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Image segmentation is an important issue in many industrial processes, with high potential to enhance
the manufacturing process derived from raw material imaging. For example, metal phases contained in
microstructures yield information on the physical properties of the steel. Existing prior literature has been
devoted to develop specific computer vision techniques able to tackle a single problem involving a particular
type of metallographic image. However, the field lacks a comprehensive tutorial on the different types of
techniques, methodologies, their generalizations and the algorithms that can be applied in each scenario. This
paper aims to fill this gap. First, the typologies of computer vision techniques to perform the segmentation
of metallographic images are reviewed and categorized in a taxonomy. Second, the potential utilization of
pixel similarity is discussed by introducing novel deep learning-based ensemble techniques that exploit this
information. Third, a thorough comparison of the reviewed techniques is carried out in two openly available
real-world datasets, one of them being a newly published dataset directly provided by ArcelorMittal, which
opens up the discussion on the strengths and weaknesses of each technique and the appropriate application
framework for each one. Finally, the open challenges in the topic are discussed, aiming to provide guidance

in future research to cover the existing gaps.

1. Introduction

The popularization of Artificial Intelligence (AI) has deeply per-
meated industry manufacturing processes [1]. Usually, such processes
require expert knowledge about the available materials, their charac-
teristics and manufacturing procedures. The aim of Al is to support the
experts in their decisions, encoding a significant portion of knowledge
in a certain model [2], constituting a key part of the next Industry 4.0
revolution [3].

Image segmentation of metallographic images is a challenging task,
where features of the material that will have an impact on the final
product are grouped and identified together in structures at the micro-
scopic level imaging. Hence, having more knowledge about the inputs
(i.e. the materials employed) will result in a better understanding of the
output of the manufacturing process (i.e. the final product), assessing
the quality of the product for the client or even easing the development
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of new products. Images of the input materials contain plenty of knowl-
edge related to the mechanical properties of the material and relevant
information about the manufacturing process [4,5], and there is a wide
range of application fields: additive manufacturing (for powder gener-
ation or printed samples), biomedical applications or electrochemistry,
just to name a few. Commonly, qualitative and quantitative analyses
of segmented microstructures are manually performed by materials
scientists.

The rise of Deep Learning (DL) [6] has created new opportunities,
enabling the experts to directly utilize images in their AI applications.
Many Al applications were based on traditional computer vision tech-
niques and classical Al methods in order to help scientists on their
quantification analysis [7-9], but the use of DL has broadened the
spectrum of possibilities and yielded good results in complex problems
that were unfeasible before.
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Among the many applications in industry manufacturing that
greatly benefit from the potentialities of DL, we focus on the segmen-
tation of metallographic images. Image segmentation is the task of
partitioning an image into non-overlapping regions according to some
criteria. In other words, it is the task of finding groups of pixels that
“go together” [10]. It represents one of the oldest and most widely
studied computer vision problems [11-13], and it is involved in many
essential applications, like medical image analysis [14,15], autonomous
driving [16], and robotics [17], just to name a few.

Although quantification tasks provide more accurate information,
pixel-wise annotation of previous segmentation is a very time-
consuming task. Therefore, automatizing microstructure characteriza-
tion is one of the industrial applications that are actively adopting
DL-based image segmentation to describe manufactured materials,
helping the experts in such a demanding task. Since microstructure
segmentation is too complex, is hard to fully automatize the charac-
terization but in general automatic methods act as an assistant tool for
experts. In addition to this, the scarcity of annotated samples favors the
application of unsupervised or semi-supervised methodologies that are
able to leverage unlabeled images.

The variety of microstructural images, Al techniques, methodologies
and expert labeling availability create an important challenge when
facing a new metallographic segmentation task. The literature on this
topic focuses on the particularities of a single dataset, with a limited
generalization ability to related metallographic segmentation tasks.
This paper focuses on the semantic segmentation of metallographic
images with the objective of providing scientific readers with a com-
prehensive overview of the available Al techniques. Practical users
will also find interesting methodological aspects that will lead to a
successful approach to any related metallographic problem, with real-
world scenarios as an example. The main contributions of this work are
both theoretical and technical and are summarized as follows:

+ We create a completely new metallography dataset from addi-
tive manufacturing of steels (MetalDAM), with 42 labeled steel
micrographs.

We provide an updated taxonomy of semantic segmentation
methods applied to metallographic images, including many DL-
based models which represent the current state of the art, as well
as a description of the most relevant approaches in the field.

We propose a new DL-based ensemble proposal specialized in the
semantic segmentation task.

We develop an extensive experimental comparison of state-of-
the-art models and the newly proposed ensembles with two case
studies, the Ultrahigh Carbon Steel Micrographs dataset (UHCS)
and the new MetalDAM dataset, covering several approaches,
such as supervised and semi-supervised scenarios.

We present a thorough analysis of the current difficulties that
arise when tackling microstructure segmentation problems using
Al techniques, and some challenges are discussed.

The paper is organized as follows. Firstly, Section 2 describes the
task of semantic segmentation applied to metallographic images. Sec-
tion 3 continues with the taxonomy and descriptions of the state-of-the-
art approaches, whereas Section 4 introduces the proposed ensemble-
based solutions. Section 5 explains the experimentation framework and
provides analyses on the obtained results. Next, Section 6 discusses the
main difficulties which can be found when dealing with this task in
a real world scenario and the main challenges in the topic. Section 7
finishes with the conclusions of the work.

2. Segmentation of metallographic images

This section introduces the main characteristics of the semantic
segmentation problem when applied to microstructures, as well as the
available metallography datasets and the newly released MetalDAM
dataset.
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2.1. Semantic segmentation fundamentals

The objective of this task is to be able to correctly categorize each
pixel X;; in a w pixels wide by h pixels tall image X € M, ({0, ...,
255}) (assuming the image is grayscale), as its class Y;; € Y. The nature
of the problem suggests to consider the image as a whole rather than
a pixel-by-pixel problem. Therefore, a solution to the task consists in
a function f : M,,,,({0,...,255}) = M, () that assigns images to
label matrices.

According to the available data and, more specifically, whether it
is labeled or not, a dataset .S will consist of either image-label pairs
(X,Y) € My ({0, ...,255}) X M, (D) or just simply images.

There are numerous works that address image segmentation from a
more general perspective [18-21], but in this work, in order to create
a more compact and well-posed study, we exclusively focus on the
segmentation of metallographic images and associated methods.

2.2. Distinctive aspects of microstructure segmentation

Analysis of microstructures is essential to materials engineering and
design. This field covers the discovery and study of new materials,
usually solids. This analysis is traditionally based on features carefully
measured by experts, and usually includes segmenting each microstruc-
ture, that is, separating it into regions according to the different phases
or components of the material. The analysis and this region detection
in particular are often carried out manually, which makes it a costly
and time-consuming process. Several other features, such as volume
fractions, size distributions and shape descriptors, some of which can
be appreciated in Fig. 1, can be extracted more easily from the seg-
mentation of a microstructure [24], thus the interest in automatizing
the segmentation step itself. Those features are related to theoretical
and/or empirical models developed by experts, such as dislocation
theories [25], tensile properties [22] or simply characterization of
certain materials [23].

The characteristic features of microstructures differentiate this type
of segmentation from many other real-world situations, for example,
object segmentation in regular photographs. In a normal photo taken
with a camera, there is usually some portion of the image that does
not contain elements of interest, and one or more objects of a certain
size and a relatively closed shape that can be categorized according
to a given list of classes. Objects may be repeated but they are usually
countable. A micrograph, however, may show dozens or even hundreds
of small regions of the same class, often connected to one another,
and completely interleaved with other regions of a different class. To
a certain extent, they could be interpreted as large-scale aerial images
of complex networks of water and land masses where the objective is
to identify rivers, lakes and different land types.

Accurate segmentation of microstructures is currently achieved by
specialized applications, for example, ImageJ [26]. With this kind of
application, experts can perform the segmentation task manually. Nev-
ertheless, they require expert fine-tuning and a lot of time to achieve
good performance on a specific dataset. There are several proposals
that aim to automate this process by using machine learning with
supervised, semi-supervised and unsupervised approaches. Although
there are proposals based on classical techniques such as support
vector machines [27], most of them propose methods based on deep
learning, in particular, on convolutional neural networks (CNNs) [28-
30] for the segmentation task, especially in a supervised way [31,32].
These techniques, however, need pixel-wise labels as a basis for their
optimization, that is, each pixel in each microstructure image needs to
be assigned a class according to the phase or component it belongs to.
In the specific case of microstructures, this kind of labeling needs strong
expert supervision in order to be reliable. This places some limits as to
the size of the available datasets that can be used to train models, as
will be explained later.
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(a) Two views of the same microstructure.
Different traits are identified in each mi-
crostructure [24].
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(b) Different graphite particle patterns
characterized by shape [25].

Fig. 1. Different studies of microstructures shapes. These studies are crucial in determining the behavior of each material.

Traditionally, color has been used to differentiate phases in met-
allography [33]. Due to the increase of microstructural complexity
and the development of new advanced steels and their processes,
optical microscopy is limited since spatial resolution is not enough
to analyze the material substructure. Scanning Electron Microscope
(SEM) images provide information in grayscale values based on relief
phase-contrast, where phase identification is based on morphology,
size, distribution and relative location to other phases. Furthermore, it
is usually applied complementary sensitive crystallographic or chemical
experimental methods to confirm the identification [34].

MetalDAM is cataloged as an Advanced High Strength Steel with an
multi-phase ultra thin micro structure, sometimes enriched with pre-
cipitates. These facts increase the complexity compared to traditional
steels (for example austenitic or ferritic inox, Fig. 10 and 13 in [35]
or biphase steels like duplex, Fig. 14 in [35]) in terms of: number of
phases, size and methods to prepare samples in the microscope.

Although it may seem that microstructure segmentation is a very
particular problem, it can also be related to other types of segmenta-
tion. For example, it shares some commonalities with medical image
segmentation [14]: both usually show very small but relevant regions,
regions of the same class can have complex shapes and be connected,
and are tasks that require a high effort from experts to be performed
by hand. Similar reasoning may apply to remote sensing [36] and
astronomical images [37]. This shows that learning from the obstacles
that micrographs present can also help design new approaches for these
tasks from very different fields. Fig. 2 shows two examples of medical
and astronomical images where the segmentation task is used. As a
result, any findings in the microstructure scenario may hint to general
ideas on how to solve many other problems as well.

2.3. Datasets

In this section we analyze the current availability of metallography
datasets and introduce details about the ones we use in the experimen-
tal section of this work, one of them being a novel public dataset that
constitutes one of the main contributions of this paper.

We can find extensive datasets of metallographic images from the
materials industry, both private, such as the aluminum alloy micro-
graph dataset provided by Nanshan Aviation Materials Industrial Park
used in [40] for unsupervised segmentation, and public, such as Ultra-
High Carbon Steel Micrograph DataBase [41]. The problem with these
datasets is the absence of pixel-level labels, which is the main obstacle
when addressing the segmentation problem.

In some studies, the problem of supervised segmentation of metallo-
graphs is addressed by labeling some metallographic images themselves
with the help of materials science experts, this is the case in [27,42,43].
But, in most cases, these datasets are not made public to the scientific
community. In other cases [44], labels are proposed at the image
classification level, so they are not useful for the segmentation task.

234

Up to the authors’ knowledge, the only public and pixel-wise an-
notated metallographic image dataset is the one presented in [45].
This dataset consists of a subset of labeled metallographs belonging to
the previously introduced UHCS database. In fact, due to the current
scarcity of labeled datasets, this paper proposes a new one for the
semantic segmentation of metallographs, which will be described in
more detail in the following subsections. Table 1 presents a summary
of the main characteristics of the existing datasets.

2.3.1. UHCS

The openly available Ultrahigh Carbon Steel (UHCS) microstructure
dataset was originally introduced in [41]. Subsequently, a subset of this
dataset' was updated in [45] enabling the supervised semantic segmen-
tation task by the addition of segmentation labels, and becoming the
first public benchmark for semantic segmentation of metallographs.

This dataset is composed of 24 grayscale metallographic images.
These images correspond to a single magnification level and the anno-
tations have been obtained through a partially-automated edge-based
segmentation workflow where the final particle segmentations are ver-
ified and retouched manually [45]. An example of these metallographs
can be seen in Fig. 4. These images have a size of 645 x 484 pixels
and the labels annotated distinguish between four classes of microstruc-
tures: proeutectoid cementite network, fields of spheroidite particles,
the ferritic matrix in the particle-free denuded zone near the network,
and Widmanstitten laths. More details about class distribution are
provided in Table 2 and the class distribution per image is shown in
Fig. 3.

The main difficulties present in this dataset, according to the au-
thors who have addressed the segmentation problem on these metallo-
graphs [45], are:

+ The presence of areas where the cementite network phase is very
fine or the contrast between this phase and the ferritic matrix is
poor can lead to confusion between both phases.

+ The low presence and the fine and broken shape of Widmanstat-
ten lath areas.

+ Areas with a very low density of spheroidite particles can be
confused with ferritic matrix.

» The fact that the segmentation of microstructures can sometimes
be ambiguous to human experts, which can lead to noisy labeling.

2.3.2. MetalDAM

In this paper, we present MetalDAM (Metallography Dataset from
Additive Manufacturing), a new public benchmark dataset for semantic
segmentation of metallographic images. This represents one of the main

1 https://materialsdata.nist.gov/handle/11256/964.
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(a) Digitalized mammogram and
radiologist’s boundary for biopsy-
proven malignant tumor [14].

(c)

Example of the
dataset [38].

ADE20K

Information Fusion 78 (2022) 232-253

(b) Example of galaxy segmentation by a special-
ized software [37].

segmentation

Fig. 2. Medical and astronomical study with direct application of the semantic segmentation task. These images and metallographs have in common a local characteristic. This
differentiates them from typical segmentation benchmark datasets such as Cityscapes [39] or ADE20K [38] (on Fig. 2c), where a global scene gives structure to the image. Moreover,
unlike the usual benchmark datasets, the annotation can be performed exclusively by experts in the area. This adds an additional difficulty to the problem.

Table 1

Summary of metallography datasets.

Dataset Images Resolution Labeled Availability
Zhang et al. [40] 5086 2560 x 1920 No Private
UHCSDB [41] 961 645 x 484 No Public
Roberts et al. [42] 2 2048 x 2048 Yes Private
Zhang et al. [40] (subset) [27,43] 30 1024 x 768 Yes Private
UHCSDB (subset) [45] 24 645 X 484 Yes Public
MetalDAM 42 1280 x 895, 1024 x 703 Yes Public
MetalDAM (unlabeled) 164 1280 x 895, 1024 x 703 No Public

Table 2
Class ratio in UHCS.

Class Ratio (%)
0. Ferritic matrix 16.12
1. Cementite network 12.98
2. Spheroidite particles 68.23
3. Widmanstétten laths 2.67

contributions of this study, due to the scarcity of public benchmark
datasets for this task. MetalDAM has several advantages over existing
ones, such as a larger number of annotated images and a higher

image resolution. The MetalDAM dataset is available for download by
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the scientific community at https://dasci.es/transferencia/open-data/
metal-dam/.>

This dataset contains 42 grayscale images taken from a SEM with
resolutions 1280 x 895 and 1024 x 703. Such images are micrographs
of steels that have been generated employing additive manufacturing
techniques, and contain relevant information that can be used for
quantitative and qualitative analysis of the material. An additional
set of 164 unlabeled images obtained from the same materials is also
provided at the same repository.

2 Direct download of the images, both labeled and unlabeled, is available
at https://github.com/ari-dasci/OD-MetalDAM/releases/tag/1.0.
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Fig. 3. Histograms of class distribution per image in the UHCS dataset.

Table 3
Class ratio in MetalDAM.

Class Ratio (%)
0. Matrix 31.86
1. Austenite 58.26
2. Martensite/Austenite (MA) 8.96
3. Precipitate 0.24
4. Defect 0.68

All the images in the labeled dataset have been annotated pixel-
wise according to the 5 microconstituents that are present. Three out
of five are different phases named as matrix, austenite and marten-
site/austenite (MA), and the two remaining are precipitates and defects.
More details about class distribution are provided in Table 3 and the
class distribution per image is shown in Fig. 5.

As mentioned before, the qualitative analysis of microstructures is
really time-consuming. The case of MetalDAM contain images with
higher resolution than UHCS, higher resolution will increase the time
and effort of labeling process by domain experts. Regarding all of
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this, a process was designed to enhance the pixel-wise accuracy of the
annotations and reduce the time spent by the annotators. The first
step of this process is providing a pre-annotation instead of letting
the experts annotate each pixel of the image from scratch. These pre-
annotations are masks where each pixel of the image belongs to a
certain class. Taking into account that 2 out of 5 MetalDAM microcon-
stituents (matrix and austenite) are present on every single image and
both represent more than 90% of pixels, binary segmentation of matrix
and austenite phases was selected as pre-annotation. With the purpose
of generating these masks, an unsupervised segmentation method [46]
was employed. Even if this approach has obtained promising results on
micrographs before [47], on MetalDAM it tends to under-segment the
images by generating a binary mask instead of returning a multiclass
segmentation. After optimizing this method for each image by tuning
the hyperparameters, the pre-annotations were obtained through select-
ing the most accurate matrix-austenite segmentations. The second step
is a manual refinement of the pre-annotations done by the material
science experts through an image segmentation labeling tool. This
refinement task basically consisted of adding the annotations of MA
and defects, as well as, some minor fixes of the matrix-austenite pre-
annotation in some of the cases. The reduced size of the precipitates
increased notably the effort of annotating these microconstituents, as
precipitates do not provide much meaningful knowledge while analyz-
ing these kinds of microstructures, most of them were ignored during
the annotation process. Due to this fact, the precipitates are ignored
while measuring the performance of every image segmentation model.
Finally, a few images were manually labeled from scratch and
compared to the ones generated from the pre-annotations. In terms of
time, as the classes manually included during the refinement process
represent less than 10% of the pixels on the dataset, the labeling
effort of the full dataset was highly reduced. Additionally, in terms
of accuracy, the unsupervised segmentation method was able to do
a better segmentation of complex boundaries between matrix and
austenite phases. A sample of an image from MetalDAM together with
its annotation (i.e., its ground truth segmentation) is shown in Fig. 6.

3. Taxonomy of metallography segmentation methods

Several techniques for segmentation of metal microstructures have
been proposed in the literature, with varying degrees of complexity
and different ways of utilizing the available data. This section reviews
existing proposals as well as some other approaches to segmentation
that can be applied to this specific problem, organizing them into a
taxonomy.

3.1. Taxonomy

The techniques used in the literature to segment metallographs and
microstructures can be broadly divided into two large methodological

o Rt 4

Fig. 4. Example of metallograph extracted from the UHCS dataset. Left: original image. Right: ground truth segmentation.
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Fig. 5. Histograms of class distribution per image in the MetalDAM dataset.

Fig. 6. Example of metallograph extracted from the MetalDAM dataset. Left: original image. Right: ground truth segmentation.

categories. On the one hand, those techniques that do not use any
form of machine learning, and that segment the images based solely
on pixel intensity or on the shape of the structures to be segmented.
Within this category there are classical image processing and computer
vision techniques, such as thresholding [48,49], region growing [50]
and deformable models [51]. On the other hand, there are learning-
based segmentation techniques, where available data (either annotated
or not) guide the segmentation task through a training process. Within
this category, most works presented in the literature are of supervised
nature [31,32,42,45,52-56], relegating unsupervised approaches to a
limited number of works [47,52]. The vast majority of learning-based
methods employ some form of deep learning [6], but more classical
approaches, where feature extraction and classification are performed
in two separate stages, are also present in the literature [27,57,58].
In particular, the supervised approaches employed in the experi-
mental section of this paper, as well as most of the ones employed in the
literature, can be classified into the following sub-categories: (a) those
presenting an encoder—decoder architecture where upsampled higher-
level feature maps are fused with higher-resolution, lower-level feature
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maps [56,59-61]; (b) methods based on the extraction of a hypercol-
umn of descriptors that are then fed to a multilayer perceptron [62];
and, finally, (c) approaches that present some sort of pyramidal struc-
ture to perform the segmentation using multi-scale feature maps, rather
than only utilizing a single and final upsampled feature map [63-68].

Supervised learning techniques generally outperform image pro-
cessing methods. However, this remarkable performance comes at the
cost of employing data hungry approaches. This is an issue since, in
microstructural characterization and analysis, due to the high cost of
labeling images, the available datasets are very limited in the number
of training images. Therefore, there is a great interest in developing
segmentation methods requiring a lower annotation effort (either in
terms of label detail, e.g. providing just a weak supervision instead
of pixel-level annotation, or in the number of training images). In this
sense, and despite their evident utility, semi- and unsupervised metallo-
graphic image segmentation algorithms are still in their infancy. In fact,
up to the authors’ knowledge, only one semi-supervised segmentation
method has been applied to this problem so far [43]. In this paper,
we introduce one semi-supervised method [69] in the experimental
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comparison, and explore the possibilities of such approaches in this
context.

Regarding unsupervised learning methods, most of them perform
a quite straightforward application of classical clustering algorithms,
like k-means [70], DBSCAN [40] or fuzzy c-means [71]. Neural-based
approaches have also been employed, including self-organizing maps
[52], superpixels and convolutional neural networks [47], and condi-
tional generative adversarial networks [72]. However, it is important
to notice that all these unsupervised methods, even if relevant and
promising, have not yet been thoroughly investigated and, so far, do
not produce results that are good enough to be actually applied in real
scenarios.

Fig. 7 shows a taxonomy of methods used in the segmentation of
metallograhic images, including methods from the literature and those
employed in this paper. These latter are described more in detail in next
subsections.

3.2. Image processing techniques

In this section we give a brief overview of the image processing
techniques that have been applied to metallographic or microstructural
images, both in the literature and in this paper. This section deals
with techniques that do not employ any learning procedure from data,
and that rely on the inherent properties of each image (like gray-
level intensity or shape). These techniques are amongst the simplest
and fastest ones to tackle this task. Although they are not expected
to perform as well as more sophisticated methods (e.g. deep learning-
based approaches), their simplicity, efficiency and accessibility make
them ideal candidates to be part of the baselines of any study.

The image processing techniques applied to metallographic image
segmentation can be mainly grouped into three families. Image thresh-
olding techniques are the most widely applied in this problem, among
which approaches based on Otsu’s thresholding method and minimum
cross-entropy thresholding stand out. Another proposed way to segment
these images are techniques based on region growing, such as the
classic Watershed algorithm. Finally, deformable models, such as active
contour models, have also been applied to metallographic images. An
overview of these techniques is provided below:

+ Image thresholding. This kind of techniques, widely used in image
segmentation problems [73,74], are based on the selection of
specific histogram threshold values, either manually or automat-
ically, which will define the intensity ranges corresponding to
each class. Thresholding techniques are used when, apparently,
the mere gray-level intensities could allow one to segment the
structures of interest. These are possibly the simplest techniques,
where only the histogram of the image is used to carry out the
segmentation. However, these methods present serious limitations
when the complexity of the image to be segmented increases.
For an image whose histogram is not bimodal, assuming that
we want to perform binary segmentation, the results obtained by
thresholding techniques could be poor, and the need for more so-
phisticated methods arises. Due to the weaknesses of these simple
techniques to address a complex problem such as metallographic
image segmentation, it is sometimes necessary to combine them
with other methods, in order to obtain better performance than
with the mere application of thresholding techniques.

In this sense, computer vision techniques such as geometric trans-
formations, lighting correction or denoising, can be applied in
combination with thresholding algorithms to improve their per-
formance. In particular, an existing approach applies these types
of techniques in combination with a multi-Otsu global thresh-
olding method specifically designed for this segmentation prob-
lem. This method is compared with five other general-purpose
thresholding and clustering methods, namely multi-Otsu [75],
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fuzzy c-means [71], fuzzy-Tsallis entropy with differential evolu-
tion [76], multilevel thresholding-based on fractional-order Dar-
winian particle swarm optimization [77], and thresholding based
on harmony search optimization [78]. The results of this experi-
mental study show a better performance of the proposed method
according to the authors’ visual inspection [49].

The minimum cross-entropy thresholding algorithm [79] yields
remarkable results in another case study of metallographic im-
ages, where an experimental comparison of twelve classical
thresholding algorithms is carried out. Those algorithms are
divided into point-dependent [79-86] and region-dependent [87—
89] algorithms, depending on if they are based solely on the
pixel value or if they incorporate additional information from
neighboring pixels. In this experimental framework, minimum
cross-entropy thresholding showed the most robust results [48].
Region Growing. This is another family of image segmentation
methods widely used in many different application domains [90,
91]. These techniques are based on the initial selection of seed
pixels, and the subsequent iterative expansion of these seeds into
larger regions, through the association of neighboring pixels, or
regions of pixels, that meet certain similarity conditions. These
techniques are simple and effective in many cases, and they
generally overcome thresholding methods in noisy images, where
the region edges are not well-defined. However, the performance
of these methods is very dependent on the initial selection of
seeds, as well as the criteria to expand the segmented regions.
Within this methodological framework, the classic Watershed
algorithm [92] is applied on metallographic images in an iterative
way, in combination with a thresholding based seeds selection
and a ridge detection algorithm [93]. To overcome the over-
segmentation problem that the Watershed algorithm presents, the
authors propose a refinement stage based on the Bayes rule [50].
Deformable models. Deformable models [94] are segmentation
techniques that adapt a curve with the goal of maximizing its
overlap with the actual contour of an object of interest within
an image. Specifically, active contour models [95], also called
“snakes”, are parametric deformable models where the defor-
mation procedure is driven by the minimization of an energy
function, until the deformable model coincides with the object
boundary. Active contour models, in combination with a ge-
ometric deformable model called level set [96], is applied to
the problem of segmentation of microstructural images in three
dimensions. By means of numerical approximations to partial
differential equations, and guided by force vectors extracted from
the image data, this method evolves a 3D surface to fit the bound-
aries of the phases. A visual comparison shows how the proposed
method outperforms a traditional thresholding approach on a
metallographic image [51].

As a baseline for our study, we include the widely known Multi-
Otsu thresholding method, introduced in [75] as a multilevel extension
of the classic Otsu’s method [80], in combination with superpixel
algorithm [97]. The core idea of Otsu’s approach is to find the optimal
thresholds by maximizing the variance between classes. This choice is
motivated by the fact that multi-Otsu, as well as other methods based
on Otsu’s algorithm, are amongst the most commonly employed meth-
ods on image segmentation. In addition, it has attractive characteristics
for our case study, such as multilevel segmentation or automatic thresh-
old selection, and has been largely employed in the segmentation of
metallographs [48,49].

3.3. Learning-based approaches
Although image processing techniques are varied and applicable to

different situations, many problems require more specific and flexible
solutions, and the expert knowledge needed to select appropriate filters
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Fig. 7. Dendrogram displaying the methodological taxonomy employed in this paper. Representative references for each category are located next to each leaf node. The only
exception is represented by the Deep Ensembles, which are a contribution of this work, with no previous works in the field employing them. The section where the description

of each methodological family can be found is shown in blue within brackets.

may not be available. When the solution needs to adapt to the concrete
traits of the images in order to improve performance, a learning tech-
nique may be adequate. Learning a model usually depends more on
available data than expert knowledge, so it will be easier to apply in
many cases.

These methods can be characterized according to whether they are
provided with the expected outcomes for the examples of the problem
they learn from, that is, the type of supervision they receive. As such,
they can be unsupervised, if no solutions are provided; supervised,
if each example is paired with its solution; or semi-supervised, when
only a certain portion of examples are solved. The following sections
describe the main approaches to semantic segmentation for each of
these categories, focusing on specific methods that are also used within
the experimentation.

3.3.1. Unsupervised methods

As indicated in Section 2.3, the two most massive metallographic
image datasets do not have their corresponding labeling, due to the
complexity and high annotation cost of these images, only small subsets
of these have been manually annotated by experts. Semi-supervised
learning approaches allow to take advantage of the few annotated
examples that metallography segmentation datasets have (see Sec-
tion 3.3.2), but in the complete absence of labels we can only tackle
this problem from the unsupervised point of view. This fact motivates
research in this line and several unsupervised approaches have been
proposed. In addition, this type of methods can also help the expert
in the annotation process, being part of the image labeling pipeline,
reducing costs and speeding up the process, as has been the case of the
MetalDAM dataset (see Section 2.3.2). In this subsection, we introduce
the existing unsupervised approaches applied in metallographic image
segmentation.

Unsupervised techniques applied to metallography segmentation
can be divided into two groups. On the one hand, clustering techniques,
such as k-means, DBSCAN and fuzzy c-means have been applied to met-
allographic images. However, due to the complexity of the problem, in
some cases the application of classic clustering algorithms may not be

sufficient. In order to achieve a better performance, more sophisticated
techniques based on neural networks such as self-organizing maps,
CNNs in combination with superpixel algorithms, and conditional gen-
erative adversarial networks (CGANs), which are an extension of the
classic GANs with the ability to receive an input information that
conditions the subsequent image generation, have also been proposed
to address the problem. A brief description of these methods is provided
below:

+ Clustering algorithms. We can find different applications of clas-
sical clustering methods in metallography and microstructural
segmentation problems. Although these methods are designed for
clustering tasks, they can be used directly in segmentation either
individually [98] (taking as data points the pixels of the image,
which will be 1D data points in the case of grayscale images, and
3D data points in the case of RGB images) or in combination
with other methods. As with image processing techniques, the
simplicity of classical clustering algorithms may imply the need
to be supported by other auxiliary techniques when faced with
a complex problem, as is the case here. In this sense, there are
several pipelines proposed for metallographic image segmenta-
tion, with clustering algorithms as main segmentation technique
and supported by other algorithms. For instance, the use of clus-
tering algorithms such as Mean Shift [99], k-means [100] or
DBSCAN [101] (depending on if the desired number of clusters is
known) together with image processing techniques [102], is pro-
posed as a pipeline to address the metallographic segmentation
problem [70]. Another common approach is to perform dimen-
sionality reduction in the image using superpixel algorithms and
the subsequent use of clustering techniques over the superpixels
generated. An improved version of the SLIC superpixel algo-
rithm [103], together with the use of the DBSCAN clustering
algorithm to perform the segmentation, and a final refinement
stage using the k-means algorithm, form another segmentation
pipeline applied to metallographic images [40]. Another strategy
is to redesign a clustering algorithm to obtain a better perfor-
mance on a specific type of images. In particular, the fuzzy
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c-means algorithm [104] is modified to improve its performance
when segmenting metallographic images, the basic idea being the
incorporation of spatial information related to the gray level of
each pixel neighborhood [71].

Neural Networks. Due to the high complexity of the images,
we are trying to segment, as well as the recent success of deep
learning in many computer vision problems, more advanced ap-
proaches based on unsupervised neural networks have also been
explored. The first neural approach to this problem was the
application of self-organizing maps [105], a type of unsupervised
neural network able to produce a low-dimensional representation
of the input space. Unlike most neural networks, it does not learn
by error correction through backpropagation, but it uses compet-
itive learning, where the nearest neuron for each input data is
selected, and its weights and those of its neighbors are updated,
producing the aforementioned low-dimensional representation.
This method is directly applicable to the segmentation task, by
including a neuron for each class that we want to segment [52].
Another approach is to try to mimic the manual labeling process
carried out by metallography experts. With this purpose, the SLIC
superpixel algorithm [103] is applied to the image producing
small coherent regions, and then a CNN is used to classify dif-
ferent spatially separated superpixels with similar characteristics
under the same label [47]. Recently, deep generative approaches,
like CGANSs, have also been applied to metallographic image seg-
mentation [72] but their effectiveness, benefits and applicability
to this problem has to be confirmed yet.

In this paper, we use k-means combined with superpixels [97] as
unsupervised approach. In opposition to other more complex tech-
niques, it is a simple, effective and popular method, that has already
been successfully used in the literature. Both unsupervised and image
processing techniques are referred to as baselines in the experimental
section. This is a natural consequence of the algorithmic nature of
Otsu’s thresholding method and k-means clustering algorithm, since it
is well-known that the objective function of Otsu’s method is equivalent
to that of k-means in multilevel thresholding [106]. Furthermore, they
are both based on the same criterion that minimizes the within-class
variance.

3.3.2. Semi-supervised methods

A common obstacle in many real-world scenarios, especially present
when applying machine learning to industrial problems, is the un-
availability or high cost of labeled instances. As explained before,
this is also the case for metallographs. As a result, unlabeled im-
ages can be extracted at a faster pace than they can be annotated.
In order not to waste potentially useful information, semi-supervised
learning [107] can take advantage of unlabeled samples as well as
labeled ones. This section introduces some recent techniques for semi-
supervised segmentation which could be applied to microstructures,
and describes an existing proposal as well as the method used later in
the experimentation.

There exist several ways of drawing information from unlabeled
instances. A very common approach is self-supervision [108], which
focuses on withholding or creating some information that the model
will need to predict in order to be optimized. A different perspective
is provided by information theory, with measures that can provide
objectives to be optimized using unlabeled data. The following is a brief
description of the main approaches to semi-supervised segmentation:

+ Self-supervision. This kind of methodologies either obscure some
information from the images in order for the model to predict
and be evaluated with respect to it, or create an output which
serves to assess the adequacy of the predicted labels. For instance,
a common approach is eliminating color from images, using only
grayscale data as inputs, and predicting color versions. Another
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one is pseudo-labeling, which means predicting labels over unla-
beled images using a supervised model and taking them as true
labels to continue training [43,109].

Information theory and probability. Different approaches can be

made from the perspective of information theoretical measures
and probability theory techniques. For example, a general frame-
work for entropy-based semi-supervised learning has been pro-
posed [110]. Later in this paper, we test the potential of the
proposal in [69] when it comes to segmenting microstructures.

Adversarial training. Some approaches utilize a generative adver-

sarial network (GAN), which is a convolutional network with two
main components, a generator and a discriminator. The generator
usually takes some random noise and provides fake inputs to
the discriminator, which must learn to discern them from the
real inputs sampled from the dataset. In semi-supervised models,
the discriminator component helps train the feature maps with
unlabeled images as well as labeled ones [111,112]. To the best
of our knowledge, no semi-supervised adversarial approach has
yet been applied to microstructures.

To the best of our knowledge, the only semi-supervised method
employed in the literature for metallography segmentation consists
in applying a pseudo-labeling process in combination with self-paced
learning [43], which implies learning only from sufficiently confident
pseudo-labels. The authors test several options for a criterion by which
to filter those pseudo-labels, including a dynamic threshold that allows
more of them to be used as the training progresses, as well as a
combination of cross-entropy and Dice losses.

Universal Semisupervised Semantic Segmentation (USSS) [69] com-
bines both semi-supervised learning and multi-domain learning into a
model able to combine information from two different domains while,
at the same time, retrieving knowledge from unlabeled instances from
those domains. This model fits into the information theory-based cate-
gory, due to its choice of loss functions. Its main components include
one encoder module for every type of input image from any domain, in-
dependent decoder modules for labeled images from each domain, and
an entropy module for computation of two unsupervised loss functions
out of the unlabeled images. These unsupervised loss functions consist
of the entropy of a similarity score measured over different subsets of
the data: one associated to the cross-dataset unlabeled image similarity
and one associated to within dataset similarity. These loss functions are
controlled by two parameters:

* a: controls whether the cross-domain unsupervised loss is being
used.
 f: enables or disables the within domain unsupervised loss.

The loss function used by USSS is defined using the following simi-
larity vector where i and j are dataset indices (equal for within-dataset
similarity), EoF is a label embedding obtained from the encoding of
an image and ¢ is a similarity metric:

(o) = ¢ ((EoP) (x) .c)  Vk=1,...1%] M

The entropy of a discrete distribution computed as the softmax operator
of the similarity vectors is used as the unsupervised loss.

The interest in the USSS model is due to the fact that it allows higher
flexibility than other semi-supervised approaches, it does not require
self-supervision and instead allows to directly train using labeled and
unlabeled instances within the same process, using more than one data
domain if required. This facilitates several experimentation schemes in
order to verify which settings of semi-supervised learning can improve
the performance of a model.
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3.3.3. Supervised methods

In this section we describe different supervised approaches to se-
mantic segmentation suitable for microstructures. In the literature,
there are proposals with supervised methods based on classical tech-
niques, such as support vector machines [27], Bayesian based classi-
fiers [58] and Random Forest [57]. However, we focus our experiments
on deep learning-based methods since they are currently the state of the
art in computer vision. We detail differences and similarities between
the main models proposed.

In computer vision problems such as image classification, object
detection and semantic segmentation, state-of-the-art models are often
based on CNNs. There are several well-known architectures for the clas-
sification task, such as VGG [113], ResNet [114] or EfficientNet [115]
which exploit the topological properties of images. This CNN structure
is used as a backbone to build different deep learning models, such as
the models used for semantic segmentation. On Fig. 8 we show different
semantic segmentation architectures based on the same backbone,
which is highlighted in red.

Regardless of the underlying deep neural network employed as
backbone, there are several techniques to reach a pixel-wise prediction,
resulting in very different neural networks designs to perform the
semantic segmentation task. In previous works, fully convolutional neu-
ral networks (FCNN) have been widely used to address segmentation
in the metallography domain [31,32,55]. Also, segmentation models
originally proposed to perform segmentation in other domains have
been used on metallographs, such as U-Net [56], DeepLabV3 [54] or
PixelNet [45]. Finally, a specific segmentation model for the metallog-
raphy domain called DefectSegNet and based on the U-Net [59] and
DenseNet [116] models is proposed [42].

The most relevant proposals we will use on microstructures seg-
mentation can be grouped into three categories: those which employ
encoder—decoder architectures; those that present a pyramidal struc-
ture; and those using per-pixel hypercolumns. A brief description of
each one and its main proponents is presented below:

» Encoder—decoder architectures. These architectures try to con-
dense the information via an encoder, namely the backbone, and
then decode it with an additional decoder component. In order
not to lose local information, the encoder layers are usually con-
nected to the decoder layers of the same resolution. FCNN [117],
U-Net [59], Linknet [61] and a more sophisticated U-Net++ [60]
exploit this idea. Fig. 8a shows a schematic view of a network of
this kind.

Pyramidal structures. These segmentation models merge different
resolution layers to extract more complex features. That is, the
output is influenced directly by feature maps that detect different
levels of detail from the image. Models like FPN [68], PSP-
Net [64], PAN [65] and Deeplabv3 [66] use this idea with small
differences. One example of a pyramidal structure is displayed in
Fig. 8c.

Hypercolumns. A hypercolumn connects features of initial lay-
ers with features of final layers to obtain information at differ-
ent resolutions. More specifically, the hypercolumn 4, for pixel
p is defined as the concatenation of all the features of each
feature map with less euclidean distance to the pixel p, h,
[e; (D), ca(p), ..., ¢, (p)] where c;(p) refers to the feature with less eu-
clidean distance to p in the ith feature map. This hypercolumn is
the input of a dense neural network which predicts the final class
value. PixelNet [62], illustrated in Fig. 8b, uses this structure.

4. Deep learning-based ensembles for the segmentation of metal-
lographic images

The fusion of information from different models is a very common
practice in machine learning, where we can obtain knowledge based
on various models with different behaviors [118]. In this section we
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present two novel deep learning-based ensemble approaches for the se-
mantic segmentation task. First, we formally describe the mathematical
terms on which we will rely on. Second, we describe a general Stack-
ing Ensemble-based model fusion approach for our problem. Third,
we present an information fusion method called Artificial MultiView
Ensemble (AMVE) based not on predictions but on extracted features.
Finally, we present Semantic Segmentation Ensemble, a fusion method
that takes advantage of the specific image topology of the segmentation
problem.

4.1. Definitions

In this subsection we name each of the elements involved in the
following subsections.

Let P be the pixel set. Each p € P has a ground truth prediction y,,
also called label. For each pixel p we can define its k-sized window as
W, x» which consists of the square window of side k pixels long centered
on pixel p. Let (m,,...,m,,) be the models we want to fuse. For each
model and each plxel let A(’) be the prediction of p by the model m;.
The prediction of a w1ndow W, will be called y A(” . Each model m;
predicts intermediate feature maps on which they base their predictions
usually organized in different levels. Let call F, I(') the feature map of the
model m; on level /. Also, for each pixel p there is a specific feature on
each feature map F(i) whose Euclidean distance to this pixel p is the
minimum. Let us call this feature F, (2 We can also define F ,(') o which
is the feature window centered on F @ of size k.

4.2. Stacking Ensemble

The Stacking Ensemble approach is a classical method of model
assembly [119]. It is based on building a meta-learning model that
learns based on the predictions of the models we want to aggregate.

Based on the above definitions, the Stacking Ensemble approxi-
mation can be described as a parametric function f, which takes as
input the predictions of the model m; and is solution of the following
minimization problem:

M)

arg min Z <yp,f9( ON
0 pEP

Fig. 9 shows a diagram describing the Stacking Ensemble approach.
Each model takes as input the original image. After processing each
model output (light blue), the Stacking Ensemble approach (green)
processes a second level prediction. For a certain pixel prediction, the
Stacking Ensemble uses the predictions of the previous models for this
certain pixel.

@

4.3. Artificial Multiview Ensemble

On this subsection, we present a new ensemble approach called
Artificial MultiView Ensemble (AMVE). This method is a meta-learning
model that learns from the features extracted by various models. This
approach is inspired by Sun et al. [120], where the features learned by
each model are interpreted as views of the same instance.

Based on the above definitions, the AMVE approximation can be
formulated as a parametric function f, which takes as input the features
F[E'I) of a certain layer / and is solution of the following minimization

problem, which is similar to Eq. (2):
: (1) (M)
arggrmn 2 L (yp,f9 (Fp[ Y aee ’FpJ )) .
PEP

Fig. 10 displays a diagram describing the AMVE approach. As with
the previous structure, each model takes as input the original image.
After processing each model output (light blue), the AMVE approach
(green) takes a second level prediction based on not the pixel predic-
tions but a certain feature map of the model (dark blue). For a certain
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> ——>]
) Encoder-decoder structure used in U- l
Net [59]. The backbone is connected to
a similar but symmetrical component, the
decoder. The arrows show residual connec- [ -
tions from early stage of the encoder with
later stage of the decoder. \ \
—

(b) Ilustration of the prediction of a pixel
using PixelNet’s hypercolumn [62]. The
feature maps centered on the current pixel

(¢c) Pyramid structure used in an FPN
model [68]. Base CNN at the top in light
red, pyramid component in the middle, and
final stack of pyramid features on the bot-
tom. The arrows represent the direction of
the flow of information on each stage.

(lined in blue) are concatenated and used
as input to a fully connected layer (green).
The prediction is made pixel-by-pixel.

Fig. 8. Schematic diagrams for each of the main families of supervised approaches. The original architecture of a CNN, highlighted in red, is used as backbone for each segmentation
model. The arrows on each model represent the flow of data on each stage. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Predictions .
Final
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Stacking
Ensemble
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Fig. 9. Illustration of the Stacking Ensemble approach. In blue, the stacked models and their predictions. In yellow, the predictions of previous models used by the Stacking
Ensemble method to infer the final pixel p prediction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

pixel prediction, the AMVE bases the prediction on the feature with the of models as inputs and AMVE approach takes features as inputs. In

least Euclidean distance to the pixel. . . .
L . addition, we can discuss different pros and cons of one model versus
As can be seen, the main difference between the Stacking model and

the AMVE model is that the Stacking approach takes the final prediction the other:
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Fig. 10. Illustration of the AMVE approach. In light blue, the models we want to aggregate. In dark blue, the feature map used as input to the AMVE model. In yellow, the
features of previous models used by AMVE to infer the final pixel prediction. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

+ In the Stacking Ensemble approach, we can assume that each
pixel has an associated vector. In AMVE approach, we need to
decide which layer of each model will be taken as inputs, so it
is less generalizable. Also, the internal structure of each model
could hinder the application of this technique, for example, if the
structure of a model is not based on layers.

In the AMVE approach, the prediction is based on features. In the
Stacking Ensemble approach, the prediction is based on probabil-
ity vectors V which have as constraints that V; >0 and Y V; = 1,
so are able to contain less information. Due to those restrictions,
the learned knowledge may be poorer.

The final prediction of a pixel is always a probability vector of the
same size. In an AMVE, each model could have a different amount
of features. This causes models with more features to have more
presence in the meta-learner’s training, biasing its behavior.

4.4. Semantic Segmentation Ensembles

We introduce the Semantic Segmentation Ensemble (SSE) based
not on pixel-wise prediction but on the prediction of windows. This
approach is based on the idea that predictions of nearby pixels are
related to each other. Therefore, using ensembles whose input is a win-
dow of predictions instead of just pixels should make more informed
predictions.

Based on the above definitions, the SSE approximation can be for-
mulated as a parametric function f, which takes as input the windows
of predictions 5’(12 to predict the centered pixel prediction y, and is
solution of the f&lowing minimization problem, which is similar to

Eq. (2):
arg;ninpg;aﬁ (yp,fe (ﬁ;,)p’k, )) .

Fig. 11 shows a diagram to illustrate the SSE approach. For this
approach, each base model processes the image (light blue). To apply
the SSE approach, we use not only the pixel prediction (yellow) but
the window prediction centered on its prediction (purple). The final
prediction based on the windows is used to predict a single pixel.

Once the proposal has been described, we can comment the follow-
ing points:

(M)
.. ’yW;,k

4

+ We can notice that the use of windows as input for the SSE
method is easy to generalize to feature maps. This consideration
allows us to combine AMVE and SSE by using windows of features
instead of single features.
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» When k = 1, this strategy is essentially equivalent to the Stacking
or the AMVE approach. Therefore, this is a generalization of the
previous ensembles.

» We can also appreciate that windows on the borders are not
defined when k > 1. On Fig. 11 the red window on the top
left represents this problem. On these cases, a strategy to fill the
empty predictions of the window is needed. To solve this, we fill
the empty spaces using zero padding.

5. Experiments, results and discussion

Many semantic segmentation methods exist, but approaches ded-
icated to tackling micrographs are limited. The objective of this ex-
perimentation is to provide the reader with a better intuition on how
the most relevant proposals perform at this task, and to extract some
knowledge about the possible obstacles and shortcomings that may
appear when dealing with this kind of images.

This section is organized as follows: the details about parameters
and configuration are first explained, along with an explanation about
the loss functions tested. Next, the results of each category of methods
are shown and analyzed: baselines together with unsupervised tech-
niques, a semi-supervised method, and fully supervised methods. A
discussion drawing conclusions from these results is provided at the
end.

5.1. Experimental setup

This subsection details the general experimental framework of our
experimentation. We describe the validation protocol carried out, list
the models and libraries used, the most relevant hyperparameters of
the models and the choice of their values, and the performance metrics
we used for the evaluation.

Validation strategy. The validation protocol adopted is Cross-
Validation. Despite the additional computational cost compared to a
more classical and simple approach such as Hold-Out, with cross-
validation we obtain more robust results. In order to obtain comparable
results with the experimentation carried out in [45] on the UHCS
dataset, we performed a 6-fold Cross Validation, but unlike this study,
we use a validation set (10% random of the training subset) indepen-
dent of the test subset to choose when to stop the training process, so
that our models in each fold are not over-fitted to the test subset, with
which we calculate the performance metrics.
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Fig. 11. Illustration of the SSE approach. In blue, the models stacked and their predictions. In yellow, the pixel p prediction. On purple, the window prediction centered on the
pixel p prediction used by the semantic segmentation stacking model to predict the class of a certain pixel. On light red, a window centered on one of the borders pixels which
is filled with zeros. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Performance metrics. The performance metrics used on this paper are
accuracy and intersection over union (IoU). Accuracy is a general
metric that indicates the overall ratio of correct predictions. However,
in problems with class imbalance, it is not a good indicator of the
performance of a model. In contrast, the IoU metric is specialized for
segmentation problems and provides a more class-informed measure.
We will use the mean IoU, averaging over all classes, as the final
performance metric.

Data augmentation. Data augmentation [121] is a strategy to increase
the level of labeled samples in a dataset by applying transformations
to the existing, real samples, which do not alter their validity. For the
purposes of this experimentation, data augmentation was relevant since
datasets are usually small. The transformations used were: vertical flip,
horizontal flip and vertical+horizontal flip (the labels were transformed
accordingly). This generates 3 new images from each original one,
allowing to work with 4 times as much images as before. There exist
other transformations such as translations or deformations but they
were not considered useful for this use case, so they were not applied.

Stochastic weight averaging. Stochastic Weight Averaging (SWA) [122]
is a regularization mechanism which prevents overfitting by means of
an aggregation of weights along different epochs during the training
process of a neural network. This discards the need for an internal
validation subset where the network does not train. SWA was shown
to notably improve performance in semi-supervised scenarios [123].
We have thus tested it together with the semi-supervised method USSS.
Nonetheless, some tests have been performed with the best-performing
supervised models as well so as to measure its potential across different
scenarios. However, we obtained identical results in supervised models
using SWA and not using it so in the following we show only the results
without using SWA.

Transfer learning. Although most experiments were carried out using
models that were only pretrained over the well-known Imagenet dataset
as a starting point for their weights, we also consider the use case where
one may be able to obtain a publicly available micrograph dataset such
as UHCS or MetalDAM, and transfer the knowledge extracted from that
data onto a different dataset from the same field. We observed that,
when pretraining a model over the UHCS dataset and then fine-tuning it
with images from the MetalDAM dataset, the loss function starts already
at a low value and converges relatively quickly. Meanwhile, a model
with only the generic weights from Imagenet will take almost double
the epochs to achieve similar loss values, as can be seen in Fig. 12.
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Fig. 12. Convergence of a model pretrained over UHCS (red) vs. a model initialized
using Imagenet weights (blue). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Soft labeling. Another approach we used in a previous experimentation
is the use of soft labeling. This approach consists in smoothing the
labels so that the model understands the uncertainty of the boundaries
in images. Our approach uses Gaussian blur on each label so that the
boundary labels are fuzzier than labels inside segments. However, this
approach did not yield promising results so this idea was rejected on
the work.

Loss functions. There exist several loss functions that can be used to
optimize the parameters of a neural network. In general, one may
choose the loss that fits best for the concrete task, but sometimes there
can be more than one that makes sense. Jadon [124] describes different
types of loss functions that can be used for the semantic segmentation
task. Throughout this work, we have used cross-entropy loss, focal loss,
Dice loss and Jaccard loss. The first two losses are distribution-based,
and the remaining two are region-based.

In addition to these loss functions, the nature of the data suggests
to add cohesion between the labels of each image. Kim et al. [125]
propose a regularization term that imposes continuity on the nearest
labels. In our experiments, we analyze the change in performance of
our models when we add this term onto our loss function.

Our experimentation is performed on the two datasets described in
Section 2.3, and it can be divided into four groups:
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« First, the method used as a baseline (Multi-Otsu [75]) and the
unsupervised method (k-means) are included in the same ex-
perimental group, due to their similarities [106]. Both methods
are used individually, and in combination with a superpixel al-
gorithm [97]. All these methods can be found implemented in
widely used libraries in the field of computer vision, such as
OpenCV [126] and scikit-image [127]. It is important to highlight
the fact that these techniques do not have the capacity to classify
the segmented regions into the different classes, due to their
unsupervised nature. In order to obtain comparable results to the
rest of the experimentation, we perform the mapping between
segmented regions and labels that maximizes the mean IoU. In
both methods it is necessary to specify the desired number of
clusters. This parameter is set equal to the number of classes in
the dataset.

Secondly, the experiments performed using semi-supervised
methods are shown. Different parameters of the USSS methodol-
ogy are adjusted and all results are detailed, in order to analyze
which kinds of behavior influence the performance of the model.
The base hyperparameters are kept unchanged after preliminary
experimentations: the backbone chosen is DRN-D-22 [128] pre-
trained over ImageNet (due to USSS being implemented on top of
DRN and the PyTorch library®) and the default parameters from
the original proposal are maintained, using a SGD optimizer with
learning rate of 0.001, 0.9 momentum and 10~4 weight decay. It
has been trained over 200 epochs using a batch size of 4 images.
Thirdly, the experimentation with the supervised deep-learning
based models introduced in Section 3.3 is presented. Most of these
models can be found implemented in the Segmentation Models
PyTorch library [129], on which our experimental framework is
based. Attempts have been made to optimize hyperparameters for
these models with the Optuna software [130], but no satisfactory
results have been obtained due to the long training time required
for these models, and the high variability of results at an early
stage of training, where the models have not yet converged.
Because of this, we have opted for a base hyperparameter con-
figuration for all the supervised models. These models have been
trained for 200 epochs, with a batch size of 4. The optimization
algorithm used is Adam, with a learning rate of 0.001, f; of
0.9 and g, of 0.999. EfficientNetBO pre-trained on the ImageNet
dataset [131] has been used as a backbone. We choose to train all
models with the cross-entropy. The best performing models have
also been trained with the focal, dice and jaccard loss functions,
with and without the continuity regularization term.

Lastly, the experimentation with the supervised ensemble pro-
posed on Section 4 is presented. The models have been built on
top of the PyTorch framework. Each model is composed by a
convolutional layer, a dropout layer with rate 0.3 and finally a
softmax activation function. If the ensemble model is Stacking,
it takes as input the output of the models aggregated and is
called “ST” in the result tables. If the ensemble model is AMVE,
it takes as input the output of the last feature map of the models
aggregated and is named “AMVE”. To implement the SSE approx-
imation shown in Section 4.4, we choose kK = 1 and k = 3 for
the kernel size of the convolutional layer and they will add “K1”
or “K3” to the name of the model respectively. As we previously
noted on the final considerations of Section 4.4, when “K1” is
added, the method is equivalent to the original method, Stacking
or AMVE approach. Most of these models have been trained for
200 epochs, except for some of them that have needed a few
more epochs to converge, with a batch size of 4. The optimization
algorithm used is Adam, with a learning rate of 0.001, §, of 0.9
and g, of 0.999.

3 https://pytorch.org/.
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Table 4
Results from the selected baselines over the UHCS and MetalDAM datasets.
Dataset Model ACC ToUO IoU1 IoU 2 IoU 3 Mean IoU
Multi-Otsu 42.78 14.26 20.30 36.6 8.49 19.91
UHCS Multi-Otsu+Superpixel 44.89 14.43 20.15 39.38 9.72 20.92
k-means 42.47 13.57 19.99 36.31 8.48 19.59
k-means+Superpixel 4496 13.88 19.85 39.58 9.79 20.77
Dataset Model ACC ToUO IoU1 IoU 2 IoU 4 Mean IoU
Multi-Otsu 67.21 26.92 45.24 12.18 26.97 27.83
Multi-Otsu+Superpixel 63.17 25.82 37.64 12.98 23.82 25.07
MefalDAM | eans 67.28 2679 45.66 12.50 2646 27.85
k-means+Superpixel 63.24 26.18 37.41 12.15 25.82 25.39
Table 5
Basic USSS models with full datasets.
Dataset Model « f SWA ACC IoUO IoU1 IoU2 IoU3 Mean IoU
UHCS USSS 0 0 No 86.16 45.94 69.39 88.71 21.70 56.44
USSS 0 O Yes 87.34 44.33 7474 88.60 28.02 58.92
Dataset Model « f SWA ACC IoUO IoU1 IoU2 IoU4 Mean IoU
USSS 0 0 No 78.04 59.44 74.05 18.04 33.77 46.33
MetalDAM USSS 0 1 No 76.61 54.02 72.58 25.34 32.33 46.07
USSS 0 O Yes 7832 5838 7448 20.89 29.31 45.77
USSS 0 1 Yes 78.77 59.55 75.02 21.49 23.61 44.92
5.2. Results

In the following, all experiments performed with the different
methodologies over both datasets are detailed and analyzed, along with
a comparison among them. The source code developed throughout the
experimentation process is available online.*

5.2.1. Baselines and unsupervised methods

The results obtained with image processing techniques and unsu-
pervised methods are presented in this first section as baselines in our
study. Due to their simplicity and the complexity of the metallographic
images, these methods are not expected to have a good performance,
but they are perfect candidates to establish the baseline results in
order to compare and analyze the results obtained with much more
sophisticated and computationally expensive methods in the following
sections. Results from the baseline and unsupervised methods over the
UHCS dataset and over the MetalDAM dataset are presented in Table 4.

5.2.2. Semi-supervised methods

The USSS technique can be trained over one or several datasets,
with or without unlabeled examples. In the following, several re-
sults using the selected datasets, both independently and together, are
discussed.

Single domain models. In this case, the portion of the UHCS dataset
used does not include unlabeled images, since it consists of images
with similar characteristics and same magnification. Consequently, we
use UHCS as a starting point to observe the performance of the USSS
implementation in supervised mode, in order to compare against the
rest of methods and its own performance with the MetalDAM dataset.
The results in Table 5, therefore, correspond to runs of USSS with the
same 6-fold cross validation scheme and without the unsupervised loss
functions enabled («¢ = 0 and g = 0).

In the case of the MetalDAM dataset, USSS was able to train with
unlabeled as well as labeled images. This allows to perform more
combinations of experiments and increases the utility of the available
parameters. More specifically, parameter § now controls the activation
of the within-dataset unsupervised loss function.

4 https://github.com/ari-dasci/S-metallograph-segmentation (available

when paper is accepted).
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Table 6

Mean IoU results of USSS over the UHCS dataset, removing the labels for a certain
proportion of images and using them as unlabeled samples (first row) or not providing
them to the model at all (second row).

% labeled 100% 75% 50% 25%

# unlabeled

Rest 42.05 40.55 46.70

None 57.16 50.15 48.82 37.26
Table 7

Mean IoU results of USSS over the MetalDAM dataset, incorporating more unlabeled
samples than labeled (first row), as many as labeled ones (second row) or none at all
(third row). The multipliers in the first row indicate the number of times the unlabeled
subset is larger than the labeled one.

% labeled 100% 50% 25%
# unlabeled
More (2x) 47.78 (2x) 35.84 (4x) 26.77
Same 45.56 35.72 28.05
None 45.47 33.33 24.56
Table 8
USSS multi-domain models evaluated over UHCS and MetalDAM.
Dataset Without SWA With SWA
a 0 1 0 1
B B
0 51.51 51.17 0 53.24 50.73
UHCs 1 52.10 50.70 1 48.69 49.69
0 45.48 39.34 0 55.03 54.83
MetalDAM 1 39.20 35.12 1 55.06 54.45

Ratio of unlabeled images. Since the main purpose of applying a semi-
supervised approach is to add more knowledge from unlabeled samples,
several tests have been performed in order to analyze whether these in-
stances are actually helping the model, as well as the ratio of unlabeled
to labeled images that appears to be most beneficial. It is important to
notice that these tests were performed using a fixed random selection
of images for the labeled and unlabeled subsets, so as to ensure that
every version of the model was working under the same conditions.
Table 6 shows the results related to the UHCS dataset and Table 7 does
the same for the MetalDAM dataset.

In the case of the UHCS dataset, only the images with labels avail-
able have been used, in order not to mix various zoom levels and
images with very different characteristics. As a result, the percentages
in Table 6 are obtained over the total of 24 training images. For each
case, one experiment has been carried out using the portion of unused
images as unlabeled images and another one providing no unlabeled
samples to the model.

Multi-domain models. One of our main interests in a semi-supervised
multi-domain model was to analyze whether semantic segmentation,
and specially microstructure segmentation, can benefit from unlabeled
images and from a different but similar domain of images. This experi-
ment is thus dedicated to models trained with both available datasets,
UHCS and MetalDAM, at the same time.

As was explained before, USSS has two boolean hyperparameters
which control the learning from unlabeled instances, « and . When
enabling f, each domain receives feedback from its own unlabeled
samples (in this case, only MetalDAM dataset), and when « is enabled,
each domain receives feedback from the rest of unlabeled images.
Table 8 shows the results for these multi-domain models.

5.2.3. Supervised methods

In this section, results obtained with the set of supervised deep
learning models presented in Section 3.3.3 applied in the selected
datasets, with different loss functions, are shown and analyzed.
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Table 9
Metrics of the main supervised architectures trained over UHCS and MetalDAM
datasets.

Dataset Model ACC IoUO IoU1 IoU2 IoU3 Mean IoU
DeepLabv3 87.76 49.40 76.14 88.65 34.43 62.15
DeepLabv3+ 90.18 58.23 83.00 90.16 47.36 69.69
FPN 89.44 57.51 78.42 90.19 45.87 68.00
Linknet 88.70 56.99 81.45 88.21 44.34 67.75
UHCS PAN 88.40 55.59 7231 89.65 41.15 64.68
PSPNet 88.20 53.17 75.32 89.80 35.01 63.33
Unet 91.15 61.89 84.51 90.93 5248 7245
Unet++ 91.15 62.92 84.58 90.83 54.16 73.12
PixelNet 90.77 62.22 86.69 89.96 44.29 70.79
Dataset Model ACC IoUO IoU1 IoU2 IoU4 Mean IoU
DeepLabv3 81.03 63.74 76.94 35.23 50.87 56.69
DeepLabv3+ 84.86 70.56 83.04 39.27 52.65 61.38
FPN 85.29 70.36 83.21 38.24 53.16 61.24
Linknet 84.69 72.03 83.20 33.96 3227 55.36
MetalDAM  PAN 84.44 69.79 82.04 35.21 45.94 58.24
PSPNet 79.09 60.39 74.12 35.80 43.46 53.44
Unet 86.33 73.20 85.46 33.59 47.56 59.95
Unet++ 87.04 74.28 86.13 36.14 49.43 61.49
PixelNet 84.07 70.13 82.75 16.21 36.55 51.41
Table 10

Mean IoU when applying different loss functions on the main supervised methods over
UHCS and MetalDAM dataset.

Dataset Model CCE Focal Dice Jaccard
DeepLabV3+ 70.25 69.7 70.26 71.31

UHES FPN 68.65 68.35 70.75 70.92
Unet 72.9 70.86 73.91 74.39
Unet++ 73.93 70.66 75.03 74.6
DeepLabV3+ 61.38 59.68 59.50 61.37
FPN 63.45 54.38 59.80 58.96

MetalDAM Unet 60.51 61.67 60.20 61.00
Unet++ 61.75 60.02 60.54 66.11

Base models. First, a set of experiments is carried out with the different
models in both datasets. In order to have a first comparison of the
performance of the models in each of the datasets, all these models are
trained with the same loss function. The categorical cross entropy loss
function is selected for this first supervised experimentation. The results
obtained are shown in Table 9 for the UHCS and MetalDAM datasets.

Loss functions and continuous regularizer term. Secondly, the models
that showed the most promising performance in the previous exper-
imentation, in general on the two datasets, are used in this second
experimentation, in this case, with the different loss functions and with
the continuity regularization term.

A summary of the results obtained with the different loss functions
are shown in Table 10, for the UHCS and MetalDAM datasets, and the
complete results with accuracy and the IoU metric for each class can
be found in Appendix (Tables A.16 and A.19). These results show an
improvement in the performance of some models with some of the loss
functions, compared to the initial experimentation with the categorical
cross-entropy (CCE) loss function.

5.2.4. Proposed ensembles

In this section, results obtained with ensembles proposed in Sec-
tion 4 applied in the selected datasets with different configurations are
shown and analyzed. This experimentation is made up of ensembles
of the two and three best supervised models of the experimentation
shown in the previous subsection, both with the Stacking and Multiview
ensemble strategy, and with kernel size 1 and 3.

In the UHCS dataset, the selected base models are Unet++ with
Dice Loss function, Unet++ with Jaccard Loss function and Unet with
Jaccard loss. In the MetalDAM dataset, the selected base models are
Unet++ with Jaccard loss, Unet++ with categorical cross entropy loss,
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Table 11
Mean IoU performance of the proposed ensemble models on the UHCS and MetalDAM
datasets.

Dataset Ensemble K1 K3
Stacking 2 Best 76.08 75.91
Stacking 3 Best 73.48 76.34

UHCS AMVE 2 Best 76.12 76.30
AMVE 3 Best 76.71 68.65
Stacking 2 Best 67.47 53.17
Stacking 3 Best 67.77 59.00

MetalDAM AMVE 2 Best 61.85 52.86
AMVE 3 Best 64.44 48.39

and FPN with categorical cross entropy loss. On Table 11 we show
the performance of assembling those models with our proposals. The
complete results with accuracy and the IoU metric for each class can
be found in Appendix (Tables A.17 and A.18)

Fig. 13 shows graphically the performance of our models on an
example of metallograph from the UHCS dataset. In particular, the
prediction obtained with the best model in this dataset is shown. The
example presented in Fig. 13(c) shows the robustness of our model
against the problem of confusing the spheroidite particles class (red)
with the ferritic matrix class (blue), a common problem in this dataset
as explained in Section 2.3.1. However, the opposite case does occur.
It can be seen how areas of ferritic matrix are predicted as spheroidite
particles, especially at the edges of these regions. The ambiguity and
imprecision present in the manual annotation process of this type of
datasets may be one of the main causes of the failures obtained at
the edges of the regions. Some areas of cementite network (yellow)
are also confused by our models with spheroidite particles or ferritic
matrix. A clear example of this can be seen in the lower right part of
Fig. 13(c). In general, our models tend to generate false positives from
the spheroidite particles class, because it is a largely majority class in
this dataset. Finally, as expected, the models show more failures in the
Widmanstitten laths class (green) than in the rest of the classes due to
its large inferiority and fragmented shapes.

Fig. 14 shows graphically the performance of our models on an
example of metallograph from the MetalDAM dataset. In particular,
the prediction obtained with the best model in this dataset is shown.
Our model presents a good performance in the segmentation of classes
matrix (blue) and austenite (yellow), with the exception of some false
positives obtained due to their majority. Regarding class defect (black),
it is important to highlight its importance due to its nature, which
makes the false negatives obtained for this class critical, as explained
in Section 2.3.2. In addition, the numerical inferiority and the presence
in few metallographs can complicate the segmentation task for this
class. Nevertheless, it is the class that presents a greater difference
in intensities with respect to the rest of the classes as can be seen
in Fig. 14(a), which helps to obtain a good segmentation for this
class. Finally, our models show to have difficulties in segmenting class
martensite/austenite, obtaining a poor performance and a remarkable
amount of false negatives. The fact that it is a minority class and the
poor contrast that this class presents with respect to the majority classes
make it the most difficult class to segment in the MetalDAM dataset.

5.3. Discussion

From the results presented above, it is noticeable that annotated
images are fundamental for obtaining sufficiently performant segmen-
tation models, in the metallography context.

Unsupervised methods. Unsupervised methods can only achieve around
20%—-22% mean IoU, which may be useful if predictions are used as
pre-annotations but is not enough to be used as standalone segmenters.
In the UHCS dataset, the combination of Multi-Otsu with superpixels
achieves the best performance within this category, while k-means by
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itself is the best option in the MetalDAM dataset. The results obtained
with the Multi-Otsu and k-means methods are very similar, as expected
due to their theoretical similarities [106]. On the other hand, the
application of these methods in combination with superpixels presents
differences in terms of results with respect to the individual application
of each of the methods. It can be clearly seen that in the UHCS
dataset, the use of superpixel provides an increase in the quality of
the results, while in the MetalDAM dataset the opposite occurs, the
use of Superpixel decreases the quality of the results. Therefore, in this
specific domain of metallography, it seems that the use of superpixel
algorithms as a previous step to the application of the segmentation
algorithm, is more or less opportune depending on the dataset.

As expected, these results indicate poor performance of the base-
line and unsupervised methods in both datasets. Section 3.2 discusses
difficulties that these types of methods can have to handle complex
images, and here it is empirically verified. These datasets do not
have the presence of all the classes in all the images, which increases
the difficulty to segment them satisfactorily, in particular, with these
methods of an unsupervised nature, which do not have the ability to
segment each image into an appropriate number of classes, they need
the desired number of segmentation levels to be set in advance, so these
methods segment classes not present in several images.

Semi-supervised methods. The semi-supervised method tested was not
able to take much advantage of the extra information provided by
unlabeled samples, but an improvement was seen when modeling
MetalDAM using a multi-domain approach in combination with UHCS.

It is straightforward to notice that USSS benefited from a certain
improvement in performance for the UHCS dataset thanks to SWA. This
may be due to the learning process becoming more stable as well as to
being able to use the whole training partition in each iteration, since
no internal validation is needed for weight selection in the network.
However, SWA did not help the model much when it was trained for
MetalDAM. Although USSS underperforms in both datasets, it has more
difficulties with the latter, being able to mostly predict adequately
majority labels 0 and 1, and falling short in the rest of labels. This is
expected but, as a result, it causes poor predictions of the most relevant
class, class 2.

The results about the ratio of unlabeled images suggest that having
more images can be beneficial in general, since the best result is
obtained when having the full labeled dataset. In the case of UHCS, if
there are less labeled images (12 to 18 images), the model appears to
work better without unlabeled samples unless the amount of labeled
data is very low (6 images in the 25% experiment), in which case
the performance improves thanks to the unlabeled images. This may
indicate that the real usefulness of this kind of semi-supervised methods
comes only when labels are really scarce. With respect to the MetalDAM
dataset, these experiments show a direct relation between the amount
of selected labeled images and the performance of the model: the best
performing model was the one with the maximum number of images
(42 labeled and 84 unlabeled), followed by the rest of models using
all available labeled images. Among the models trained with half the
labeled images, there were very small differences between the ones
using unlabeled samples, which were superior to the one that did not
have them. A similar situation can be observed when using a quarter
of the labeled images. The increase in performance provided by the
unlabeled samples does not compensate the scarcity of labeled ones in
general. It is also fundamental to note that minority classes suffer more
than majority classes with the decrease in images, something that needs
to be taken into account in MetalDAM, where the interesting class is a
minority one (MA). This can be better observed in the Appendix A.1.

As to the multi-domain models, there is only small variability in
most of the cases with the UHCS dataset. The best model for it is
essentially a supervised one using SWA, but it achieves lower met-
rics than its single-model counterpart. MetalDAM, for its part, is best
modeled when using a slightly different configuration, with both the
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(a) Metallograph.

(b) Ground truth.
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(c¢) Prediction.

Fig. 13. Example of prediction on the UHCS dataset with the best model obtained AMVE 3 Best K = 1. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

(a) Metallograph.

(b) Ground truth.

Fig. 14. Prediction example on the MetalDAM dataset with the best model obtained Stacking 3 Best K = 1. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

p parameter and SWA enabled, and does get better results than the
single-model version. This may indicate that there exists a certain trade-
off between optimizing for the first dataset and for the second, which
could mean that the domains are sufficiently different so that learning
from each other cannot help the model be superior for both of them at
the same time. Taking into account that unlabeled images were only
provided for MetalDAM in these experiments, it could make sense that
the best UHCS model does not benefit from within-dataset unsupervised
information. In fact, the semi-supervised aspect seems not to be really
useful for modeling UHCS better than the supervised version and does
not affect metrics over MetalDAM much either, being SWA the factor
that improves the most in this case.

Supervised methods. For their part, fully supervised methods did
achieve better results with varying degrees of success. Unet++ shows
the best performance on both datasets, so it seems to be a robust
model to address the image segmentation problem in this specific
domain. This better behavior could be explained by the encoding—
decoding neural network design. The results obtained in general by the
supervised models show a notable improvement with respect to the
baselines and the semi-supervised methods.

It is important to highlight the results obtained with PixelNet and
compare them with the rest of the models used, since this model
is considered the state of the art in supervised segmentation of the
UHCS dataset [45]. In the proposed experimentation, PixelNet is out-
performed in both datasets by several of the methods used. In the
UHCS dataset, PixelNet has a good performance, achieving third place
in mean IoU with respect to the rest of the methods, however, in the
MetalDAM dataset it suffers a notable performance reduction, being in
the last position. In contrast, Unet++ has achieved the best results in
both datasets, thus proving to be a robust and effective model in the
metallographic domain.

With respect to the different loss functions, the best results in the
UHCS dataset are obtained by the Unet++ model with the Dice loss
function, improving the results of the initial experimentation. In the
same way, Unet++ with Jaccard loss function improve the previous
results obtained with CCE loss function in the MetalDAM dataset. Next,
experimentation with the continuous regularizer term in combination
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with the different loss functions was carried out, however, a significant
drop in the performance of the models was obtained. These results
can be found in Appendix (Tables A.16 and A.19). The results seem
to indicate that the use of the continuous regularizer term is not
appropriate for this type of images. This unsupervised regularization
encourages the classification under the same label for the pixels that
are spatially continuous. In metallographic images, where there are
many small and fragmented areas, this can be a disadvantage since
the continuous regularizer term seems to confuse the model and join
different spatially proximal areas of different classes.

Ensembles. Some of the newly proposed ensembles of the best methods
notably outperformed the rest. The results show a better performance of
the Multiview strategy in the UHCS dataset, with the model composed
of the three best base models and a kernel size of 3. On the contrary,
in the MetalDAM dataset, the Stacking strategy shows a better perfor-
mance, specifically, the stacking model formed by the three best base
models and a kernel size of 1.

This type of ensemble strategy is applied in this problem in order
to take advantage of the diversity present in the set of base classifiers
and to obtain an improvement in the performance of each one of them.
The results show that the assembly models proposed in this paper have
the ability to handle this advantage, and obtain the best results, in
each of the datasets, of all the models applied in this experimental
study. It should also be noted that the SSE methodology obtains good
performance in most cases even if it does not achieve the absolute best
result. For those reasons, we cannot draw direct conclusions on which
ensembling strategy is best for microstructures.

Overall, the MetalDAM dataset has shown to be more complex and
difficult to model than UHCS, a fact that encourages further research
into these kinds of methods so as to continue improving performance
in segmentation. Although many unlabeled images were available, the
USSS method was unable to achieve competitive performance in spite
of its flexibility and ability to learn from both datasets, which may
indicate that other approaches such as pseudo-labeling may be more
suitable for the purposes of microstructure segmentation.
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6. Limitations, difficulties and challenges Table A.12
USSS semi-supervised models with different unlabeled-to-labeled ratio over UHCS.
The segmentation of microstructures in metallographic images is a Model Labeled ~ Unlabeled ACC ToU O IoU1 IoU2 IoU3 Mean IoU
very challenging task. This is caused by the inherent nature of these USSS  100% (24) 0 87.18 47.84 73.47 89.17 18.16 57.16
images, some of whose main visual characteristics are summarized USSS  75% (18)  25% (6)  84.89 38.66 68.75 86.17 256  49.04
below: USSS  75% (18) 0 84.55 38.32 66.44 8671 9.12 50.15
USSS  50% (12) 50% (12) 81.85 27.42 54.74 83.89 212 42.05
- high-resolution; USss  50% (12) 0 84.94 37.16 61.79 87.52 879  48.82
SR USSS  25% (6)  75% (18) 80.90 41.66 55.82 83.63 5.69  46.70
+ extreme variability in terms of textures and shapes; USSS  25% (6)  25% (6) 81.53 37.04 49.87 84.41 2.89 43.55
+ highly fragmented images with fuzzy boundaries (that hinder the USSS  25% (6) O 76.26 28.01 37.85 79.95 3.25 37.26
precise localization of each region);
+ largely imbalanced classes (where some of them are commonly Table A13
. . . able A.
present, while Othe.rs are practlca.Hy reSIdlllal)’ X . USSS  semi-supervised models with different unlabeled-to-labeled ratio over
» and absence of prior structural information (in opposition, for MetalDAM.
instance, to facial images, where one expects eyes, nose, mouth, Model Labeled  Unlabeled ACC IoUO IoU1 IoU2 IoU4 Mean IoU
and ears to be always located at certain relative positions). USSS 100% (42) 2 x (84) 79.59 6142 75.53 25.49 2870 4778
These visual characteristics have severe consequences in the type USSS  100% (42) L x (42) 7851 5841 7473 2262 2646 4556
i : S a yP USSS  100% (42) 0.5 x (21) 79.08 60.50 75.25 22.40 23.79 45.49
of machine learning techniques that can be employed, as well as the USSS  100% (42) 0 7876 60.27 74.80 21.83 25.00 45.47
segmentation strategies to follow, when tackling this problem present USSS  50% (21) 2 x (42) 71.11 42.06 68.12 13.07 0.00 35.84
several limitations and difficulties: USSS  50% (21) 1 x(21) 71.95 4224 69.01 17.69 0.00 3572
USSS  50% (21) 0 68.83 36.87 65.64 13.22 0.00 33.33
+ The manual annotation of these images is an expensive process, Usss  25% (10) 4 x (42) 6256 1812 60.25 6.42 0.00 26.77
becoming really hard to construct a suitable pixel-wise ground Usss 2524’ (10) 1x(10) 6443 2283 61.83 4.95 0.00 28.05
truth for segmentation. As a consequence, there is a total absence USSS  25% o) © 6072 1416 59.03 293 0.00 2456
of large datasets in the field, and the few existing available ones
have very small size, not even reaching the hundred labeled im- Table A.14
ages. This complicates the application of supervised techniques, USSS multi-domain models evaluated over UHCS.
since most state-of-the-art image segmentation methods are data Model « S SWA ACC IoUO IoU1l IoU2 IoU3 Mean IoU
hungry approaches, like deep networks. usss 0 0 N 83.98 3851 6472 8652 1630 51.51
» Due to the fact that the datasets are small, unlike many other Usss 0 1 N 85.40 42.44 66.65 87.72 11.59 52.10
computer vision problems (such as image classification or object usss 1 1 N 84.85 41.58 65.02 8722 899  50.70
detection), there are no deep pre-trained models for the seg- usss 10 N 84.84  41.94 6496 87.45 1031 5117
mentation of metallographic images, making it difficult to appl usss 00 Y 8487 3379 73.05 8521 20.90  53.24
. ctallographl 8¢S, ng vt to apply usss 0 1 Y 82.08 30.54 66.46 81.98 1576 48.69
and improve existing learning-based techniques, and limiting the usss 1 1 Y 8312 2985 6671 83.42 1878 49.69
progress in the field. Usss 1 0 Y 8321 3282 71.69 8297 1543 50.73
+ All existing methods are extremely ad-hoc and suffer from high
generalization errors. A particular segmentation method will be
effective in one single dataset, but it will perform very poorly Table A.15
> USSS multi-domain models evaluated over MetalDAM.
on another one. Furthermore, it is usually necessary to apply
i . . . Model « p SWA ACC IoUO IoU1 1IoU2 IoU4 Mean IoU
specific pre- and post-processing techniques to improve the results
obtained, and those that work in one dataset barely work well in usss 0 0 N 7567 55.56  71.00  20.88  34.48  45.48
another usss 0 1 N 7252 4872 68.30 1649 2329 39.20
: Usss 1 1 N 69.97 4073 66.31 1648 16.96 35.12
Finally. i d to all af tioned limitati UssS 1 0 N 71.68 47.52 67.46 15.09 27.30 39.34
inally, in correspondence to all aforementioned limitations, we Usss 0 o0 Y 80.26 6195 7641 02820 5346 5503
consider the following research lines as the most promising challenges UsssS o0 1 Y 80.18 62.07 7621 2977 5219 55.06
to fill the existing gaps in the field: Usss 1 1 Y 80.27 61.92 76.10 31.32 4847 54.45
usss 1 0 Y 80.10 62.07 76.24 2776 53.25 54.83

» Acquiring larger datasets and sharing them with the scientific
community is a must, and would certainly accelerate progress in
this field.

The complex nature of these images has an impact on the eval-
uation of the segmentation quality. This comes to fruition in
the fact that there is no clear metric or criterion to evaluate
the results obtained, generally having a mismatch between the
segmentation metric value and the visual quality of the segmented

 In the absence of large datasets, the way forward in metallo-

graphic image segmentation should be toward less reliance on
annotations. According to this perspective, and since unsuper-
vised methods seem to offer a quite limited performance in this

image. The search for a more reliable correspondence between
quantitative and qualitative results represents one of the main
future challenges.

Another priority should be to speed up the annotation by human
experts. The manual segmentation depends on the complexity of
the images to be labeled, the knowledge and experience of the
annotating expert, and the labeling tool employed. In this sense,
semi-automatic, semi-supervised or weakly supervised tools able
to provide sufficiently precise pre-annotations, shortening and fa-
cilitating the expert’s work, would be very useful and appreciated
by the scientific community in microstructural science. Surely,
this would also have a direct impact on the availability of larger
datasets.
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problem, more research on semi-supervised approaches would be
desirable as they appear as one of the most promising strategies
to follow.

There is a lack of pre-trained models to address metallographic
image segmentation, and the efficacy of pre-training on images
presenting relatively similar characteristics (such as histological
or satellite images) has not been investigated yet. Taking ad-
vantage of the available knowledge on similar tasks is another
relevant challenge, whose achievement would be of great benefit
in tackling this problem.
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Table A.16
Extended results of base model with different loss functions and continuous regularizer
term on the UHCS dataset.

Model Loss Continuity ACC IoU O IoU1 IoU 2 IoU 3 Mean IoU
CCE No 90.22 59.77 81.39 90.62 48.52 70.07
Yes 90.67 60.47 84.57 90.85 42.93 69.71
Dice No 90.36 59.15 82.80 90.44 48.66 70.26
DeepLabV3+ Yes 90.68 61.50 86.44 90.08 28.19 66.55
Focal No 90.06 59.62 80.72 90.40 48.08 69.70
Yes 89.68 57.96 81.82 90.31 12.98 60.77
Jaccard No 90.32 60.06 81.15 90.58 50.21 70.50
Yes 88.67 57.46 85.21 88.78 13.21 61.17
CCE No 89.93 57.54 80.46 90.35 46.55 68.72
Yes 90.92 61.62 85.17 90.91 35.09 68.20
Dice No 91.28 62.23 85.57 90.75 53.24 72.95
FPN Yes 90.10 58.72 84.71 89.72 33.81 66.74
Focal No 90.64 59.68 83.17 90.85 45.80 69.88
Yes 88.68 55.55 76.89 89.80 18.02 60.07
Jaccard No 91.94 64.70 88.14 91.32 53.70 74.46
Yes 91.00 61.65 86.04 90.63 37.87 69.05
CCE No 90.80 61.39 83.88 90.55 53.20 72.25
Yes 90.66 59.95 85.37 90.49 47.12 70.73
Dice No 92.45 67.43 86.37 92.38 58.42 76.15
Unet Yes 90.10 60.86 87.92 89.35 19.35 64.37
Focal No 91.35 63.90 84.48 91.34 53.02 73.19
Yes 89.04 58.43 78.10 90.13 17.01 60.92
Jaccard No 91.79 66.21 82.91 92.18 58.04 74.83
Yes 89.35 60.86 87.03 88.59 02.77 59.81
CCE No 91.59 63.83 84.59 91.65 53.90 73.49
Yes 91.20 62.46 85.78 91.03 50.14 72.35
Dice No 92.51 66.49 88.47 91.87 59.01 76.46
Unet4+ Yes 89.76 59.79 87.60 88.67 16.27 63.08
Focal No 91.48 63.21 86.96 91.04 55.17 74.10
Yes 88.88 57.71 83.25 88.50 07.15 59.15
Jaccard No 92.01 64.02 88.43 91.34 57.51 75.33
Yes 90.15 62.88 87.33 89.73 05.73 61.42
Table A.17
Extended results of the proposed ensemble models on the UHCS dataset.
Model K ACC IoU 0 IoU 1 IoU 2 IoU 3 Mean IoU
Stacking 2-best 1 92.37 66.50 88.47 91.80 57.54 76.08
3 92.29 66.01 88.51 91.68 57.43 75.91
Stacking 3-best 1 92.44 66.73 89.12 91.80 57.91 76.39
3 92.45 66.69 89.25 91.80 57.60 76.34
1 92.36 66.39 88.70 91.76 57.62 76.12
AMVE Zbest 3 9943 6662 8890 OL81 57.09  76.33
1 92.49 66.70 89.40 91.84 58.91 76.71
AMVE 3-best 3 91.84 6517 8949 91.37 2855  68.65
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Table A.18
Extended results of the proposed ensemble models on the MetalDAM dataset.
Model K ACC IoU 0 IoU 1 IoU 2 IoU 4 Mean IoU
Stacking 2-best 1 87.53 74.90 86.27 39.67 69.24 67.52
s 3 86.10 74.03 85.52 30.83 22.30 53.17
Stacking 3-best 1 87.82 75.46 86.75 40.56 68.34 67.78
J 3 87.48 75.83 86.19 39.91 27.47 57.35
1 87.11 74.51 85.79 40.00 43.00 60.83
AMVE Z-best 3 g704 7476 8571 3976 000  50.06
1 87.38 74.97 86.22 40.63 53.79 63.90
AMVE 3-best 3 g080 6111 8020 2009 2542  46.71
Table A.19

Extended results of base model with different loss functions and continuous regularizer
term on the MetalDAM dataset.

Model Loss Continuity ACC IoU O IoU1 IoU 2 IoU 4 Mean IoU
CCE No 84.86 70.56 83.04 39.27 52.65 61.38
Si 84.28 68.16 81.86 37.80 42.93 57.69
Dice N-o 82.87 67.00 79.84 36.71 55.17 59.68
DeepLabv3+ Si 56.49 0.0 56.00 6.04 44.37 25.98
Focal No 85.44 70.73 83.63 36.70 43.39 59.50
Si 63.23 22.68 58.81 28.17 51.79 39.93
Jaccard No 83.47 67.45 80.62 37.02 60.41 61.38
Si 55.39 0.0 55.37 0.0 13.51 17.44
CCE No 84.71 69.15 82.68 36.40 65.59 63.45
Si 83.86 67.77 81.11 36.95 51.39 59.31
Dice No 83.00 68.01 79.98 36.73 32.82 54.38
FPN Si 56.30 0.0 55.91 8.83 27.44 23.04
Focal No 84.19 68.95 81.90 36.48 48.75 59.80
Si 64.26 23.60 60.62 29.03 35.79 37.26
No 84.29 68.91 82.25 3598 48.73 58.97
Jaccard .
Si 56.71 0.0 56.14 9.77 41.60 26.27
CCE No 86.28 72.87 85.43 36.55 47.21 60.51
Si 84.71 71.40 83.03 36.21 43.76 58.60
Dice No 84.70 71.87 82.93 38.24 53.67 61.67
Unet Si 57.27 0.01 56.43 16.93 27.48 25.21
Focal No 86.41 73.00 85.56 36.65 47.50 60.20
Si 57.65 0.99 57.02 19.80 37.34 28.76
Jaccard No 85.90 72.75 84.71 36.71 49.85 61.01
Si 55.14 0.01 55.14 0.0 13.15 17.07
CCE No 86.89 74.13 85.91 38.67 48.31 61.75
Si 86.84 73.54 85.46 38.46 46.99 61.11
Dice No 85.87 72.75 84.40 34.40 48.55 60.02
Unets+ Si 56.50 0.0 56.14 13.73 14.92 21.20
Focal No 86.36 73.53 84.66 37.23 43.47 60.54
Si 59.73 11.77 58.58 6.04 45.24 30.41
No 86.70 74.04 85.55 37.81 67.05 66.11
Jaccard .
Si 55.78 0.08 55.54 6.94 16.06 19.77

7. Conclusions

This tutorial shows that metallographic segmentation is a complex
phenomenon with many potential approaches. Moreover, there exist
many different techniques to address metallographic segmentation: our
proposed taxonomy arranges them under two main typologies: image
processing methods and learning-based approaches. In this paper, the
state-of-the-art in metallographic segmentation methods is arranged un-
der these categories, thus the reader can relate the existing approaches
in an orderly manner. Moreover, we aim to provide a meaning for
each category in a hypothetical practical scenario where, depending
on the expert availability or the data source, different categories can
be more suitable than others. The aggregation of different models is
also proposed, exploiting the idea of similarity on nearby predictions
in ensemble models.

The taxonomy is also coupled with a realistic experimental com-
parison, using two real-world datasets, one of them kindly provided
by ArcelorMittal. These two datasets enable us to show how Image
Processing Techniques are fast prototyping tools and can act as baseline
results, whereas Learning-based approaches are needed to extract most
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information and knowledge from metallographic images, constituting
an interesting start point for automated labeling that can be later
refined by the expert in a shorter time. In particular, we deepen in
the amount of human knowledge poured into the data and the impact
such expert labeling will have in the performance attained by the actual
models. From the latter, semi-supervised scenario, we may conclude
that partial annotations can be used as guidelines for human experts,
but the current semi-supervised techniques are far from being part of
autonomous labeling procedures.

From this tutorial, we may also conclude that there are many
open research questions related to metallographic segmentation and
many avenues remain to be explored. The intrinsic characteristics of
metallographic images pose a great challenge, both in the reduced
size of datasets and the highly imbalanced label ratio. As a result,
interesting pixels but from minor class labels are hard to emphasize
for the models.

The imbalance among labels is worsened due to the lack of prior
structural information, which cannot be exploited by the models and
would allow generalized or pre-trained models. Thus, existing ap-
proaches are tailored to be very problem-dependent, making them
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poorly extensible to related segmentation tasks. We must also indicate
that the lack of large, open datasets does not help to alleviate these
problems: the availability of data would enable the generation of
specific, pre-trained models that would yield better performance in the
metallographic segmentation domain.
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Appendix. Results

A.1. Semi-supervised methods
See Tables A.12-A.15.
A.2. Supervised methods

See Tables A.16-A.19.
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