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Abstract

In this paper we introduce a novel methodology to face the problem of finding, for every fuzzy set of the real line, a fuzzy 
number which can be considered as an approximation of the first one in some reasonable sense. This methodology depends on a 
wide variety of initial parameters that each researcher may set depending on his/her own interests. The main objective of this new 
methodology is to ensure that many of the techniques that are currently available for fuzzy numbers can also be extended to the 
setting of fuzzy sets of the real line which are, in many ways, much more enriching. To do this, we carry out a study of the families 
of nested sets that can determine fuzzy numbers through their level sets. Next, we describe some of the main properties that this 
approximation methodology verifies and we show some examples to illustrate how the initial parameters influence the result of the 
approximation.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Fuzzy sets have been successfully employed in the representation and interpretation of fuzzy information. In such 
contexts, the classical techniques, based on absolutely precise real numbers, lack a clear meaning and they must be 
replaced by procedures that take into account the intrinsically imprecise nature of the data and experimental develop-
ments. Nowadays many methodologies take into account fuzzy numbers, a remarkable subfamily of the category of 
all fuzzy sets of the real line under certain regularity conditions. However, fuzzy sets of the real line are much more 
general than fuzzy numbers and then can model information in a more varied way.
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A fuzzy set is a pair (X, μX) where X is a non-empty set and μX : X → [0,1] is a function (called the membership 
function of the fuzzy set). In the last fifty five years, several epistemic interpretations have been described about the 
significance of the function μX. Three of the most important semantics interpret it as degree of uncertainty (proposed 
by Zadeh as a key tool in possibility theory [42] and approximate reasoning [21,43]), as a degree of similarity or as 
a degree of preference (see [14,16]). Each of the previous view-points entails certain peculiarities depending on the 
context in which they use fuzzy sets. However, what is common to all of them is that fuzzy set theory has demonstrated 
to be a very consistent theory which have led to significant improvements in many fields of study: decision analysis 
[8,10,20,26,33,40], ranking of possible alternatives [1,3,7,11,22,27,32,38,39], regression theory [9,18,29,31], image 
[25,19,28,6], classification [23,34,35], approximation [37], Medicine [36], algebraic interrelationships [30], etc.

On the other hand, fuzzy numbers, especially trapezoidal or triangular ones, have proven to be very popular (and 
useful) between researchers and practitioners. Therefore they have been implemented extensively in many fuzzy meth-
ods due to their simplicity and computational efficiency. A fuzzy number of the real line is a fuzzy set A : R → [0,1]
satisfying certain conditions: normality, fuzzy convexity and upper semicontinuity at each point (see Definition 1). 
There is a fuzzy arithmetic that, involving fuzzy numbers, generalize the usual arithmetic with real numbers (see 
[12,13,15,17]). In general, the set FN(R) of all fuzzy numbers of the real line enjoys better properties than the family 
FS(R) of all fuzzy sets on R. Indeed, the set FS(R) is quite complicated so that most of techniques that can be devel-
oped with (real or) fuzzy numbers cannot be extended to the set FS(R). For instance, ranking indices [3,4,32] (that 
is, deffuzifications � → R from a subset � ⊆ FN(R) into R) are usually based on geometric arguments (centroid, 
center of gravity, p-sign distance, magnitude, etc.) or analytic tools (integration, differentiation, maximization, etc.) 
that are not available in the whole family FS(R). Other remarkable way to ranking fuzzy numbers is based on genuine 
fuzzy binary relations, that is, procedures that require prior knowledge of the two fuzzy numbers to be compared (see 
[32]). In this line, some methodologies use degrees of dominance of one fuzzy number over another like possibility or 
necessity of dominance (see chapter 10 in [15]). These procedures generate ranking processes from a pairwise com-
parison index that can be interpreted as how much one fuzzy number is preferable versus another one, which can help 
us to make a decision in the fuzzy setting.

Having in mind this open problem and its possible applications in several contexts of fuzzy setting, in this paper 
we introduce and study the main properties of a wide parametric family of operators

�f,g,T1,T2 : FS([0,1]) → FN([0,1])

that associate a unique fuzzy number to each fuzzy set on the interval [0,1] (we will justify that the family FS([0,1]) is 
rich enough to reduce the problem to this particular interval). The main advantages of the previous family of operators 
are the following ones.

• First of all, these operators are introduced in order to provide a novel methodology to translate to the very general 
family FS([0,1]) some reasonable properties of fuzzy numbers. Taking into account that there are many pro-
cedures that can be implemented in the setting of fuzzy numbers, then the previous operators can be useful to 
extend such procedures to the setting of fuzzy sets of the real line (especially when they are very similar to fuzzy 
numbers).

• They can be useful to extend fuzzy techniques that, for the moment, are currently applied to the restricted case in 
which input or output data must be fuzzy numbers to a general framework in which the involved data are arbitrary 
fuzzy sets of the real line.

• This family provides several ways to approximate a fuzzy set of the real line by a fuzzy number. Hence, in many 
cases, it can be useful in approximate reasoning.

• This family depends on a wide range of functions that can be used as parameters to define a particular approximat-
ing operator. Therefore, each researcher can choose the involved parameters in order to obtain the fuzzy number 
that best fits to the original fuzzy set of the real line according to his/her point of view or to his/her own interests. 
We include an illustrative example about how such initial functions directly affect to the obtained results.

Finally, we must highlight that, although fuzzy sets can be interpreted from several semantics, throughout this 
manuscript we are not interested on using any of such view-points. The contents of this paper are rather algebraic. 
Then, we advise that we will treat fuzzy sets from an algebraic point of view assuming that a fuzzy set is only a 
function A : X → [0,1] (that is, we identify the fuzzy set to its membership function). It must be the researcher who 
2
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could decide how he/she can take advantage of the following contents by employing the semantic he/she is concretely 
interested in.

Before introducing this family of approximation operator, in Section 3, we carry out a detailed study of the behavior 
of the family of level sets of each fuzzy number, which will then allow us in Section 4 to define the unique fuzzy 
number associated to each fuzzy set of the real line by means of its corresponding level sets. Finally, in Section 5
we study the main properties of this family of approximation operators and we show, among other properties, that, 
as expected, normal fuzzy numbers are fixed points of certain operators of this family. We start our study with some 
preliminaries and basic facts.

2. Preliminaries

We include here the necessary preliminaries to understand the contents of the next sections.

2.1. Background on real functions of one real variable

Let N = {1, 2, 3, . . .} be the set of all positive integers and let R stand for the family of all real numbers. A real 
interval is a set I ⊆ R such that (1 − λ) t + λs ∈ I for all t, s ∈ I and all λ ∈ [0,1]. This definition covers the empty 
set, so the intervals we will consider hereinafter could be empty unless otherwise stated. Given t, s ∈R such that t ≤ s, 
there are four classes of (bounded) intervals whose extremes are t and s: closed [t, s], open (t, s), [t, s) and (t, s]. Last 
three examples are empty when t = s. Taking into account the great importance of the real, closed, bounded interval 
[0,1], for convenience, henceforth, we will denote it by I.

From now on, we will only consider the Euclidean topology on R associated to the Euclidean metric d (t, s) =
|t − s| for all t, s ∈R, which determines the Euclidean measure μ such that μ ([t, s]) = s − t for all t, s ∈R satisfying 
t ≤ s. Any subset D ⊆R will be endowed with the induced topology. We denote by D the closure of a subset D ⊆R
in the Euclidean topology of R.

Let f : D → R be a function defined on a non-empty subset D of R. Given a subset H ⊆ D, we say that f
is increasing on H if f (t1) ≤ f (t2) for each t1, t2 ∈ H such that t1 ≤ t2 (we remark that some authors prefer the 
terminology “non-decreasing” instead of “increasing”); f is strictly increasing on H if f (t1) < f (t2) for each 
t1, t2 ∈ H such that t1 < t2; and f is constant on H if there is c ∈R such that f (t) = c for all t ∈ H . Similarly we can 
consider decreasing or strictly decreasing functions. A function is monotone if it is increasing or decreasing. Constant 
functions are increasing and decreasing at the same time. A function f : D → R is affine on an interval I ⊆ D if there 
are m, n ∈ R such that f (t) = mt + n for all t ∈ I . Each affine function whose domain is an interval is continuous 
and monotone. If f : D →R is bounded from above, we denote by sup (f ) = sup ({f (t) : t ∈ D }) to its supremum.

2.2. Background on fuzzy sets and fuzzy numbers

In general, a fuzzy set [41] on a non-empty set X is a mapping A : X → I. A fuzzy set A is normal if there is x0 ∈ X

such that A (x0) = 1. From now on, given a fuzzy set A : X → I, as it is a bounded from above function, we denote 
by αA the supremum of A in X, that is, αA = sup (A) = sup ({A(x) : x ∈ X }). We will say that A has an absolute 
maximum at x0 ∈ X if A(x0) ≥ A (x) for all x ∈ X. In such a case, necessarily αA = A(x0).

Fuzzy numbers on R are fuzzy sets whose domain is R and satisfying certain constraints. There are several distinct 
definitions of fuzzy number. Throughout this manuscript, we will employ the following one.

Definition 1 (Cf. [4,5,12,31,32]). A fuzzy number A on R is a fuzzy set A :R → I satisfying the following properties:

FN1) A has absolute maximum on R (that is, there is t0 ∈ R such that A(t0) ≥ A (t) for all t ∈ R).
FN2) A is fuzzy convex (i.e., A (λt + (1 − λ) s) ≥ min{A(t), A(s)} for all t, s ∈ R and all λ ∈ [0,1]).
FN3) A is upper semicontinuous at every t0 ∈ R (i.e., for all ε > 0, there exists δ > 0 such that A(t) − A(t0) < ε, 

whenever | t − t0 | < δ).

As a fuzzy set, a fuzzy number A is normal if there is t0 ∈ R such that A(t0) = 1.
3
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Remark 2. We highlight that, in the literature, it is very usual to assume that fuzzy numbers must satisfy the normality 
condition (that is, there is t0 ∈ R such that A(t0) = 1). In fact, most of papers in this line of research consider that a 
fuzzy number is what we have just called a normal fuzzy number. A good reason for using such point of view is that 
fuzzy numbers must generalize real numbers, and the usual way to consider this extension is by identifying each real 
number r with the fuzzy number ̃r1 : R → I that associates 1 to r and 0 to any other real number (see equation (3)). 
Such fuzzy number is normal by definition, so many authors consider that a fuzzy number must be normal.

However, in this study, fuzzy sets (which do not necessarily satisfy the normality condition) play as important a 
role as fuzzy numbers, so we consider that it may be counterproductive to force fuzzy numbers to fulfill the normality 
condition. As a consequence, by Definition 1, we wanted to clarify that, in this study, we will use the terminology 
“fuzzy number” to refer a fuzzy set which does not necessarily satisfy the normality condition, and the expression 
“normal fuzzy number” for fuzzy numbers that satisfy such property.

The following notions are usually associated to fuzzy numbers. Anyway, as we will use them later, we will intro-
duce them associated to a fuzzy set.

Definition 3. Given α ∈ (0,1], the α-level set (or α-cut) of a fuzzy set A :R → I is the crisp set Aα = { t ∈R : A(t) ≥
α }. The kernel (or core) of A is A1. The support of A is the closure of the set of real points where the function A is 
strictly positive, that is,

supp(A) = { t ∈R : A(t) > 0 } = ⋃
α∈(0,1]Aα . (1)

For convention, it is usual to denote A0 = supp(A). Given a non-empty subset D ⊆ R, we denote by FS(D) (respec-
tively, FN(D)) the family of all fuzzy sets (respectively, fuzzy numbers) on R whose supports are included on D. For 
simplicity, we denote FS = FS(I) and FN = FN(I).

Remark 4. Given a fuzzy set A : X → I on a general set X, some authors call support to the set { x ∈ X : A(x) > 0 }. 
This set has the advantage that it does not need to consider any topology on the set X. However, the main disadvantage 
of this set is that it can be closed, or open, or none of them (when X is endowed with a topology). However, for our 
purposes, it will be very important the property that states that the support of a fuzzy set on R is closed (w.r.t. 
the Euclidean topology). Hence, we will call support of the fuzzy set A : R → I to the closure of the set { t ∈ R :
A(t) > 0 }.

For the sake of clarity, we highlight that, in what follows, we will only consider both “fuzzy sets” and “fuzzy 
numbers” of the real line (that is, X =R). In this setting, the α-cuts completely characterize the fuzzy sets.

Proposition 5. Two fuzzy sets A, B ∈ FS(R) are equal if, and only if, their level sets are equal.

Each α-cut Aα can be bounded or not. To our study, we are only interested on fuzzy numbers whose supports are 
included on I, that is, the family FS. The following result justifies that this case covers all possibilities in which we 
are interested.

Lemma 6.

(a) If a, b ∈R are such that a < b and φ : I → [a, b] is defined by φ (t) = (1 − t)a + tb for all t ∈ I, then the mapping

ψ1 : FS ([a, b]) → FS, ψ1 (A) (t) =
{

A(φ (t)) , if t ∈ I,

0, in any other case,

is a bijection.
4
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(b) If ϕ : (0,1) → R is bijective,1 then the mapping

ψ2 : FS (R) → FS, ψ2 (A) (t) =
{

A(ϕ (t)) , if t ∈ (0,1) ,

0, in any other case,

is injective.

Proof. Item (a). Clearly, φ : [0,1] → [a, b], defined by φ (t) = (1 − t)a + tb for all t ∈ [0,1], is a bijection, and its 
inverse function is given by

φ−1 : [a, b] → [0,1], φ−1(s) = s − a

b − a
for all s ∈ [a, b] .

To prove that ψ1 is injective, let A, B ∈ FS ([a, b]) be two fuzzy sets such that ψ1(A) = ψ1(B). Then A, B : [a, b] →
[0, 1] satisfy

A(φ (t)) = B (φ (t)) for all t ∈ [0,1] .

As φ is a bijection, then

A(s) = B (s) for all s ∈ [a, b] .

Then A = B and ψ1 is injective. To prove that ψ1 is surjective, let A′ ∈ FS be arbitrary. Then A′ : [0, 1] → [0, 1]. Let 
A = A′ ◦ φ−1 : [a, b] → [0, 1]. Then A ∈ FS ([a, b]) is a fuzzy set on [a, b] such that, for all s ∈ [a, b],

ψ1(A)(s) = A(φ (s)) =
(
A′ ◦ φ−1

)
(φ (s)) = A′ (φ−1 (φ (s))

)
= A′(s).

Hence ψ1(A) = A′ and ψ1 is surjective.
The proof of the second item is similar. �
In the previous result, since ψ2(A)(0) = ψ2(A)(1) = 0, the mapping ψ2 is not surjective because it cannot model 

a fuzzy set B ∈ FS such that B(0) > 0 or B(1) > 0. Notice that fuzzy sets A : R → I belonging to FS can be seen as 
functions A : I → I whose domains and codomains are the interval I because A(t) = 0 for all t ∈ R�I. Hence, for 
the sake of clarity, we restrict our study to fuzzy sets on FS and fuzzy numbers on FN. Obviously FN ⊂ FS.

2.3. Some notable families of fuzzy numbers

In the setting of fuzzy numbers with compact support, adapting this notion from [31], a generalized left-right fuzzy 
number (for short, an LR fuzzy number) is a fuzzy number A = (a1/a2/a3/a4; ω1, ω2)LR , where a1, a2, a3, a4 ∈ R
(called the corners of A) satisfy a1 ≤ a2 ≤ a3 ≤ a4, ω1, ω2 ∈ (0,1], ω1 ≤ ω2, defined by:

A(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L(t) , if a1 < t < a2,

ω2, if a2 ≤ t ≤ a3,

R (t) , if a3 < t < a4,

0, in any other case,

(2)

where L : [a1, a2] → [0,ω1] is a continuous, strictly increasing function such that L (a1) = 0 and L (a2) = ω1, and 
R : [a3, a4] → [0,ω1] is a continuous, strictly decreasing function such that R (a3) = ω1 and L (a4) = 0. Notice that 
if a1 = a2, then the function L does not play a role in (2), and if a3 = a4, the function R does not appear in (2). In 
general, the support of A = (a1/a2/a3/a4; ω1, ω2)LR is [a1, a4] and its core is [a2, a3], if ω2 = 1, and it is empty, 
if ω2 < 1. The supremum of A = (a1/a2/a3/a4; ω1, ω2)LR is αA = max{ω1, ω2}. It is an absolute maximum when 
ω1 ≤ ω2 (in such a case, αA = ω2).

1 The reader can check that the function ϕ : (0,1) →R, defined by ϕ (t) = (t − 0.5) / (t (1 − t)) for all t ∈ (0,1), can be employed here.
5



JID:FSS AID:8162 /FLA [m3SC+; v1.347] P.6 (1-23)

A.F. Roldán López de Hierro, M.Á. Tíscar, C. Roldán et al. Fuzzy Sets and Systems ••• (••••) •••–•••
Functions given by (2) describe fuzzy numbers only when ω1 ≤ ω2. In general, if ω2 < ω1, then it is a fuzzy set (it 
does not reach absolute maximum and it is not upper semi-continuous).

If ω1 ≤ ω2, the LR-fuzzy number (a1/a2/a3/a4; ω1, ω2)LR can only be discontinuous at t = a2 (when a1 = a2) 
or at t = a3 (when a3 = a4). Furthermore, if a1 < a2 and a3 < a4, taking into account that L−1 : [0,ω1] → [a1, a2]
is continuous and strictly increasing, R−1 : [0,ω1] → [a3, a4] is continuous and strictly decreasing, L−1 (0) = a1, 
L−1 (ω1) = a2, R−1 (ω1) = a3 and R−1 (0) = a4, the level sets of the LR-fuzzy number are given, for each α ∈ (0,1], 
by:

[(a1/a2/a3/a4;ω1,ω2)LR]α =

⎧⎪⎨⎪⎩
∅, if α ∈ (ω2,1] ,

[a2, a3 ] , if α ∈ [ω1,ω2] ,[
L−1 (α) , R−1 (α)

]
, if α ∈ (0,ω1) .

If

L(t) = ω1 · t − a1

a2 − a1
for all t ∈ [a1, a2] , R (t) = ω1 · a4 − t

a4 − a3
for all t ∈ [a3, a4] ,

then A = (a1/a2/a3/a4; ω1, ω1) is called a trapezoidal fuzzy number. When a1 < a2 and a3 < a4, its graphic repre-
sentation corresponds to the trapezoid whose height is ω1, whose long base is [a1, a4] × {0} and whose short base is 
[a2, a3] × {ω1}. Notice that if a1 = a2 or a3 = a4, it corresponds to a right trapezoid. Particular cases of trapezoidal 
fuzzy numbers are: triangular fuzzy numbers (when a2 = a3), rectangular fuzzy numbers (when a1 = a2 and a3 = a4) 
and crisp fuzzy numbers (when a1 = a2 = a3 = a4). Normal crisp fuzzy numbers can be seen as real numbers.

For convenience, we introduce the following notation. Given r, ω ∈ I, we denote by r and r̃ω to the following 
self-mappings on I:

r (t) = r for all t ∈ I; r̃ω (t) =
{

ω, if t = r,

0, if t �= r.
(3)

On the one hand, although it is not normal, the fuzzy number 0 is a very special fuzzy number: for instance, it is the 
unique fuzzy number whose support is empty. Furthermore, any coherent fuzzy ranking among fuzzy numbers in FN
should consider that 0 is its absolute minimum. On the other hand, crisp fuzzy numbers { ̃r1 : r ∈ I } correspond to real 
scalars of the interval I. From our point of view, the crisp fuzzy number ̃11, which corresponds to the real number 1, 
should be considered as the absolute maximum of any ranking index on FN.

3. Fuzzy sets generated by families of nested sets

In this section, inspired by the family of level sets associated to each fuzzy set, we study its main properties and 
we describe a procedure to consider a fuzzy set starting from a family of nested subsets of I. Later, we take advantage 
of this study in order to introduce the lateral limits of the extremes of such families.

3.1. Some properties of the family of level sets associated to a fuzzy set

In our study, first we show some basic properties.

Proposition 7. Given A ∈ FS, the following properties hold.
6
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Fig. 1. Plot of Aω0,ω1 corresponding to ω0 < ω1, ω0 = ω1 and ω0 > ω1.

1. αA ∈ I.
2. If α, β ∈ I are such that α ≤ β , then A1 ⊆ Aβ ⊆ Aα ⊆ A0 ⊆ I.
3. αA = 0 if, and only if, A = 0.
4. If α ∈ [0, αA), then Aα �=∅, and if α ∈ (αA,1], then Aα =∅.

Let us introduce a multiparametric family of fuzzy sets on I.

Example 8. Let ω0, ω1 ∈ I be such that ω0 > 0. Let Aω0,ω1 ∈ FS be the fuzzy set defined, for all t ∈ I, by:

Aω0,ω1 (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ω1, if t = 1

2
,

2ω0t, if t ∈
[

0,
1

2

)
,

2ω0 (1 − t) , if t ∈
(

1

2
,1

]
.

The graphic representation of Aω0,ω1 corresponds to an isosceles triangle whose bases measure 1 and whose heights 
measure ω0. However, the highest vertex of the triangle is placed to a height of ω1. Fig. 1 shows three distinct cases 
corresponding to ω0 < ω1, ω0 = ω1 and ω0 > ω1. Notice that the unique fuzzy sets of the type Aω0,ω1 that are fuzzy 
numbers correspond to cases in which ω0 ≤ ω1, and they are normal fuzzy numbers when ω0 ≤ ω1 = 1. Furthermore, 
Aω0,ω1 is continuous if, and only if, ω0 = ω1.

Given a fuzzy set A ∈ FS, the family �A = { Aα : α ∈ (0,1] } of all its α-cuts satisfies a concrete property that is 
directly related to the employment of the inequality ≥ in the definition of Aα = { x ∈R : A(x) ≥ α }.

Proposition 9. If A ∈ FS, then

Aα = ⋂
β∈(0,α)

Aβ for all α ∈ (0,1] . (4)

Proof. It is straightforward. �
Similarly, it can be proved the following fact, that also directly depends on the usage of ≥ in Aα .

Proposition 10. If a fuzzy set A ∈ FS is continuous as function A : I → I, then its α-cut Aα is closed on I (and also 
closed on R) for all α ∈ I.

Proof. It follows from the fact that Aα = A−1 ([α,1]) = A−1 ([α,∞) ∩ I) for each α ∈ (0,1], and A0 = supp(A) is 
closed by definition. �
7
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3.2. Fuzzy sets and fuzzy numbers

In this subsection we show some properties associated to the level sets of fuzzy numbers. First of all, we highlight 
the following result in which the involved function satisfies, on a closed set, the condition (FN3) in Definition 1, that 
is, it is upper semicontinuous on an appropriate closed set.

Theorem 11. Given a fuzzy set A :R → I, let {tn} ⊂R be a sequence such that {A (tn)} → sup (A). If {tn} is bounded 
on R and there is n0 ∈ N such that A is upper semicontinuous at every point in a closed subset of R containing 
{ tn : n ≥ n0 }, then A has absolute maximum.

Proof. If A = 0, then A has absolute maximum on each t ∈ R. Suppose that A �= 0, that is, αA = sup (A) > 0. 
Suppose that this supremum is not an absolute maximum (and we will get a contradiction). As {tn} is bounded, it has 
a partial convergent subsequence {tσ (n)}. Let s0 ∈ R be such that {tσ (n)} → s0. As s0 is not an absolute maximum for 
A, then A (s0) < αA. Let define ε = (αA − A(s0)) /2 > 0 and β0 = A (s0) + ε. Then

β0 = A(s0) + ε = A(s0) + αA − A(s0)

2
= A(s0) + αA

2
.

Therefore β0 is a constant such that β0 < αA. Since A is upper semicontinuous at every point in a closed subset � of R
containing { tn : n ≥ n0 } (for some n0 ∈ N), then A is upper semicontinuous at s0 (because s0 ∈ { tn : n ≥ n0 } ⊆ � =
�). As a consequence, there exists δ > 0 such that A(t) −A(s0) < ε for all t ∈ (s0 − δ, s0 + δ). Hence A (t) < A (s0)+
ε = β0 for all t ∈ (s0 − δ, s0 + δ). Since {tσ (n)} → s0, there is n1 ∈ N , n1 > n0, such that tσ (n) ∈ (s0 − δ, s0 + δ) for all 
n ≥ n1. Therefore A(tσ(n)) < β0 < αA for all n ≥ n1, which contradicts the fact that {A (tn)} → αA. This contradiction 
guarantees that A has absolute maximum. �
Corollary 12. If the support of a fuzzy set A : R → I is bounded on R and A is upper semicontinuous at every 
s0 ∈ supp(A), then A has absolute maximum.

Proof. It follows from the fact that if {A (tn)} → sup (A) > 0, then there is n0 ∈ N such that A (tn) > 0 for all n ∈N . 
Then {tn}n≥n0 ⊆ supp (A) and Theorem 11 is applicable to this subsequence. �
Corollary 13. If a fuzzy set A ∈ FS is an upper semicontinuous function at every point of I, then A has absolute 
maximum.

Remark 14. Theorem 11 means that

(FN3) + bounded support ⇒ (FN1) .

However, this property is false if we do not assume that the support of A is bounded on R, even if the fuzzy set A
satisfies (FN2) and (FN3). To show it, given ω0 ∈ (0,1], let A :R → I be defined by:

A(t) = ω0

(
arctan(t)

π
+ 1

2

)
for all t ∈R.

Then A is an strictly increasing, continuous bijection from R onto (0,ω0). Hence, it satisfies the assumptions (FN2)

and (FN3). However, it does not reach an absolute maximum on R. Notice that its kernel is empty (A1 =∅). In fact, 
the rest of level sets are the non-bounded closed intervals:

Aα =
{ [

A−1(α),∞)
, if α ∈ (0,ω0) ,

∅, if α ∈ [ω0,1] .
8
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If A : R → I is a fuzzy number, condition (FN2) is equivalent to say that each α-cut { Aα : α ∈ (0,1] } is a 
subinterval of R (including the possibility in which it is empty), and assumption (FN3) means (with an obvious 
interpretation) that each interval Aα is closed on R (it may be bounded or not). In this case, its support supp(A) is 
also a closed subinterval of R. Furthermore, condition (FN1) can be interpreted by saying that the α-cuts {Aα} are 
non-empty for each α in a maximal closed interval [0, α0] ⊆ I. This proves the following statement.

Proposition 15. A fuzzy set A :R → I is a fuzzy number if, and only if, it has absolute maximum and each α-cut Aα , 
with α ∈ (0,1], is a closed subinterval of R (including the possibility in which it is empty). In addition to this, A is 
normal if, and only if, its kernel A1 is a non-empty set.

Notice that the previous result is false if we do not assume that A has absolute maximum (recall the example 
in Remark 14). However, if its support is bounded, we don’t need to assume this condition. If this is the case, we 
deduce the following result in which we appreciate how the extremes of the level sets associated to a fuzzy number 
completely characterize it. In fact, the functions that determine such level sets must satisfy certain conditions. The 
reader can compare this result with those included in [17,24].

Theorem 16. If A :R → I is a fuzzy set with bounded support and A �= 0, then the following conditions are equivalent.

(a) A is a fuzzy number.
(b) There are two left-continuous functions AL, AU : (0, αA] → R such that AL is increasing, AL is decreasing and

Aα =
{

[AL (α) , AU (α) ], if α ∈ (0, αA] ,

∅, if α ∈ (αA,1] .

In such a case, the following properties hold.

1. There is t0 ∈ R such that A reaches absolute maximum on R at t0, and A (t0) = αA > 0.
2. The restriction A|(−∞,t0] is an increasing and right-continuous function.
3. The restriction A|[t0,∞) is a decreasing and left-continuous function.
4. AL ((0,1]) ⊆ (−∞, t0] and AU ((0,1]) ⊆ [t0,∞), so we can consider the functions AL and AU defined as:

AL : (0,1] → (−∞, t0] and AU : (0,1] → [t0,∞) .

Proof. (b) ⇒ (a). As each α-cut Aα is an interval, then A is fuzzy convex, that is, it satisfies (FN2). To prove 
(FN3), suppose that A is not upper semicontinuous at some s0 ∈ R. Then there is ε0 > 0 and a sequence {tn} → s0
such that A (tn) ≥ A (s0) + ε0. Define β0 = A (s0) + ε0. Since A (s0) < β0, then s0 /∈ Aβ0 . However, as A (tn) ≥ β0, 
then tn ∈ Aβ0 for all n ∈ N . By hypothesis (b), as Aβ0 �= ∅, then Aβ0 = [ AL (α) , AU (α) ] is a closed, bounded 
subinterval of R. Then s0 ∈ { tn : n ∈N } ⊆ Aβ0 = Aβ0 , which contradicts the fact that s0 /∈ Aβ0 . This contradiction 
means that A is upper semicontinuous at each point s0 ∈R, so A satisfies (FN3). As we suppose that A has compact 
support, Corollary 12 guarantees that A has absolute maximum, so it also verifies condition (FN1).

(a) ⇒ (b). It is obvious by choosing t0 as the absolute maximum of A, and AL and AU as the extremes of each 
level set (a proof in the case of normal fuzzy numbers can be found in [17,24], but its arguments are valid in the 
non-normal case). �
3.3. The fuzzy set associated to a family of nested subsets of I

In this subsection we describe how any family of nested subsets of I generates a fuzzy set whose levels sets are 
very similar to the subsets of the family. For the sake of clarity, we declare that we will use the term nested for a 
family � = { �α : α ∈ (0,1] } of subsets of R such that �α ⊆ �β for all α, β ∈ (0,1] satisfying β ≤ α. We highlight 
that this notion includes the case in which some subsets �α are empty (for instance, for α ∈ (ω0,1]), or even all of 
them are empty. Notice that in the following results the possible set �0 does not play any role because the support of 
a fuzzy set is always defined as in (1).
9



JID:FSS AID:8162 /FLA [m3SC+; v1.347] P.10 (1-23)

A.F. Roldán López de Hierro, M.Á. Tíscar, C. Roldán et al. Fuzzy Sets and Systems ••• (••••) •••–•••
Property (4) is not satisfied by all families of nested subsets, even if they are non-empty, closed intervals, as in the 
following example.

Example 17. For each α ∈ (0,1], let

�α =
{

{0.5}, if α ∈ [0.5,1] ,

[0.25,0.75] , if α ∈ (0,0.5) .
(5)

Then � = { �α : α ∈ (0,1] } is a family of non-empty, nested, closed intervals (such that �α ⊆ �β ⊆ I for all α, β ∈ I
satisfying β ≤ α). However, if α = 0.5:

�0.5 = {0.5} �
⋂

β∈(0,0.5)

�β = [0.25,0.75] .

Anyway, a family like the previous one permits us to consider an associated fuzzy set by using the following 
procedure.

Theorem 18. Let � = { �α : α ∈ (0,1] } be a family of nested subsets of I (maybe empty some of them). Let define 
A� : I → I, for each t ∈ I, by:

A�(t) =
{

0, if t ∈ I�
(∪α∈(0,1]�α

)
,

sup
({

β : t ∈ �β

})
, if there is β0 ∈ (0,1] such that t ∈ �β0 .

(6)

Then A� ∈ FS is a fuzzy set satisfying the following properties.

1. A� = 0 if, and only if, �α is empty for all α ∈ (0,1].
2. The fuzzy set A� can be equivalently described as:

A�(t) =
{

1, if t ∈ �α for all α ∈ (0,1) ,

inf
({

β : t /∈ �β

})
, if there is β0 ∈ (0,1) such that t /∈ �β0 .

(7)

3. For all α ∈ (0,1],

�α ⊆ (A�)α = ⋂
β∈(0,α)

�β. (8)

4. The supremum of A� is:

sup(A�) =
{

0, if �α =∅ for all α ∈ (0,1) ,

sup
({

β : �β �=∅
})

, if there is β0 ∈ (0,1) such that �β0 �=∅

}
(9)

=
{

1, if �α �=∅ for all α ∈ (0,1) ,

inf
({

β : �β =∅
})

, if there is β0 ∈ (0,1) such that �β0 =∅.

Proof. Clearly A� is well-defined and A� ∈ FS. Throughout this proof, we denote by A�
α the α-cut of A�, that is, 

A�
α = (A�)α for all α ∈ (0,1].
1.- If �α = ∅ for all α ∈ (0,1], then definition (6) leads to A� (t) = 0 for all t ∈ I. Hence A� = 0. If there is 

α0 ∈ (0,1] such that �α0 �= ∅, then there exists some t0 ∈ �α0 . Since A�(t0) = sup
({

β : t0 ∈ �β

} ) ≥ α0 > 0, then 
the fuzzy number A� is distinct than 0 (because A�(t0) > 0).

2.- Let t ∈ I be arbitrary. Definitions (6) and (7) coincide when A� (t) = 0 or A� (t) = 1. Suppose that the numbers 
s0 = sup

({
β : t ∈ �β

})
and i0 = inf

({
β : t /∈ �β

})
exist (that is, t /∈ �1 and there is β ∈ (0,1) such that t ∈ �β ), 

and we are going to prove that s0 = i0 by contradiction.
Suppose that s0 < i0. Let β0 ∈ (s0, i0), that is, s0 < β0 < i0. If t ∈ �β0 , then s0 is not the supremum of the set {

β : t ∈ �β

}
(because β0 is greater than s0). However, if t /∈ �β0 , then i0 is not the infimum of the set 

{
β : t /∈ �β

}
(because β0 is less than i0). In any case we get a contradiction.
10
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Next suppose that s0 > i0. Since s0 = sup
({

β : t ∈ �β

})
is a supremum and i0 < s0, then there is β1 ∈ (i0, s0]

such that t ∈ �β1 . Hence, i0 < β1 ≤ s0. Similarly, since i0 = inf
({

β : t /∈ �β

})
is an infimum and i0 < β1, then 

there is β2 ∈ [i0, β1) such that t /∈ �β2 . Hence, i0 ≤ β2 < β1 ≤ s0, which means that �β1 ⊆ �β2 . However, this is a 
contradiction because t ∈ �β1 ⊆ �β2 but t /∈ �β2 . This proves that i0 = s0, that is, both descriptions of A� lead to the 
same function.

3.- Let α ∈ (0,1] be arbitrary. If t ∈ �α , then A�(t) = sup
({

β : t ∈ �β

}) ≥ α, so t ∈ A�
α . This proves that 

�α ⊆ A�
α for all α ∈ (0,1]. Next we prove the equality in (8). Let t ∈ A�

α for some given α ∈ (0,1]. Then A�(t) ≥
α > 0. Let β ∈ (0, α) be arbitrary and we are going to prove that t ∈ �β (this will mean that t ∈ ∩β∈(0,α)�β ). 
Since A� (t) = sup

({
γ : t ∈ �γ

}) ≥ α > β , then there is γ0 ∈ (
β,A�(t)

]
such that t ∈ �γ0 . Since β < γ0, then 

t ∈ �γ0 ⊆ �β . Conversely, let t ∈ ∩β∈(0,α)�β and we have to prove that t ∈ A�
α . Let {βn} ⊂ (0, α) be an strictly 

increasing sequence such that {βn} → α. Since t ∈ �βn ⊆ A
�

βn
, then A� (t) ≥ βn for all n ∈ N . And as {βn} → α, 

then A� (t) ≥ α, so t ∈ A�
α .

4.- We check that (9) holds. If �α = ∅ for all α ∈ (0,1), then A� = 0 and sup(A�) = 0. Suppose that there is 
β ∈ (0,1) such that �β �= ∅ and let s0 = sup

({
β : �β �=∅

})
. Clearly s0 > 0. Let ε ∈ (0, s0/2) be arbitrary. Then 

there is βε ∈ (s0 − ε, s0] such that �βε �= ∅. Let tε ∈ �βε . Since �βε ⊆ A
�

βε
, then A� (tε) ≥ βε > s0 − ε. This proves 

that sup(A�) ≥ A� (tε) > s0 − ε for all ε ∈ (0, s0/2). Therefore sup(A�) ≥ s0. To prove the equality, suppose, by 
contradiction, that s0 < sup(A�). Then there is t0 ∈ I such that s0 < A�(t0) ≤ sup(A�). If we call α0 = A�(t0), then 
s0 < α0 ≤ sup(A�) and, by item (3),

t0 ∈ A�
α0

= ⋂
β∈(0,α0)

�β.

If we take any α1 ∈ (s0, α0), then s0 < α1 < α0 and t0 ∈ �α1 . Then �α1 �= ∅, which contradicts the fact that s0 =
sup

({
β : �β �=∅

})
and s0 < α1.

To prove that both descriptions of sup(A�) are the same, it is only necessary to repeat the arguments given in the 
proof of item 2. �
Example 19. Let � = { �α : α ∈ (0,1] } be the family described by (5) in Example 17. Recall that � does not satisfy 
the property Aα = ∩β∈(0,α)Aβ for all α ∈ (0,1]. However, if we compute the associated fuzzy set AF defined in 
Theorem 18, then we obtain the following function.

A� (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if t = 0.5,

0.5, if t ∈ [0.25,0.75]�{0.5},

0, if t ∈ [0,0.25) ∪ (0.75,1] .

Notice that, for all α ∈ (0,1],

(A�)α =
{

{0.5}, if α ∈ (0.5,1] ,

[0.25,0.75] , if α ∈ (0,0.5] ,

so �α ⊆ (A�)α for all α ∈ (0,1]. Also notice that A� is, in fact, a finite fuzzy number (see [2]).

Corollary 20. Let � = { �α : α ∈ (0,1] } be a family of nested subsets of I (maybe empty some of them). Let A� be 
the fuzzy set defined in Theorem 18. Then the following properties are equivalent.

a) (A�)α = �α for all α ∈ (0,1].
b) �α = ∩β∈(0,α)�β for all α ∈ (0,1].

Proof. (a) ⇒ (b). Since A� is a fuzzy set, its α-cuts, that in this case are the sets �α of the family �, satisfy condition 
(b) by Proposition 9.

(b) ⇒ (a). Item 3 of Theorem 18 guarantees that property (a) holds. �

11
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Corollary 21. Given a fuzzy set A ∈ FS, let �A = { Aα : α ∈ (0,1] } be the family of all its α-cuts and let A�A ∈ FS
be the fuzzy set associated to the family �A as in Theorem 18. Then A�A = A.

Proof. It follows from Proposition 5 taking into account that both fuzzy sets have the same α-cuts, that is, (A�A
)α =

∩β∈(0,α)Aβ = Aα for all α ∈ (0,1] (recall Proposition 9 and Corollary 20). �
Remark 22. Notice that the corresponding process by using a family of nested subsets does not lead to the same result. 
For instance, if � = { �α : α ∈ (0,1] } is the family described in Example 17, and A� is the fuzzy set associated to �
as in Theorem 18, then the family of α-cuts �A� = { (A�)α : α ∈ (0,1] } is distinct to �. In fact, �α ⊆ (A�)α for all 
α ∈ (0,1], but �0.5 �= (A�)0.5 (recall Example 19).

As a consequence of Corollary 20, we derive the following consequence by employing closed subintervals of I.

Corollary 23. Let � = { Iα : α ∈ (0,1] } be a family of nested closed subintervals of I (maybe empty some of them). 
Let define A� : I → I, for each t ∈ I, by:

A�(t) =
{

0, if t ∈ I�
(∪α∈(0,1]Iα

)
,

sup
({

β : t ∈ Iβ

})
, if there is β0 ∈ (0,1] such that t ∈ Iβ0 .

Then A� is a fuzzy set satisfying the following property:[
(A�)α = Iα for all α ∈ (0,1]

] ⇔ [
Iα = ∩β∈(0,α)Iβ for all α ∈ (0,1]

]
. (10)

If this is the case, then A� is a fuzzy number on I, and A� is a normal fuzzy number if, and only if, I1 is non-empty.

Proof. It follows from Corollary 20. In such a case, A� is a fuzzy number on I because its α-cuts are closed 
subintervals of I. Then Theorem 18 is applicable, and condition (10) means that the functions AL and AU are left-
continuous. �
3.4. The lateral limits of the extremes of level sets of a fuzzy set

It follows from item 4 of Proposition 7 that, given a fuzzy set A ∈ FS, the α-cut Aα is non-empty when α is less 
than αA and it is empty when α is greater than αA. Next, we study what is the case for α = αA. It will depend on 
whether the fuzzy set A has an absolute maximum or not.

Lemma 24. Given A ∈ FS�{0}, the following properties hold.

1. For all α ∈ (0, αA], the following limits exist:

lim
β→α− infAβ, lim

β→α− supAβ ∈ I,

and they satisfy:

lim
β→α− infAβ ≤ infAα ≤ supAα ≤ lim

β→α− supAβ for all α ∈ (0, αA)

(this property also holds for α = αA if AαA
is non-empty).

2. If α1, α2 ∈ (0, αA] are such that α2 ≤ α1, then

lim
β→α−

2

infAβ ≤ lim
β→α−

1

infAβ ≤ lim
β→α−

1

supAβ ≤ lim
β→α−

2

supAβ.

3. The following limits

�A
L = lim

α→α− infAα and �A
U = lim

α→α− supAα
A A

12
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exist and they satisfy

0 ≤ infAα ≤ �A
L ≤ �A

U ≤ supAα ≤ 1 for all α ∈ [0, αA) .

4. The level set AαA
is non-empty if, and only if, A has absolute maximum on I (that is, there is t0 ∈ I such that 

A(t0) = αA).
5. If AαA

�=∅ (A has absolute maximum), then

�A
L ≤ infAαA

≤ supAαA
≤ �A

U . (11)

Proof. Since A �= 0, then αA > 0. Item 4 of Proposition 7 guarantees that Aβ �=∅ for all β ∈ (0, αA).
1, 2, 3.- If α1, α2 ∈ [0, αA) are such that α2 ≤ α1, then ∅ �= Aα1 ⊆ Aα2 . As a consequence:

infAα2 ≤ infAα1 ≤ supAα1 ≤ supAα2 . (12)

Given α ∈ (0, αA], the function φα : (0, α) → I given by φα (β) = infAβ is well defined on the interval (0, α). Taking 
into account that it is bounded and increasing, then the limit limβ→α− infAβ exists and it belongs to I (because 
suppA ⊆ I). Similarly we can deduce that limβ→α− supAβ exists. The other items follow from the properties of 
functions { φα : α ∈ (0, αA] }.

4.- If AαA
�=∅, then there is t1 ∈ AαA

. This point satisfies A(t1) ≥ αA = sup(A) ≥ A(t) for all t ∈ I. Hence t1 is an 
absolute maximum of A on I. Conversely, suppose that A has an absolute maximum on I, that is, there is t0 ∈ I such 
that A(t0) ≥ A (t) for all t ∈ I. Therefore αA = sup (A) = A(t0), so t0 ∈ AαA

and this set is non-empty.
5.- Suppose that αA is the maximum of A on I. The previous item shows that AαA

�=∅, and the reasoning given in 
(12) guarantees that

infAα ≤ infAαA
≤ supAαA

≤ supAα for all α ∈ [0, αA] .

Letting α → α−
A we deduce that �A

L ≤ infAαA
≤ supAαA

≤ �A
U . �

Example 25. Property (4) that states that, given a fuzzy set A ∈ FS, Aα = ∩β∈(0,α)Aβ for all α ∈ (0,1], may lead us 
to believe that, when A has absolute maximum, the equalities hold in (11), that is, �A

L = infAαA
and �A

U = supAαA
. 

However, this is false, as we next show. Let ω0, ω1 ∈ I be such that 0 < ω0 < ω1 ≤ 1 and let define A : I → I by:

A(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω1t

0.2
, if 0 ≤ t < 0.2,

ω0, if 0.2 ≤ t < 0.8,

ω1, if 0.8 ≤ t ≤ 1.

The α-cuts of A are:

Aα =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if α ∈ (ω1,1] ,

[0.8,1] , if α = ω1,[
0.2α

ω1
,0.2

)
∪ [0.8,1] , if α ∈ (ω0,ω1) ,[

0.2α

ω1
,1

]
, if α ∈ [0,ω0] .

Notice that A has absolute maximum, which is αA = ω1 > 0. Furthermore,

Aω1 = [0.8,1] and Aα =
[

0.2α
,0.2

)
∪ [0.8,1] for all α ∈ (ω0,ω1) .
ω1

13
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Then infAαA
= minAω1 = 0.8 but

infAα = 0.2α

ω1
for all α ∈ (ω0,ω1) .

Therefore

�A
L = lim

α→α−
A

infAα = lim
α→ω−

1

0.2α

ω1
= 0.2 < 0.8 = minAαA

.

4. Approximating fuzzy sets by fuzzy numbers

In this subsection we introduce a procedure in order to associate a unique normal fuzzy number A ∈ FN to each 
fuzzy set A ∈ FS. This process can be interpreted as a way to approximate each fuzzy set A ∈ FS by a unique normal 
fuzzy number � (A) = A ∈ FN, that is, we introduce an approximation operator � : FS → FN. Next we study the 
main properties of this operator.

The following methodology will depend on:

• two increasing, continuous functions f, g : I → I such that f ≤ g (that is, f (t) ≤ g (t) for all t ∈ I); and on
• two functions T1, T2 : � → I such that f (t) ≤ T1(t, s) ≤ T2(t, s) ≤ g (s) for all (t, s) ∈ �, where � denotes the 

triangle on the plane whose vertices are (0,0), (0,1) and (1,1) (that is, � = { (t, s) ∈ I × I : t ≤ s }).

In the next result we introduce the association methodology. If A = 0, then � (A) = 0, so we reduce our study to 
fuzzy sets such that A �= 0.

Theorem 26. Let f, g : I → I be two increasing, continuous functions and let T1, T2 : � → I be two functions such 
that f (t) ≤ T1(t, s) ≤ T2(t, s) ≤ g (s) for all (t, s) ∈ �.

Given a fuzzy set A ∈ FS�{0}, there is a unique normal fuzzy number A ∈ FN whose α-level sets { Aα =
[ AL (α) , AU (α) ] : α ∈ (0,1] } are given by the following extremes:

AL (α) =
⎧⎨⎩ f

(
lim

β→α− infAβ

)
, if α ∈ (0, αA] ,

T1
(
�A
L, �A

U

)
, if α ∈ (αA,1] ;

(13)

AU (α) =
⎧⎨⎩ g

(
lim

β→α− supAβ

)
, if α ∈ (0, αA] ,

T2
(
�A
L, �A

U

)
, if α ∈ (αA,1] .

(14)

Proof. Since A �= 0, then αA ∈ (0,1]. Item 1 of Lemma 24 guarantees that the limits limβ→α− infAβ and 
limβ→α− supAβ exist for all α ∈ (0, αA]. Therefore, for all α ∈ (0, αA],

AL (α) = f

(
lim

β→α− infAβ

)
≤ f

(
lim

β→α− supAβ

)
≤ g

(
lim

β→α− supAβ

)
= AU (α) .

Furthermore, if α ∈ (αA,1], then AL (α) = T1
(
�A
L, �A

U

) ≤ T2
(
�A
L, �A

U

) = AU (α). Hence Aα = [ AL (α) , AU (α) ] is a 
non-empty closed subinterval of I for each α ∈ (0,1]. We claim that AL is increasing. To prove it, let α1, α2 ∈ (0,1]
be such that α1 ≤ α2. If α1, α2 ∈ (αA,1], then AL (α1) = T1

(
�A
L, �A

U

) = AL (α2). If α1, α2 ∈ (0, αA], then item 2 of 
Lemma 24 shows that limβ→α−

1
infAβ ≤ limβ→α−

2
infAβ , and as f is increasing, then

AL (α1) = f

(
lim

β→α−
1

infAβ

)
≤ f

(
lim

β→α−
2

infAβ

)
= AL (α2) .

Finally, if α1 ∈ (0, αA] and α2 ∈ (αA,1], then

AL (α1) = f

(
lim

β→α− infAβ

)
≤ f

(
lim

β→α− infAβ

)
= f

(
�A
L

)
≤ T1

(
�A
L, �A

U

)
= AL (α2) .
1 A

14
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In any case, we deduce that AL (α1) ≤ AL (α2) for all α1, α2 ∈ (0,1] such that α1 ≤ α2, so AL is increasing. Similarly 
it can be checked that AU is a decreasing function.

Now we prove that AL is a left-continuous function. Notice that AL is constant on (αA,1], so it is continuous on 
this interval. Let α ∈ (0, αA] be arbitrary and let {αn} ⊂ (0, α) be an strictly increasing sequence such that {αn} → α. 
Since the function φα : (0, α) → I given by φα (β) = inf

(
Aβ

)
is well defined and increasing on the interval (0, α), 

and the function f is continuous, then

lim
n→∞AL (αn) = lim

n→∞ f

(
lim

β→α−
n

infAβ

)
= f

(
lim

n→∞ lim
β→α−

n

infAβ

)
= f

(
lim

β→α− infAβ

)
= AL (α) .

Therefore, AL is left-continuous on α, which proves that AL is left-continuous on (0,1]. Similarly, it can be proved 
that AU is left-continuous on (0,1].

Next let A ∈ FS be the fuzzy set associated to the family � = { [ AL (α) , AU (α) ] : α ∈ (0,1] } by Theorem 18, 
that is, A is defined by

A(t) =
{

0, if t ∈ I�
(∪α∈(0,1][AL (α) , AU (α) ]) ,

sup ({β : t ∈ [AL (β) , AU (β) ] }) , if there is β0 ∈ (0,1] such that t ∈ [AL (β0) , AU (β0) ].
Item 3 of Theorem 18 shows that

[AL (α) , AU (α) ] ⊆Aα = ⋂
β∈(0,α)

[AL (β) , AU (β) ].

But as AL and AU are left-continuous on (0,1], then

Aα = ⋂
β∈(0,α)

[AL (β) , AU (β) ] = [AL (α) , AU (α) ] for all α ∈ (0,1] .

Notice that A1 = [ AL (1) , AU (1) ] = [ T1
(
�A
L, �A

U

)
, T2

(
�A
L, �A

U

) ] is a non-empty interval, so A is a normal fuzzy 
set. As a consequence, Theorem 16 (applied with ω0 = 1) guarantees that A is a fuzzy number. Furthermore, A is the 
unique fuzzy number whose level sets are given by (13)-(14) because the level sets characterize the fuzzy set (recall 
Proposition 5). �

The previous theorem let us to introduce an approximation operator

� = �f,g,T1,T2 : FS → FN

defined, for each A ∈ FS by:

�(A) =
{

0, if A = 0,

A, if A �= 0,

where A ∈ FN is the unique normal fuzzy number whose α-cuts { Aα = [ AL (α) , AU (α) ] : α ∈ (0,1] } are given by 
the equalities (13)-(14). Notice that this operator directly depends on the functions f , g, T1 and T2.

We are mainly interested in the following case, that we will call standard choice: f and g are the identity mapping 
on I, T1 = min and T2 = max. In such a case, we denote by �0 : FS → FN the above mentioned operator under the 
standard choice for f , g, T1 and T2.

Example 27. Let A ∈ FS be the fuzzy set defined as:

A(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2t, if 0 ≤ t < 0.2,

4t − 0.8, if 0.2 ≤ t ≤ 0.4,

0.2, if 0.4 < t ≤ 0.6,

3.2 − 4t, if 0.6 < t ≤ 0.8,

t − 0.6, if 0.8 < t ≤ 1.

(15)
15
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Then, for all α ∈ (0,1],

Aα =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if α ∈ (0.8,1] ,[
α + 0.8

4
,0.4

]
∪

(
0.6,

3.2 − α

4

]
, if α ∈ (0.4,0.8] ,[α

2
,0.2

)
∪

[
α + 0.8

4
,0.4

]
∪

(
0.6,

3.2 − α

4

]
∪ [α + 0.6,1] , if α ∈ (0.2,0.4] ,[α

2
,0.2

)
∪

[
α + 0.8

4
,

3.2 − α

4

]
∪ [α + 0.6,1] , if α ∈ (0,0.2] ,

[0,1] , if α = 0.

Therefore, since αA = 0.8, we have that for all α ∈ (0,0.8],

infAα =

⎧⎪⎨⎪⎩
α + 0.8

4
, if α ∈ (0.4,0.8] ,

α

2
, if α ∈ (0,0.4] ;

supAα =
{ 3.2 − α

4
, if α ∈ (0.4,0.8] ,

1, if α ∈ (0,0.4] .

Notice that the functions α ∈ (0,0.8] �−→ infAα and α ∈ (0,0.8] �−→ supAα are left-continuous, but they are not 
continuous at α = 0.4. Also notice that

�A
L = lim

β→0.8− infAβ = 0.4 and �A
U = lim

β→0.8− supAβ = 0.6.

Under the standard choice, T1
(
�A
L, �A

U

) = min {0.4,0.6} = 0.4 and T2
(
�A
L, �A

U

) = max {0.4,0.6} = 0.6. Therefore

�0 (A)α =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[0.4,0.6] , if α ∈ (0.8,1] ,[
α + 0.8

4
,

3.2 − α

4

]
, if α ∈ (0.4,0.8] ,[α

2
,1

]
, if α ∈ (0,0.4] .

Thus, under the standard choice, its associated normal fuzzy number �0 (A) is:

�0 (A) (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2t, if 0 ≤ t < 0.2,

0.4, if 0.2 ≤ t ≤ 0.3,

4t − 0.8, if 0.3 < t < 0.4,

1, if 0.4 ≤ t ≤ 0.6,

3.2 − 4t, if 0.6 < t < 0.7,

0.4, if 0.7 ≤ t ≤ 1.

Example 28. Suppose that f (t) = t3, T1 (t, s) = (min{t, s})2, T2 (t, s) = √
max{t, s} and g (t) = 3

√
t for all t, s ∈ I

such that t ≤ s. If we take the same fuzzy number A ∈ FS defined by (15) in Example 27, then

AL (α) =

⎧⎪⎨⎪⎩
T1

(
�A
L, �A

U

)
, if α ∈ (0.8,1] ,

f

(
lim

β→α− infAβ

)
, if α ∈ (0,0.8]

⎫⎪⎬⎪⎭ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.42, if α ∈ (0.8,1] ,(
α + 0.8

4

)3

, if α ∈ (0.4,0.8] ,(α)3
, if α ∈ (0,0.4] ;
2

16



JID:FSS AID:8162 /FLA [m3SC+; v1.347] P.17 (1-23)

A.F. Roldán López de Hierro, M.Á. Tíscar, C. Roldán et al. Fuzzy Sets and Systems ••• (••••) •••–•••
AU (α) =

⎧⎪⎨⎪⎩
T2

(
�A
L, �A

U

)
, if α ∈ (0.8,1] ,

g

(
lim

β→α− supAβ

)
, if α ∈ (0,0.8]

⎫⎪⎬⎪⎭ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
0.6, if α ∈ (0.8,1] ,

3

√
3.2 − α

4
, if α ∈ (0.4,0.8] ,

1, if α ∈ (0,0.4] .

If we plot these functions, we obtain the following graphic:

Then, the unique fuzzy number whose extremes of its α-cuts are given by the previous functions is the following 
one:

�f,g,T1,T2 (A) (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
√

8t, if 0 ≤ t ≤ 0.008,

0.4, if 0.008 < t ≤ 0.027,

4 3
√

t − 0.8, if 0.027 < t ≤ 0.064,

0.8, if 0.064 < t < 0.16,

1, if 0.16 ≤ t ≤ √
0.6,

0.8, if
√

0.6 < t ≤ 3
√

0.6,

3.2 − 4t3, if 3
√

0.6 < t ≤ 3
√

0.7,

0.4, if 3
√

0.7 < t ≤ 1.

5. Some properties of the approximation operator

We start this section by showing a key property of the above mentioned operator: under certain conditions, the 
normal fuzzy number associated to each normal fuzzy number is itself, that is, normal fuzzy numbers are approximated 
by themselves.

Theorem 29. If f and g are chosen as the identity mapping on I, then each normal fuzzy number on I is a fixed point 
of the approximation operator � = �f,g,T1,T2 . In this case, the operator � is surjective onto the family of all normal 
fuzzy numbers.

Proof. The fuzzy number 0 is a fixed point of � by definition. Let B ∈ FN be a normal fuzzy number such that 
B �= 0. Then αB = 1 and its level sets are given by Bα = [ BL (α) , BU (α) ] for all α ∈ (0,1], where the function 
BL : (0,1] → R is left-continuous (recall Theorem 16). Let A = � (B) ∈ FN be the unique normal fuzzy number 
associated to B following the procedure described in Theorem 26. As f is the identity mapping on I, then, for all 
α ∈ (0,1],

AL (α) = f

(
lim

β→α− infBβ

)
= lim

β→α− infBβ = lim
β→α− BL (β) = BL (α) ,

where the last equality occurs because BL is left-continuous. Similarly it can be proved that AU (α) = BU (α) for all 
α ∈ (0,1]. We conclude by Proposition 5 that A = B because they have the same level sets. Hence B = A = � (B) is 
a fixed point of �. �
17
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Fuzzy sets are generalizations of crisp sets to a setting in which some uncertainty must be considered. The most 
important binary relation among crisp sets is the inclusion ⊆. In fact, it is a partial order. In the context of fuzzy sets, 
the inclusion is generalized by the following binary relation: given two fuzzy sets A, B : R → I, the fuzzy set A is 
included in the fuzzy set B if A ≤ B , that is, A (t) ≤ B (t) for all t ∈ R.

Lemma 30. Given two fuzzy sets A, B :R → I, A is included on B (A ≤ B) if, and only if, Aα ⊆ Bα for all α ∈ (0,1].

Proof. Suppose that A ≤ B . Given α ∈ (0,1], let t ∈ Aα . Since B (t) ≥ A (t) ≥ α, then t ∈ Bα , so Aα ⊆ Bα . 
Conversely, suppose that Aα ⊆ Bα for all α ∈ (0,1]. Let t ∈ R be arbitrary and let α = A (t). If α = 0, then 
A (t) = 0 ≤ B (t). Next, suppose that α > 0. Then t ∈ Aα ⊆ Bα , so B (t) ≥ α = A (t). In any case, A ≤ B . �

A first result considering the inclusion of fuzzy sets is the following one.

Theorem 31. If f and g satisfy f (t) ≤ t ≤ g (t) for all t ∈ I, then A ≤ � (A) for all A ∈ FS.

Proof. If A = 0, then � (A) = A. Suppose that A �= 0, that is, αA > 0. Let t0 ∈ I be arbitrary and let α0 = A (t0). If 
α0 = 0, then A (t0) = 0 ≤ � (A) (t0). Next, suppose that α0 = A (t0) > 0. Clearly, t0 ∈ Aα0 , so Aα0 is non-empty. Item 
1 of Lemma 24 guarantees that

lim
β→α−

0

infAβ ≤ infAα0 ≤ supAα0 ≤ lim
β→α−

0

supAβ.

Therefore:

AL (α0) = f

(
lim

β→α−
0

infAβ

)
≤ lim

β→α−
0

infAβ ≤ infAα0 and

AU (α0) = g

(
lim

β→α−
0

supAβ

)
≥ lim

β→α−
0

supAβ ≥ supAα0 .

As a consequence,

t0 ∈ Aα0 ⊆ [
infAα0, supAα0

] ⊆ [AL (α0) , AU (α0) ] = �(A)α0
.

This means that � (A) (t0) ≥ α0 = A (t0), which completes the proof. �
The following result shows that � satisfies a minimizing property.

Theorem 32. Let A ∈ FS be a fuzzy set such that αA = 1 and let B ∈ FN be a fuzzy number such that A ≤ B. If f and 
g are the identity mapping on I, then � (A) ≤ B.

Proof. Let A = � (A) ∈ FN. Since A ≤ B, then Aα ⊆ Bα = [ BL (α) , BU (α) ] for all α ∈ (0,1] (see Lemma 30). 
Since αA = 1, then Aβ �= ∅ for all β ∈ (0,1). In particular, BL (β) ≤ infAβ ≤ supAβ ≤ BU (β) for all β ∈ (0,1). 
Hence, for all α ∈ (0,1],

AL(α) = f

(
lim

β→α− infAβ

)
= lim

β→α− infAβ ≥ lim
β→α− BL (β) = BL (α) ,

AU (α) = g

(
lim

β→α− supAβ

)
= lim

β→α− supAβ ≤ lim
β→α− BU (β) = BU (α) .

As a consequence, Aα = [ AL (α) , AU (α) ] ⊆ [ BL (α) , BU (α) ] = Bα for all α ∈ (0,1]. Lemma 30 guarantees that 
� (A) =A ≤ B. �

Next we study how the approximation operator works on two very similar fuzzy sets. Before that, we need the 
following technical result.
18
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Proposition 33. If a fuzzy set A ∈ FS has not absolute maximum, then there is a sequence {tn} ⊆ I such that {tn} →
s0 ∈ I, {A (tn)} is strictly increasing and {A (tn)} → αA.

Proof. Since A has not absolute maximum, A (t) < αA for all t ∈ I. As αA is a supremum, then there is a sequence 
{sn} ⊂ I such that {A (sn)} → αA. Since A (sn) < αA for all n ∈ N , the sequence {sn} has a partial subsequence 
{sσ(n)} such that {A(sσ(n))} is strictly increasing (and also convergent to αA). Finally, taking into account that {sσ(n)}
is bounded, then it has a convergent partial subsequence {tn} that satisfies all requirements. �
Theorem 34. Given a fuzzy set A ∈ FS with no absolute maximum, let {tn} ⊆ I be a sequence such that {tn} → s0 ∈ I, 
{A (tn)} is strictly increasing and {A (tn)} → αA. Let define

B (t) =
{

αA, if t = s0,

A (t) , if t �= s0.

Then B ∈ FS is a fuzzy set, B has absolute maximum (which is αA) and � (A) = � (B).

Proof. Let γ0 = A (s0). Since A has not absolute maximum, then γ0 = A (s0) < αA. Clearly B is a fuzzy set having 
αB = αA as absolute maximum. Furthermore,

Bα =
⎧⎨⎩
∅, if α ∈ (αA,1] ,

Aα ∪ {s0}, if α ∈ (γ0, αA

]
,

Aα, if α ∈ (0, γ0
]
.

Item 4 of Proposition 7 guarantees that Aα �= ∅ for all α ∈ (0, αA) and Aα = ∅ for all α ∈ (αA,1]. As A has not 
absolute maximum, then Aα = ∅ for all α ∈ [αA,1]. In particular, BαA

= {s0} and s0 ∈ Bα �= ∅ for all α ∈ (0, αA]. 
Since Aα ⊆ Bα for all α ∈ (0, αA), then infBα ≤ infAα for all α ∈ (0, αA). Let define φA, φB : (0, αA) →R by

φA (α) = infAα and φB (α) = infBα for all α ∈ (0, αA) .

Both functions φA and φB are increasing and bounded from above (recall suppA ⊆ I). We divide the rest of the proof 
into seven steps.

Step 1. We claim that infBβ ≤ s0 for all β ∈ (0, αA] and �B
L ≤ s0. Since s0 ∈ Bβ for all β ∈ (0, αA], then infBβ ≤ s0

for all β ∈ (0, αA]. In particular, �B
L = limβ→α−

A
infBβ ≤ s0.

Step 2. We claim that �A
L ≤ s0. Define βn = A (tn) for all n ∈ N . Since {A (tn)} is strictly increasing but A has not 

absolute maximum, then βn < βn+1 < αA for all n ∈N and {βn} → αA. As tn ∈ Aβn , then infAβn ≤ tn for all n ∈N . 
Since {tn} → s0 and φA is increasing and bounded from above, then

�A
L = lim

β→α−
A

infAβ = lim
β→α−

A

φA (β) = lim
n→∞φA (βn) = lim

n→∞ infAβn ≤ lim
n→∞ tn = s0.

Step 3. We claim that infAα ≤ s0 for all α ∈ (0, αA). Let α ∈ (0, αA) be arbitrary. If β ∈ (α,αA), then α < β < αA. 
Since φA is increasing, then φA (α) ≤ φA (β). Therefore:

infAα = φA (α) ≤ lim
β→α−

A

φA (β) = �A
L ≤ s0.

Step 4. We claim that infAα = infBα for all α ∈ (0, αA). If α ∈ (0, γ0
]
, then Bα = Aα , so infAα = infBα for all 

α ∈ (0, γ0
]
. Suppose that α ∈ (γ0, αA). In this case, Aα is a non-empty subset of R bounded from below and s0 /∈ A. 

Since infAα ≤ s0 by Step 3, then infAα = inf(Aα ∪ {s0}) = infBα .
Step 5. We claim that �A

L = �B
L . By Step 4,

�B
L = lim

β→α−
A

infBβ = lim
β→α−

A

infAβ = �A
L.

Repeating Steps 1-5, it can similarly be proved that �A
U = �B

U .
Step 6. We claim that limβ→α− infAβ = limβ→α− infBβ for all α ∈ (0, αA]. It directly follows from Step 4.
19
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Step 7. AL (α) = BL (α) for all α ∈ (0,1]. Taking into account (13) and Step 6, if α ∈ (0, αA], then:

AL (α) = f

(
lim

β→α− infAβ

)
= f

(
lim

β→α− infBβ

)
= BL (α) ,

and if α ∈ (αA,1],

AL (α) = T1

(
�A
L, �A

U

)
= T1

(
�B
L, �B

U

)
= BL (α) .

In any case, AL (α) = BL (α) for all α ∈ (0,1]. In a similar way it can be proved that AU (α) = BU (α) for all 
α ∈ (0,1]. Hence � (A)α = � (B)α for all α ∈ (0,1], so � (A) = � (B). �

Theorem 34 implies that the approximation operator � is never injective. Furthermore, it means that we can reduce 
the computation of � to fuzzy sets in FS having absolute maximum.

Theorem 35. Under the standard choice, the approximation operator �0 is increasing in FS w.r.t. the binary relation 
≤. Furthermore, it satisfies �0 (0) = 0 and �0( ̃11) = 1̃1.

Proof. Let A, B ∈ FS be such that A ≤ B . By Theorem 31, B ≤ �0 (B), so A ≤ �0 (B). Since �0 (B) ∈ FN, Theo-
rem 32 guarantees that �0 (A) ≤ �0 (B). Thus �0 is increasing in FS w.r.t. the binary relation ≤. �
5.1. LR-fuzzy numbers

In this subsection we describe how the approximation operator � acts on the family of LR-fuzzy sets under 
the standard choice. In the following result, we use the LR-fuzzy set A = (a1/a2/a3/a4; ω1, ω2)LR described in (2), 
where a1, a2, a3, a4 ∈ I satisfy 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1, ω1, ω2 ∈ (0,1] (recall that A is a fuzzy number if, and only 
if, ω1 ≤ ω2), L : [a1, a2] → [0,ω1] is a continuous, strictly increasing function such that L (a1) = 0 and L (a2) = ω1, 
and R : [a3, a4] → [0,ω1] is a continuous, strictly decreasing function such that R(a3) = ω1 and L (a4) = 0.

Lemma 36. Under the standard choice, if A = (a1/a2/a3/a4; ω1, ω2)LR is an LR-fuzzy set, then �0 (A) =
(a1/a2/a3/a4; ω1, 1)LR .

Proof. Let B be the fuzzy number (a1/a2/a3/a4; ω1, 1)LR . Its α-cuts are given by:

Bα =
{ [

L−1 (α) , R−1 (α)
]
, if α ∈ (0,ω1] ,

[a2, a3 ] , if α ∈ (ω1,1] .

Let A = �0 (A) and denote by { Aα = [ AL (α) , AU (α) ] : α ∈ (0,1] } to its α-cuts. We study the case ω2 < ω1
because it is more difficult than the contrary case. Also assume that a1 < a2 and a3 < a4, so L−1 : [0,ω1] → [a1, a2]
is strictly increasing, R−1 : [0,ω1] → [a3, a4] is strictly decreasing, L−1 (0) = a1, L−1 (ω1) = a2, R−1 (ω1) = a3 and 
R−1 (0) = a4. Both functions L−1 and R−1 are also continuous. In this case:

Aα =

⎧⎪⎪⎨⎪⎪⎩
∅, if α ∈ (ω1,1] ,[
L−1 (α) , a2

) ∪ (
a3, R−1 (α)

]
, if α ∈ (ω2,ω1) ,[

L−1 (α) , R−1 (α)
]
, if α ∈ (0,ω2] .

Hence, if β ∈ (0,ω1) = (0, αA), then infAβ = L−1 (β) ∈ [a1, a2] and supAβ = R−1 (β) ∈ [a3, a4]. As a consequence, 
for all α ∈ (0, αA],
20
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AL (α) = f

(
lim

β→α− infAβ

)
= lim

β→α− infAβ = lim
β→α− L−1 (β) = L−1 (α) ,

AU (α) = g

(
lim

β→α− supAβ

)
= lim

β→α− supAβ = lim
β→α− R−1 (β) = R−1 (α) .

Notice that

�A
L = lim

α→α−
A

infAα = lim
α→ω−

1

L−1 (α) = L−1 (ω1) = a2 and

�A
U = lim

α→α−
A

supAα = lim
α→ω−

1

R−1 (α) = R−1 (ω1) = a3.

Therefore T1
(
�A
L, �A

U

) = min{a2, a3} = a2 and T2
(
�A
L, �A

U

) = max{a2, a3} = a3. This means that:

AL (α) =
{

L−1 (α) , if α ∈ (0,ω1] ,

a2, if α ∈ (ω1,1] ; AU (α) =
{

R−1 (α) , if α ∈ (0,ω1] ,

a3, if α ∈ (ω1,1] .

Thus, for all α ∈ (0,1],

Aα = [AL (α) , AU (α) ] =
{ [

L−1 (α) , R−1 (α)
]
, if α ∈ (0,ω1] ,

[a2, a3 ] , if α ∈ (ω1,1]

}
= Bα

These are exactly the α-cuts of the fuzzy number B = (a1/a2/a3/a4; ω1, 1)LR so, by Proposition 5, we conclude that 
�0 (A) =A = B = (a1/a2/a3/a4; ω1, 1)LR . �
Corollary 37. For all r ∈ I and ω ∈ (0,1], �0 ( r̃ω) = r̃1 ≡ r .

6. Conclusions

In this paper we have introduced a wide family of operators �f,g,T1,T2 : FS([0,1]) → FN([0,1]), depending on a 
great range of initial functions, and we have studied their main properties. This family can be interpreted as a first 
stage in order to translate the best properties of the set FN([0,1]) to the very general family FS([0,1]). In this line of 
research, as they are able to approximate fuzzy sets by fuzzy numbers, it could be useful, for instance, in approximate 
reasoning when the initial input data are near to be fuzzy numbers.

In prospect works, we will analyze the potential of this approach in real-life contexts (for instance, in fuzzy ranking, 
fuzzy decision making, fuzzy regression, etc.) where fuzzy sets (or even type-2 fuzzy sets) are a key tool to represent 
fuzzy information without considering crisp (non-fuzzy) data in the solution of the problem.
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