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SERRIN’S OVERDETERMINED PROBLEM FOR
FULLY NONLINEAR NONELLIPTIC EQUATIONS

JOSÉ A. GÁLVEZ AND PABLO MIRA

Let u denote a solution to a rotationally invariant Hessian equation F(D2u) = 0 on a bounded simply
connected domain �⊂ R2, with constant Dirichlet and Neumann data on ∂�. We prove that if u is real
analytic and not identically zero, then u is radial and � is a disk. The fully nonlinear operator F 6≡ 0 is of
general type and, in particular, not assumed to be elliptic. We also show that the result is sharp, in the
sense that it is not true if � is not simply connected, or if u is C∞ but not real-analytic.

1. Introduction

Let �⊂Rn be a C2 smooth bounded domain, and let u ∈C2(�) be a solution to 1u+1= 0 that satisfies
overdetermined boundary conditions

u = 0, |Du| = constant on ∂�. (1-1)

In his famous paper, Serrin [1971] proved that under these conditions � is a ball and u is a radial function.
Starting with Serrin’s paper (see also the influential work [Weinberger 1971]), there has been great
interest in extending Serrin’s result to more general PDEs that satisfy the overdetermined conditions (1-1).
Ellipticity has typically been an essential component in all these extensions of Serrin’s theorem.

In this paper we consider Serrin’s overdetermined problem for general (not necessarily elliptic) fully
nonlinear Hessian equations, i.e., {

F(D2u)= 0 in �,
u = 0, |Du| = c on ∂�,

(1-2)

where F is a function on the space Mn of all symmetric n× n matrices. To avoid meaningless situations,
we will assume from now on that F is never locally zero, i.e., F 6≡ 0 on any open set. A natural and
necessary hypothesis on F dictated by the nature of the boundary conditions (1-1) (see, e.g., [Silvestre
and Sirakov 2015]) is that F is rotationally invariant, i.e., F(Qt M Q)= F(M) for any M ∈Mn and any
orthogonal matrix Q. Equivalently, F is a symmetric function of the eigenvalues of the Hessian D2u.

When F is elliptic in a suitable sense, the existence of a solution u to (1-2) forces � to be a ball and u
to be a radial function (see [Silvestre and Sirakov 2015]). It is not surprising that, if F is not elliptic, this
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is not true anymore; some simple counterexamples will be given in Example 2.1. So, in some sense, the
rigidity given by ellipticity seems fundamental for the desired radial symmetry result to hold.

This situation makes our main result here somehow unexpected. We prove that if �⊂ R2 is simply
connected, and u is a real-analytic solution to (1-2), then � is a disk and u is radial. No ellipticity
assumption is made on F, and no sign assumption is made on u:

Theorem 1.1. Let�⊂R2 be a smooth bounded, simply connected domain, let F :M2→R be rotationally
invariant, and let u ∈ Cω(�) be a nonzero solution to (1-2).

Then � is a disk and u is a radial function with respect to the center of �.

Remarkably, the topological hypothesis that � is simply connected cannot be weakened. Indeed, in
Section 2 we will show that there exist positive real-analytic solutions u to (1-2) for which u is nonradial
and �⊂ R2 is diffeomorphic to an annulus. This example also shows the global nature of Theorem 1.1,
and in particular indicates that it cannot follow from a local application of the Cauchy–Kowalevsky
theorem along the boundary. In addition, there exist nonradial, C∞ solutions u to (1-2) for � simply
connected (see Example 2.1). Thus, Theorem 1.1 is sharp in these directions.

Theorem 1.1 is inspired by classical surface theory, and in particular by a theorem of K. Voss [1959],
according to which any compact analytic Weingarten surface of genus zero immersed in R3 is a rotational
sphere. The proof of Theorem 1.1 is an application of the Poincaré–Hopf theorem to an adequate line
field with singularities in �. We emphasize that this line field is not given by the gradient of a solution
to F(D2u)= 0, so in this sense the application of the Poincaré–Hopf theorem here is not very usual in
PDE theory. This strategy was used by the second author in [Mira 2018] in order to solve overdetermined
problems with nonconstant boundary data for fully nonlinear elliptic equations, and also by Espinar and
Mazet [2019] for solving the classification problem of f -extremal disks in the two-sphere S2. Both of
these works are inspired by our previous paper [Gálvez and Mira 2020] about uniqueness of immersed
spheres modeled by elliptic PDEs in three-manifolds. The key tool in all these works is to use ellipticity
in order to construct a line field on the surface with isolated singularities of negative index, and derive
from there a contradiction with the Poincaré–Hopf theorem. However, in our present situation, the lack
of ellipticity makes this approach unsuitable; the natural line field that we construct may have nonisolated
singularities, and even at the isolated ones its index can be positive.

The results in the present paper strengthen the connection between overdetermined problems and
hypersurface theory, a connection already present in Serrin’s theorem, and which has been exploited
in many works; see, e.g., [Del Pino et al. 2015; Domínguez-Vázquez et al. 2019; Espinar et al. 2021;
Espinar and Mazet 2019; Farina and Valdinoci 2013; Farina et al. 2013; Hauswirth et al. 2011; Mira
2018; Ros et al. 2017; 2020; Ros and Sicbaldi 2013; Schlenk and Sicbaldi 2012; Sicbaldi 2010; Traizet
2014]. Nonetheless, to the authors’ best knowledge, Theorem 1.1 might be the first example of such
connection for nonelliptic equations.

We next provide an outline of the proof of Theorem 1.1. Let u be a nonradial, real-analytic solution
to (1-2) on �. Then, the eigenlines of D2u define two analytic line fields L1, L2 on �−U , where U is
the set of points in � where D2u is proportional to the identity, i.e., the set of points where D2u has a
double eigenvalue. We wish to analyze how L1, L2 extend across U .
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In order to do this, we consider a point p ∈ U , and we let w(x, y) be the first nonzero homogeneous
polynomial of degree n ≥ 3 in its series expansion around that point (if w does not exist, the result is
trivial). There will be three cases to consider.

If w(x, y) is radially symmetric, we will prove in Proposition 3.1 that u(x, y) is also radially symmetric
with respect to p, up to a translation. In that case, the result follows easily, and so we discard this situation.
If w(x, y) is some power of a linear function, we will prove in Section 4 that U is a real-analytic regular
curve around p, and that the eigenfields L1, L2 extend analytically across p. Finally, if w(x, y) is not of
either of these two types, then we will show in Section 2 that it is a harmonic polynomial; in that case p
is isolated in U , and the Poincaré–Hopf index of the line fields L1, L2 around p is negative.

Once there, the proof ends as follows. By the previous discussion, both L1, L2 can be extended to
line fields on � with only isolated singularities, all of them of negative index. Also, the overdetermined
conditions (1-1) imply that one of L1 or L2 is tangent to ∂� at each boundary point. Since � is simply
connected, this provides a contradiction with the Poincaré–Hopf index theorem. The contradiction proves
that u is radial, and from there, that � is a disk.

2. Necessity of the hypotheses

We will first show that the hypothesis that u is real-analytic in Theorem 1.1 is necessary by constructing a
C∞ solution to (1-2) that is not a radial function. In this construction, the domain �⊂ R2 is an arbitrary
simply connected smooth (or even real-analytic) bounded domain.

Example 2.1. Let �⊂ R2 be the simply connected domain bounded by a real-analytic regular Jordan
curve γ in R2. Given any ρ > 0, let f denote a smooth function on the closed disk Dρ = D(0, ρ), with
the following properties:

(1) f is a radial function with respect to the origin.

(2) The values of f and all its derivatives vanish at every point of ∂Dρ .

For instance, we can choose

f (x, y)= exp
(

−1
ρ2− (x2+ y2)

)
.

Let now D1, . . . , Dk denote a collection of mutually disjoint closed disks in � of radius ρ > 0. For
each i ∈ {1, . . . , k}, let ui ∈ C∞(Di ) be given by

ui (x, y) := f (x − ai , y− bi ),

where (ai , bi ) is the center of Di .
Define now the function u ∈ C∞(�) by

u(x, y)= ui (x, y) if (x, y) ∈ Di , u(x, y)= 0 otherwise.

Note that u = |Du| = 0 along ∂�; i.e., u satisfies the overdetermined boundary conditions in (1-2) for
the choice c = 0.
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Since each function ui is radial with respect to some point in R2, it follows that the Jacobian satisfies

J [1u,H(u)] := (1u)x(H(u))y − (1u)y(H(u))x = 0 (2-1)

on �, where we let H(u) := det(D2u). This implies by a classical theorem of Brown and Sard, see, e.g.,
[Newns 1967], that there exists a smooth function 8(s, t) with 8(0, 0)= 0 such that

8(1u,H(u))= 0. (2-2)

By considering the function F ∈ C∞(M2) associated to 8 in the obvious way, this implies that u is a
nonradial C∞ solution to (1-2) for c = 0 and the above choices of � and F.

We remark that even though the function u constructed in Example 2.1 is not real-analytic, the
function 8 (and so, the function F in (1-2)) can be chosen to be real-analytic in many cases.

Example 2.1 satisfies the boundary conditions in (1-2) for the choice c = 0. It is also possible to
construct smooth nonradial solutions to (1-2) with c 6= 0. For example, let v be a smooth radial function in
the unit disk D, with v= 0 and |Dv| = c 6= 0 along ∂D, that is constant in some smaller disk D(0, ρ)⊂D.
Then, it is straightforward to modify v inside D(0, ρ) as in Example 2.1 to obtain a nonradial smooth
function u in D that solves (1-2) for c 6= 0 and for an adequate choice of F.

The next example shows that the hypothesis that � is simply connected in Theorem 1.1 cannot be
removed. For that, we will construct real-analytic, nonradial solutions to overdetermined problems of the
form (1-2), with F 6≡ 0 real-analytic and rotationally symmetric, on planar domains �⊂R2 diffeomorphic
to an annulus but that are not radially symmetric in general.

Example 2.2. Let γ (s) := (α(s), β(s)), s ∈ [0, L], be a real-analytic, regular Jordan curve in R2

parametrized by arc-length, and let ν(s) be its unit normal. Assume that the normal map

9(s, t) := γ (s)+ tν(s) : R/(LZ)×[−1, 1] → R2

is a real-analytic diffeomorphism onto the compact planar region

� := {γ (s)+ tν(s) : |t | ≤ 1} ⊂ R2.

Note that � is real-analytic and diffeomorphic to an annulus. We remark that the condition that 9 is a
local diffeomorphism is equivalent to the curvature κ(s) of γ satisfying |κ| < 1 at every point. If the
curve γ (s) is chosen to be convex, the condition |κ| < 1 is also sufficient for 9 being a real-analytic
diffeomorphism.

Define u ∈ Cω(�) by
u(9(s, t))= 1− t2

;

see Figure 1. A computation using x = α(s)− tβ ′(s), y = β(s)+ tα′(s) shows that

uxx + u yy =−2+
2tκ(s)

1− tκ(s)
, uxx u yy − u2

xy =
−4tκ(s)
1− tκ(s)

. (2-3)

Let φ1(s, t) and φ2(s, t) denote the right-hand sides in (2-3). A computation shows that the Jacobian
determinant of the map (s, t) 7→ (φ1, φ2) vanishes identically. Consequently, by (2-3), we have that
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Figure 1. A nonradial, analytic solution to (1-2) in an elliptical region, with base on the
ellipse 4x2

+ y2
= 64.

u(x, y) satisfies (2-1). Arguing as in Example 2.1, we conclude that u is a solution to (2-2) on � for
some real-analytic function 8.

Finally, we note that u satisfies the overdetermined boundary conditions (1-1). That u = 0 along ∂�
is clear by construction. A computation shows that Du = (ux , u y) = (2tβ ′(s),−2tα′(s)), which has
constant length for each fixed value of t . In particular, |Du| = 2 along ∂�, which corresponds to t =±1.

To sum up, u ∈ Cω(�) is a real-analytic, nonradial solution to (1-2) for the real-analytic choice of 8
above and for the real-analytic annulus � in R2. Note that, in general, � is not radially symmetric, and
the two closed curves in ∂� are not necessarily convex.

We conjecture that Theorem 1.1 does not hold in higher dimensions. Indeed, note that the techniques
used in the proof are essentially two-dimensional. This is coherent with the somewhat related geometric
situation of constant mean curvature spheres in Euclidean space, which are necessarily round in dimension
two by Hopf’s theorem, but can be nonembedded in higher dimensions (see [Hsiang 1982]).

3. Behavior around points with a double eigenvalue of D2u

Let u = u(x, y) denote a real-analytic solution to F(D2u)= 0 on a regular planar domain �⊂R2, where
F :M2→ R is rotationally invariant. Setting H(u) := det(D2u) = uxx u yy − u2

xy , this equation can be
rewritten as

8(1u,H(u))= 0, (3-1)

where 8 is not identically zero on any open set of R2, by the related hypothesis on F. Define

U = {p ∈� : D2u(p)= λ Id for some λ ∈ R} = {p ∈� : (1u(p))2 = 4H(p)}. (3-2)

Note that in general (1u(p))2 ≥ 4H(p) for every p ∈�.
Choose p0 ∈ U . Since problem (1-2) is invariant by translations in the (x, y)-variables, we may assume

without loss of generality that p0 = (0, 0). We will also assume: u is not a polynomial of degree at
most 2 (note that the statement of Theorem 1.1 is trivial if u is such a polynomial). Observe that since u
is real-analytic in �, it can be extended to a real-analytic function on an open set �0 containing �; in
particular, u can be assumed to be well-defined and real-analytic around (0, 0), even if this point lies in
the boundary ∂�.
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It follows from (3-1) and the fact that 8 6≡ 0 on open sets that u satisfies in � the equation

J [1u,H(u)] = 0, (3-3)

where we are defining for f, g of class C1

J [ f, g] := fx gy − fygx .

Indeed, if J [1u,H(u)] 6= 0 around some point in �, then (s, t) := (1u,H(u)) are local parameters
around that point, and from (3-1) we would obtain that 8 vanishes in an open set of R2, a contradiction.

Therefore, by real-analyticity, u satisfies (3-3) on�0⊃�. Thus, there exists a nonconstant real-analytic
function σ(x, y) defined in a neighborhood of (0, 0), with σ(0, 0) = 0, and nonconstant real-analytic
functions of one variable α(t), β(t) such that

1u = α ◦ σ, H(u)= β ◦ σ. (3-4)

Therefore, there exist nonnegative real-analytic functions φ(t), ϕ(t)with φ(0)=ϕ(0)=0 (since (0, 0)∈U)
such that

(1u)2− 4H(u)= φ ◦ σ, (1u−1u(p0))
2
= ϕ ◦ σ. (3-5)

Since u is not a polynomial of degree ≤ 2, we can define w(x, y) as the first homogeneous polynomial
of degree ≥ 3 in the Taylor series expansion of u(x, y) around (0, 0). Since (0, 0) ∈ U , we have then
around (0, 0)

u(x, y)= c0+ ax + by+ λ
2
(x2
+ y2)+w(x, y)+ · · · . (3-6)

From here, a simple power series expansion around the origin shows that

(1u)2− 4H(u)= (1w)2− 4H(w)+ · · · , (1u−1u(p0))
2
= (1w)2+ · · · . (3-7)

By (3-5), this implies that both (1w)2− 4H(w) and (1w)2 are proportional to σ̂ (x, y)l for some l ≥ 1,
where σ̂ is the first nonzero term in the Taylor series expansion of σ at (0, 0). In particular, since
(1w)2− 4H(w) is not zero, we have

(1w)2 = µ2((1w)2− 4H(w)) (3-8)

for some µ ∈ R. Once here, a classical algebraic lemma by Hopf [1951] shows that if a homogenous
polynomial w(x, y) of degree n+ 2≥ 3 satisfies (3-8), then after a rotation in the (x, y)-coordinates, one
of the following three situations happens, where we set ζ := x + iy:

(C.1) µ= 0, and w(x, y)= a Re(ζ n+2) for a 6= 0.

(C.2) µ= 1, and w(x, y)= a xn+2 for a 6= 0.

(C.3) µ= 1+ 1/k for some positive integer k, and w(x, y)= a|ζ |2k+2, with n = 2k, for a 6= 0.

Let λ ∈ R be the value for which D2u(0, 0)= λ Id, and let us write

u(x, y)= c0+ ax + by+ λ
2
(x2
+ y2)+ u1(x, y), (3-9)
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where a, b, c0 ∈ R and u1(x, y) satisfies u1(0, 0)= Du1(0, 0)= 0. Note that also D2u1(0, 0) vanishes,
by the definition of λ. Also, by (3-3), we have

J [1u1,H(u1)] = 0. (3-10)

The next proposition shows that case (C.3) above can only happen, even locally, under very restrictive
conditions.

Proposition 3.1. Assume that case (C.3) above happens; i.e., µ= 1+ 1/k holds in (3-8). Then u1(x, y)
is radially symmetric with respect to (0, 0); i.e., u1(x, y) only depends on

√
x2+ y2.

Proof. Note that the leading homogeneous polynomial of u1 is w(x, y), of degree n+ 2≥ 3. As we are
in case (C.3), we have

w(x, y)= a%n+2, (3-11)

where % :=
√

x2+ y2 and a 6= 0.
Assume that u1 is not radial. Then we can write u1(x, y)= h(%)+ η(x, y)+ · · · , where η(x, y) is a

nonradial homogeneous polynomial of degree m+ 2> n+ 2, and h(%) denotes a radial polynomial of
degree less than m+ 2. Define for f, g of class C2 the operator

{ f, g} := fxx gyy + fyygxx − 2 fxygxy .

Then, if we write ψ(x, y) := u1(x, y)− h(%), we have

J [1u1,H(u1)]

= J [1h+1ψ,H(h)+H(ψ)+{h, ψ}]

= J [1h,H(h)] + J [1h, {h, ψ}]+ J [1ψ,H(h)] + J [1h,H(ψ)] + J [1ψ,H(ψ)+{h, ψ}]. (3-12)

Note that J [1h,H(h)] = 0, since both 1h, H(h) are radial functions. Also, the lowest-order term in the
series expansions of the right-hand side of (3-12) is given by J [1w, {w, η}]+ J [1η,H(w)], which has
degree 2n+m− 2 (if it is not identically zero). But now, since u1 satisfies (3-10), we obtain

J [1w, {w, η}]+ J [1η,H(w)] = 0. (3-13)

We next compute the left-hand side of (3-13). By (3-11), we have

1w = a(n+ 2)2%n, H(w)= a2(n+ 1)(n+ 2)2%2n. (3-14)

If we write η(x, y) in polar coordinates as η = c(θ)%m+2, then

1η = %m(c′′(θ)+ (m+ 2)2c(θ)). (3-15)

A longer but also straightforward computation, again changing to polar coordinates, shows that

{w, η} =
a
2
(n+ 2)%n+m((n+ 4)(c′′(θ)+ (m+ 2)2c(θ))− 2n(m+ 1)(m+ 2)c(θ)

)
. (3-16)

Moreover, if we express the Jacobians in (3-13) also in polar coordinates, we obtain

(1w)ρ({w, η})θ − (1w)θ ({w, η})ρ =−(1η)ρ(H(w))θ + (1η)θ (H(w))ρ . (3-17)
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Note that 1w and H(w) do not depend on θ , by (3-14). With this, a computation from (3-17) using
(3-14), (3-15) and (3-16) shows that there exist positive constants α1, α2 > 0 such that

α1c′′′(θ)= α2c′(θ).

Since c′(θ) is a periodic function, we necessarily have then c′(θ)= 0; i.e., c(θ) is constant. This implies
that the homogeneous polynomial η = c(θ)%m+2 is radial, which contradicts our hypothesis. �

Note that Proposition 3.1 and the discussion preceding it imply the following consequence, of a local
nature, which does not use the boundary conditions:

Corollary 3.2. Let u(x, y) be a real-analytic function satisfying J [1u,H(u)] = 0. Assume that near the
origin u has the form

u(x, y)= λ
2
(x2
+ y2)+w(x, y)+ o(%)k, % :=

√
x2
+ y2,

where w(x, y) is a homogeneous polynomial of degree k ≥ 3 that is neither harmonic nor a power of a
linear function (αx +βy)k, (α, β) 6= (0, 0). Then u is radial; i.e., u = u(%).

4. Continuity of eigendirections when µ = 1

In what follows we keep the notation of Section 3. In particular, p0 = (0, 0) ∈ U is a point in � where
D2u = λ Id for some λ∈R. Recall that we can extend u as a real-analytic function to an open set �0⊃�;
thus, u is real-analytic in a neighborhood of (0, 0) even if this point lies in ∂�.

Also, recall that we can define for each p ∈ � \ U the eigenlines L1(p), L2(p) of D2u(p). Thus,
L1, L2 define two real-analytic line fields on �\U ; they are given in coordinates with respect to the basis
(dx, dy) as the solutions to

−uxy(dx2
− dy2)+ (uxx − u yy) dx dy = 0. (4-1)

These eigenlines naturally extend to �0 \U0, where

U0 := {p ∈�0 : D2u(p)= λ Id for some λ= λ(p) ∈ R} ⊃ U .

The next result shows that L1, L2 can be analytically extended around the origin if (0, 0) ∈ U is in
case (C.2) above:

Proposition 4.1. Assume that p0 = (0, 0) ∈ U and that case (C.2) above happens at p0, i.e., µ = 1
in (3-8). Then, there exists ε > 0 such that 0 := D(ε) ∩ U0 is a regular, real-analytic curve passing
through (0, 0), and L1, L2 extend analytically across 0, i.e., they define real-analytic line fields on
D(ε) := {ξ ∈ R2

: |ξ |< ε}. Moreover, one of L1, L2 is tangent to 0 at (0, 0).

Proof. Let u1(x, y) be the real-analytic function defined by (3-9). By (3-9) and (3-6), the first term in the
series expansion of u1(x, y) around the origin is equal to w(x, y)= axn+2. Let us define η(x, y) as the
lowest-order homogeneous polynomial in the Taylor series of u1(x, y) that is not divisible by xn+2. Thus,
in the case it exists, its degree is m+ 2> n+ 2. We will consider three cases:
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Case 1: η(x, y) does not exist. Therefore, u1(x, y) = xn+2φ(x, y) for some real-analytic function φ
around the origin, with φ(0, 0)= a 6= 0. Thus, using (3-9), a simple computation shows that

(1u)2− 4H(u)= (1u1)
2
− 4H(u1)= x2nG(x, y)

for some real-analytic function G(x, y) with G(0, 0)= (2+3n+n2)a2 > 0 (since φ(0, 0)= a 6= 0). This
implies by (3-2) that there exists ε > 0 such that D(ε)∩U coincides with the x = 0 axis.

Using (3-9) in a similar way, (4-1) for the eigenlines L1, L2 is written as

xn(81(x, y)(dx2
− dy2)+82(x, y) dx dy

)
= 0, (4-2)

where

81(x, y) := −(n+ 2)xφy − x2φxy, 82(x, y) := (n+ 1)(n+ 2)φ+ x2(φxx −φyy).

Obviously, (4-2) defines for each x 6= 0 the same directions as

81(x, y)(dx2
− dy2)+82(x, y) dx dy = 0. (4-3)

Moreover, for x = 0 and y small enough, (4-3) is just dx dy= 0, since φ(0, 0)= a 6= 0. As a consequence,
the eigenlines L1, L2 extend analytically across the x = 0 axis in D(ε) for ε > 0 small enough. More
specifically, at each point of the form (0, y) ∈ D(ε), these eigenlines are precisely x = 0 and y = 0. This
proves Proposition 4.1 in Case 1.

Case 2: η(x, y) has degree n+ 3, i.e., m = n+ 1. Since η is not divisible by xn+2, we have that ηyy 6= 0.
Using then that u1(x, y)= axn+2

+η(x, y)+· · · we see that the lowest-order nonzero Taylor polynomial
of H(u1) has degree 2n + 1. Also, note that the lowest-order nonzero Taylor polynomial of 1u1 has
degree n.

Recall that J [1u1,H(u1)] = 0, by (3-10). Thus, there exists a nonconstant real-analytic function
σ1(x, y) defined in a neighborhood of (0, 0), with σ1(0, 0)= 0, and nonconstant real-analytic functions
of one variable α1(t), β1(t), with α1(0)= β1(0)= 0, such that

1u1 = α1 ◦ σ1, H(u1)= β1 ◦ σ1. (4-4)

Since, as explained above, 1u1 (resp. H(u1)) has at the origin a zero of degree n (resp. 2n+1), and these
two integers are coprime, we deduce from (4-4) that σ1(x, y) has a zero of order exactly 1 at the origin,
i.e., Dσ1(0, 0) 6= (0, 0); to see this, note that the vanishing order of σ1 at the origin should necessarily be
a divisor of both n and 2n+ 1, by (4-4). This also implies by (4-4) that α1 (resp. β1) has at the origin a
zero of order n (resp. 2n+ 1). Thus, by the implicit function theorem and (4-4), we can choose local
coordinates (s(x, y), t (x, y)), with s(x, y) := σ1(x, y) and t (0, 0)= 0, such that

1u1 = sng1(s), (1u1)
2
− 4H(u1)= s2ng2(s), (4-5)

where g2(0)= g1(0)2 > 0. The second equation in (4-5), together with the fact that (1u)2− 4H(u)=
(1u1)

2
−4H(u1), shows that for ε > 0 small enough, D(ε)∩U0 agrees with the s = 0 curve. So, to prove
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Proposition 4.1 in this situation we need to show that L1, L2 extend analytically across s = 0 and that
one of them is tangent to s = 0 at the origin.

In order to prove this, let us observe that (4-5) implies that the eigenvalues µ1, µ2 of D2u1 can be
written in D(ε) as

µi (s)= snϕi (s), i = 1, 2,

with ϕ1(0)= 0 and ϕ2(0)= g1(0) 6= 0 (or vice versa). This implies that D2u1 can be written as sn A(s, t),
where A(s, t) is a symmetric 2×2 matrix for each (s, t) close enough to the origin, and such that A(0, 0)
is not proportional to the identity. Consequently, from (3-9),

D2u = λ Id2+ sn A(s, t).

Thus, if we denote by ai j the coefficients of A, we see by (4-1) that the eigenlines L1, L2 are given as the
solutions to the equation

sn(
−a12(dx2

− dy2)+ (a11− a22) dx dy
)
= 0. (4-6)

Since A is not proportional to the identity at (0, 0), the equation

−a12(dx2
− dy2)+ (a11− a22) dx dy = 0 (4-7)

defines two real-analytic line fields in D(ε) for ε > 0 small enough, which by (4-6) agree with L1, L2 if
s 6= 0. In other words, L1, L2 can be analytically extended across s = 0 around the origin, as wished.

Finally, we prove that L1 or L2 is tangent to s = 0 at the origin. From D2u1 = sn A(s, t), we have
(u1)xx = sna11, (u1)xy = sna12 and (u1)yy = sna22. Therefore, (sna11)y = (sna12)x and (sna12)y =

(sna22)x . If we evaluate these equations at the origin, we obtain

sy(0, 0) a11(0, 0)= sx(0, 0) a12(0, 0), sy(0, 0) a12(0, 0)= sx(0, 0) a22(0, 0).

Or equivalently, by the inverse function theorem,

−xt(0, 0) a11(0, 0)= yt(0, 0) a12(0, 0), −xt(0, 0) a12(0, 0)= yt(0, 0) a22(0, 0). (4-8)

Note that (xt(0, 0), yt(0, 0)) is tangent to s = 0 at the origin. From (4-8), we obtain at (0, 0)

−a12(x2
t − y2

t )+ (a11− a22)xt yt = yt(xt a11+ yt a12)− xt(xt a12+ yt a22)= 0.

From (4-7), this implies that one of the analytic extensions of L1 and L2 is tangent to s = 0 at the origin,
as wished. This proves Proposition 4.1 in Case 2.

Case 3: η(x, y) has degree > n+ 3, i.e., m > n+ 1. We prove next that this case cannot happen, which
together with the previous two cases will prove Proposition 4.1.

Similarly to our arguments in the proof of Proposition 3.1, let us start by noting that we can write
u1(x, y) = h(x, y)+ψ(x, y), where h(x, y) is a polynomial of degree at most m + 1 that is divisible
by xn+2, and ψ := u1 − h has η(x, y) as the homogeneous polynomial of lowest degree in its series
expansion. So, in our conditions, (3-12) holds. Next, consider the following facts:
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(1) J [1u1,H(u1)] = 0, by (3-10). Thus, the left-hand side of (3-12) vanishes.

(2) J [1h,H(h)] is divisible by x3n+1, since h is divisible by xn+2.

(3) The lowest-order term in the right-hand side of (3-12) not coming from J [1h,H(h)] is given by

J [1w, {w, η}]+ J [1η,H(w)] (4-9)

and has degree 2n+m− 2 (if it is not identically zero).

Moreover, since in our situation w(x, y) = axn+2, we have that H(w) = 0 and that (4-9) is a constant
multiple of x2n−1ηyyy . Since η is not divisible by xn+2 by hypothesis, we conclude from this discussion
that the homogenous polynomial (4-9) is not divisible by x3n+1 (unless it is identically zero). Thus,
adding this information to the three facts above, we conclude by (3-12) that ηyyy = 0. Consequently,

η(x, y)= xm(a1x2
+ a2xy+ a3 y2), a1, a2, a3 ∈ R.

Since m > n + 1 by hypothesis, we see that xn+2 divides η(x, y), a contradiction. So, Case 3 cannot
happen, as claimed. �

5. Proof of Theorem 1.1

Following previous notation, let p0 = (0, 0) be a point in � where D2u = λ Id for some λ ∈ R and for
which situation (C.3) holds. Then, by (3-9) and Proposition 3.1, we have

u(x, y)= ax + by+ c0+ v(
√

x2
+ y2), (5-1)

globally on � (by analyticity), where v = v(r) is a real-analytic function, and a, b, c0 are real constants.
If a = b= 0, then from (5-1) we see that u = u(%); i.e., u is a radial function with respect to the origin.

From here, it is easy to check from the overdetermined conditions in (1-2) that � is a disk, and the result
follows.

Assume next that (a, b) 6= (0, 0). Up to a rotation in the (x, y)-coordinates, we can assume that b = 0,
i.e., that

u(x, y)= ax + c0+ v(
√

x2
+ y2). (5-2)

Moreover, let us observe that if u is a solution to (1-2) on �, and t 6= 0, then the function ut(x, y) :=
u(t x, t y)/t2 is a solution to (1-2) on �t := t� for the boundary constant ct := c/|t |. Using this
transformation, it is clear that we can assume without loss of generality that a = 1 holds in (5-2), i.e., that

u(x, y)= x + c0+ v(
√

x2
+ y2). (5-3)

We will keep denoting by � the corresponding rotated and dilated domain in the plane; that is, � will be
the simply connected planar domain for which (1-2) holds for u as in (5-3). By (5-3), we have

|Du|2 =
1
%2

(
(%+ xv′(%))2+ y2v′(%)2

)
= 1+ v′(%)2+

2xv′(%)
%

.
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Since u = 0 along ∂�, we conclude from (5-3) and the above equation that

|Du|2 = 1+ v′(%)2−
2(c0+ v(%))

%
v′(%) along ∂�.

So, since |Du|2 = c2 along ∂� by the Neumann condition in (1-2), we deduce that v is a solution to the
ODE

1+ v′(%)2−
2(c0+ v(%))

%
v′(%)= c2. (5-4)

Differentiating (5-4) we obtain

2(c0+ v(%)− %v
′(%))(−v′(%)+ %v′′(%))

%2 = 0. (5-5)

So, there are two options. If c0+ v(%)− %v
′(%)= 0, then v(%)=−c0+ t%, with t ∈ R. Otherwise, we

have −v′(%)+ %v′′(%)= 0, from which we get v(%)= t1%2
+ t2, with t1, t2 ∈ R.

In the first case, we have by (5-3) that u(x, y)= x + t
√

x2+ y2, and so its nodal set is contained in
the union of two straight lines. Thus, this case is impossible, since u = 0 on ∂�.

In the second case, we have by (5-3) that u(x, y)= c1+ x + c2(x2
+ y2) for some c1, c2 ∈ R. Thus,

u(x, y) is radial with respect to the point q0 := (−1/(2c2), 0) ∈ R2, and � is a disk centered at q0.
In conclusion, we have proved: if there exists some point p0 ∈� such that D2u = λ Id for some λ ∈ R,

and for which case (C.3) holds, then Theorem 1.1 is true.
So, to finish the proof, we assume next that there is no point p0 ∈� with p0 ∈ U and for which case

(C.3) holds and reach a contradiction. Let L1, L2 denote, as usual, the line fields given by the eigenlines of
D2u. As explained previously, they are well-defined and analytic in �\U . Moreover, since by hypothesis
there are no points in U for which case (C.3) happens, and by Proposition 4.1 the line fields L1, L2

are well-defined and analytic around any point for which case (C.2) holds, we deduce that L1, L2 are
well-defined and analytic in � \U1, where U1 := {p ∈ U : case (C.1) holds at p}.

We next prove that the points in U1 are isolated. Indeed, let p0 ∈ U1, and assume for simplicity that
p0 = (0, 0). Again, we recall that u can be extended analytically to a neighborhood of the origin, even if
(0, 0) ∈ ∂�. Following the notation of Section 3, let w denote the first nonzero homogeneous polynomial
of degree ≥ 3 of the series expansion of u at (0, 0). Since (0, 0) ∈ U1, we know w is a homogeneous
harmonic polynomial. By the first equation in (3-7), we have

(1u)2− 4H(u)=−4(wxxwyy −w
2
xy)+ · · · . (5-6)

By harmonicity of w, we have wxxwyy −w
2
xy < 0 in R2

\ {(0, 0)}. Thus, from (5-6) we conclude that
(1u)2− 4H(u) > 0 in a punctured neighborhood of (0, 0). In particular, (0, 0) is isolated in U1, and the
line fields L1, L2 are well-defined around (0, 0), with an isolated singularity at the origin.

This fact, together with the boundary conditions, implies the following:

Claim. L1, L2 are two analytic line fields with isolated singularities in �, the singularities being the
points in U1. Moreover, each L i , i = 1, 2, is either tangent or normal to ∂� at each p ∈ ∂� \U1.
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Proof of the Claim. The first statement follows directly from the previous discussion. For the second one,
let γ (s)= (x(s), y(s)) be a unit speed parametrization of ∂�, and let ν(s) := (−y′(s), x(s)) denote the
inner unit normal of ∂�. By the overdetermined boundary conditions in (1-2), we have Du(γ (s))= ĉν(s)
for some constant ĉ ∈ R. Differentiating this expression, we obtain that

D2u(γ ′(s), ν(s))= 0.

This implies that the tangent and normal lines to ∂� are eigenlines of D2u at every p ∈ ∂�. Thus, each
L i is tangent or normal to ∂� at each p ∈ ∂� \U .

Consider finally a point p ∈ ∂� that lies in 6 := {p ∈ ∂�∩ U : p 6∈ U1}. Then, case (C.2) happens
at p. By Proposition 4.1, we have two possible situations: either 6 is a finite set or 6 = ∂�. In the first
case, again by Proposition 4.1, we deduce by continuity that L1, L2 are well-defined at any p ∈6 and
are tangent or normal to ∂� at that point. Thus, the statement of the Claim follows. In the second case,
all points of 6 = ∂� are in U , and by Proposition 4.1 we deduce that L1 or L2 is globally tangent to ∂�.
This finishes the proof of the Claim. �

In these conditions, it follows from the Claim and a standard application of the Poincaré–Hopf theorem
that the sum of all rotation indices of each L i at the isolated singularities of U1 is equal to 1.

Next, we will compute the rotation index of L1, L2 at (0, 0) ∈ U1. In order to do this, let us first look
at the eigenlines Lw1 , Lw2 of D2w. These eigenlines are given as the solutions to the equation

−wxy(dx2
− dy2)+ (wxx −wyy) dx dy = 2 Im(wζ ζdζ 2)= 0, (5-7)

where ζ := x+ iy and ∂ζ := (∂x − i∂y)/2. Since w= aζ n+2 for n ≥ 1 by (C.1), we see that the eigenlines
Lw1 , Lw2 given by (5-7) have an isolated singularity at (0, 0), and their rotation index at the origin is
negative, equal to −n/2.

Assume next that p0 = (0, 0) is an interior point, i.e., p0 ∈�. From (3-6) and the previous arguments,
we see then that the eigenlines L1, L2 of D2u, given by (4-1), are arbitrarily well-approximated around
the origin by the eigenlines Lw1 , Lw2 , given by (5-7). In particular, the rotation index of both line fields
L1, L2 around (0, 0) is also negative and equal to −n/2.

In the case that (0, 0) ∈ ∂�, a similar argument shows that the (boundary) index of L1 and L2 at
(0, 0) coincides with the half-rotation index of Lw1 , Lw2 at the origin in a half-plane, which is given by the
value −n/4.

This proves that both L1, L2 only have isolated singularities of negative index in �, which contradicts
that the sum of all such indices must be equal to 1, as explained above. This contradiction proves that
there exists a point p0 ∈ U for which (C.3) holds. So, by previous arguments, u is radial and � is a disk.
This concludes the proof of Theorem 1.1.
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