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Abstract
Many authors consider that the main pillars of Functional Analysis are the Hahn–Banach
Theorem, the Uniform Boundedness Principle and the Open Mapping Principle. The first
one is derived from Zorn’s Lemma, while the latter two usually are obtained from Baire’s
Category Theorem. In this paper we show that these three pillars should be either just two
or at least eight, since the Uniform Boundedness Principle, the Open Mapping Principle and
another five theorems are equivalent, as we show in a very elemental way. Since one can
give an almost trivial proof of the Uniform Boundedness Principle that does not require the
Baire’s theorem, we conclude that this is also the case for the other equivalent theorems that,
in this way, are simultaneously proved in a simple, brief and concise way that sheds light on
their nature.

Keywords Uniform boundedness · Open mapping · Closed graph · Banach isomorphism ·
Norms theorem · Sum theorem · Closed range
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1 Introduction

Many authors point out that the core of the FunctionalAnalysis lies in three pillars, also known
the “big three” (see for instance [4], [7]), namely the Uniform Boundedness Principle, the
Open Mapping Theorem, and the Hahn–Banach Theorem ((HBT) for short). As there are so
many references corroborating it, we only give a few sample items: [1, Chapter 2], [2], [5,
Chapter 4], [10, p. 97], [12]. In some texts the Closed Graph Theorem is added to that list (see
[3, p. 215] or [8], for instance). In most books on Functional Analysis, the first two theorems
are proved (independently) from Baire’s Category Theorem while the (HBT) is derived from
Zorn’s Lemma.
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The aim of this paper is to prove the equivalence between the seven theorems that make
up the Theorem 1.1 below. Thus, the mentioned three pillars of the Functional Analysis
should be only two or at least eight, depending on whether we consider the (HBT) and the
Theorem 1.1 or, alternatively, the (HBT) and the seven theorems involved in the statement
of Theorem 1.1. The proof of Theorem 1.1 is done in a very concise and simple way. Since
a direct and elementary proof of the Uniform Boundedness Principle that does not require
Baire’s Theorem can be given, we conclude that this is also the case for all the results
involved in Theorem 1.1. Thus, beyond providing a short and simultaneous proof of all of
them, we also show that they have the same relevance because they are logically equivalent as
Theorem 1.1 establishes. In fact, the proof of this result reveals how close the seven theorems
that it involves are to each other.

As usual, if X and Y are normed spaces overK (= R or C) then, L(X ,Y ) will denote the
normed space of all bounded linear operators from X into Y .

Theorem 1.1 The following statements are equivalent:

(i) Uniform Boundedness Principle (UBP): Let {Ti }i∈I be a family of bounded linear maps
from a Banach space X into a normed space Yi . If {Ti }i∈I is pointwise bounded then
supi∈I ‖Ti‖ < ∞.

(ii) Open Mapping Theorem (OMT): Let X and Y be Banach spaces. If T ∈ L(X ,Y ) is
surjective then T is open.

(iiii) Open Mapping Theorem (bis) (OMTbis): Let X be a Banach space, Y a normed space,
and T ∈ L(X ,Y ) a surjective map. Then, T is open if and only if Y is complete.

(iv) Banach Isomorphism Theorem (BIT): Let X and Y be Banach spaces. If T ∈ L(X ,Y )

is bijective, then T−1 is continuous.
(v) Norms Theorem (NT): Let ‖·‖ and |·| be complete norms on a linear space X such that

they are comparable. Then ‖·‖ and |·| are equivalent.
(vi) Closed Graph Theorem (CGT): If X and Y are Banach spaces then, a linear operator

T : X → Y is continuous if and only if its graph is closed (i. e. the separating subspace
of T is zero).

(vii) Sum Theorem (ST): Let M and N be closed subspaces of a Banach space X. Then,
M + N is closed if, and only, if the map (m, n) → m + n from M × N into M + N is
open.

(viii) Closed Range Theorem (CRT): Let X and Y beBanach spaces and T : D(T ) ⊆ X → Y
a closed linear operator whose domain D(T ) is dense in X. Let R(T ) be the range of
T and T ∗ : D(T ∗) ⊆ Y ∗ → R(T ∗) ⊆ X∗ the transpose of T . Then, the following
assertions are equivalent:

(a) R(T ) is closed in Y ,
(b) R(T ∗) is closed in X∗,
(c) R(T ∗) = (ker T )⊥,
(d) R(T ) = (ker T ∗)	,
(e) T : D(T ) → R(T ) is open,
(f) T ∗ : D(T ∗) → R(T ∗) is open.

We will prove this theorem in Sect. 3.
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2 The background

The aim of this section is to establish Proposition 2.1 (whose proof is straightforward) and
Theorem 2.5 (which is a direct consequence of the Bipolar Theorem and, therefore, of the
(HBT)).

Let X and Y be normed spaces. A linear map T : X → Y is open if T , maps open sets of
X into open sets of Y . Note that such a T must be surjective. Indeed if, for a normed space
Z , we denote by BZ (z, r) the open ball centered in z ∈ Z with radius r > 0 then, obviously,
T is open if and only if there exists r > 0 such that

BY (0, r) ⊆ T (BX (0, 1)), (2.1)

and the surjectivity of T follows. Moreover, T is open if and only if there exists K > 0
satisfying that, for every y ∈ Y , there exists x ∈ X such that T (x) = y with ‖x‖ ≤ K ‖y‖.
(See for instance [10, p. 99]).

Throughout this paper, if M and N are subspaces of X then the space M × N will be
considered provided with the norm

‖(M, N )‖ := max{‖m‖ , ‖n‖}.
Therefore, the map M × N → M + N given by (m, n) → m + n is open if, and only if,
there exists K > 0 satisfying that, for every x ∈ M + N , there exists (m, n) ∈ M × N with
x = m + n such that

‖(m, n)‖ = max{‖m‖ , ‖n‖} ≤ K ‖x‖ . (2.2)

From now on, the graph of a linear map T will be denoted by G(T ).

Proposition 2.1 Let X and Y be normed spaces. For every densely defined linear operator
T : D(T ) ⊆ X → R(T ) ⊆ Y , the following assertions are equivalent:

(i) T : D(T ) → R(T ) is open.
(ii) For M = G(T ) and N = X×{0}, the map M×N → M+N given by (m, n) → m+n

is open.

Proof If M = G(T ) and N = X × {0}, then M + N = X × R(T ) and, by (2.2), the
map (m, n) → m + n is open if, and only if, there exists K > 0 such that for every
(x, y) ∈ X × R(T ) there exists w ∈ X satisfying that Tw = y and

max{‖(w, Tw)‖ , ‖(x − w, 0)‖} ≤ K ‖(x, y)‖ . (2.3)

To show (ii) ⇒ (i), let y ∈ R(T ). Since (0, y) ∈ X × R(T ), by (2.3), there exists
(w, T (w)) ∈ G(T ) (which means that w ∈ D(T ) and Tw = y) such that

‖w‖ ≤ max{‖(w, Tw)‖ , ‖(−w, 0)‖} ≤ K ‖(0, y)‖ = K ‖y‖ .

Therefore, T is open.
To prove (i) ⇒ (ii) suppose that T is open and let ˜K > 0 be such that, for every y ∈ R(T ),

there exists w ∈ D(T ) with Tw = y satisfying ‖w‖ ≤ ˜K ‖y‖. Assume that ˜K > 1 (replace
˜K with ˜K + 1 if necessary). If (x, y) ∈ X × R(T ) then, there exists w ∈ D(T ) such that
Tw = y and ‖w‖ ≤ ˜K ‖y‖. Consequently,

‖(x − w, 0)‖ ≤ ‖(x, 0)‖ + ‖(w, 0)‖ = ‖x‖ + ‖w‖ ≤ ˜K ‖x‖ + ˜K ‖y‖ ≤ 2˜K ‖(x, y)‖ .

Moreover, ‖(w, Tw)‖ = ‖(w, y)‖ = max{‖w‖ , ‖y‖} ≤ ˜K ‖y‖ ≤ 2˜K ‖(x, y)‖. Thus, for
K = 2˜K we have max{‖(w, Tw)‖ , ‖(x − w, 0)‖} ≤ K ‖(x, y)‖ with Tw = y, which
proves (2.3) and hence (ii) �
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From now on, if X is a normed space and if M is a subspace of X then, we denote by BM

the open unit ball ofM and by BM the closed one. Similarly, BM (0, r) := {x ∈ M : ‖x‖ < r}
(for r > 0), while BM (0, r) means the corresponding closed ball.

Note that from (2.1) the map M × N → M + N given by (m, n) → m + n is open if
there exists r > 0 such that

BM+N (0, r) ⊆ BM + BN

(as T (BM×N ) = BM + BN , where T (m, n) = m + n). The next result characterizes this
property.

Lemma 2.2 Let M and N be subspaces of a normed space X, and r > 0.

(i) If BM+N (0, r) ⊆ BM + BN then BM+N (0, r) ⊆ BM + BN .

(ii) If X is complete, if M and N are closed, and if BM+N (0, r) ⊆ BM + BN , then
BM+N (0, r̃) ⊆ BM + BN , for every r̃ < r .

Proof Assertion (i) is trivial. To prove (ii) suppose that BM+N (0, r) ⊆ BM + BN , and note
that if δ > 0 then,

BM+N (0, r) ⊆ BM + BN + BM+N (0, δ).

Let y ∈ BM+N (0, r). Put δ = rε with 0 < ε < 1 to obtain m1 ∈ BM , n1 ∈ BN , and
y1 ∈ BM+N (0, rε) such that y = m1 + n1 + y1. Since

y1
ε

∈ BM+N (0, r), we have that

y = ∑k=2
k=1 εk−1mk +∑k=2

k=1 εk−1nk + y2 withm2 ∈ BM , n2 ∈ BN , and y2 ∈ BM+N (0, rε2).

Iterating, we obtain y = ∑k=n
k=1 εk−1mk + ∑k=n

k=1 εk−1nk + yn , with mk ∈ BM , nk ∈ BN ,
yk ∈ BM+N (0, rεk), and k = 1, · · · , n. Since X is complete, m := ∑∞

k=1 εk−1mk and
n := ∑∞

k=1 εk−1nk belong to X . In fact, m ∈ BM (0, 1
1−ε

), n ∈ BN (0, 1
1−ε

), and y = m + n.

Therefore BM+N (0, r) ⊆ BM (0, 1
1−ε

) + BN (0, 1
1−ε

), and the rest is clear. �
Next, we characterize again the openness of the map M × N → M + N given by

(m, n) → m + n.

Lemma 2.3 Let M and N be subspaces of a normed space X. Then the following assertions
are equivalent:

(i) There exists r > 0 such that BM+N (0, r) ⊆ BM + BN .
(ii) There exists r > 0 such that (BX (0, r) + N ) ∩ M ⊆ BX + (M ∩ N ).
(iii) There exists r > 0 such that (BX (0, r) + N ) ∩ M ⊆ BX + (M ∩ N ).
(iv) There exists r > 0 such that BM+N (0, r) ⊆ BM + N.

Proof If (i) holds for 0 < r < 1, then (ii) holds for this r as well. Indeed, if m := x + n ∈
(BX (0, r) + N ) ∩ M then x = m − n ∈ BM+N (0, r), so that there exists m̃ ∈ BM and
ñ ∈ BN such that x = m̃ + ñ. Therefore, m = x + n = m̃ + ñ + n with x ∈ BX (0, 1) and
ñ + n = m − m̃ ∈ M ∩ N . this proves (i) ⇒ (ii).

The assertion (ii) ⇒ (iii) is trivial. In fact, if r > 0 satisfies (ii) then every r̃ < r
satisfies (iii). To prove (iii) ⇒ (iv), consider r > 0 satisfying (iii) and let us show that
BM+N (0, r̃) ⊆ BM + N , for every r̃ < r . If x := m + n ∈ M + N is such that ‖x‖ < r̃
then, for ε > 0 with ‖(1 + ε)x‖ < r , we have

(1 + ε)m = (1 + ε)x − (1 + ε)n ∈ (BX (0, r) + N ) ∩ M,

and by (iii) there exists y ∈ BX and w ∈ (M ∩ N ) such that (1 + ε)m = y + w. Thus
x = m + n = y

1+ε
+ ( w

1+ε
+ n) ∈ BM + N which proves (iii) ⇒ (iv).

Finally (iv) ⇒ (i) is obvious because if r > 0 is such that BM+N (0, r) ⊆ BM + N then,
BM+N (0, r) ⊆ BM + BN (0, r + 1), and hence (i) is fulfilled for r

1+r . �
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Let X∗ be the topological dual of X . For A ⊆ X and F ⊆ X∗ let A0 and 0F denote the
polar of A and the prepolar of F , respectively. Thus

A0 : = {x∗ ∈ X∗ : sup
a∈A

∣

∣x∗(a)
∣

∣ ≤ 1},
0F : = {x ∈ X : | f (x)| ≤ 1,∀ f ∈ F}.

For A, B ⊆ X and F,G ⊆ X∗ basic properties are the following:

(i) If A ⊆ B then B0 ⊆ A0; and if F ⊆ G then 0G ⊆ 0F ,
(ii) (0(A0))0 = A0 and, consequently, A0 ⊆ B0 if and only if 0(B0) ⊆ 0(A0).

The well-knownBipolar Theorem states that if A is a subset of a normed space X then, 0(A0)

is the closure of the absolute convex hull of A. This is an immediate (and trivial) consequence
of the geometrical version of theHahn–BanachTheorem (See [12, Theorem15.5] for details).

On the other hand the orthogonal of A ⊆ X and the preorthogonal of F ⊆ X∗ are the
sets

A⊥ : = { f ∈ X∗ : f (x) = 0,∀x ∈ A}.
F 	 : = {x ∈ X : f (x) = 0,∀ f ∈ F}.

It is obvious that if 0 ∈ A ∩ B then (A + B)⊥ = A⊥ ∩ B⊥.

Lemma 2.4 For closed subspaces M and N of a Banach space X, and r > 0 ,

BX∗(0, r) + N⊥ = BN (0, 1
r )0

(BN (0, r) + M)0 = BN (0, r)0 ∩ M⊥.

Proof If f ∈ BN (0, 1
r )0 then

∥

∥ f/N
∥

∥ ≤ r and, if g ∈ X∗ is an extension of f/N with ‖g‖ =
∥

∥ f/N
∥

∥, then f = g+( f −g) ∈ BX∗(0, r)+N⊥ which shows that BN (0, 1
r )

0 ⊆ BX∗(0, r)+
N⊥. The inclusion BX∗(0, r) + N⊥ ⊆ BN (0, 1

r )
0 is trivial, as well as BN (0, r)0 ∩ M⊥ =

(BN (0, r) + M)0. In fact, if 0 ∈ A ⊆ X then (A + M)0 = A0 ∩ M⊥. �
Theorem 2.5 Let M and N, be closed subspaces of a Banach space X. The following asser-
tions are equivalent:

(i) The map (m∗, n∗) → m∗ + n∗ from M⊥ × N⊥ into M⊥ + N⊥ is open.
(ii) The map (m, n) → m + n, from M × N into M + N is open.

Proof The map (m∗, n∗) → m∗ + n∗ from M⊥ × N⊥ into M⊥ + N⊥ is open if, and only if,
there exists r > 0 such that BM⊥+N⊥(0, r) ⊆ BM⊥ + BN⊥ . By Lemma 2.3, this is equivalent
to the existence of r > 0 such that,

(BX∗(0, r) + N⊥) ∩ M⊥ ⊆ BX∗ + (M⊥ ∩ N⊥). (2.4)

Since BX∗(0, r) = BX (0, 1
r )

0, by Lemma 2.4 we have

(BX∗(0, r) + N⊥) ∩ M⊥ = (BN (0, 1
r ))0 ∩ M⊥ = (

BN (0, 1
r ) + M

)0
and

BX∗ + (M⊥ ∩ N⊥) = BX∗ + (M + N )⊥ = (BM+N )0.

Therefore, (2.4), and hence (i), means that
(

BN (0, 1
r ) + M

)0 ⊆ (BM+N )0 which is equiva-
lent to

0 (

(BM+N )0
) ⊆0 (

(BN (0, 1
r ) + M)

)0
. (2.5)
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Since BM+N = 0 ((BM+N ))0 and 0
(

(BN (0, 1
r ) + M)

)0 = BN (0, 1
r ) + M , by the Bipolar

Theorem (as these sets are absolutely convex), we obtain that (2.5) is equivalent to the fact that
BM+N (0, r) ⊆ BN + BM for some r > 0. By Lemma 2.2 this means that BM+N (0, r) ⊆
BN + BM for some r > 0, which is (ii). �

We conclude this section with some remarks on the dual of a densely defined operator.
Let X and Y be Banach spaces and T : D(T ) ⊆ X → Y be a densely defined linear

operator. We define

D(T ∗) := {g ∈ Y ∗ : gT : D(T ) → K is continuous}.
Let ̂gT ∈ X∗ be the unique continuous extension to X that the operator gT has.We define the
adjoint (or dual) operator of T as the operator T ∗ : D(T ∗) → X∗ given by T ∗g = ̂gT , for
every g ∈ D(T ∗). Note that G(T ∗) is a subspace of Y ∗ × X∗. Moreover the spaces Y ∗ × X∗
and (X × Y )∗ are canonically identified by defining (g, f )(x, y) := f (x) + g(y), for every
g ∈ Y ∗, f ∈ X∗ and (x, y) ∈ X × Y . Therefore, since (g, f )(x,−T x) = f (x) − g(T x),
we have

G(−T )⊥ : = {(g, f ) ∈ Y ∗ × X∗ : f = gT in D(T )} =
{(g, f ) ∈ Y ∗ × X∗ : f = ̂gT in Y ∗} = {(g,T ∗g) : g ∈ Y ∗} = G(T ∗). (2.6)

For the sake of completeness (as we will not need it) note that if, additionally, T is
continuous then D(T ∗) = Y ∗, trivially, and T ∗, is continuous with ‖T ∗‖ ≤ ‖T ‖. Moreover,
for every x ∈ D(T ), there exists g ∈ Y ∗ with ‖g‖ = 1 such that |g(T x)| = ‖T x‖, so that
‖T x‖ = ‖T ∗g(x)‖ ≤ ‖T ∗g‖ ‖x‖ ≤ ‖T ∗‖ ‖x‖, and hence ‖T ‖ = ‖T ∗‖. In fact, we have
that T is continuous if and only D(T ∗) = Y ∗ and T ∗ : Y ∗ → X∗ is continuous, in which
case ‖T ‖ = ‖T ∗‖.

3 The proof of themain theorem

Next we prove Theorem 1.1. Also we will provide a proof of the Uniform Boundedness
Principle that does not need to use Baire’s Theorem. For the sake of completeness we include
the proofs of all the assertions involved being aware of that some of them are well known.

Proof of Theorem 1.1 (i) ⇒ (ii). [(UBP) ⇒ (OMT)]. Let X and Y be Banach spaces, and
T ∈ L(X ,Y ) a surjective operator. For n ≥ 1, define

‖y‖n := inf{‖u‖ + n ‖v‖ : u ∈ X , v ∈ Y , and Tu + v = y}.
Then ‖·‖n is a norm on Y and ‖y‖n ≤ n ‖y‖, for every y ∈ Y (take u = 0 and v = y
as T (0) + y = y). Let Z be the space of all the sequences in Y having a finite number of
non-zero entries, provided with the norm

‖{zn}‖ := max
n∈N

‖zn‖n , for {zn} ∈ Z .

Let Tn : Y → Z be the map Tn(y) = {zk}k∈N where zk = 0 if k �= n and zn = y.
Obviously Tn ∈ L(Y ,Z), (as ‖Tn(y)‖ = ‖y‖n ≤ n ‖y‖). In fact, ‖Tn‖ ≤ n. On the other
hand, {Tn : n ∈ N} is pointwise bounded because if y ∈ Y , then there exists x ∈ X such that
T x = y, so that ‖Tn(y)‖ = ‖y‖n ≤ ‖x‖, for every n ≥ 1. By the (UBP) there exists M > 0
such that ‖Tn‖ ≤ M , for every n ∈ N. Thus,

‖y‖n = ‖Tn(y)‖ ≤ M ‖y‖ ,
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for every y ∈ Y . Consequently, if ‖y‖ < 1
M then ‖y‖n < 1, and there exists un ∈ X , and

vn ∈ Y , such that Tun + vn = y and

‖un‖ + n ‖vn‖ → ‖y‖n < 1.

Therefore, ‖un‖ < 1 and n ‖vn‖ < 1. Since ‖vn‖ < 1
n we have Tun → y so that y ∈ T (BX ).

This shows that, for r = 1
M ,

BY (0, r) ⊆ T (BX ). (3.1)

We claim now that BY (0, r
2 ) ⊆ T (BX ). From (3.1), if we rescale then,

BY (0, r
2n ) ⊆ T (BX (0, 1

2n )).

Let y ∈ BY (0, r
2 ). Since y ∈ T (BX (0, 1

2 )), there exists x1 ∈ BX (0, 1
2 ) satisfying

that ‖y − T x1‖ < r
22
, so that y − T x1 ∈ BY (0, r

22
) ⊆ T (BX (0, 1

22
)). Therefore there

exists x2 ∈ (BX (0, 1
22

) such that ‖y − T x1 − T x2‖ < r
23
. Iterating, we obtain xn ∈

BX (0, 1
2n ) satisfying

∥

∥y − ∑n
k=1 T xk

∥

∥ < r
2n+1 , for every n ∈ N. Since X is complete

and
∑∞

k=1 ‖xk‖ <
∑∞

k=1
1
2n = 1, we have that x = ∑∞

k=1 xk ∈ X and ‖x‖ < 1. Moreover,
T x = T (

∑∞
k=1 xk) = ∑∞

k=1 T xk = y, so that BY (0, r
2 ) ⊆ T (BX ) and hence T is open.

(ii) ⇒ (iii). [(OMT) ⇒ (OMTbis)]. Let X be a Banach space, Y a normed space and
T ∈ L(X ,Y ) a surjective map. If Y is complete then, T is open by the (OMT). Conversely,
that T is open means that ̂T−1 is continuous, where ̂T : X/ ker T → Y is the canonical
factorization of T . Hence ̂T is bicontinuous and the complete norm of X/ ker T induces
a norm on Y , namely |||y||| = ∥

∥̂T−1(y)
∥

∥, which is equivalent to the original one, and
consequently Y is complete.

(iii) ⇒ (iv). [(OMTbis) ⇒ (BIT)]. If X and Y are Banach spaces and if T ∈ L(X ,Y )

is bijective, then T−1 is continuous as, by the (OMTbis), T is open and this nothing but the
continuity of T−1.

(iv) ⇒ (v). [(BIT)⇒ (NT)]. If ‖·‖ and |||·||| are complete norms on a linear space X and if
K > 0 satisfies ‖·‖ ≤ K |||·||| then, by the (BIT), the identity map i : (X , |||·|||) → (X , ‖·‖)
is bicontinous, and hence ‖·‖ and |||·||| are equivalent.

(v) ⇒ (vi). [(NT)⇒ (CGT)]. Let X and Y be Banach spaces and T : X → Y be a linear
map. Then, G(T ) is closed in X × Y if and only if the norm

|||x ||| = max{‖x‖, ‖T x‖}, (x ∈ X)

is complete. Since |||·||| ≤ ‖·‖, by the (NT) we obtain that G(T ) is closed if and only if these
norms are equivalent which is nothing but the continuity of T .

(vi) ⇒ (vii). [(CGT) ⇒ (ST)]. Let X be a Banach space and M and N be closed
subspaces of X . Let S : M × N → M + N be the mapping given by S(m, n) = m + n.
Since S is continuous, ker S := S−1(0) is a closed subspace of M × N and the factorization
̂S : (M × N )/ ker S → M + N is a linear, bijective, and continuous map from the Banach
space (M × N )/ ker S into the normed space M + N . Since the graph of̂S−1 is closed if and
only if M + N is closed, by the (CGT) we conclude that S is open (i.e. ̂S−1 is continuous)
if and only if M + N is closed (i.e. ̂S−1 has closed graph).

(vii) ⇒ (viii). [(ST) ⇒ (CRT)]. Let T : D(T ) ⊆ X → Y be a closed linear operator
whose domain D(T ) is dense in the Banach space X . Let M =: G(T ) and N := X × {0}.
Then M⊥ = G(T )⊥ ≡ G(−T ∗) by (2.6), and N⊥ = Y ∗ ×{0} trivially. Moreover M + N =
X × R(T ) and M⊥ + N⊥ = Y ∗ × R(T ∗).
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By Proposition 2.1, the map T : D(T ) → R(T ) is open if, and only if, the sum map
(m, n) → m + n from M × N into M + N is open and, by the (ST), this is satisfied if, and
only if, M + N , or equivalently R(T ), is closed.

Similarly, by Proposition 2.1 we obtain that T ∗ : D(T ∗) → R(T ∗) is open if and only
if (m∗, n∗) → m∗ + n∗, from ˜M × ˜N into ˜M + ˜N , is open where ˜M := G(T ∗) and
˜N := D(T ∗)×{0}. By the (ST), this is satisfied if, and only if, ˜M + ˜N = D(T ∗)×R(T ∗) is
closed which means thatR(T ∗) is closed. But this is equivalent to the fact that M⊥ + N⊥ =
Y ∗ ×R(T ∗) is closed which means, again by the (ST), that the map M⊥ ×N⊥ → M⊥ +N⊥,
given by (m∗, n∗) → m∗ + n∗, is open. Finally note that (by Theorem 2.5) this last map is
open if and only if the sum map (m, n) → m + n from M × N into M + N is open, which
concludes the proof of the (CRT) taking into account the trivial equalitiesR(T ∗) = (ker T )⊥
and R(T ) = (ker T ∗)	.

(viii) ⇒ (i). [(CRT) ⇒ (UBP)]. Let X and {Yi } be a Banach spaces (complete Yi
if necessary) and let {Ti : X → Yi }i∈I be a pointwise bounded family of bounded linear
operators. Let

⊕

∞
Yi be the Banach space of all the families {yi }i∈I with supi∈I {‖yi‖} < ∞,

provided with the norm ‖·‖∞. Let T : X → ⊕

∞
Yi be the linear operator given by T x =

{Ti x}i∈I (note that T is well defined as {Ti }i∈I is pointwise bounded). Moreover, G(T ) is
closed as we can check directly. Thus, the projection PX : G(T ) → X , is a bijective bounded
linear operator (between Banach spaces) whose range is closed. Therefore PX is open, by
the (CRT), which means that P−1

X is continuous. Since the projection PY : G(T ) → Y is
obviously continuous we conclude that T := PY P

−1
X is continuous which is nothing but

supi∈I ‖Ti‖ < ∞. �
The equivalence (i) ⇔ (v) in the statement of the (CRT) asserts that

A densely de f ined linear operator T : D(T ) ⊆ X → R(T ) ⊆ Y ,

wi th closed graph, is open i f and only i f R(T ) is closed. (3.2)

This is a generalization of the (OMTbis), to the wider class of densely defined operators
with closed graph, that can be deduced from the (ST) joint with Proposition 2.1. Moreover,
(3.2) is enough to obtain the (UBP) as showed in the assertion (CRT) ⇒ (UBP). Therefore,
the role of the Bipolar Theorem is just to show that T is open if and only if T ∗ is open.
Consequently, if in Theorem 1.1 we replace the (CRT) statement with (3.2) then, Section 2
can be reduced to Proposition 2.1.

The proof of (UBP) ⇒ (OMT) follows [6], and some ideas from [9] have been useful for
our approach in the proof of (ST) ⇒ (CRT).

For the sake of completeness we include a proof of the (UBP) that does not require Baire’s
Theorem, from [11]. Others proofs of the (UBP) that do not Baire‘s Theorem are known; for
instance the one given by Hahn applying the gliding hump argument [8, Exercise 1.76].

Proof of the Uniform boundedness principle.
First of all, we establish the following trivial result.

Lemma 3.1 Let X and Y be normed spaces and let T ∈ L(X ,Y ). Then, for every x0 ∈ X
and every r > 0,

sup
x∈B(x0,r)

‖T (x)‖ ≥ r ‖T ‖ .

Proof For every x ∈ X we have

‖T x‖ ≤ 1

2
(‖T (x − x0)‖ + ‖T (x + x0)‖) ≤ max{‖T (x − x0)‖ , ‖T (x + x0)‖},
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and the result follows. �
In the proof of (UBP) ⇒ (OMT) we have applied the (UBP) to a particular family

{Ti }i∈I where all the Yi where equal. Anyway, embedding Yi in
⊕

∞
Yi if necessary, it is

not restrictive to assume in the (UBP) that Y = Yi for every i ∈ I .

Theorem 3.2 (UniformBoundedness Principle). Let X be a Banach space, Y a normed space
and {Ti }i∈I a family of operators in L(X ,Y ). If supi∈I ‖Ti (x)‖ < ∞, for every x ∈ X, then
supi∈I ‖Ti‖ < ∞.

Proof Suppose that supi∈I ‖Ti‖ = ∞ and choose a sequence Tn in {Ti }i∈I such that
‖Tn‖ ≥ 4n . Put x0 = 0 and apply inductively the Lemma 3.1 to get a sequence xn such
that ‖xn − xn−1‖ ≤ 1

3n and ‖Tnxn‖ ≥ 2
3

1
3n ‖Tn‖. Since xn is a Cauchy sequence there exists

x ∈ X such that xn → x , and if m > n, then

‖xn − xm‖ ≤
m

∑

k=n+1

‖xk − xk−1‖ ≤
m

∑

k=n+1

1

3k
= 3

2
(

1

3n+1 − 1

3m+1 ).

Letting m → ∞ we obtain that ‖x − xn‖ ≤ 1
2

1
3n . Consequently,

‖Tn(x)‖ ≥ ‖Tn(xn)‖ − ‖Tn(x − xn)‖ ≥ 1

6

1

3n
‖Tn‖ ≥ 1

6

4n

3n
→ ∞,

which shows that {Ti }i∈I is not pointwise bounded, as desired. �
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