.24 2.25 2.26 2.32

  Difference RCP4.5—historical 0.39 0.39 0.39 0.39 0.38 0.37 0.36 0.36

  Difference RCP8.5—historical 0.52 0.52 0.52 0.52 0.52 0.50 0.49 0.49

P99.7 Historical 2.50 2.50 2.52 2.53 2.54 2.56 2.56 2.63

  RCP4.5 2.92 2.94 2.96 2.98 3.04 3.14 3.21 3.39

  RCP8.5 3.08 3.09 3.12 3.14 3.24 3.38 3.52 3.73

  Difference RCP4.5—historical 0.42 0.43 0.44 0.45 0.50 0.58 0.64 0.76

  Difference RCP8.5—historical 0.58 0.59 0.59 0.61 0.70 0.82 0.96 1.10

Note. In the RCP scenarios, where a set of 19 GCMs is considered, the values correspond to the median 99.7th percentile 
of all GCMs. GCM, Global climate model; WSE, Water surface elevation.

Table 3 
Median and 99.7th Percentile of the WSE Time Series at Each Control Point

Figure 9.  Longitudinal profile of mean annual maxima water levels obtained for the historical and future scenarios. For the future scenarios, the median 
percentiles considering all global climate models are plotted.
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largely responsible for these changes. The results can ultimately inform adaptation planning in regions with 
compound flooding potential.

The proposed methodology was applied to a coastal river reach in NW Spain, located at the confluence of 
the rivers Mandeo and Mendo, and which suffers from compound flooding due to high river discharges 
and sea levels. The main conclusions that can be drawn from the results obtained in this case study can be 
summarized as follows:

1.  High water levels downstream the confluence of Mandeo and Mendo rivers are driven by sea levels, 
whereas river discharge is dominant in the upstream part of the reach. The methodology can be used to 
evaluate the relative impact of sea level and river discharge over the river reach under study.

2.  Local future projections show a small decrease in storm surge extremes with respect to the historical 
period. A larger change toward increasing discharge extremes is predicted, although the magnitude of 
change is highly GCM dependent.

3.  The SLR drives the future increases in extreme water levels in the outer part of the study area. On the 
contrary, river discharge drives the water level increase in the inner part of the study area. The variability 
in the discharge projections results in a large impact range on the water surface elevation.

4.  It is generally expected that the increases in extreme water levels in coastal areas will be mostly a result 
of the SLR. However, climate change affects other flood drivers which can play a relevant role in water 
depth extremes in regions with compound flooding potential, as evidenced in this case by the river 
discharge.

We do, nevertheless, acknowledge the uncertainty in the future projections from GCMs that the method 
relies on, and thus the need to re-assess the results obtained as improved projections become available.

Figure 10.  Flood frequency analysis for the annual maximum water level in the historical and future scenarios. Only the median return period values 
considering all global climate models are plotted for the RCP4.5 and RCP8.5 scenarios.
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