
Geomorphology 393 (2021) 107941

Contents lists available at ScienceDirect

Geomorphology

j ourna l homepage: www.e lsev ie r .com/ locate /geomorph
Tectonic geomorphology of an active slow-moving, intrabasinal fault:
The Galera Fault (Guadix-Baza Basin, central Betic Cordillera,
southern Spain)
Iván Medina-Cascales a,⁎, Francisco J. García-Tortosa b, Iván Martin-Rojas a,
José Vicente Pérez-Peña c, Pedro Alfaro a

a Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, 03690, San Vicente del Raspeig, Alicante, Spain
b Departamento de Geología, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
c Departamento de Geodinámica, Universidad de Granada, Campus de Fuentenueva, 18071 Granada, Spain
⁎ Corresponding author.
E-mail addresses: ivan.medina@ua.es (I. Medina-Casca

(F.J. García-Tortosa), ivan.martin@ua.es (I. Martin-Rojas),
(J.V. Pérez-Peña), pedro.alfaro@ua.es (P. Alfaro).

https://doi.org/10.1016/j.geomorph.2021.107941
0169-555X/© 2021 The Author(s). Published by Elsevie
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 6 February 2021
Received in revised form 2 September 2021
Accepted 2 September 2021
Available online 8 September 2021
In thiswork,we prove the usefulness ofmorphometric analyses, typically applied to basin-border faults, to define
the tectonic geomorphology of a slow-moving, intrabasinal structure: the Galera Fault (Guadix-Baza Basin,
southern Spain). The Galera Fault is a 30 km-long, oblique-slip fault with major left-lateral and minor vertical
slip components. Through geological and structural analyses, we define for the first time the detailed surface ge-
ometry of the fault, which is characterized by features typical of left-lateral strike-slip faults. The morphometric
analysis indicates that a combination of slow slip rates and the high erodibility of the juxtaposed basin infill de-
posits favours a rapid landscape response to fault activity that erasesmany landscape effects related to active tec-
tonics. This masking is more effective on features generated by strike-slip displacement, leaving only subtle
evidence, such as local stream deflections and upstreamwidening of catchments. In contrast, geomorphic effects
related to vertical displacement are better preserved, including the control of the geometry of themain rivers and
morphological differences in the drainage network between the two fault blocks. On the upthrown fault block,
streams are generally shorter and steeper and have greater valley incision, leading to the development of a bad-
land landscape.Moreover, the vertical deformation of aMiddle Pleistocene glacis surface (ca. 90m)demonstrates
the important role of this slow-moving intrabasinal fault in the generation of relief in the Betic Cordillera during
recent Quaternary time. Although the impact of this fault on relief building is very low in comparison with
oblique-slip, basin-border faults in the mountain range, it has a key control on the Quaternary landscape evolu-
tion.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Active tectonics, togetherwith lithology, climate conditions and sea-
level variations, are themain variables controlling the evolution of land-
scapes and drainage systems. A wide range of well-known geomorphic
features develop in landforms close to active faults in response to the
permanent state of disequilibrium induced by fault displacement.

In the case of oblique-slip faults, displacement generates geomor-
phic effects related to both the strike-slip and vertical slip components
(e.g., Eusden et al., 2000; Nicol and Van Dissen, 2002; Walker et al.,
2006; Chevalier et al., 2016; Yazici et al., 2018). Typical geomorphic sig-
natures related to the strike-slip component include effects such as
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offset geomorphic markers, beheaded or deflected rivers, fault-parallel
elongated channels, shutter ridges, or topographic gradients with asso-
ciated uplift and subsidence in antidilational and dilational jogs, respec-
tively (e.g., Wallace, 1968; Ollier, 1981; Allen et al., 1984; Sibson, 1986;
Sylvester, 1988; Jackson et al., 1996; Keller and Pinter, 1996; Zhang
et al., 2003; Booth-Rea et al., 2004; Walker et al., 2006; Johnson and
Watt, 2012; Gürbüz et al., 2015; Zielke et al., 2015). In addition, the ver-
tical slip component is responsible for generating geomorphic effects
such as steep and high relief mountain fronts, fault scarps, fault-facing
facets, and fluvial anomalies in stream profiles or in valley incision
(e.g., Davis, 1903; Bull and McFadden, 1977; Keller and Pinter, 2002;
Bull, 2007; Boulton andWhittaker, 2009; Burbank andAnderson, 2013).

Most of these features can be quantitatively described throughmor-
phometric analyses. A wide number of geomorphic indices have been
designed to detect such anomalies and thus evaluate the tectonic activ-
ity and geomorphic impact related to active faults (e.g., Bull, 1977; Hare
and Gardner, 1985; Bull and McFadden, 1977). Morphometric analyses
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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are typically performed along basin-border faults (i.e., faults that juxta-
pose basement rocks and basin infill sedimentary rocks) with well-
developed mountain fronts (e.g., Bull and McFadden, 1977; Keller
and Pinter, 2002; Silva et al., 2003; Pérez-Peña et al., 2010a; Yazici
et al., 2018; Ul-Hadi et al., 2013; Marliyani et al., 2016; Matoš et al.,
2016; Özsayin, 2016). Nevertheless, the application of these analyses
to intrabasinal faults (i.e., juxtaposed rocks from basin sedimentary
infill in both fault blocks) is uncommon. Therefore, although some
authors have addressed the study of intrabasinal faults from differ-
ent approaches, such as structural geology and sedimentology
(e.g., Mukhopadhyay et al., 1984; Schlische, 1992; Huang et al.,
2016; Liu et al., 2021), their surface geomorphic expression and
their role in landscape evolution has not been widely studied
(e.g., García-Tortosa et al., 2008b; Crosetto et al., 2018; Patria and
Putra, 2020).

Apart from the nature of the rocks juxtaposed by the faults, the
geomorphic signature of active faults strongly depends on their slip
rates (e.g., Duvall and Tucker, 2015; Marliyani et al., 2016). Many
studies performing morphometric analyses have been conducted in
relation to faults with moderate to fast slip rates, such as the San
Andreas Fault (e.g., Arrowsmith and Zielke, 2009), North Anatolian
Fault (e.g., Gürbüz et al., 2015), Alpine Fault (e.g., Sutherland and
Norris, 1994; Barth, 2013), and Altyn Tagh Fault (Mériaux et al.,
2005). In contrast, the tectonic geomorphology of slow-moving
faults (≤1 mm/yr) is less well known (e.g., Silva et al., 2003; Duvall
and Tucker, 2015; van der Wal et al., 2020).

This study is focused on the geomorphic expression of active
oblique-slip, intrabasinal faults characterized by slow slip rates. For
this aim, we analyse the tectonic geomorphology of the Galera Fault
(GF). The GF is an ~30 km-long fault located in the Guadix-Baza Basin in
the central Betic Cordillera (southern Spain) (García-Tortosa et al., 2007,
2008a; Sanz de Galdeano et al., 2012). This oblique-slip fault with a
main strike-slip component is located in a region dominated by active
WSW-ENE regional extension (e.g., Galindo-Zaldívar et al., 2015) within
an active collisional orogen. The GF accommodates the WSW-ENE re-
gional extension that dominates the central Betic Cordillera, acting as a
transfer fault for the normal Baza Fault (Fig. 1) (Alfaro et al., 2021).

The GF presents a series of characteristics that make it an inter-
esting example to study the relationship between active faulting
and recent landscape evolution: i) the GF is an intrabasinal fault
that juxtaposes highly erodible sedimentary basin fill deposits; ii)
it is a slow-moving fault, with a horizontal slip rate of 0.5 ± 0.3
mm/yr (Alfaro et al., 2021) and vertical slip rates of 0.08–0.24 mm/
yr (García-Tortosa et al., 2011); iii) the recent capture of the
Guadix-Baza Basin (ca. 600–500 ka) has exposed the GF whereby
otherwise it would be covered due to active sedimentation; and iv)
the Guadix-Baza Basin is a semiarid region, and following its capture,
it has been dominated by extensive erosion that has shaped a very
young landscape influenced by the activity of the GF. Under this
framework, characterized by a combination of highly erodible sedi-
ments, low tectonic activity, and semiarid climate, our aim is to
prove the usefulness of morphometric analyses, typically applied to
basin-border faults, to evaluate the geomorphic expression and the
role of a slow-moving intrabasinal fault in landscape development.
Previous studies have demonstrated that a combination of geomor-
phic analysis with structural characterization of active faulting is
useful in elucidating the geomorphic effects produced by fault mo-
tion in areas dominated by slow faults (e.g., Jackson et al., 1996;
Eusden et al., 2000; Litchfield, 2001). Hence, we perform the first de-
tailed geological and structural characterization of the GF to discern
possible relationships between fault geometry, kinematics, and geo-
morphology. Then, by means of GIS-based methodologies, using
high-resolution digital elevation models (DEMs) as a base, we qual-
itatively and quantitatively analyse the landscape effects produced
by fault displacement both in the topography and drainage patterns
of the study area. For this purpose, we apply several geomorphic
2

indices that allow us to detect fault-related geomorphic anomalies,
such as sharp slope gradients or differences in valley incision.

2. Geological and geomorphological setting

2.1. Recent geodynamic setting

From the late Miocene to the present, the Betic Cordillera (western
Mediterranean region) has been dominated by the oblique NNW-SSE
convergence of the Nubian and Eurasian plates (approximately 5–6
mm/year, DeMets et al., 2010; Nocquet, 2012). In the central sector of
the Betic Cordillera, this geodynamic context is responsible for regional
NNW-SSE shortening (Galindo-Zaldívar et al., 1993; Herraiz et al., 2000;
Sanz de Galdeano and Alfaro, 2004) in combination with orthogonal
ENE-WSW extension (e.g., Gil et al., 2002; Galindo-Zaldívar et al.,
2015) of approximately 2.1–3.7 mm/yr (e.g., Serpelloni et al., 2007,
Pérez-Peña et al., 2010b). In the Guadix-Baza Basin, this ENE-WSW re-
gional extension is accommodated by NNW-SSE normal faults
(e.g., the Baza Fault) and SW-NE to W-E strike-slip faults (e.g., Guerra-
Merchán, 1992; Galindo-Zaldívar et al., 1999; Martínez-Martínez et al.,
2006; Pedrera et al., 2006, 2012; Pedrera, 2008; Alfaro et al., 2008;
García-Tortosa et al., 2011; Sanz de Galdeano et al., 2012, 2020;
Galindo-Zaldívar et al., 2015; Medina-Cascales et al., 2020) (Fig. 1).

The GF (Fig. 1) is one of the active SW-NE faults accommodating re-
gional extension in the Guadix-Baza Basin (García-Tortosa et al., 2007,
2011). The GF is an oblique-slip fault that presents a main strike-slip
component of displacement and a minor vertical (normal) component
of displacement. The fault is characterized by slow slip rates, with a
short-term horizontal slip rate of 0.5 ± 0.3 mm/yr calculated by GPS
data (Alfaro et al., 2021) and a long-term vertical slip rate of 0.08–0.24
mm/yr (García-Tortosa et al., 2011). The GF is kinematically related to
the normal Baza Fault (Fig.1), acting as a transfer structure that accom-
modates the extension of the Baza Fault to the east (Alfaro et al., 2021).
The GF is responsible for several low-magnitude historical earthquakes,
including the June 9th 1964 (mbLg 4.8, VIII) SW Galera earthquake
(Martínez-Solares and Mezcua, 2002; García-Tortosa et al., 2007; Silva
Barroso et al., 2014).

2.2. Geology and geomorphology of the Guadix-Baza Basin and Baza
Subbasin

The GF extends close to the NE margin of the Guadix-Baza Basin
(Fig. 1), which is the largest of the Neogene–Quaternary intramontane
basins in the Betic Cordillera (Vera, 1970a, 1970b). The Guadix-Baza
Basin is located at the boundary between two important domains
within the Betic Cordillera that act as the basin basement: the Betic In-
ternal Zones (Paleozoic and Mesozoic metamorphic rocks) and the
Betic External Zones (mainly Mesozoic and Tertiary sedimentary
rocks) (Fig. 1) (Sanz de Galdeano and Vera, 1992). The basement is cov-
ered by a sedimentary infill consisting of upper Miocene, Pliocene and
Quaternary sediments (e.g., García-Aguilar and Martín, 2000; García-
Aguilar and Palmqvist, 2011; Gibert et al., 2007a, 2007b; Guerra-
Merchán, 1992; Peña, 1979, 1985; Soria et al., 1987; Vera, 1970a,
1970b; Vera et al., 1994; Viseras, 1991; Soria et al., 1999). From the
early Pliocene to the Middle Pleistocene, the Guadix-Baza Basin was
an endorheic basin (Gibert et al., 2007a, 2007b; García-Tortosa et al.,
2008a, 2011), resulting in the accumulation of continental sediments
(e.g., Vera, 1970a, 1970b; Peña, 1979, 1985; Viseras, 1991; Vera et al.,
1994; Soria et al., 1987; Guerra-Merchán, 1992). The sedimentary envi-
ronments in the basin were controlled by the extensional activity of the
Baza Fault (Fig. 1), which divided the basin into two domains (Figs. 1
and 2A): the Baza sub-basin in the eastern sector (downthrown block
of the BF), which was dominated by a lacustrine sedimentary environ-
ment, and the Guadix sub-basin in the western sector (uplifted block
of the BF), where fluvial and alluvial sedimentary environments devel-
oped (Alfaro et al., 2008).



Fig. 1. Geological map of the Guadix-Baza Basin (GBB, red dashed line) and its main active structures. BF: Baza Fault, GF: Galera Fault, AFs: Almanzora Faults, AB: Alfahuara-Botardo
structure, SZF: Solana de Zamborino Faults, and GrLF: Graena-Lugros Fault. The inset shows the location of the Guadix-Baza Basin in south-central Spain. DEM source: Spanish Centre
of Geographical Information (CNIG, https://centrodedescargas.cnig.es/CentroDescargas/index.jsp).
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The present study area (Galera Fault) is located in the Baza sub-basin
(Fig. 1). During the endorheic stage of the Guadix-Baza Basin (Fig. 2A),
extensive sedimentation in the Baza sub-basin resulted in a thick suc-
cession of lower Pliocene to Middle Pleistocene lacustrine deposits
(Gibert et al., 2007a). This sedimentary infill is configured into lithologic
zones that correspond to different palaeolake sedimentary environ-
ments (Gibert et al., 2007a).

During the Pleistocene, an extensive depositional-erosive top basin
surface developed across the entire Guadix-Baza Basin, capping the
final stage of basin infill (Fig. 2A). This top basin surface, henceforth re-
ferred to as “glacis” (sensu Dumas, 1969), remained active until the
basin became exorheic in the Middle Pleistocene (600–500 Ka, Gibert
3

et al., 2007b; García-Tortosa et al., 2008a, 2011), when its drainage
was captured by the Guadiana Menor River and re-routed towards the
Atlantic (Fig. 2B) (Calvache and Viseras, 1995; Díaz-Hernández and
Juliá, 2006; Scott and Gibert, 2009; García-Tortosa et al., 2008a). Some
authors have proposed that the sector where capture occurred was tec-
tonically controlled (Calvache and Viseras, 1995, 1997; Moral and
Balanyá, 2020).

Hence, from the Middle Pleistocene, the Guadix-Baza sub-basin has
been dominated by erosional processes (Calvache and Viseras, 1995;
García-Tortosa et al., 2008a, 2011; Pérez-Peña et al., 2009). Conse-
quently, the glaciswasprogressively eroded (Fig. 2D), and a complex in-
cised fluvial drainage network was developed across the Guadix-Baza

https://centrodedescargas.cnig.es/CentroDescargas/index.jsp


Fig. 2.Geological and geomorphological evolution of the Guadix-Baza sub-basin. (A) Endorheic stage (upperMiocene tomiddle Pleistocene). The Baza Fault controls the development of a
fluvial environment in theGuadix Subbasin and a lacustrine environment in the Baza sub-basin. (B)Middle Pleistocene capture of theGuadix-Baza sub-basin by theGuadianaMenor River
and incipient drainage network incision. (C) Exorheic stage (Middle Pleistocene to present day). Intense erosion and drainage network development that led to the (D) eroded glacis
surface and development of badlands. The red dashed line represents the approximate trace of the GF. (E) Badlands landscape in the study area.
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sub-basin (Fig. 2C). The post-capture base-level lowering (from ca. 1000
m to sea level), the semi-arid climate, and the high erodibility of the
basin sediments resulted in intense erosion and incision by the drainage
network leading to the formation of a badland landscape (Fig. 2E) that is
still actively eroding today (Pérez-Peña et al., 2009; García-Tortosa et al.,
2011). Since basin capture, the activity of the GF has controlled the de-
velopment of the young, recent Quaternary landscape in the study area.

3. Methodology

3.1. Fault characterization

Before implementing themorphometric analysis,we first carried out
geological and structural characterization of the GF. For this purpose, we
conducted detailed geologicalmapping of the study area (1:5000 scale).
The mapping is based on field observations combined with the analysis
of aerial photographs and hillshade images derived from high-
resolution digital elevation models (DEMs) (1 and 5 m per pixel) ob-
tained from the Spanish Centro Nacional de Información Geográfica
(CNIG, https://centrodedescargas.cnig.es/CentroDescargas/index.jsp).
The geological map includes detailed geometry of the GF traces and
the lithostratigraphic units cropping out in the study area. From this
map, we describe the main structural features of the GF. Moreover,
4

this geological and structural map is useful to analyse the influence of
fault geometry and kinematics in the configuration of landforms
(e.g., depressed areas related to transtension zones produced by
strike-slip displacement) and to discriminate between tectonic and
non-tectonic landscape anomalies (e.g., to observe relationships be-
tween strong slope gradients in streambeds and fault traces)
(e.g., Ruszkiczay-Rüdiger et al., 2007; Ruszkiczay-Rüdiger et al., 2009).
Finally, in order tomeasure the vertical displacement of the fault, we se-
lect a stratigraphicmarker of ca. 2.3Ma (Garcés et al., 1997). The criteria
we use for selecting this marker is its lateral continuity in both fault
blocks along most of the study area.

3.2. Topographic analysis

With the aim of recognizing the influence of active tectonics on the
landscape,we carried out a qualitative andquantitative analysis of topo-
graphic anomalies using elevation and slope angle maps obtained from
high-resolution DEMs (e.g., Zuchiewicz, 1991, 1998; Demoulin, 1998;
Keller and Pinter, 2002; Ruszkiczay-Rüdiger et al., 2009; Matoš et al.,
2016; García-Delgado and Velandia, 2020).

The analysis of elevation and slopemaps allows us to identify potential
geomorphic anomalies, such as depressed or uplifted areas related to fault
geometry and displacement (e.g., García-Delgado and Velandia, 2020),

https://centrodedescargas.cnig.es/CentroDescargas/index.jsp


Fig. 3.Geological map displaying the GF and the lithostratigraphic units we defined in the study area. Units 1 to 8 are themost representative units of the study area. They change laterally
tomarginal (units 9 and 10) and central lake (units 11 and 12) facies. The dashed blue lines show the location of the geological cross-sections in Fig. 5.Main rivers (dark blue lines) are also
represented.
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effects on cross-fault valley geometries (channel deflections, beheading
and/or valley asymmetries, e.g., Zhang et al., 2003), juxtaposition ormigra-
tion of ridges across the fault, development of fault-facing facets
(e.g., Duvall andTucker, 2015), and/or along-space variations in thedegree
of valley incision. To complement this analysis, we obtained the profile re-
lief ratio (PRR) along the GF (sensu Duvall and Tucker, 2015). The PRR
metric quantifies the landscape response to strike-slipmotion by compar-
ing the topography close to and far from the fault traces. The PRR is calcu-
lated by dividing the maximum local relief found along a topographic
profile close to the fault (10% of the total distance from the fault to the
main drainage divide) by the maximum local relief found along a topo-
graphic profile located further from the fault (50% of the total distance
from the fault to the main drainage divide) (Duvall and Tucker, 2015).
Thus, PRR values can range between 0 and 1. Lower PRR values reflect
catchments with steep fault-facing slopes and low ridge mobility across
the fault, i.e., a static upstream response due to a fast slip along the fault;
in contrast, higher PRR values (approximately 1) reflect catchments with
5

erased fault-facing facets and a high degree of cross-fault ridge mobility,
i.e., a dynamic upstream response due to a slow slip along the fault.

3.3. Analysis of the glacis surface

The glacis surface of the Baza sub-basin is a pre-deformational geo-
morphic surface developed during the Middle Pleistocene (García-
Tortosa et al., 2011). This surface is an excellent geomorphic marker,
as it records deformation produced by fault uplift since basin capture.
This surface is intensely affected by erosion in the study area, and it is
preserved only close to the sub-basin margins and in some flat hilltop
locations. To solve this issue, we follow the methodology used by
García-Tortosa et al. (2008b, 2011). This method consists of
reconstructing the hypothetical morphology that the Middle Pleisto-
cene glacis surface would have today in the absence of erosion or defor-
mation. For this purpose, we used a low-degree polynomial function to
trace envelopes that join the preserved glacis surfaces between the sub-
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Fig. 5. (A) Geological cross-sections across the GF. Locations and unit description are shown in Fig. 3. (B) Graph showing the measured vertical displacement of the GF using a ca. 2.3 Ma
stratigraphic marker (unit 5, in red). Vertical displacement can be measured only along sectors 1 and 2 and part of sector 3.
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basin margins. Then, we compare this envelope with the real present-
day deformed surface to identify anomalies generated by GF displace-
ment and thus estimate the uplift rate associated with the fault
(García-Tortosa et al., 2011). Although thismethod has already been ap-
plied by García-Tortosa et al. (2011) in the Guadix-Baza Basin, they only
traced one profile in the Galera region. To estimate the deformation of
the glacis surface associated with the GF and fault uplift rate in this
study,we reconstruct the glacis surface along 6 basin profiles (including
the profile published by García-Tortosa et al., 2011) that cross the GF.

3.4. Drainage network analysis

For the analysis of geomorphic anomalies in the drainage pattern,
we extract the drainage network from high-resolution DEMs. From
the DEMs, we also delineate catchments in both fault blocks to observe
possible effects on their geomorphic parameters related to the relative
Fig. 4. (A) Surface geometry map of the GF. Dashed rectangles show the location of the close-
dashed line indicates the widening of the Barbata River valley (C) Detail of the southern term
(B) and (C) details are displayed over the coloured DEM to illustrate uplifted and depressed ar

7

motion on each side of the fault. For each of these catchments, we calcu-
late the longitudinal profiles of the normalized channel steepness index
of their longest streams, asymmetry factor and valley floor width-to-
height ratio. The applied indices were originally designed and have typ-
ically been used in the assessment of the activity of mountain fronts
generated by basin-border faults (e.g., Bull and McFadden, 1977;
Keller and Pinter, 2002; Silva et al., 2003; Pérez-Peña et al., 2010a;
Matoš et al., 2016). In this work, we test the usefulness of these indices
to evaluate the geomorphic effects produced by an active intrabasinal
fault.

The morphology of longitudinal river profiles reflects the relation-
ship between erosional processes and tectonic uplift (e.g., Schumm
et al., 2000; Keller and Pinter, 2002; Bull, 2009). Concave-up longitudi-
nal profiles reflect stream channels in a steady state, while sublinear,
convex, or stepped profiles are related to anomalies derived from tec-
tonic activity, lithologic contrasts, environmental changes, or base-
ups in B and C. (B) Detail of the pull-apart basin between fault sectors 1 and 2. The white
ination of the GF in sector 4, where uplifted areas can be observed within the fault zone.
eas.
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level changes (Hack, 1973; Hovius, 2000; Snyder et al., 2000; Demoulin,
2011; Soria-Jáuregui et al., 2018). Moreover, we calculated the normal-
ized channel steepness index (ksn) (Wobus et al., 2006) in order to
detect slope gradient anomalies along longitudinal stream profiles
related to fault displacement. The ksn index allows the comparison of
stream profiles with highly varying drainage areas. The ksn index is
derived from the slope-area regression (e.g., Flint, 1974; Whipple,
2004), defined as:

S ¼ KsA−θ

where S is the stream channel slope, Ks is the steepness index (Snyder
et al., 2000), A is the drainage area, and θ is the concavity of the longitu-
dinal profile. The ksn index is useful for detecting knickzones,
i.e., gradient changes along river profiles that reflect the response of
the river system related to base-level falls due to tectonic movements,
differential uplift across active structures, and lithologic changes
(Wobus et al., 2006; Kirby and Whipple, 2012; Joshi et al., 2021). The
geological and structural characterization of the study area allows us
to discriminate between knickzones related to erosion steps produced
by strong lithologic contrasts or by fault activity.

We also apply the asymmetry factor (AF) (Hare and Gardner, 1985;
Keller and Pinter, 2002) to identify possible lateral channel migrations
related to fault uplift. The AF determines the degree of asymmetry of
catchments, i.e., channel migrations within the catchment area. This
index is used to detect tectonic tilting transverse to the flow direction
within a drainage basin. This index is defined as follows:

AF ¼j 50−Ar � 100=At j

where Ar is the area of the basin to the right (facing downstream) andAt
is the total area of the basin. This equation is expressed as the absolute
value minus 50 to avoid possible confusion between catchments
draining to the north and catchments draining to the south (sensu
Pérez-Peña et al., 2010a). Different AF values permit the classification
of catchments as symmetric (AF < 5), gently asymmetric (5 ≤ AF <
10), moderately asymmetric (10 ≤ AF < 15) and strongly asymmetric
(AF ≥ 15) (Hare and Gardner, 1985; Keller and Pinter, 2002).

Finally, we apply the valley floorwidth-to-height ratio (Vf) (Bull and
McFadden, 1977). The intention is to detect possible differences in val-
ley incision between fault blocks resulted from tectonic uplift related to
the GF. This index was designed to evaluate active tectonics based on
the valley geometry in section. It is defined as follows:

Vf ¼ 2Vfw
Eldþ Erd−2Esc

where Vfw is the valley floor width, Eld and Erd are the elevations on
both the right and left valley divides, respectively, and Esc is the eleva-
tion of the valley floor. Low Vf values (Vf < 1) are representative of
entrenched V-shaped valleys that are characteristic of areas with active
tectonic uplift. In contrast, high Vf values (Vf > 1) reflect U-shaped val-
leys, which are indicative of areas of low tectonics or tectonic quies-
cence (e.g., Keller and Pinter, 2002; El Hamdouni et al., 2008).
Traditionally, the Vf index is applied to evaluate the uplift of fault-
bounded mountain fronts (Silva et al., 2003; García-Tortosa et al.,
2008b; Pérez-Peña et al., 2010a). However, in thiswork,we test theuse-
fulness of the Vf index in an intrabasinal fault that does not generate a
mountain front. To detect valley incision anomalies between fault
blocks, we calculate Vf values for 5 selected streams in two transverse
profiles located 250 m upstream and downstream from the fault zone.

4. Characterization of the Galera Fault

The GF has previously been described as an approximately 30 km-
long fault zone striking SW-NE and dipping steeply to the NW or even
vertically. We differentiate two main fault blocks: a southern block
8

and a northern block. The minor vertical component of displacement
of the GF is responsible for the uplift of the southern block and the sub-
sidence of the northern block.

The GF offsets lower Pliocene to Holocene deposits, affecting both
the marginal and central lake facies of the Baza paleolake (Figs. 3, 5
and 6A and B) and exorheic deposits, such as fluvial terraces (Fig. 6C).
In this work, we define and map 14 informal lithostratigraphic units
(Fig. 3). The ages of the deposits are extracted from previous studies
(e.g., Vera et al., 1985, 1994; Soria et al., 1987, 1999; Martín-Suárez,
1988; Alberdi et al., 1989; Agustí and Martín-Suárez, 1984; Garcés
et al., 1997; Freudenthal et al., 1998; Oms et al., 2000, 2011; Gibert
et al., 2006; Gibert et al., 2007a; Maldonado-Garrido et al., 2017;
Piñero and Agustí, 2020). Lithologies in the study area consist mostly
of highly erodible lacustrine rocks belonging to the Baza sub-basin sed-
imentary infill (such as silts, marls, sandstones, and gypsum), which
crop out in both fault blocks. Moreover, the most recent infill deposits
(units 7 and 8) crop out mainly in the northern fault block (Fig. 3).

From our structural map (Fig. 4), we observe that the surface geom-
etry of the GF is the result of its main strike-slip component (analogous
to the geometric patterns developed during Riedel experiments; Riedel,
1929; Tchalenko, 1970). The GF is characterized by structural features
that reflect a left lateral sense of displacement (sensu Massironi and
Kim, 2015).

We divide the GF into four sectors based on the surface geometry of
the fault array (Fig. 4A). Sector 1 strikes SW-NE to WSW-ENE and con-
sists of a single major fault strand with extensional horsetail splays in
the NE termination of the fault. Sector 2 is formed by aWSW-ENE-strik-
ing fault zone of fault strands arranged in a right-stepping en echelon
pattern separated by contractional stepovers. From this fault zone, a
set of N-S fault strands branch out and extend N, forming a damage
zone of variable width (Figs. 5 and 6E). Deformation along sector 2
has produced an overall tilt towards the N and NW in the northern
block of the GF (sections III–III′ and IV–IV′ in Fig. 5) and hectometric-
to kilometric-scale gentle folds in the southern block (Fig. 4A). Sector
3 strikes SW-NE, and deformation is distributed along an anastomosing
fault zone interpreted as an extensional strike-slip duplex. A gentle N-
dippingmonocline is observed in the northern block because of the ver-
tical displacement of the GF (sections VI–VI′ in Fig. 5). Sector 4 strikes
SW-NE and is arranged in a very segmented en echelon pattern that
conforms to the SW fault termination. Deformation in sector 4 is accom-
modated by hectometric-scale drag, and rollover folds have developed
in the northern block (section VII–VII′ in Fig. 5). The most remarkable
structural feature of the GF is the kilometric-scale, N-S left fault-
releasing bend between sectors 1 and 2 in which a hanging wall and a
pull-apart basin are developed (Fig. 4B). The N-S faults and northward
tilting observed in sector 2 are the result of subsidence related to this
pull-apart basin. We do not consider these fault sectors as different
seismogenic fault segments, as they do not comply with the required
geometric (Boncio et al., 2004; Field et al., 2015) and kinematic
(Chartier et al., 2019) segmentation criteria.

Regarding fault kinematics, previous studies have provided evidence
and have quantified the left-lateral component of displacement of the
GF from kinematic indicators (slickenlines) (García-Tortosa et al.,
2007) and GPS data (Alfaro et al., 2021). In this study, we found
slickenlines oriented horizontally to obliquely, which reflects that the
fault strands have a main horizontal and minor dip-slip component of
displacement (Figs. 4A and 6D). We also found slickenlines indicating
pure dip-slip along the left fault bend between sectors 1 and 2 (Fig. 4A).

From offset stratigraphic markers, we estimate the deformation
produced by the dip-slip component of the GF (Fig. 5). Stratigraphic
markers in the study area are vertically displaced in sector 1, sector 2
and a part of sector 3. The homogeneous sedimentary succession
does not allow us to measure fault throw in the SW part of sector 3
and in sector 4. The stratigraphic marker we use for determining
the vertical fault offset is the top of unit G5/base of unit G6 (Fig. 3),
whose age is ca. 2.3 Ma (Garcés et al., 1997) due to its lateral



Fig. 6. (A) Fault strand of theGF in sector 1. The fault zone is formed by a single strand. (B)Outcrop of theGF in sector 2. The fault zone consists of a deformation banddue to the interaction
between several fault strands. (C) A strand of the GF offsetting recent Quaternary fluvial terraces in sector 3. (D) Oblique slickenlines along the SW-NE fault strands of the GF.
(E) Northward tilting in the northern fault block related to pull-apart basin subsidence between sectors 1 and 2. Numerical ages of the deposits are extracted from previous studies
(e.g., Maldonado-Garrido et al., 2017 and references therein).
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continuity in the study area. Vertical displacements range from a few
tens of metres to 100 m, with a maximum in sector 3 and along the
left fault bend (Fig. 5B).

5. Morphometric analysis

5.1. Topographic analysis

We analyse the topography of the study area from the elevation and
slope angle maps (Fig. 7) and from the profile relief ratio (PRR, sensu
Duvall and Tucker, 2015).

The elevationmap (Fig. 7A) shows that the highest areas (other than
the basin margins) correspond to the preserved glacis surface, which
also presents the lowest slope angle values (Fig. 7B). In contrast, the
lowest areas extend to the SWof the study area,where thefluvial drain-
age system has incised more deeply into the Baza sub-basin sedimen-
tary infill. However, the most remarkable feature of the elevation map
9

is that it reveals a sharp asymmetry between the southern and northern
sides of the main river valleys, i.e., of the Guardal (downstream of the
confluence with the Galera River), Galera and Barbata Rivers (Fig. 7A).
The relief on the southern side is generally higher than the relief on
the northern side. Despite this higher relief in the southern block of
the fault, the GF does not present a well-defined mountain front, as it
appears highly eroded by the drainage network and has receded more
than 2 km in some sectors (Fig. 7A).

From the elevation map, we also identify local topographic features
related to the GF traces. The most evident is the southward widening
of the Barbata River valley, from a ca. 500 m to 2 km-wide, rhombic-
shaped, depressed area in relation with the pull-apart basin between
sectors 1 and 2 (Fig. 4B). Other observed features are the high reliefs ob-
served between the GF strands in sector 4 (Fig. 4C).

We also observe differences in the patterns of ridges and fluvial
valleys in both the elevation and slope angle maps, especially along
sectors 2 and 3 of the GF: on the southern fault block, ridges are
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sharp, and valleys are narrower and deeper, showing steep slopes
(30–45°); and on the northern fault block, ridges are generally
smoother, and valleys are wider and less deep, showing gentler
slopes (10–20°) (Fig. 7A and B).

Topographic analysis allows us to identify anomalies in the geome-
try of cross-fault ridges and fluvial valleys. From the elevation map we
observe that the upstream fault block (southern block) does not present
fault-facing facets adjacent to the fault traces. Consequently, ridges,
i.e., valley divides, are continuous and extend across the fault zone
(Fig. 8A). The absence of facets is also evidenced in the strike-parallel to-
pographic profiles we traced along the different sectors of the GF: both
the near to and far from fault profiles share very similar high reliefs,
yielding high PRR values (close to 1) (Fig. 8B). Regarding cross-fault val-
ley anomalies, we only identify them to the south of the main Galera
River valley along the fault zone in sectors 2 and 3. In these sectors,
we identify subtle geomorphic features that could be interpreted as
steep, left-laterally deflected stream channels and valleys subparallel
to the fault strike (Fig. 8A).

5.2. Analysis of the glacis surface

The modelled glacis surface reveals that the vertical dip-slip compo-
nent of the GF is responsible for the displacement of the glacis surface.
The performed analysis allows us to estimate the vertical offset of the
glacis and the vertical uplift rate of the GF along sectors 1 to 3. However,
themethod used (García-Tortosa et al., 2008b, 2011) is not applicable in
sector 4 because of the high uncertainty derived from the long distance
between the preserved glacis surfaces and the high volume of eroded
material in the central part of the subbasin (where the GF is located).
Therefore,we estimate the vertical offset of the glacis at 20±5m in sec-
tor 1 (P1 in Fig. 9). Along the fault bend between sectors 1 and 2, the
vertical displacement of the glacis surface increases to 75 ± 15 m (P2,
Fig. 9). In this fault bend, the vertical displacement of the modelled gla-
cis surface is related to the fault throw, and a gentle rollover fold de-
velops in the northern block. In sector 2, the vertical displacement
ranges between 40 ± 5 and 50 ± 5 m (P3 and P4, Fig. 9). These values
agree with the displacement estimates of García-Tortosa et al. (2011)
in this sector (equivalent to profile P4 in Fig. 9). The displacement ob-
served in sector 2 is mostly related to folding in both fault blocks, as
themodelled glacis surface describes a gentle anticline and a pair of syn-
clines (P3 and P4, Fig. 9). In sector 3, we estimate the glacis offset be-
tween 85 ± 25 and 90 ± 30 m (P5 and P6, Fig. 9). In this case, the
degree of uncertainty is higher as the erosion is more accentuated to
the SW. In sector 3, the deformation is related mostly to the fault offset
but also to the gentle tilting towards the south. Knowing these approx-
imate vertical glacis surface displacements and considering a minimum
age for basin capture ranging between 500 and 600 ka (Gibert et al.,
2007b; García-Tortosa et al., 2008a), we estimate the fault uplift rates
for each fault sector.

Uplift rates are lowest in sector 1 (ca. 0.03 mm/yr) and highest in
sector 3 (0.18 ± 0.04mm/yr). The obtained values are slightly differ-
ent from those obtained by García-Tortosa et al. (2007, 2011), which
range between 0.08 and 0.24 mm/year in sector 2 (equivalent to our
profile P4, Fig. 9). These differences relate to the different ages
assigned by these authors to the glacis surface (a minimum of 205
ka and a maximum of 600 ka). Moreover, the vertical displacement
amount we obtained using the glacis surface as a marker is slightly
different than the vertical displacement we estimated using the
stratigraphic markers (Section 4; Fig. 5B). These differences may be
related to uncertainties in the glacis surface modelling and/or to
age assignment of the used marker (recent markers are less
Fig. 7. (A) Elevation and (B) slope anglemaps extracted fromhigh-resolution DEMs. In the eleva
streams used in the morphometric analysis. The white dashed line in the slope map indicate
represents the base of the top basin surface (glacis).
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deformed). They could also be related to the fact that when we esti-
mate displacement from stratigraphic markers, we only consider the
fault throw (Fig. 5), but when we use the glacis, we include both the
fault throw and folding (Fig. 9).

5.3. Drainage network analysis

We perform an analysis of the drainage network pattern and calcu-
late a series of geomorphic indices for the catchments and streams
(Table 1), including the ksn and longitudinal profiles (Figs. 11 and 12),
AF (Fig. 13), and Vf (Fig. 14) indices.

The study of the drainage network pattern reveals that themain riv-
ers in the study area (Barbata, Galera and Guardal Rivers) run generally
subparallel to the GF traces (Fig. 10). However, in sector 4, the Guardal
River crosses through the fault zone, decoupling from the GF. We attri-
bute this decoupling to the westward tilting produced by the vertical
displacement of the normal Baza Fault (of more than 2000 m, Alfaro
et al., 2008; García-Tortosa et al., 2008b, 2011; Haberland et al., 2017;
Medina-Cascales et al., 2020), located to the west (Fig. 1).

Moreover, the drainage network map shows differences between
the catchments located on the northern and southern fault blocks
(Fig. 10). Cross-fault catchments from the southern fault block present,
in general, shorter main streams. In addition, the main streams of these
catchments initiate from the glacis and flow in all directions, displaying
a radial pattern in sectors 2 and 3 (Fig. 10). Another feature is the ob-
served widening, in sectors 2 and 3, of some cross-fault catchments up-
stream from the fault zone (Fig. 8A). In contrast, catchments located in
the northern fault block present, in general, longermain streams. More-
over, they initiate in the northern subbasin margin.

Longitudinal and ksn index profiles were extracted for the main
channels of 13 catchments along the four sectors of the GF (St1 to
St13, Figs. 7A and 11). All of them correspond to tributary streams
draining into the main rivers. In general, most streams have nearly
sublinear to slightly concave-up profiles (Fig. 11A). Some streams pres-
ent convexities along their profiles (e.g., St3 to St6, Fig. 11A). The most
noticeable feature is that, in general, cross-fault streams have steeper
profiles (Fig. 12). Marked knickzones, which coincide with local ksn
maxima, are observed in almost all longitudinal profiles (Fig. 11).
Considering the geometry of the fault traces (Fig. 4A) and the geology
of the study area (Fig. 3), these slope gradient anomalies and ksn
maxima are mainly related to erosional steps. These steps are
generated in many cases by strong lithologic contrasts, e.g., between a
siltstone and a limestone bed. Other strong gradient anomalies have
an anthropogenic origin, e.g., a road crossing a stream (e.g., St3 and
St10). Only two profiles (St4 and St12) show steps and ksn maxima
that are coincident with fault traces (Fig. 11A).

The AF was calculated for all catchments within the GF and its vicin-
ity (Fig. 13A). Values obtained for cross-fault catchments in sector 1 and
the fault bend show an overall asymmetry to the NW (1 to 5 and 18 in
Fig. 13A and Table 1). Moreover, the AF of cross-fault catchments in
the western parts of sectors 2 and 3 indicate, in general, asymmetries
to the N and NNW (7 to 14 in Fig. 13A and Table 1). Some catchments
located to the east that drain into the Orce River show asymmetry to
the east (6 and 19 in Fig. 13A and Table 1), while a southward asymme-
try is observed in the El Margen River catchment (25 in Fig. 13). Con-
versely, catchments to the north of the Galera River that are situated
in the northern block of the GF are generally asymmetric to the SE (30
to 34 and 41 in Fig. 13A and Table 1). Finally, values from catchments
in the western part of the study area reflect asymmetries to the SW
(15, 17, and 42 to 47 in Fig. 13A and Table 1). The main Barbata River
also has amarked asymmetry downstream, defined by a right deflection
tionmap, themain rivers and longest secondary streams are numbered. St1 to St13 are the
s the area with the highest slope angle values in sectors 2 and 3. The black dashed line



Fig. 8. (A) Close-up of catchments along sectors 2 and 3. The effects of the landscape response to the horizontal displacement of the GF: channel deflections, fault-strike-subparallel
channels, ridges extending across the fault, and catchment widening upstream from the fault. Glacis is the term we use for the top basin surface. (B) Strike-parallel topographic
profiles near (blue line) and farther (orange line) from the fault, from which the PRR is calculated for the four fault sectors.
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Fig. 9. Glacis surface analysis. Topographic profiles showing the theoretical uneroded and undeformed glacis (top basin surface) (blue line) and the reconstructed deformed glacis (pink
line). The dotted pink line with the grey shaded area represents the uncertainty derived from possible glacis erosion. The position of the profiles is indicated in the inset map.
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close to its confluence with the Orce River (Fig. 13B), as a response to
tectonic tilting in the pull-apart basin (Figs. 4B and 6E) (e.g., Keller
and Pinter, 2002).

The calculation of the Vf index in 5 stream channels (St1, St2, St6,
St8, and St12, Fig. 14A) reveals that, in general, Vf values are lower
when streams flow through the southern block, i.e., they present more
V-shaped geometries in cross section (St1, St2, St6, and St8 in
Fig. 14A).When these streams cross the fault zone and reach the north-
ern block, Vf values increase, i.e., their valleys present more U-shaped
geometries in cross section. In sector 4, stream St13 has high Vf valleys
in both the northern and southern blocks but lower Vf valueswithin the
fault zone (Fig. 14A). In addition, Vf values obtained for the southern
block are lower in sector 3 and higher in sectors 1 and 4, reflecting a
lower entrenchment of valleys towards the fault terminations (St1
and St12, Fig. 14A).

6. Discussion

6.1. Tectonic geomorphology of the Galera Fault

The geomorphic characterization of active intrabasinal faults has not
been previously addressed through the application of morphometric
analyses. Inmarine or endorheic basins, thismay be because the surface
expression of this type of fault is obscured by active sedimentation. In
the case of captured basins, the nature of recent infill sediments in
both fault blocks (usually highly erodible rocks) makes fault character-
ization challenging due to the poor preservation of tectonic effects on
the landscape, especially in regions where the fault is obscured by a
highly erosive climate. This is even more difficult in the case of slow-
moving faults (<1 mm/yr), such as the GF. Although the GF reunites
most of these adverse conditions, the Middle Pleistocene capture of
13
the Guadix-Baza Basin allowed the exposure of the fault structure and
the development of its surface expression. The results of our morpho-
metric analysis provide evidence of how this active slow-moving,
intrabasinal fault influences the development of recent Quaternary
landscapes.

6.1.1. Landscape response to slow-moving intrabasinal faulting
In the case of the GF, slow slip rates in combination with the high

erodibility of the sedimentary deposits in both fault blocks have
favoured a rapid landscape response to fault activity. This idea is sup-
ported by a series of geomorphic evidence that are indicative of a
rapid pace of landscape adjustment to a state of disequilibrium induced
by the slow horizontal and vertical slip components of the GF.

High PRR values (approximately 1) indicate similar near-to-fault
and far-from-fault topography (Fig. 8B). This suggests that topographic
effects produced by fault motion, such as sharp fault-facing facets or off-
set cross-fault ridges, are rapidly erased because of a dynamic landscape
response to slow horizontal fault displacement (stages 1 and 2 in
Fig. 15) (sensu Duvall and Tucker, 2015).

Other evidence of the rapid landscape response to the fault slip is
that, despite uplift related to the vertical component of the fault, the
GF does not present a clearly observable mountain front. According to
Bull and McFadden (1977), when the present erosional front is more
than 1 kmaway from the fault, themountain front is considered tecton-
ically inactive. However, this statement is applied to basin-border faults
with well-developed mountain fronts, where the uplifted block is usu-
ally formed by hard basement rocks. The case of the GF is different, as
it juxtaposes highly erodible deposits from the basin infill (Figs. 3 and
5). In addition, the uplift rate is very low. Therefore, as the fault displace-
ment uplifts the relief, it is rapidly erased by the development of the in-
tricate drainage system in the study area, resulting in a receded



Table 1
Parameters of the streams and catchments analysed in this study: stream position with respect to the GF, fault sector, length of
the longest stream, headwater elevation, drainage area of the catchment, and asymmetry factor (AF) of each catchment. Selected
streams for the application of ksn and Vf indices are remarked in blue. Streams are ordered according to their position with
respect to the fault (cross-fault, southern block or northern block).

Stream Posi�on Sector Length 
(km)

Headwater 
eleva�on
(m.a.s.l)

Drainage 
area (km2) AF

1 (St1) Cross-fault (SE-NW)
Fault 
bend 6.67 979 2.74 3.28

2 Cross-fault (SE-NW)
Fault 
bend 6.68 1042 5.77 17.59 (NW)

3 (St2) Cross-fault (SE-NW)
Fault 
bend 3.75 969 1.48 4.73

4 Cross-fault (SE-NW)
Fault 
bend 3.47 965 1.61 5.90

5 Cross-fault (SE-NW)
Fault 
bend 3.00 963 1.1 15.45 (NW)

6 Cross-fault (SE-NW) 2 1.68 938 0.53 10.38 (E)
7 (St4) Cross-fault (SE-NW) 2 3.55 952 6.28 16.08 (NW)

8 Cross-fault (SE-NW) 2 2.25 930 0.76 22.37 (NNE)
9 (St6) Cross-fault (SE-NW) 3 4.78 964 3.99 8.15 (NNW)

10 Cross-fault (SE-NW) 3 1.48 880 0.87 5.17
11 (St8) Cross-fault (SE-NW) 3 6.72 952 4.34 18.89 (N)
12 (St9) Cross-fault (SE-NW) 3 4.08 916 3.11 25.24 (NNW)

13 Cross-fault (SE-NW) 3 1.20 840 0.38 31.58 (N)
14 Cross-fault (SE-NW) 3 2.83 855 1.13 32.3 (N)
15 Cross-fault (NW-SE) 4 2.83 763 1.89 23.02 (SW)

16 (St12) Cross-fault (NW-SE) 4 5.87 800 3.15 3.97
17 Cross-fault (NW-SE) 4 6.74 780 12.23 12.14 (SW)

18 Southern block
Fault 
bend 2.90 958 1.04 9.62 (NW)

19 Southern block (far SE) 2 11.37 976 28.16 16.69 (E)
20 Southern block 3 9.27 956 7.83 13.47 (S)

21 (St11) Southern block 4 8.47 927 9.82 4.99
22 Southern block 4 5.04 860 3.39 25.81 (N)
23 Southern block 4 3.17 850 1.25 6.8
24 Southern block 4 3.41 830 1.17 1.28
25 Southern block (far SE) 4 22.22 986 51.6 10 (S)

26 (St13) Southern block (far SE) 4 12.21 910 8.17 0.06
27 Southern block (far SE) 4 20.90 980 20.53 22.4 (N)
28 Northern block 1 3.26 973 6.03 26.29 (NW)
29 Northern block 1 5.02 1105 2.6 8.08 (NW)

30 (St3) Northern block
Fault 
bend 10.52 944 13.41 8.54 (S)

31 Northern block
Fault 
bend 0.97 871 0.29 8.62 (S)

32 Northern block 2 0.98 880 0.3 13.33 (E)
33 (St5) Northern block 2 5.26 920 8.25 13.64 (SE)

34 Northern block 2 1.90 878 1.1 5.45
35 Northern block 2 3.35 881 2.25 1.11
36 Northern block 3 2.40 836 1.17 10.68 (SW)

37 (St7) Northern block 3 2.44 840 1.37 13.5 (NE)
38 Northern block 3 1.97 812 0.63 3.97
39 Northern block 3 1.78 814 0.75 16.67 (SW)
40 Northern block 3 11.87 945 35.53 22.31 (SE)
41 Northern block 3 3.00 805 1.17 9.83 (SW)

42 (St10) Northern block 3 10.28 940 27.6 26.56 (SW)
43 Northern block 3 2.57 790 1.13 6.64 (NE)
44 Northern block 4 4.85 815 3.69 22.63 (NE)
45 Northern block 4 3.87 800 1.7 8.82 (NE)
46 Northern block 4 2.50 767 1.11 24.77 (NE)
47 Northern block 4 11.87 939 16.9 15.38 (SW)

I. Medina-Cascales, F.J. García-Tortosa, I. Martin-Rojas et al. Geomorphology 393 (2021) 107941
mountain front (Fig. 16A and B). This demonstrates that highly eroded
fronts can also be related to active faults.

The application of the ksn index may also indicate a rapid erasing of
topographic effects generated by GF uplift (Fig. 16C). Some erosional
strong slope gradients (ksn knickzones) located upstream from the
fault zone in longitudinal profiles (e.g., in St1, St2, St4, St6, and St8 pro-
files, Fig. 11) could be interpreted as a result of upwards knickzone mi-
gration (e.g., Whipple and Tucker, 1999; Bishop, 2007; Castillo et al.,
2014). These migrations are usually produced by headward erosion
after sudden base-level falls (Fig. 16C). As the studied streams were
generated after Guadix-Baza sub-basin capture, we attribute these
14
base-level falls to fault uplift. Hence, after each episode of tectonic uplift,
topographic stepsmay develop in the streambeds related to fault traces
(stage 2 in Fig. 16C). However, the high erodibility of the deposits and
the slow uplift rate of the GF would favour the prompt erasing of
these steps by headward erosion (stage 3 in Fig. 16C).

From all of this evidence, we observe that rapid landscape adjust-
ments to GF activity result in a masking of many geomorphic effects re-
lated to oblique fault displacement. Nevertheless, even in this adverse
framework, this study demonstrates how morphometric analyses are
an very useful tool to detect geomorphic effects related to slow-
moving, intrabasinal fault displacement.



Fig. 10.Drainage network pattern in the study area. The radial pattern of the drainage network observed to the south of the Galera River (red streams) reflects the higher uplift in this area.
Glacis is the term we use for the top basin surface.
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6.1.2. Geomorphic evidence of horizontal fault displacement
Although the GF presents a main left-lateral slip component (0.5 ±

0.3 mm/yr, Alfaro et al., 2021), the rapid erasing of geomorphic effects
is more effective on features generated by strike-slip displacement.
The GF shows subtle evidence of the most common features defining
the tectonic geomorphology of strike-slip faults, such as the offset of
geomorphicmarkers (streams, alluvial fans, fluvial terraces, and ridges),
stream deflections, and fault-parallel channels (e.g., Wallace, 1968;
Sylvester, 1988; Keller and Pinter, 1996; Walker et al., 2006; Gürbüz
et al., 2015; Zielke et al., 2015; Salisbury et al., 2018). We observe only
a few examples of local left-lateral deflections and fault-subparallel
channels (Fig. 8A). Apart from these features, we also interpret the
downstream widening of the Barbata River valley, related to the pull-
apart basin (Fig. 4B), as a result of the transtension generated by the
combination of the left-lateral motion of the GF and its geometry (a
left fault bend) (sensu Mann et al., 1983) (Fig. 4B).

Another feature reflecting the horizontal displacement of the GF is
the widening of catchments upstream from the fault in sectors 2 and 3
(Fig. 8A). This widening is the result of the growth of new channels
that initiated from fault-subparallel channel segments. As these fault-
subparallel segments grew laterally due to left-lateral displacement of
the GF, they acted as local base levels from which new channels
15
developed via headward erosion (stage 2 in Fig. 15). These new chan-
nels expanded laterally towards the main drainage divide, increasing
the catchment area upstream from the fault, and shrinking the
neighbouring catchments (stage 3 in Fig. 15). Thesewidening processes
are also a consequence of the rapid landscape adjustment to fault activ-
ity, reflecting a vigorous catchment reorganization in response to hori-
zontal fault motion (sensu Duvall and Tucker, 2015).

Moreover, these widened catchments are asymmetric to the N and
NW according to the obtained values of the AF index (Fig. 13A). Catch-
ment asymmetries are usually interpreted as a result of lateral channel
migrations triggered by tectonic tilting (e.g., Hare and Gardner, 1985;
Dhanya and Tiruvanatpuram, 2014; Valkanou et al., 2020), but in this
case, we postulate that asymmetries are related to the catchment wid-
ening process (Fig. 15). Therefore, although the AF was designed to de-
tect effects produced by vertical fault displacement, in these catchments
it may reflect the imprint of strike-slip displacement.

6.1.3. Geomorphic evidence of vertical fault displacement
The secondary vertical component of displacement of the GF

(maximum of ca. 0.2 mm/yr, García-Tortosa et al., 2011 and this
study) is, however, responsible for generating the most significant
landscape effects. In addition to the vertical deformation of the
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Fig. 12. Comparison of the longitudinal stream profiles between the northern and southern fault blocks. Cross-fault streams (red profiles) are shorter and steeper, reflecting fault uplift.
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glacis surface, which is more intense in the central part of the fault
(Fig. 9), the uplift of the southern fault block has generated local
high relief (Fig. 7A) that represents an intrabasinal topographic
anomaly. The elevation of this relief has determined the geometry
of the main rivers in the NE sector of the Baza sub-basin (Fig. 10),
which flow subparallel to the GF trace along most of its length
(Fig. 10).

This topographic anomaly triggered a landscape response that re-
sulted in the observed drainage pattern differences between fault blocks
(Fig. 10). On the southern fault block, streams do not initiate from the
basin margins but from this tectonically uplifted relief (Figs. 10 and
16A and B). Consequently, due to the short distance between the ele-
vated areas and main rivers (ca. 1 km to 5 km), cross-fault catchments
(e.g., 1 to 14 and 20 in Figs. 7A and 13A and Table 1) present, in general,
shorter main channels (Figs. 10B, 11, 12, and 16B) and smaller areas
(Fig. 13A). The steeper longitudinal profiles of cross-fault streams
(e.g., St2, St4, St6, and St9 in Fig. 12) also reflect the effects of fault uplift,
while streams flowing far from the influence of the GF in the southern
block show gentler and longer profiles (e.g., St13).

Moreover, the Vf index results show that in these cross-fault
streams, valley incision is higher in the southern block (Fig. 14) (sensu
Keller and Pinter, 2002). These values reflect that despite the low slip
rate, fault activity strongly controls valley incision in the study area.
The active incision has resulted in narrow, deep valleys with sharp
ridges (Fig. 7) that display the characteristic badland landscape of this
sector in the Baza sub-basin (Fig. 2D and E), which is only developed
on the southern block of the GF (Figs. 7A, 14B, and 16A and B).

In addition, the morphometric analysis reveals that tectonic uplift is
higher in sectors 2 and3. This is evidencedby thedrainagenetwork geom-
etry, whereby the radial pattern (Fig. 10) suggests that uplift in these sec-
tors contributes to generating a dome-shaped elevated area (e.g., Pain,
1985; Molin et al., 2004). The higher uplift of this area is responsible for
generating eastward and southward catchment asymmetries (Fig. 13A)
and higher valley incision, as indicated by the low Vf values (Fig. 14), ele-
vation and slope maps (valleys are deeper and present especially pro-
nounced slopes, Fig. 7). Structural data (Fig. 4A) and glacis surface
deformation (Fig. 9) show that this dome corresponds to an actively grow-
ing anticlinal fold related to the GF.
Fig. 11. (A) Longitudinal streamprofiles (blue lines) and ksnprofiles (orange lines) correspondin
one another. The scale of these profiles is reflected in their graph axes. Knickzones, which are
structures, e.g., roads (An). (B) Map showing ksn knickzones related to the analysed streams
southern fault blocks. Cross-fault streams (red profiles) are shorter and steeper, reflecting faul
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On the northern fault block, the relative tectonic subsidence, and the
absence of intrabasinal uplifted areas are also reflected by the drainage
network. In this case, streams are longer (Figs. 10, 11, 12, and 13A and
Table 1), as they initiate from the northern sub-basin margin (ca. 10
to 12 km from the main rivers), and their valleys are less entrenched
(Figs. 7, 14B and 16B). In the northern fault block, we interpret lateral
channel migrations to the south and SE in response to the tectonic
tilting produced towards the pull-apart basin (Fig. 13A).

Apart from the fault vertical displacement, other factors, such as flu-
vial discharge variations or the riverbed lithology, could also be consid-
ered responsible for differences in the drainage network between fault
blocks. The Baza sub-basin is characterized by a semiarid climate with
low but intense annual precipitation. These conditions, together with
the high erodibility of the sedimentary rocks that dominate the study
area (Fig. 3), cause erosional processes to be themain agent responsible
for landscape configuration (Pérez-Peña et al., 2009). However, given
the relatively small size of the study area (ca. 470 km2), we consider cli-
mate and lithology to be homogeneous. Therefore, in the case of the GF,
we postulate that tectonic uplift is the key factor controlling drainage
differences between fault blocks (Figs. 15 and 16).

In summary, a morphometric analysis typically applied in basin-
border faults (e.g., Bull and McFadden, 1977, Keller and Pinter, 2002;
Silva et al., 2003; Mériaux et al., 2005; Pérez-Peña et al., 2010a; Ul-Hadi
et al., 2013; Gürbüz et al., 2015 Matoš et al., 2016; Yazici et al., 2018,
amongst many others) has provided equally valid results in defining the
geomorphic expression of a slow-moving intrabasinal fault. The applica-
tion of the Vf index in a different context has provided valuable results
for detecting differences in valley incision between fault blocks, even
with the absence of a developedmountain front. The AF has proven help-
ful not only for evaluating effects related to fault uplift (e.g., lateral chan-
nel migrations produced by tilting) but also for detecting geomorphic
anomalies related to strike-slip displacement (asymmetries generated
by catchment widening, Fig. 15). Moreover, geomorphic indices such as
the PRR and ksn have provided useful information regarding the
landscape response to the activity of a slow-moving fault offsetting highly
erodible deposits.

Despite the usefulness of our analysis, we consider it important to
remark on the importance of combining geological, structural, and
g to the streams used in the geomorphic analysis (St1 to St13). Theprofiles are not scaled to
indicated, are generated by erosional steps (Er), the Galera Fault (GF), or anthropogenic
(St1 to St13). Comparison of the longitudinal stream profiles between the northern and
t uplift.



Fig. 13. Digital elevation model (DEM) with the catchments in both fault blocks classified by their area. Smaller catchments dominate the southern block and fault zone, while more
extensive catchments are present in the northern block. (B) Close-up of the right deflection of the Barbata River due to tectonic tilting. The arrows show the direction of catchment
asymmetry, and their colours reflect the magnitude (classified sensu Pérez-Peña et al., 2010a).
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geomorphic analyses. This is particularly important in oblique-slip,
slow-moving faults that offset highly erodible rocks. As we described
above, although the GF presents a main left-lateral displacement, its
geomorphic signature is mainly defined by features related to verti-
cal displacement, as they are better preserved. Therefore, based on
its geomorphic imprint and without a previous structural analysis,
the GF could be erroneously considered a pure vertical-slip fault.
Moreover, knowledge of the detailed geology of the study area is es-
sential to discriminate between geomorphic effects related or not re-
lated to fault activity. For example, morphometric analyses based on
the application of the ksn index have been previously used in other
contexts to detect and delineate fault traces or fault zones in
regions with poor exposure conditions (e.g., in Marliyani et al.,
2016). In our case study, this index could not be applied for this pur-
pose, as knickzones are mainly related to erosion or anthropogenic
structures.
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6.2. Relief building in the central Betic Cordillera during the Quaternary:
insights from Galera Fault activity

The Betic Cordillera is an evolving collisional orogenwith significant
relief building (i.e., topographic growth) since the late Miocene. Many
studies have focused on the chronology of this mountain building
from different approaches. Proposed hypotheses include continuous re-
gional uplift since the lateMiocene (Braga et al., 2003; Sanz deGaldeano
and Alfaro, 2004), a steady-state topographywhere uplift is balanced by
denudation (Bellin et al., 2014), and episodic uplift (Farines et al., 2015)
in which the Lower Pleistocenemarks the end of themost recent phase
of major relief formation (Stokes et al., 2018). Active oblique-slip faults
play an important role in this relief building, related to their vertical dis-
placement and to transtensive and transpressive zones (e.g., Silva et al.,
2003;Martínez-Díaz et al., 2012; Pérez-Peña et al., 2010a;Moreno et al.,
2015; Martin-Banda et al., 2016). Active oblique-slip faulting occurs in



Fig. 14. (A) Charts depicting the transverse topographic profiles andVf index values extracted from5 representative streams in the study area. Theposition of these streams is shown in the
map. (B) Schematic topographic profile showing the valley incision differences between the northern and southern fault blocks. The vertical scale is exaggerated. The position of the profile
is indicated in the map in (A) by a dashed line.
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two main sectors of the Betic Cordillera under different geodynamic
conditions: i) the Eastern Betic Shear Zone (EBSZ, Bousquet, 1979; De
Larouzière et al., 1988; Silva et al., 1993), and ii) the extensional central
Betic Cordillera (Fig. 17).
Fig. 15. Schematic sketches illustrating the landscape effects derived from the rapid landscape
(immediately after fault displacement): left-lateral slip generates channel deflections and fault s
new channels from fault subparallel channels results in lateral migration of catchment divides (
3: continuous fault displacement results in lengthening of fault subparallel channels. The gro
resulting in asymmetric catchments. Coloured dots illustrate the progressive lengthening of fa
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The EBSZ is the result of tectonic indentation processes in relation to
the NNW-SSE convergence of the Nubian and Eurasian plates (Coppier
et al., 1989; Palano et al., 2015; Borque et al., 2019). Consequently,
these oblique structures present a left-lateral and reverse displacements
response to fault displacement. Stage 0: catchments draining across the fault zone. Stage 1
ubparallel channels. Offset of ridges and formation of fault-facing facets. Stage 2: growth of
thick black arrows), thus erasing fault-facing facets and leading to continuous ridges. Stage
wth of new streams leads to the widening of catchments upstream from the fault zone,
ult subparallel channels.



Fig. 16. (A) Schematic sketch (oblique view) and (B) schematic section illustrating the geomorphic effects produced by the horizontal and vertical displacement of the study area.
(C) Schematic sketches illustrating the process of upstream knickzone migration observed in longitudinal stream profiles in Fig. 11A. Stage 1: stream in a steady stage. Stage 2: fault
uplift and subsequent base-level fall. Knickzone in line with fault trace. Stage 3: headward erosion leads to upstream knickzone migration, reflecting a rapid landscape response.
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(Bousquet, 1979), which are responsible for Plio-Quaternary active
mountain fronts that characterize the present relief of the SE sector of
the cordillera (Fig. 17) (Silva et al., 2003).
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In contrast, oblique-slip faults in the central Betic Cordillera (Fig. 17)
accommodate WSW-ENE regional extension (e.g., Gil et al., 2002;
Galindo-Zaldívar et al., 2015), which has been attributed to back-arc



Fig. 17. Map showing the main active faults in the eastern and central Betic Cordillera. The yellow shaded area indicates the Eastern Betic Shear Zone. PNF: Padul-Nigüelas Fault, GrF:
Granada Faults, GF: Galera Fault, BF: Baza Fault, AFs: Almanzora Faults, ApFs: Alpujarra Faults, EGF: Eastern Gador Faults, AVF: Andarax Valley Faults, CF: Carboneras Fault, PF:
Palomares Fault, AMF: Alhama de Murcia Fault, CaF: Carrascoy Fault, BSF: Bajo Segura Fault, and CrF: Crevillente Fault. Fault traces from the Quaternary Active Faults Database of Iberia
(QAFI, García-Mayordomo et al., 2012).
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extensional processes (Galindo-Zaldívar et al., 2015) or to lithospheric
delamination (e.g., Mancilla et al., 2013). Some of these faults have
been defined as transfer structures related to normal faults (Martínez-
Martínez et al., 2006; Alfaro et al., 2021). As a result of this regional ex-
tension, they present right-lateral and normal kinematics (e.g., the
Almanzora and Alpujarra faults, Sanz de Galdeano et al., 1985;
Martínez-Martínez et al., 2006; Pedrera et al., 2012). An exception is
the GF, which shows left-lateral kinematics with a secondary vertical
slip component. Structural and morphometric analyses demonstrate
that the Almanzora and Alpujarra faults are active basin-border struc-
tures that have contributed, together with folding, to the development
of elongated basins (Almanzora and Alpujarra corridors) and the uplift
of reliefs in the central Betic Cordillera (Pedrera et al., 2007; Pérez-
Peña et al., 2010a).

Both the oblique-slip faults of the eastern and central Betic Cordillera
have left, in addition, a well-marked geomorphic imprint on the land-
scape, given mainly by features such as offset channels and alluvial
fans, fault-related knickpoints in longitudinal profiles, drainage network
asymmetries, and higher entrenchment of valleys in the uplifted blocks
(e.g., Silva et al., 2003; Booth-Rea et al., 2004; Pérez-Peña et al., 2010a;
Ferrater et al., 2017; Martin-Banda et al., 2021).

Our structural-morphometric analysis indicates that the tectonic ac-
tivity of the GF contributed to topographic growth from the Middle
Pleistocene onwards, as evidenced by the vertical deformation of the
glacis surface (Fig. 9). Similar evidence was described by previous au-
thors for the normal Baza Fault (García-Tortosa et al., 2008b), located
to the SW of the GF (Fig. 1), suggesting that relief building continues
at present at least in the Baza sub-basin.
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However, the impact of the GF in the relief is very low in comparison
with the abovementioned oblique-slip structures in the Betic Cordillera.
These differences cannot be attributed only to the slow slip rate of the
GF (García-Tortosa et al., 2011; Alfaro et al., 2021; and this study), as
all the oblique-slip faults in the Betic Cordillera are slow-moving struc-
tures, with horizontal slip rates ranging between ~0.5 mm/yr and ~1.5
mm/yr, and uplift rates ranging between ~0.05 and ~0.4 mm/yr
(e.g., Braga et al., 2003; Silva et al., 2003; Booth-Rea et al., 2004;
Echeverria et al., 2013, 2015; Moreno et al., 2015; Ferrater et al., 2017;
Martin-Banda et al., 2021). The intrabasinal nature of the GF is its
main difference from other oblique-slip active faults in the Betic Cordil-
lera, in which uplifted blocks are formed mainly by basement rocks
(Fig. 17). These basement rocks are much less erodible than the Plio-
Pleistocene lacustrine deposits of the Baza sub-basin infill; therefore,
they favour the preservation of mountain fronts and other geomorphic
effects related to fault displacement. In contrast, the low relief related to
the GF, the poor exposure of the fault traces and the rapid erasing of
many geomorphic features make this structure difficult to detect. How-
ever, in thiswork,we demonstrate that the control that theGF exerts on
the landscape leaves a series of geomorphic anomalies that can be iden-
tified by applying a proper morphometric analysis.

7. Conclusions

In the present work, we provide a good example for analysing the
tectonic geomorphology of slow-moving, intrabasinal faults and their
influence on the evolution of recent Quaternary landscapes. The case
study is the Galera Fault (GF) (Guadix-Baza Basin, central Betic
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Cordillera, southern Spain), an active oblique-slip fault with amain hor-
izontal component of displacement. Through the study of this fault, we
demonstrate the usefulness of integrating geological-structural studies
with morphometric analyses. We also prove that geomorphic indices
applied traditionally in basin-border faults (such as the AF, Vf, and ksn)
can also be applied to intrabasinal faults.

The geological-structural analysis reveals that the SW-NE GF pre-
sents lower Pliocene toMiddle Pleistocene highly erodible sedimentary
rocks on both fault blocks. The surface geometry of the fault reflects its
main left-lateral displacement. The main structural feature of this fault
is a kilometric-scale, left-releasing fault bend, which is responsible for
the development of a pull-apart basin. From stratigraphic markers, we
estimate that theGF is responsible for amaximumvertical displacement
of ca. 100 m.

The morphometric analysis shows that the geomorphic expression
of slow-moving intrabasinal faults can be obscured by a rapid landscape
response to tectonic activity, favoured by slow fault slip rates and the
high erodibility of the juxtaposed deposits. Hence, some common fea-
tures that usually define the geomorphic expression of active faults,
such as fault-facing facets, offset cross-fault ridges (PRR close to 1),
steps in streambeds (ksn knickzones), and the mountain front, may be
erased in this type of fault.

In oblique-slip faults, the obscuring of the geomorphic imprint
seems to be more effective on landscape effects related to horizontal
displacement. In the case of GF, although it has a main left-lateral slip
component, the remaining effects reflecting horizontal displacement
are scarce and subtle. They include local left stream deflections and
fault-subparallel channels, valley widening related to the left-releasing
fault bend, and asymmetric catchments due to the widening of the
drainage network upstream from the fault.

In contrast, geomorphic effects reflecting vertical fault displacement
are better preserved. Despite the minor vertical component of the GF,
the uplift of the southern fault block vertically deformed the Middle
Pleistocene glacis surface (90 ± 30 m in the central part), controlled
the geometry of the main rivers, and triggered lateral migrations of
channels in the study area. Fault uplift also generated drainage network
differences between fault blocks. The uplifted fault block is character-
ized by shorter and steeper streams with higher valley incision (lower
Vf values), forming a spectacular badland landscape that characterizes
this sector of the Guadix-Baza sub-basin.

The vertical deformation of the glacis surface demonstrates that the
GF has contributed to relief building in the Betic Cordillera since the
Middle Pleistocene. However, when comparing the GF with other
equally active oblique-slip faults in the Betic Cordillera, we observe
that the impact of intrabasinal faults in mountain building is very low
in comparison with basin-border faults. This condition, together with
the poor exposure of intrabasinal faults, maymakemany of these struc-
tures undetectable in studies involving structuralmapping, seismic haz-
ard assessment, or exploration of resources. In this work, we
demonstrate that geomorphological analyses are an essential tool for
detecting these structures; although they do not generate significant re-
lief, they exert a control on landscape evolution at different scales.
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