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El Niño Southern Oscillation (ENSO) is one of the most important modes of variability in the climate 
system. However, ENSO instrumental records are too short to characterize its natural variability at long-
term timescales. Paleoclimate records showing ENSO variability during the Holocene on centennial and 
millennial timescales are rare but critical for our understanding of long-term multidecadal- to millennial-
scale variability. Here we used several climate sensitive piñon pine (Pinus edulis) pollen records from the 
Southern Rockies, USA, to produce a detailed continuous record of effective precipitation and ENSO-
like variability for the last 11,000 yrs. La Niña conditions dominated the Early Holocene while El Niño 
conditions enhanced in an increasing trend over the last 6,000 yrs. This trend was modulated by 
millennial-scale and ENSO-like hydrological activity at prominent 900-1,000-yr cycles and the amplitude 
of these cycles increased until present. Enhanced La Niña and related multidecadal megadroughts 
occurred in the Southern Rockies centered at ca. 10, 8, 6.8, 5.8, 4.8, 4, 3, 2.2, 1 ka. Insolation and 
solar output changes are suggested here as the main triggers for ENSO climate and vegetation changes. 
Our analysis of recent strong La Niña events, representing modern climate analogs of past conditions, 
indicates anomalously dry conditions persisting annually, leading to prolonged drought that impact 
piñon pine growth. Following the thermostat hypothesis and the Sun-ENSO link, such dry conditions 
are expected to prevail in the future, which combined with increasing temperatures, will most likely 
generate megadroughts in the SW USA.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

ENSO is a mode of variability representing interannual changes 
in sea-surface temperatures, conditioning atmospheric circulation 
across the equatorial Pacific Ocean (Cane, 2005). Instrumental 
records show that ENSO alternates between anomalously warm (El 
Niño); anomalously cold (La Niña) conditions; and neutral condi-
tions in the tropical Pacific at intervals of 2–8 yrs (Cane, 2005). 
This sea-surface temperature anomaly produces atmospheric tele-
connections that influence climate in many regions of the world 
(Cane, 2005, Taschetto et al., 2021). Tropical deep convection sig-
nificantly alters the position of the jet stream and thus storm sys-
tems, impacting western US precipitation (Fig. 1, Yeh et al., 2018, 
Taschetto et al., 2021). During El Niño events, anomalously warm 
SSTs in the tropical eastern Pacific shift deep convection eastwards 
and the jet stream over the Pacific becomes less wavy and splits 
into a strong subtropical jet stream near the equator and a weaker 
polar jet stream (Fig. 1A). In the Southern Rockies and southwest 
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(SW) regions of North America, El Niño events are associated with 
above-average precipitation (Shinker and Bartlein, 2009, Taschetto 
et al., 2021). La Niña events are associated with below-average pre-
cipitation and drought as the jet stream curves and shifts north, 
diverting storms and precipitation away from the region (Cook et 
al., 2007, Conroy et al., 2009, Arriaga-Ramírez and Cavazos, 2010, 
Heyer et al., 2017, Fig. 1B). In addition, anomalously cold temper-
atures tend to occur in the Southern Rockies during El Niño years, 
especially in summer (Heyer et al., 2017). On the other hand, above 
average temperatures occur throughout most of the year during 
the La Niña years in the study area (Heyer et al., 2017, https://
www.psl .noaa .gov /enso /climaterisks/).

Even though the instrumental record suggests ENSO is modu-
lated at low frequencies (Taschetto et al., 2021), paleoclimate re-
constructions show that ENSO has changed at decadal- centennial-
and millennial-scales, but only a few rare records show long-term 
ENSO variability during the Holocene (Rodó and Rodriguez-Arias, 
2004, Rein et al., 2005, Conroy et al., 2008, Emile-Geay et al., 2013, 
2021). Therefore, a better understanding of past climate variabil-
ity at centennial- and millennial-scales is crucial to our under-
standing of natural climate variability upon which anthropogenic 
le under the CC BY-NC-ND license 
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Fig. 1. Maps of study area. (A) Map of North America showing general atmospheric patterns and precipitation including the location of the studied sites during El Niño 
conditions and (B) during La Niña conditions. Modified from https://www.climate .gov /news -features /blogs /enso /united -states -el -ni ~{n }o -impacts -0 and https://www.pmel .
noaa .gov /elnino /lanina -faq.
climate change is superimposed. Of special interest are those ef-
fects on arid regions, such as the SW USA, whose populations and 
economies are vulnerable to variable precipitation regime (Cook et 
al., 2007).

Previous studies suggest that ENSO’s evolution through time 
was due to external forcing factors such as changes in Earth’s or-
bit and insolation, solar activity or in the atmospheric greenhouse 
gas composition (Emile-Geay et al., 2021). Orbital-scale changes 
in insolation are the major forcing mechanism regulating climate 
and evapotranspiration at long-term (i.e., glacial-interglacial cy-
cles, Rein et al., 2005) timescales, and variations in ENSO have 
been suggested as the major trigger for shorter centennial-scale 
precipitation shifts in SW USA and many regions of the world dur-
ing the Holocene (Conroy et al., 2009, Arriaga-Ramírez and Cava-
zos, 2010, Barron and Anderson, 2011). However, little is known 
about the fundamental forcing mechanism triggering millennial-
and centennial-scale ENSO climate variability while some previ-
ous studies point to solar activity changes affecting sea-surface 
temperatures (Mann et al., 2009) or periodic movement of the In-
tertropical Convergence Zone (ITCZ, Haug et al., 2001).

Moisture availability has played a dominant role in the past 
population dynamics of P. edulis woodlands of western USA (Swet-
nam and Betancourt, 1998, Woodhouse, 2003, Clifford et al., 2013,
see present-day distribution in Fig. S1). Winter minimum precip-
itation is known to be significant in limiting modern P. edulis to-
day (Cole et al., 2008), as shown by recent studies documenting 
widespread P. edulis die-off that occurred after extensive La Niña-
related drought in the SW USA during the early 2000s (Allen and 
Breshears, 1998, Breshears et al., 2005, Anderson and Feiler, 2009, 
Clifford et al., 2013). This suggests that a combination of drought 
and high temperatures (previously defined as ‘global-change-type 
drought’), climate conditions that occur during persistent La Niña 
conditions in the study area (Heyer et al., 2017, https://www.psl .
noaa .gov /enso /climaterisks/), can be lethal for tree species such as 
P. edulis (Breshears et al., 2005, Clifford et al., 2013).

Previous pollen studies from the Southern Rockies have doc-
umented increases and expansion of P. edulis, mostly during the 
Middle and Late Holocene, suggesting a relationship with in-
creased ENSO winter precipitation there (Anderson and Feiler, 
2009, Jiménez-Moreno and Anderson, 2012). However, a direct 
comparison between P. edulis occurrence and ENSO was never ex-
plored, and thus a clear relationship was never confirmed. Our 
analysis of the Middle to Late Holocene P. edulis pollen record 
shows a strong correlation with ENSO-like conditions at short, cen-
tennial and millennial scales.
2

2. Materials and methods

A hydrologically sensitive P. edulis stack for the last 11,000 cal 
yr BP (Fig. 2) was obtained using seven detailed pollen records 
(sample resolution range between 44-250-yrs) from sites within 
the Colorado and New Mexico Rocky Mountains (Fig. S1; Table 
S1). We used published original data of absolute chronologies for 
the individual sites (Figure S2). The studied sites are located at 
high elevation between 2700-3667 m and latitudes ranging from 
35-40◦N. P. edulis abundance data were resampled (linear interpo-
lation) at 100-yr windows using Analyseries (Supplementary In-
formation), normalized to stabilize the variance, and standardized 
to make them comparable and to minimize the local differences 
within sites and the error of individual site chronologies. To do 
that we used the method applied by Power et al. (2008) (Supple-
mentary Information). P. edulis from individual records show sim-
ilar trends at multi-millennial scales and thus positive correlation 
(r = 0.38–0.79, p < 0.0001; mean r value = 0.63; Table S2). The P. 
edulis stack was calculated using the median of individual site z-
score values (Figs. S2 and S3). A more detailed 50-yr resolution P. 
edulis stack was also obtained for the last 1,250 cal yr BP following 
the same methodology but only applied to the higher-resolution 4 
sites (Stewart Lake, Kite Lake, Tiago Lake and Chihuahueños Bog; 
resolution ∼ 33-46 yrs between pollen samples).

To explore a P. edulis-ENSO-Sun relationship a visual and statis-
tical correlation was performed between the P. edulis stack, well-
known ENSO-proxy and paleohydrological records and solar activ-
ity �14C nuclide production rates (Reimer et al., 2020) for the past 
11,000 yrs from the study area (Fig. 2; Tables S3 and S4). A more 
detailed comparison was also performed between a higher reso-
lution (50-yr) P. edulis paleohydrological stack, �14C solar activity 
(Reimer et al., 2020) and tree-ring-based precipitation reconstruc-
tion for the western USA (Cook et al., 2004) for the last 1200 cal 
yr BP (Fig. 4).

To explore the climate mechanisms associated with dry con-
ditions impacting P. edulis in the southern Rocky Mountains, a 
modern climate analog approach was used. The modern climate 
analog approach provides process-based examples of how climate 
mechanisms, associated with prolonged or extreme conditions (e.g. 
drought associated with strong La Niñas), can influence hydrocli-
matic extremes seen in the paleoenvironmental record (e.g., re-
duced P. edulis as reconstructed through sedimentary pollen, see 
also Mock and Brunelle-Daines, 1999, Edwards et al., 2001, Shinker 
et al., 2006, Mock and Shinker, 2013, Shinker, 2014, Carter et al., 
2018a, 2018b). Modern examples of strong La Niña conditions are 
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Fig. 2. Holocene time series of P. edulis stack, ENSO and insolation. (A) P. edulis stack 
time series showing trend lines. (B) Seven point-smoothing of Log Ti/Ca ratios from 
M772-059 riverine runoff record from the coast off Peru (Mollier-Vogel et al., 2013). 
(C) Lithic flux record from 106KL core off Peru (Rein et al., 2005). (D) El Junco lake 
sediment record in Ecuador (Conroy et al., 2008). (E) clastic record from Laguna Pall-
cacocha in Ecuador (Rodó and Rodriguez-Arias, 2004). (F) Modeled ENSO frequency 
during the Holocene (Clement et al., 2000). (G) and (H), Summer and Winter in-
solation for 37◦N (Laskar et al., 2004). Well known climatic events are marked: 
8.2 ka, 4.2 ka, MCA (Medieval Climate Anomaly) and LIA (Little Ice Age). Light and 
dark blue shading indicate transitional (i.e., moderate values of P. edulis, with peaks 
over 0) and enhanced (i.e., all values of P. edulis over 0) ENSO during the Holocene. 
Orange shading shows suggested centennial-scale cyclical megadroughts in south-
western North America based on P. edulis stack. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

known to persist across multiple seasons in the southern Rocky 
Mountains and SW (Cook et al., 2007, Conroy et al., 2009, Arriaga-
Ramírez and Cavazos, 2010), with statistically significant negative 
hydroclimate impacts (Heyer et al., 2017). Such conditions (strong 
La Niña events) are used here as an analog to assess not just the 
climatic state of dry conditions (e.g. as evident in the paleoen-
vironmental record), but the climate mechanisms such as atmo-
spheric motion and moisture availability (not evident in the pale-
oenvironmental record) that can lead to and influence prolonged 
drought in the region. Therefore, we use the modern climate ana-
log approach here as an additional example of how mechanisms 
associated with hydroclimatic drought impacts vegetation changes 
in the southern Rocky Mountains.

To assess the teleconnections between La Niña and the study 
region we analyzed strong to moderately strong La Niña conditions 
(1988/1989; 1998/1999; 1999/2000) identified from the Oceanic 
Niño Index (ONI), representing SST anomalies in the Niño 3.4 
region (5◦N-5◦S, 120◦-170◦W, Carter et al., 2018b). We used at-
mospheric and surface climate variables from the North American 
Regional Reanalysis dataset (Mesinger et al., 2006, a 32-km grid-
ded dataset) to calculate and map anomalous patterns based on 
selected La Niña conditions (Fig. S6). The atmospheric variables 
were used to represent atmospheric pressure and motion in the 
mid-troposphere (500 mb geopotential height); moisture availabil-
ity in the atmosphere (850 mb specific humidity); and information 
related to rising (enhances precipitation) or sinking motions (sup-
presses precipitation) in the atmosphere (500 mb omega). The 
surface climate variables used, precipitation rate at the surface, 
surface temperature and soil moisture, represent surface processes 
relevant to P. edulis growth. We focus on the anomalous conditions 
annually for our selected case years because P. edulis growth is 
most negatively impacted by persistent dry hydroclimatic condi-
tions across multiple seasons and multiple years. The composite-
anomaly values were calculated for each year by averaging (com-
positing) the selected La Niña case years and comparing that com-
posite value to the long-term mean (1981-2010). The resulting 
composite-anomaly values were mapped to identify atmospheric 
and surface conditions during selected La Niña cases. To illustrate 
the large spatial scales at which atmospheric variables operate we 
mapped such variables at a continental scale, while small scale 
processes, such as precipitation and soil moisture were mapped 
at a regional scale to align our climate analyses with regional P. 
edulis patterns.

3. Results

In this study we show that Holocene records of P. edulis from 
the Southern Rockies of New Mexico and Colorado display sig-
nificant covariation over multimillennial-scales, documenting in-
creasing importance of the tree over the last 6,000 yrs, concurrent 
with short-term, centennial- and millennial-scale variability (Fig. 
S2; correlation between records shown in Table S2). These varia-
tions are diagnostic of a common paleoenvironmental and paleo-
climatic control of this tree species population. Therefore, to build 
a regional P. edulis record we synthesized seven published pollen 
records into a P. edulis stack, which shows a long-term trend from 
low values and lower amplitude variability in the Early and early-
Middle Holocene until ∼6,000 cal yr BP, after which, an increas-
ing trend is punctuated by episodic decreases (Fig. 2). A similar 
long-term pattern of change is shown by ENSO records from the 
equatorial Pacific area (Rodó and Rodriguez-Arias, 2004, Rein et al., 
2005, Mollier-Vogel et al., 2013) and their comparison with the P. 
edulis stack shows strong statistical correlations (Fig. 2; correlation 
between records shown in Tables S3 and S4).

The individual P. edulis records and thus the P. edulis stack also 
show millennial- and centennial-scale climate variability superim-
3
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posed on the general trends in the last 11,000 cal yr BP (Figs. 2 and 
3). Studied detrended records of P. edulis generally show covaria-
tion at millennial-scales with overall positive correlations between 
them (Table S2). Sites in the southern part of the transect show 
overall higher correlation than those to the north (Kite and Tiago 
Lakes; Table S2). This may result from their position at the north-
ern boundary of the core limit of the present-day distribution of 
P. edulis in the area (Tiago Lake; see map in Fig. S1), or the high 
elevation of the site (Kite Lake at 3667 m), which could have pre-
cluded the lake from receiving a strong and significant P. edulis
pollen signal from the southwest (Tiago) or from lower elevation 
(Kite) at millennial-scales and represented by low pollen percent-
ages (Fig. S2). In addition, the high elevation of Kite Lake may be 
buffered from hydroclimatic impacts because of the influence of 
midlatitude jet stream delivering winter snow and high elevations 
(Mock, 1996) and prolonged effective moisture at elevation from 
spring into summer (Shinker and Bartlein, 2010). Additionally, the 
northerly sites of Tiago and Kite Lakes occur within a transitional 
region that is minimally impacted by the hydroclimatic influence 
of ENSO (Wise, 2010, Heyer et al., 2017). However, we opted to 
keep those two records in the stack to reflect the possible regional 
heterogeneity and signal of the tail distribution of this taxon in 
the area as their overall trends remain consistent with the other 
records in our study.

Visual as well as wavelet and spectral analyses of the P. edulis
stack show a 900-1000-yr cyclicity that becomes more significant 
and amplifies in the last 6,000 cal yr BP evolving from a longer-
frequency ∼2500-yr cycle in the earlier part of the record (Figs. S4 
and S5). Minima in P. edulis stack occurred in SW USA centered at 
ca. 10.0, 8.0, 6.8, 5.8, 4.8, 4.0, 3.0, 2.2, 1.0 ka. The variability ob-
served in the synthetic P. edulis pollen stack also closely matches 
large shifts in the solar activity �14C nuclide production rates 
(Reimer et al., 2020; Fig. 3), and, as well, significant correlation 
between P. edulis stack and 14C production record of solar activity, 
especially during the last 6,000 cal yr BP (r = 0.72; p < 0.0001; 
300-yr smoothed and filtered at 950-yr; Table S4), occurs.

A highly significant correspondence between solar output and 
climate can also be observed between the higher resolution (50-yr) 
P. edulis paleohydrological stack, �14C solar activity (Reimer et al., 
2020) (r = 0.82, p < 0.0001; 100-yr smoothed; Table S4) and tree-
ring-based precipitation reconstruction for the western USA (Cook 
et al., 2004) for the last 1200 cal yr BP, which closely covariates at 
a ∼ 200-yr (Suess) solar cycle (Fig. 4; Fig. S5).

The analysis of strong, to moderately strong La Niña events 
from the modern record using North American Regional Reanal-
ysis data (NARR, Mesinger et al., 2006, Fig. S6) shows that calcu-
lated composite-anomaly values through the selected years provide 
process-based context for the climate mechanisms that impact 
moisture delivery and growth for P. edulis. Climatically, strong 
La Niña conditions are associated with greater-than-normal at-
mospheric pressure persisting through the year (Fig. S6a), with 
enhanced sinking motions (Fig. S6b). The persistent anomalously 
strong sinking motions (suppressing precipitation), along with 
drier-than-normal atmospheric moisture (Fig. S6c), led to persis-
tent lower-than-normal precipitation (Fig. S6d). Tiago and Kite 
lakes appear slightly wetter than normal, perhaps for the geo-
graphic and elevational reasons outlined above. Thus our pollen 
results are consistent with noted regional ENSO variability. The 
overall anomalously low precipitation within our study region is 
further impacted by persistent warmer-than-normal surface tem-
peratures (Fig. S6e), enhancing anomalously dry soil moisture con-
ditions (Fig. S6f) during the years for selected cases.
4

4. Discussion and conclusions

The biogeographic history of P. edulis in the Southwest US doc-
uments a widespread distribution at elevations below ∼1700 m 
during the last glacial, between ∼40,000 and 11,000 cal yr BP, as 
clearly documented by abundant packrat midden records (Betan-
court et al., 1991, Anderson and Feiler, 2009). This may reflect the 
abundance of winter-dominated precipitation in the current Sono-
ran, Chihuahuan and Mojave Deserts, due to southward deflection 
of the storm track during the LGM, with cold temperatures lim-
iting upslope and northward spread of P. edulis during that time. 
Warmer temperatures during the Early Holocene would have al-
lowed P. edulis to slowly spread upslope and northward, but warm 
and dry conditions during the Early Holocene may have slowed 
this trend.

Our significant correlation with Holocene ENSO records from 
the equatorial Pacific area provides strong confirmation that the 
Holocene P. edulis stack mainly reflects a regional hydroclimate sig-
nal that could be at least partly related to ENSO variability over 
southwestern North America, as suggested elsewhere (Anderson 
and Feiler, 2009, Jiménez-Moreno and Anderson, 2012, Jiménez-
Moreno et al., 2019). In this way, low P. edulis values during the 
Early and early-Middle Holocene could reflect reduced ENSO and 
enhanced La Niña dry conditions precluding moisture-sensitive P. 
edulis woodlands from extensive development in the area. Thus, 
we conclude that low occurrences of P. edulis in its present ele-
vation range within the area was due to extreme cold conditions 
during the last glaciation and northward migration during the 
Early Holocene warming being limited by predominant La Niña dry 
conditions. Our evidence supports the interpretation of weakened 
ENSO conditions during the Early and Middle Holocene, agreeing 
with several ENSO proxy records from the eastern Pacific region 
(Rodó and Rodriguez-Arias, 2004, Rein et al., 2005, Mollier-Vogel 
et al., 2013), from simple Pacific-only climate models (Clement et 
al., 2000), and reconstructions of low effective moisture and lake 
levels in the western USA (Anderson, 1993, Shuman and Marsisek, 
2016). Highest summer insolation during the Early Holocene might 
have also contributed to the low occurrence of P. edulis, as evap-
otranspiration in summer might have been very high. The trend 
toward increasing P. edulis by ∼6,000 cal yr BP reflects enhanced 
effective winter precipitation and soil humidity that could be re-
lated to El Niño conditions during the Middle to Late Holocene. 
This trend, along with the amplitude of the variability, is more 
pronounced in the last 4,000 cal yr BP (Figs. 2 and 3), which is re-
flected in additional proxy records and climate simulations (Barron 
and Anderson, 2011, Koutavas et al., 2006, Liu et al., 2014), in par-
ticular in the last 4,000 cal yr BP (Conroy et al., 2008, Koutavas and 
Joanides, 2012). In order to explain a main climate forcing for the 
P. edulis paleohydrological pattern we follow previous studies that 
suggest that the observed behavior of ENSO over the Holocene is 
mostly due to the oceanic, and subsequently atmospheric, response 
to orbital changes in insolation with changes in the seasonal cy-
cle of solar radiation in the tropics (Clement et al., 2000, Koutavas 
and Joanides, 2012, Loubere et al., 2013, Fig. 2). Another hypothe-
sis producing the same outcome in terms of enhanced ENSO in the 
late Middle and Late Holocene is that orbital changes in insolation, 
with the decrease in summer insolation, triggered a southern dis-
placement of the Intertropical Convergence Zone (ITCZ, Haug et al., 
2001, Koutavas et al., 2006). A southward-displaced marine ITCZ 
would favor less permanent southeast trades, precluding cool up-
welling in the eastern tropical Pacific, which via teleconnection in 
the SW USA would translate in more frequent El Niño conditions 
(Koutavas et al., 2006, Sulca et al., 2018). Decreasing summer in-
solation and temperatures during the Middle and Late Holocene 
(Laskar et al., 2004) would in turn trigger a decline in summer 
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Fig. 3. Holocene ENSO precipitation, solar activity and temperatures from the North Atlantic. (A) stacked marine hematite-stained grains (% HSG) records in percentage from 
the North Atlantic (Bond et al., 2001). Cold events are marked with numbers from 0 to 8 (Bond et al., 2001). (B) resampled at 100-yr and 29-point smoothed residual �14C 
data calculated from IntCal20 �14C (%) (Reimer et al., 2020). (C) Precipitation δ18O data from Pink Panther cave, New Mexico (Asmerom et al., 2007). Note that scale is 
inverted. (D) P. edulis stack time series. (E) Comparison between extracted 950-yr waveforms of ENSO P. edulis (in green), δ18O data from Pink Panther cave, New Mexico 
(Asmerom et al., 2007) (Blue) and solar (Reimer et al., 2020) (black) variability during the Holocene. Centennial-scale 950-yr variability was based on the spectral analysis 
shown in Figure S4. Note the good covariation between each other. Well known climatic events are marked: 8.2 ka, 4.2 ka, MCA (Medieval Climate Anomaly) and LIA (Little 
Ice Age). Light and dark blue shading indicate transitional and enhanced ENSO during the Holocene. Orange shading shows suggested centennial-scale cyclical megadroughts 
in southwestern North America based on the P. edulis stack. Following the cyclical pattern in ENSO variability, decadal-scale megadroughts are expected at present and in the 
next decades in the study area (red shading).
evapotranspiration, producing an increase in soil humidity that P. 
edulis would benefit.

The 900-1000-yr cycle identified in the Holocene P. edulis stack 
is a characteristic pattern of many other Holocene ENSO (Lamy et 
al., 2001) and paleohydrological records from the study area (As-
merom et al., 2007), providing additional support for the P. edulis
stack-ENSO link (Fig. S5). Minima in the P. edulis stack and thus 
possibly enhanced La Niña and related multidecadal megadroughts 
occurred in SW USA centered at ∼10,0, 8.0, 6.8, 5.8, 4.8, 4.0, 3.0, 
2.2, 1.0 ka. Some of those episodes, in particular the ∼8 (8.2 ka), 4 
(4.2 ka), and 1 (1.0 ka; Medieval Climate Anomaly, MCA) ka events 
5

are, taking into account age uncertainties, well known for extreme 
aridity in the western USA (Johnson et al., 2013, Calder et al., 2015, 
Jiménez-Moreno et al., 2019). Significant correlation between the 
P. edulis stack and the 14C production record of solar activity, es-
pecially during the last 6,000 cal yr BP (r = 0.72; p < 0.0001; 
300-yr smoothed and filtered at 950-yr; Table S3 and S4), could 
point to a solar-induced origin of ENSO variability, as the ∼1000-
yr cycle is one the most pervasive solar cycles over the Holocene 
(Debret et al., 2009, Fig. 3, Fig. S5), and indeed worldwide (Bond 
et al., 2001). Although we lack a complete understanding of pro-
cesses transferring and amplifying small energy variations of solar 
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Fig. 4. ENSO reconstruction and solar activity for the last 1300 cal yr BP. (A) P. edulis stack at 50-yr resolution for the past 1300 cal yr BP. Red shading indicates dry and blue 
humid periods. (B) Tree-ring reconstruction of past drought over western North America covering the past 1200 cal yr BP (Cook et al., 2004). Red and blue shading as same as 
above. (C) Solar activity measured in residual �14C (Reimer et al., 2020). Minima and maxima are indicated. (D) El Niño3 tropical Pacific surface temperature reconstruction 
(Mann et al., 2009). (E) Pages 2k temperature reconstruction from North America pollen (Pages 2k Consortium, 2013). (F) Gaussian band-pass filtered P. edulis stack (Green), 
El Niño3 SST reconstruction (blue) and solar activity (black) records at 200-yr frequency. Note the covariation of the records at 200-yr cycles. The Medieval Climate Anomaly 
(MCA; in red) and Little Ice Age (LIA; in blue) periods are shown. Dashed lines show correlations between the P. edulis stack, solar activity and Niño3 records. The arrows 
show the present and near future trend towards La Niña and drought conditions in the study area.
activity to the Earth’s surface it seems that variations in solar in-
solation, amplified by the Bjerknes feedback, conditioned surface 
water temperatures in the tropical Pacific and atmospheric dynam-
ics and precipitation in the Pacific influence area (ocean thermostat 
hypothesis, Clement et al., 1996), including the Southern Rockies 
(Fig. 3). This hypothesis is consistent with previous studies show-
ing a close solar-ENSO relationship at decadal (i.e., 11 yr-cycle,
Meehl et al., 2009) and centennial time-scales (Emile-Geay et al., 
2013). In addition to anomalously low precipitation, above aver-
age temperatures that probably occurred throughout most of the 
year during the La Niña years in the study area reduced effective 
moisture, negatively impacting soil moisture and further increasing 
drought (Heyer et al., 2017). However, climate modeling studies 
such as the study by Otto-Bliesner et al. (2016) found that a solar-
ENSO link is not completely clear, although they did not include in 
their simulation the “top down” effect of solar variability and thus 
further studies in this regard need to be accomplished.

Our study suggests that multidecadal-scale La Niña-related 
megadroughts occurred between 800–1300 CE, consistent with 
6

precipitation reconstructions in the western USA (Cook et al., 
2004), La Niña–like conditions in the tropical Pacific (Mann et al., 
2009), and most likely related to the solar maxima of the Me-
dieval Climate Anomaly (MCA, Reimer et al., 2020) and overall 
warm temperatures (Pages 2k Consortium, 2013). Aridity at this 
time was only interrupted by a short relatively humid interval at 
around 1100 CE that could have been related with the Oort solar 
minimum, perhaps triggering El Niño conditions and more pre-
cipitation in the area as suggested in previous studies (Cook et al., 
2004, Mann et al., 2009). An alternative explanation to the increase 
in P. edulis at that time could be related to a decrease in temper-
ature directly related to the Oort solar minimum, which has been 
shown to have forced climate (Moberg et al., 2005). Return to more 
El Niño and wetter conditions occurred during the Little Ice Age 
(LIA) in three ca. 200-yr-cycle steps related with the Wolf, Spörer 
and Maunder solar minima and wettest conditions were reached 
at ca. 1750 CE, agreeing with precipitation estimations in the area 
(Cook et al., 2004) and El Niño-3 SST reconstructions (Mann et al., 
2009).
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Following the ocean dynamical thermostat hypothesis (Clement 
et al., 1996) and the centennial-scale cyclical pattern in solar and 
related P. edulis-ENSO precipitation shown in this study, a general 
trend towards La Niña conditions is observed since the LIA wet pe-
riod until present, with a multidecadal-scale drought recorded at 
ca. 1850 CE, and related with the solar modern maximum (Reimer 
et al., 2020, Fig. 4). Our modern climate analog results (Fig. S6) 
provide a linkage between climatic processes and long-term SST 
conditions that support prolonged drought during persistent La 
Niña conditions resulting in reduced growth or die-off of P. edulis
in the region. This is consistent with regional impacts of long-term 
persistent ENSO conditions impacting paleoevironmental records 
climatically and hydrologically (Brunelle et al., 2018). The com-
bined result of a multidecadal-scale megadrought and associated 
climate processes, in the context of present anthropogenic global 
warming, similar or even more acute than during the MCA, will 
cause enhanced moisture stress and drastic and extensive forest 
die-off, associated land surface environmental changes, which will 
have major implications for ecosystems and ecosystem services in 
arid environments (Woodhouse, 2003, Cook et al., 2007, Calder et 
al., 2015). However, further investigations need to be performed in 
this respect as climate models suggest that ENSO teleconnections 
will change and the thermostat hypothesis may not apply because 
of a change in the mean state of the atmospheric circulation due 
to anthropogenic forcing such as greenhouse global warming (Yeh 
et al., 2018), likely producing an increase in the frequency of ENSO 
extremes (Cai et al., 2015).
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