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1. Introduction

We consider the following algorithmic problem. Let Fq be the finite field with q ele-
ments and let A be a central simple algebra over Fq(t) (the field of rational functions in 
the variable t) with Fq(t)-basis b1, . . . , bn2 . Then one has that

bibj =
n2∑

k=1

γijkbk

where γijk ∈ Fq(t). The γijk are called structure constants. We consider A to be given 
as a collection of structure constants. The task is to find a primitive idempotent in A. 
This problem is closely related to the factorization problem of Ore polynomials with 
coefficients in Fq(t) [10]. In [13] the split case, namely where A ∼= Mn(Fq(t)), is studied. 
Here we investigate the problem when A ∼= Mk(D) where D is a division algebra over 
Fq(t).

In Section 3 we reduce the problem of computing a primitive idempotent in A to 
computing D, the division algebra Brauer equivalent to A (building on the algorithm 
from [13]). A central simple algebra over Fq(t) is determined (up to Brauer equivalence) 
by its Hasse invariants (see, e.g., [6, Corollary 6.5.4]). This means that by computing the 
Hasse invariants of A and constructing a division algebra with those invariants provides 
a method for calculating the underlying division algebra of A.

In [1] the authors propose a randomized polynomial time algorithm for constructing 
an Fq(t)-division algebra provided that the invariant at infinity is zero and the degree 
of the algebra is coprime to q. We propose an algorithm where the invariant at infinity 
is not necessarily zero when Fq contains the nth roots of unity. Here n is the degree of 
the division algebra. When the degree of A is coprime to q, these algorithms can also be 
used to compute the Hasse invariants of A.

We also give an application of our results. Linear convolutional codes of length n can 
be modeled (see [5,16,18]) as vector subspaces of Fq(t)n, where the variable t represents 
the delay operator. Based on this model, an approach to cyclic convolutional codes was 
proposed in [7]. So, given an automorphism σ of Fq(t), a skew cyclic convolutional code is 
a left ideal of a cyclic algebra (Fq(t), σ, 1), endowed with the Hamming metric induced by 
the natural basis of (Fq(t), σ, 1). These codes became MDS for the Hamming distance, and 
efficient algebraic decoding algorithms were designed for them [8,9]. A natural question is 
what can be done when the skew cyclic structure is given by a cyclic algebra of the form 
(Fq(t), σ, λ), for a general λ ∈ Fq(t)σ. This leads to the notion of skew constacyclic code. 
We will show that, if we know an explicit algebra isomorphism (Fq(t), σ, λ) ∼= Mk(D), 
where D is a division algebra over Fq(t)σ, then the construction of skew convolutional 
codes and the decoding algorithms from [7,8] can be extended to skew constacyclic 
convolutional codes.

The structure of the paper is as follows. In Section 2 we recall some basic facts about 
quaternion and symbol algebras, and we provide randomized polynomial time algorithms 
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for computing quaternion and symbol algebras with given invariants. In Section 3 we 
show how one can compute a division algebra D Brauer equivalent to a given central 
simple Fq(t)-algebra, and an explicit isomorphism with the corresponding matrix ring 
over D, using either the algorithms from Section 2 or the algorithm from [1]. In Section 4
we construct constacyclic convolutional codes of designed Hamming distance and propose 
a polynomial time decoding algorithm.

2. Quaternion and symbol algebras with prescribed invariants

Let K be a field such that the multiplicative group K∗ contains a cyclic group of 
order n, and let ε ∈ K be a primitive n–th root of unity ε. Choose a, b ∈ K∗. The 
symbol algebra (or power residue algebra) (a, b; K, ε) is the K–algebra with generators 
u, v subject to the relations

un = a, vn = b, uv = εvu.

When n = 2 (and, hence, K must be of characteristic different from 2), symbol algebras 
are called quaternion algebras.

Symbol algebras are central simple K–algebras [4, Chapter 11, Theorem 1].

2.1. Quaternion algebras

In this subsection we propose a randomized polynomial-time algorithm which con-
structs a quaternion algebra over Fq(t) with q an odd prime power which ramifies at 
prescribed places.

First we cite an estimate on the number of irreducible polynomials in a given residue 
class. This is an analogue of Dirichlet’s theorem on primes in arithmetic progressions. 
However, in the function field case, a much stronger result is true:

Proposition 1. [20, Theorem 5.1.] Let a, m ∈ Fq[t] be such that deg(m) > 0 and the 
gcd(a, m) = 1. Let N be a positive integer and let

SN (a,m) = #{f ∈ Fq[t] monic irreducible | f ≡ a (mod m), deg(f) = N}.

Let M = deg(m) and let Φ(m) denote the number of polynomials in Fq[t] relative prime 
to m whose degree is smaller than M. Then we have the following inequality:

|SN (a,m) − qN

Φ(m)N | ≤ 1
N

(M + 1)qN
2 .

We also state two lemmas from [14].
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Lemma 2. [14, Lemma 6] Let a1, a2, a3 ∈ Fq[t] be nonzero polynomials. Let f be a monic 
irreducible polynomial. Let Fq(t)(f) denote the f -adic completion of Fq(t). Let vf (ai)
denote the multiplicity of f in the prime decomposition of ai. Then the following hold:

1. If vf (a1) ≡ vf (a2) ≡ vf (a3) (mod 2), then the equation a1x
2
1 + a2x

2
2 + a3x

2
3 = 0 is 

solvable in Fq(t)(f).
2. Assume that not all the vf (ai) have the same parity. Also suppose that vf (ai) ≡

vf (aj) (mod 2). Then the equation a1x
2
1 + a2x

2
2 + a3x

2
3 = 0 is solvable in Fq(t)(f) if 

and only if −f−vf (aiaj)aiaj is a square modulo f .

Lemma 3. [14, Lemma 10] Let a1, a2, a3 ∈ Fq[t] be nonzero polynomials. Then the fol-
lowing hold:

1. If the degrees of the ai all have the same parity then the equation a1x
2
1+a2x

2
2+a3x

2
3 =

0 admits a nontrivial solution in Fq((1
t )).

2. Assume that not all of the degrees of the ai have the same parity. Also assume that 
deg(ai) ≡ deg(aj) (mod 2). Let ci and cj be the leading coefficients of ai and aj
respectively. Then the equation a1x

2
1 + a2x

2
2 + a3x

2
3 = 0 has a nontrivial solution in 

Fq((1
t )) if and only if −cicj is a square in Fq.

Assume S is a set of places of Fq(t). We propose an algorithm for constructing a 
quaternion algebra over Fq(t) which is split at a place w if and only if w /∈ S. Such an 
algebra does exist if and only if the cardinality of S is even (see [19, Theorem III.3.1]).

Theorem 4. Assume that S is an even finite set of places of Fq(t). Then there exists a 
randomized polynomial time algorithm (polynomial in d and log q) which constructs a 
quaternion algebra H such that H ⊗ Fq(t)v is split if and only if v /∈ S (here, Fq(t)w
denotes the completion of Fq(t) at w).

Proof. Let H(a, b) denote the quaternion algebra (a, b; Fq(t), −1) with parameters a, b ∈
Fq(t). We will look for a and b in the form

a = f1 · · · fku, b = λf1 · · · fk

where the fi are the finite places in S (which are monic irreducible polynomials), u is 
an irreducible polynomial in Fq[t] and 0 �= λ ∈ Fq. First note that H(a, b) is split at a 
place f (either a finite place or at infinity) if the equation

ax2 + by2 − z2 = 0

is solvable in the completion Fq(t)(f) [2, Project 4, Exercise 3.5].
If H(a, b) should be split at infinity, then we choose the degree parity u in a way that 

the degree of a is even and we choose the leading coefficient of u to be 1. We choose λ to 
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be 1 (actually we could choose λ to be any nonzero element in Fq). By Lemma 3, H(a, b)
will be split at infinity.

If H(a, b) should not be split at infinity, then there are two cases. If the degree of b is 
odd (we have not chosen a λ yet but since λ is a nonzero constant it will not influence 
the degree of b), then we choose u in a way that the degree parity of a is even and we 
choose the leading coefficient of u to be a non-square element in Fq. If the degree of b is 
even, then we choose λ to be a non-square element in Fq and we choose u in a way that 
the degree of a is odd (we do not have any constraints on the leading coefficient of u, 
thus we choose it to be 1). By Lemma 3, H(a, b) will be a division algebra at infinity.

Thus we have imposed degree parity and leading coefficient conditions on u and we 
have chosen a suitable λ.

Now we impose conditions on u to ensure that, for all i, we have that H(a, b)(fi) is 
a division algebra. By Lemma 2, we have that this happens if and only if −uλ is not a 
square mod fi. Note that we have already chosen λ, thus only choosing u in a suitable 
way remains. For every i we pick residue classes αi modulo fi in the following fashion. 
If −λ is a square modulo fi, then we pick αi to be a non-square element modulo fi. 
Thus if u ≡ αi (mod fi) then −uλ is a non-square element mod fi. If −λ is not a square 
modulo fi, then we pick αi = 1. By the Chinese Remainder Theorem, there exists a 
unique residue class B modulo f1 · · · fk which satisfies the condition B ≡ αi (mod fi). 
Thus, if

u ≡ B (mod f1 · · · fk),

then H(a, b)(fi) will be a division algebra for all fi.
Now we summarize the steps of the algorithm. Let F = f1 · · · fk and let d = deg F

1. Choose a λ, a degree parity ε (which is zero if the degree of u should be even, 
otherwise it is 1) and a leading coefficient μ in the way described above.

2. Compute the residue class B modulo f1 · · · fk by Chinese remaindering.
3. Pick a random monic polynomial g of degree 3d + ε. Check if the polynomial u′ =

f1 · · · fkg+B
μ is irreducible. If u′ is irreducible, then let u = μu. Output a = f1 · · · fku

and b = λf1 · · · fk. If u′ is not irreducible, then pick a new g.

The output quaternion algebra H(a, b) does not split at any place w ∈ S. Also, it 
splits at every place except maybe at u by Lemma 2 and 3. Thus, since the number of 
places where it does not split is even by [19, Theorem III.3.1], it must split at u as well.

Finally, we need to show that the algorithm runs in polynomial time. The first three 
steps are deterministic and run in polynomial time.

We analyze the last step similarly as in the proof of [14, Theorem 30]. We have the 
following inequality due to Proposition 1:

∣∣∣∣SN (B,F ) − qN
∣∣∣∣ ≤

1 (d + 1)qN
2 .
Φ(F )N N
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We set N = 4d + ε, which implies that

SN (B,F )
qN−d

≥ qN

qN−dΦ(F )N − (d + 1)qN
2

NqN−d
≥ 1

N
− d + 1

Nq
N
2 −d

≥ 1
N

− d + 1
Nqd

≥ 1
3N .

This means that the probability that after 3N rounds we do not find an irreducible 
polynomial in the residue class is smaller than 1

2 . Hence this step runs in polynomial 
time. �
2.2. Symbol algebras

Our next goal is to generalize the algorithm from Theorem 4 to symbol algebras.
We first recall some basic facts on symbol algebras which will be useful for the con-

struction of our algorithms. Let K be a field such that K∗ contains a cyclic subgroup of 
order n, and take ε ∈ K∗ a primitive n–th root of unity. Symbol algebras support the 
following splitting condition.

Proposition 5. [4, Chapter 11, Corollary 4]. The symbol algebra (a, b; K, ε) is split if and 
only if b is a norm in the extension K(a 1

n )|K.

Proposition 5 implies that if a is an n–th power in K, then (a, b; K, ε) splits. We also 
have the following formula.

Proposition 6. [4, Chapter 11, Lemma 3]

(a, b;K, ε) ⊗ (a′, b;K, ε) ∼ (aa′, b;K, ε),

where ∼ denotes Brauer equivalence.

In this section we assume that Fq contains the nth roots of unity, i.e., q ≡ 1 (mod n). 
Let ε ∈ Fq be a primitive n–th root of unity.

Proposition 7. Let f be a monic irreducible polynomial in Fq[t], where q ≡ 1 (mod n). Let 
ε be a primitive nth root of unity in Fq. Denote by Fq(t)(f) the completion of Fq(t) at the 
place corresponding to f . Let a, a′ be units in the local ring of Fq(t)(f), and b ∈ Fq(t)(f). 
Suppose that a ≡ a′ (mod f). Then the symbol Fq(t)(f)–algebras (a, b; Fq(t)(f), ε) and 
(a′, b; Fq(t)(f), ε) are Brauer equivalent.

Proof. If c is a unit and c ≡ 1 (mod f), then c is an nth power by Hensel’s lemma, thus the 
algebra (c, b; Fq(t)(f), ε) splits. Now one has to observe that a′a−1 ≡ 1 (mod f), and that 
the opposite algebra of (a, b; Fq(t)(f), ε) is Brauer equivalent to (a−1, b; Fq(t)(f), ε). �

We would like to cite a lemma from [1, Theorem 5] which provides a formula for 
calculating Hasse-invariants of cyclic algebras over local fields. The notation (F, σ, a)
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stands for the cyclic Fσ–algebra built from an automorphism σ of F of finite order and 
a ∈ Fσ.

Proposition 8. Let K be a local field (with valuation vK) and let W be an unramified 
cyclic extension of K of degree n. Let σ be the unique automorphism of W that reduces 
to the Frobenius automorphism on residue fields. Then the Hasse invariant of the cyclic 
algebra (W, σ, b) is vK(b)

n .

Remark 9. If σ reduces to the kth power of the Frobenius automorphism, where k is 
coprime to n, then the Hasse invariant of (W, σ, b) is k

′vK(b)
n where kk′ ≡ 1 (mod n) [17, 

Chapter 32].

We are now ready to describe the procedure for the construction of a symbol algebra 
with prescribed Hasse invariants.

Theorem 10. Assume that we are given a set of monic irreducible polynomials f1, . . . , fk
(in Fq[t]) and a sequence of rational numbers (in reduced form) r1s1 , . . . , 

rk
sk
, r0s0 . Suppose 

that the sum of these rational numbers is an integer. Assume that the least common 
multiple of the si is n. Then there exists a randomized polynomial time algorithm which 
constructs a division Fq(t)-algebra D, whose local Hasse invariant at fi is equal risi , for 
i = 1, . . . , k, its local Hasse-invariant at infinity is equal to r0

s0
, and the local Hasse-

invariant at every other place is 0.

Proof. First assume that the degree of f1 · · · fk is coprime to n. Let ε be a primitive nth 
root of unity in Fq. Denote the symbol basis of the symbol algebra by u, v, i.e.,

un = a, vn = b, uv = εvu.

We look for a and b in the form

a = s, b = f1 · · · fkλ,

where s is a monic irreducible polynomial in Fq[t] and λ ∈ F∗
q . The algorithm as in 

Theorem 4 boils down to choosing s and λ in an appropriate way. First, we impose 
congruence conditions on s in a way that the resulting algebra has Hasse-invariants risi
at the places fi for i = 1, . . . , k. Define the residue class r′i modulo n such that risi = r′i

n . 
We look at the algebra D ⊗ Fq(t)(fi). Let Ki = Fq[t]/(fi) which is a finite field with 
qdeg fi elements. Note that Ci = K∗

i /K
∗n

i is a cyclic group of order n. By Proposition 7, 
it is enough to find a ωi ∈ Ki such that the symbol algebra (ωi, b; Fq(t)(fi), ε) has Hasse 
invariant risi as a central simple Fq(t)(fi)-algebra. Choose δi ∈ Ki to be a generator of Ci. 
Then, by Proposition 8 (and the remark after it), (δi, b, Fq(t)(fi), ε) has Hasse invariant 
oi
n where (oi, n) = 1. Since (oi, n) = 1, there exists a residue class o′i modulo n such 

that oio′i ≡ r′i (mod n). Choose ωi = δ
o′i
i . Proposition 6 implies that (ωi, b; Fq(t)(fi)ε)
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has Hasse invariant risi . Thus choose s to be congruent to ωi modulo fi (this imposes k
congruence conditions on s which can be made into one using Chinese remaindering as 
in Theorem 4).

Now we impose degree conditions on s and choose λ in a way that the resulting symbol 
algebra has Hasse-invariants r0s0 at infinity. Again let r0s0 = r′

n

If we want the algebra to split at infinity (i.e., r = 0), then choose the degree of 
s to be divisible by n. Indeed, then s is an nth power by Hensel’s lemma in Fq((1

t )), 
hence by Proposition 5 the algebra splits. Assume that r �= 0. Let F = f1 · · · fk and let 
deg F ≡ l (mod n). Then choose the degree of s to be congruent to n − l modulo n. Then 
(uv)n = ε

n(n−1)
2 sFλ = c. Note that c is a polynomial whose degree is divisible by n and 

its leading coefficient is λ. Let μ = ε
n(n−1)

2 λ. We will now choose an appropriate μ ∈ Fq. 
Then we put λ = (ε

n(n−1)
2 )−1μ. Let w = uv. Observe that uw = εwu. Now we have the 

desired unramified extension that splits D ⊗ Fq((1
t )), namely the nth root of μFs. Now 

we proceed in the same manner as at the finite primes. First choose μ0 to be a generator 
of F∗

q /F
∗n

q . Then Proposition 7 shows that by choosing μ = μ0 we get a Hasse invariant 
o
n at infinity where (o, n) = 1. Let o′ be such that oo′ ≡ r′ (mod n). By choosing μ = μo′

0
we get the desired Hasse-invariant.

Now we consider the case where deg F is not coprime to n. Suppose deg F ≡ l (mod n). 
Choose an irreducible polynomial g (different from the fi) such that deg g ≡ n + 1 −
l (mod n). Such a polynomial can be found just by picking a large enough degree and 
choosing a polynomial at random. Then we look for a and b in the following form:

a = s, b = f1 · · · fkgλ.

By implying the same conditions modulo fi apply on s as in the first part of the proof 
we guarantee that the local Hasse-invariants at the fi are risi . We add the extra condition 
that s ≡ 1 (mod g). Proposition 5 implies that D splits at g. Finally, by choosing λ and 
the degree of s in a suitable way we can achieve that the Hasse-invariant at infinity is rs
as in the first part of the proof (as now the degree of f1 · · · fkg is congruent to 1 modulo 
n).

Note that, by Proposition 5, D splits at every finite place different from the fi, as a 
polynomial over a finite field always has a zero if the number of its variables is greater 
than its degree (by Chevalley’s theorem), and the existence of roots over a local field is 
reduced to finite fields by Hensel’s Lemma.

We must consider the Hasse invariant at s. The Hasse-invariant at s must be zero as 
the sum of all Hasse-invariants adds up to an integer.

Finally, D is indeed a division algebra as it has index n (it has period n and in the 
case of global fields, the period equals the index) and is of dimension n2 over Fq(t). �
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3. Construction of an explicit isomorphism from a simple algebra to its matrix form

Let A be a central simple algebra over Fq(t) of finite dimension n2. Let b1, . . . , bn2 be 
an Fq(t)-basis of A. Then, for i, j = 1, . . . n2,

bibj =
n2∑

k=1

γijkbk,

for γijk ∈ Fq(t). We consider A to be given as a collection of structure constants

{γijk : 1 ≤ i, j, k ≤ n2}.

Consider the following problem:

Problem 11. Compute an explicit isomorphism of Fq(t)–algebras A ∼= Mk(D), for a 
suitable division Fq(t)–algebra D.

If the algebra A is known to be split, then a randomized polynomial time algorithm 
is proposed in [13] which finds an explicit isomorphism A ∼= Mn(Fq(t)). We will first 
use such a solution to Problem 11 when D = Fq(t), in conjunction with [15], to get 
a randomized polynomial time algorithm which solves the general case, whenever D is 
known.

Proposition 12. Assume that a division Fq(t)–algebra D is given by structure constants 
and it is known that A ∼= Mk(D). There exists a randomized polynomial time algorithm 
which computes an explicit isomorphism A ∼= Mk(D).

Proof. First, observe that, from the Fq(t)–basis of D and the structure constants of D, 
one easily gets m and a basis of Mk(D) with the corresponding structure constants. 
Now, we know that A ⊗Mk(D)op ∼= Mn2(Fq(t)). Using the randomized polynomial time 
algorithm from [13] one can compute an explicit isomorphism θ between A ⊗Mk(D)op
and Mn2(Fq(t)). Finally, [15, Section 4] describes a randomized polynomial time method 
for computing an explicit isomorphism φ between A and Mk(D) using θ. �

We have reduced Problem 11 to the following one.

Problem 13. Let A be a central simple Fq(t)-algebra of dimension n2 over Fq(t) given 
by structure constants. Compute the structure constants of a division Fq(t)–algebra D
such that A ∼= Mk(D).

The algorithm we propose to deal with Problem 13 rests upon the idea of computing 
first the local Hasse invariants of A and, with them at hand, construct a division algebra 
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with the same local Hasse invariants. To this end, we need an algorithm for computing 
local indices of a central simple algebra over Fq(t), which is already provided by [12].

Lemma 14. [12, Proposition 6.5.3]. There exists a randomized polynomial time algorithm 
for computing the local index at a given irreducible f ∈ Fq(t) of a central simple Fq(t)-
algebra A defined by structure constants.

Proof. The proof of [12, Proposition 6.3.5] boils down, in this case, to the following 
procedure. Compute a maximal Fq[t]-order Γ in A using the algorithm from [12, Theorem 
6.4.2]. Let f be a monic irreducible polynomial. Then Γ/fΓ is a finite algebra C over 
the field Fq[t]/(f). Then one computes the radical of C using the algorithm from [3] and 
then one computes the factor C/Rad(C). Then the dimension of this radical-free part 
over its center is the local index at f . �
Proposition 15. There exists a randomized polynomial time algorithm which computes 
the Hasse-invariants of a central simple Fq(t)-algebra A given by structure constants, 
assuming that gcd(q, n) = 1 where n is the degree of A over Fq(t).

Proof. Compute a maximal Fq[t]-order Γ in A using the algorithm from [13]. The 
Hasse-invariant is zero for every monic irreducible polynomial which does not divide 
the discriminant of Γ. Thus by factoring the discriminant we have a list of monic irre-
ducible polynomials for which the Hasse-invariant needs to be computed.

First we propose an algorithm that decides whether the Hasse-invariant of A at the 
place f equals k/n or not, for each k = 0, . . . , n − 1. We choose a finite place g (i.e., 
a monic irreducible polynomial) which is different from f . Using the algorithm from 
[1] we construct a division algebra D with Hasse invariants n−k

n at f and k
n at g (this 

splits at infinity since the sum of the Hasse-invariants is an integer). Using Lemma 14, 
we compute the local index of the central simple algebra A ⊗ D at f . Since the local 
Hasse invariants of the tensor product of two central simple algebras add up, the Hasse 
invariant of A at f is kn if and only if the local index at f of A ⊗D is equal to 1.

Finally we do this computation for every k and every monic irreducible f dividing the 
discriminant of Γ and we are done. �
Theorem 16. Let A be a central simple Fq(t)-algebra of dimension n2 given by structure 
constants. Assume that A is split at infinity and that (n, q) = 1. There exists a random-
ized polynomial time algorithm for computing a central division Fq(t)–algebra D and an 
explicit isomorphism A ∼= Mk(D).

Proof. By Proposition 8, we can compute the set S of Hasse invariants of A. For the 
second step, construct a division algebra D (D should be given by an Fq(t)-basis and 
structure constants), whose non-zero Hasse-invariants are exactly the elements of the set 
S. This can be done by the algorithm from [1]. We need to show that the denominator of 
each nonzero Hasse-invariant is relative prime to q. The least common multiple of the si
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is equal to the index of A. Since the index of A is a divisor of n and (q, n) = 1, each of the 
si is coprime to q. This implies that the algorithm from [1] can be applied. Note that this 
algorithm returns D in a cyclic algebra form, not in a structure constant from. However, 
from a cyclic algebra representation there exists a polynomial time algorithm which 
computes structure constants. Finally, apply the algorithm from Proposition 12. �

The following consequence of Theorem 16 will be used later.

Corollary 17. Let A be a central simple Fq(t)-algebra of dimension n2 over Fq(t) given 
by structure constants. Assume that A is split at infinity and that (n, q) = 1. There exists 
a randomized polynomial time algorithm for computing a primitive idempotent of A.

Actually the conditions for Corollary 17 can be relaxed. Assume that A is not split 
at infinity but it is split at a place corresponding to the monic irreducible polynomial 
f(t) = t + c where c ∈ Fq. Let s = 1

f . Then one has that Fq(t) = Fq(s) only now the 
infinite place of Fq(s) corresponds to the finite place f of Fq(t). This shows the following:

Theorem 18. Let A be a central simple Fq(t)-algebra of dimension n2 given by structure 
constants. Assume that (n, q) = 1 and that A is either split at infinity or at a finite 
place f where f corresponds to a linear polynomial. Then there exists a randomized poly-
nomial time algorithm which finds a primitive idempotent in A, henceforth, an explicit 
isomorphism A ∼= Mk(D) for a division Fq(t)–algebra D Brauer equivalent to A.

Proof. By computing the nonzero Hasse-invariants of A we obtain a linear polynomial 
f(t) = t + c at which A splits. Then let s = 1

t+c and rewrite the structure constants of A
in terms of s (every structure constant is a rational function in s). Now this new algebra 
is split at infinity, thus we can find a primitive idempotent A using Corollary 17. Finally 
substitute s = 1

t+c and obtain the primitive idempotent as an Fq(t)-linear combination 
of the basis elements. Finally, a straightforward argument shows how to get an explicit 
isomorphism A ∼= Mk(D) from a primitive idempotent of A. �

Theorem 18 implies that assuming that the degree of the algebra and q are relatively 
prime we only encounter a problem if A is split at every linear place. This is much less 
restrictive than the original conditions of Corollary 17 or Theorem 16. In conclusion, 
Theorem 18 solves Problem 11 completely if Fq contains the nth roots of unity and for 
“almost all” central simple Fq(t)-algebras when Fq does not contain a primitive nth root 
of unity.

4. Constructing constacyclic convolutional codes

In this section we consider skew-constacyclic convolutional codes which are related to 
skew-cyclic convolutional codes in a similar fashion as linear constacyclic block codes are 
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related to cyclic codes. Our main goal is to construct skew-constacyclic convolutional 
codes of designed Hamming distance and propose a decoding algorithm.

We present cyclic algebras as factor rings of skew polynomial rings, with the aim of 
making use of the computational tools (e.g. extended Euclidean Algorithm) available 
for these non-commutative polynomials. We will need also to consider the more general 
situation of K–linear codes, where K be a finite extension of Fq(t), even thought our 
primary interest is the case K = Fq(t). We start by recalling the definition of skew 
polynomial rings over K.

Definition 19. Let σ be an automorphism of K of order n. Then R = K[x; σ] consists of 
the usual polynomials over K with the standard addition and multiplication induced by 
the relation xa = σ(a)x, where a ∈ K.

Let us denote the fixed field of σ by Kσ. Suppose λ ∈ Kσ. Then it is easy to see that 
the Ore polynomial xn − λ is in the center of R, and A = K[x, σ]/(xn − λ) is a cyclic 
algebra over Kσ which is isomorphic, as a K–vector space, to Kn by the following map:

v :
n−1∑

i=0
aix

i 	→ (a0, . . . , an−1) ∈ Kn.

Thus we can define the Hamming weight of an element in A.

Definition 20. The Hamming weight w(f) of an element f =
∑n−1

i=0 aix
i ∈ A is the 

number of nonzero ai. The Hamming distance between f, g ∈ A is defined by d(f, g) =
w(f − g).

Next we define skew-constacyclic codes.

Definition 21. Let A = K[x, σ]/(xn − λ). A skew-constacyclic K–linear convolutional 
code is a left ideal of A endowed with the Hamming distance.

Skew-cyclic convolutional codes from [7] are obtained by setting K = Fq(t), λ = 1. 
The rest of the section will be divided into two subsections. In the first subsection we 
consider the case where λ is a norm in the extension K|Kσ. We are mainly interested 
in the case when K = Fq(t). However, we will prove results for general K as well, as we 
need them in the other subsection.

The second subsection is devoted to the case where K = Fq(t) and λ is not a norm 
in the extension Fq(t)|Fq(t)σ. Here we start from a primitive idempotent of A. Next we 
construct a set of orthogonal idempotents which are permuted by σm (the starting idem-
potent is denoted by e), where m is the index of A. We consider the left ideal generated 
e, σm(e), . . . , σm(k−2)(e) and show that this code has Hamming minimum distance at 
least k and propose a decoding algorithm.
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4.1. The norm case

In this subsection we consider the case where λ is a norm in the extension K|Kσ.

Definition 22. Let K be a finite extension of Fq(t) and let σ be an automorphism of finite 
order n of K. Then the jth norm map Nj is defined in the following way:

N0(x) = 1, Nj(x) = xσ(x) · · ·σj−1(x)

It is well known that the cyclic algebras A = K[x, σ]/(xn−λ) and B = K[y, σ]/(yn−1)
are isomorphic. The key observation of this subsection is that there is a map from 
A = K[x, σ]/(xn−λ) to B = K[y, σ]/(yn−1) which is not only an isomorphism of rings, 
but is also an isometry with respect to the Hamming distance.

Proposition 23. Let θ be the map A → B defined by

θ :
n−1∑

i=0
aix

i 	→
n−1∑

i=0
aiNi(a)yi,

where NK|Kσ (a) = λ. Then θ is an algebra isomorphism which is an isometry with 
respect to the Hamming distance.

Proof. It is easy to check that θ is a homomorphism of Kσ–algebras. It is also an isometry 
since Ni(a) �= 0, because the norm of a is λ (which is nonzero). The inverse of θ is the 
map

θ−1 :
n−1∑

i=0
aiy

i 	→
n−1∑

i=0
aiNi(a−1)xi. �

First we consider the case when K = Fq(t). The map θ−1 provides an easy way 
to construct codes of designed distance δ from skew codes. First we construct a skew 
Reed-Solomon code of designed distance δ in B = Fq(t)[y, σ]/(yn− 1) (using the method 
from [8]). Let this code be C. By Proposition 23, θ−1(C) is a skew-constacyclic code 
in A = Fq(t)[x, σ]/(xn − λ). The only thing we need is to be able to solve the norm 
equation NFq(t)|Fq(t)σ(a) = λ. This can be done using the algorithm from [13] since 
Fq(t)σ is isomorphic to Fq(t) (by Lüroth’s theorem) and such an isomorphism can be 
computed by the method of [11]. The decoding procedure from [8] can also be adjusted. 
You receive an element m in A. Then apply θ to m and decode it in B as c ∈ B. Finally 
θ−1(c) is the decoding of m. Naturally, these codes will also be MDS. We summarize 
these observations in a theorem:

Theorem 24. Let A = Fq(t)[x, σ]/(xn − λ), where λ is a norm in the extension 
Fq(t)|Fq(t)σ. Then there exists a randomized polynomial time algorithm which computes 
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skew-constacyclic MDS codes of designed distance δ and there also exists a polynomial 
time decoding algorithm for these codes.

These results imply that the norm case is closely related to the skew-cyclic case. The 
following proposition is a slight generalization of [8, Theorem 4] which will be needed 
when dealing with a λ which is not a norm. For f1, . . . , ft ∈ K[x; σ], the notation 
[f1, . . . , ft]� stands for the least common left multiple of f1, . . . , ft.

Proposition 25. Let K be a finite extension of Fq(t) and let A = K[x; σ]/(xn − 1). Let α
generate a normal basis of the extension K|Kσ and let β = α−1σ(α). Let m be a divisor 
of n. Then the code generated by

[x− β, x− σm(β), . . . , x− σm(k−2)(β)]l

has Hamming distance at least k.

Proof. The same proof as the proof of Theorem 4 in [8] applies. �
Moreover, such a code can also be decoded by the same algorithm as described in [8].

4.2. The case where λ is not a norm

In this section, we deal with the case where λ is not a norm. We assume we know an 
explicit algebra isomorphism between A = Fq(t)[x, σ]/(xn − λ) and Mn/m(D) where D
is a division algebra of index m over Fq(t)σ. Such an isomorphism can be computed by 
means of the algorithms from Section 3.

The following theorem provides an orthogonal system of primitive idempotents 
adapted to our purposes. First note that σ, when applied coefficientwise to an Ore 
polynomial, is an automorphism of A. By an abuse of notation we will denote this au-
tomorphism also by σ.

Theorem 26. Let A = Fq(t)[x, σ]/(xn − λ) and assume that λ is not an rth power for 
every r dividing n, and that (q, n) = 1. Let m be the index of A. Suppose we have an 
isomorphism between A and Mn/m(D) where D is the division algebra Brauer equivalent 
to A. Then there exists a randomized polynomial time algorithm which finds a primitive 
idempotent e0 such that e0, σm(e0), . . . , σn−m(e0) is an orthogonal system of primitive 
idempotents in A.

Proof. We already have an isomorphism between A and Mn/m(D) so, by an abuse of 
notation, we refer to x as a matrix from Mn/m(D). Let s ∈ Mn/m(D) be the matrix 
with λ in the bottom left corner, 1s over the diagonal and zero everywhere else (this is 
the usual companion matrix of the polynomial yn/m−λ). Let K = Fq(t)σ. The minimal 
polynomial of both s and xm over K is yn/m − λ ∈ K[y]. The polynomial yn/m − λ is 
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irreducible over K because λ is not an rth power by assumption for every r dividing 
n. This implies that K(s) and K(xm) are subfields of A which are isomorphic, thus, 
by the Noether-Skolem theorem, they are conjugate. This means that there exists an 
element z ∈ K(x) which is a conjugate of s and zn/m = λ. Since (n, q) = 1 there exists a 
field automorphism of K(x) which maps z to xm. By the Noether-Skolem theorem this 
field automorphism is also realized by a conjugation. Finally we get that s and xm are 
conjugates. An element h can be computed by solving a system of linear equations for 
which h−1xmh = s.

Let f be the primitive idempotent in Mn/m(D) having 1 in the top left corner and zero 
everywhere else. Then f, s−1fs, . . . , s1−n/mfsn/m−1 is a complete orthogonal system of 
primitive idempotents. Since h−1xmh = s we have that

f, h−1x−mhfh−1xmh, . . . , (h−1x−mh)1−n/mf(h−1xmh)n/m−1

is a complete system of primitive orthogonal idempotents. It is now easy to see that 
choosing e0 = hfh−1 suffices. �

So, we will assume we are given a primitive idempotent e ∈ A such that

e0, σ
m(e0), . . . , σn−m(e0)

is an orthogonal system of primitive idempotents in A. Let e = 1 −e0. Now we are ready 
to define our code.

Definition 27. A skew Reed-Solomon constacyclic convolutional code of designed distance 
k ≤ n

m is defined as the code generated, as a left ideal, by

[e, σm(e), . . . , σm(k−2)(e)]l.

Now are goal is to justify the previous definition and show that the code has indeed 
Hamming distance at least k.

Theorem 28. The code C generated by [e, σm(e), . . . , σm(k−2)(e)]l has Hamming distance 
at least k and it also admits a decoding algorithm which runs in polynomial time.

The first key idea of the proof is the construction of an isometric embedding of A =
Fq(t)[x, σ]/(xn − λ) into A′ = M [x, φ]/(xn − λ) where M is the splitting field of the 
polynomial sn − λ ∈ Fq(t)[s] and φ is an automorphism of M which restricted to L is σ.

Proposition 29. Let σ be an automorphism of Fq(t) of order n. Let λ ∈ Fq(t)σ and 
let M be the splitting field of the polynomial sn − λ ∈ Fq(t)[s]. Then there exists an 
automorphism φ of M with the following properties:



16 J. Gómez-Torrecillas et al. / Finite Fields and Their Applications 77 (2022) 101935
1. φ restricted to Fq(t) is σ and φ has order n,
2. λ is a norm in the extension M |Mφ.

Proof. We distinguish two cases. First assume that Fq contains the nth roots of unity. 
Then M = Fq(t)(λ

1
n ). The field M admits an Fq(t)-basis 1, λ 1

n , . . . , λ
l
n where l = n

d (if 
d is the largest positive integer for which λ is a dth power where d divides n). Then 
consider the following map:

φ : μ0 + μ1λ
1
n + · · · + μkλ

l
n 	→ σ(μ0) + σ(μ1)λ

1
n + · · · + σ(μk)λ

l
n .

The map φ is an automorphism of M since λ is fixed by σ. Also φ has order n since its nth 
power is the identity and restricted Fq(t) it is σ which has order n (as an automorphism 
of Fq(t)). Finally, since λ

1
n is fixed by φ, we have that λ is the norm of λ 1

n in the extension 
M |Mφ.

Now assume that Fq does not contain the nth roots of unity. Then M = Fr(t)(λ
1
n )

where Fr is an extension of Fq by a primitive nth root of unity. In this case we first 
extend σ to Fr(t) in a natural way (the image of t is exactly the same as in Fq(t)). This 
fixes Fr. Then we extend in the exact same fashion as in the previous case. �

Proposition 29 gives us an isometric embedding of A = Fq(t)[x, σ]/(xn − λ) into 
A′ = M [x, φ]/(xn − λ). Actually A′ naturally contains A. The important observation is 
that A′ is now a full matrix algebra over the field Mφ.

Let C be the code generated by [e, σm(e), . . . , σm(k−2)(e)]l. Now the element e is 
contained in A′ as well. Consider the left ideal L of A′ generated by e.

Lemma 30. The left ideal L is contained in a maximal left ideal generated by x − β and 
such a β can be computed in polynomial time.

Proof. First we show that if we already have a maximal left ideal I containing L, then 
we can compute β. A maximal left ideal has dimension n(n − 1) over Mφ. The M -
subspace generated by 1 and x has dimension 2n over Mφ. Thus these two subspaces 
have a nontrivial intersection (a nonzero intersecting element is of the form a1x + a2, 
where a1, a2 ∈ M and a1 �= 0 since otherwise it would be invertible). Now we proceed by 
proposing an algorithm for finding a maximal left ideal containing e. Since we have an 
element (the element λ 1

n ) in M whose norm is λ in the extension M |Mφ we can compute 
an explicit isomorphism between A′ and Mn(Mφ) (if one has an element μ ∈ M whose 
norm is λ, then y − μ is a rank 1 element in A′). The element e is diagonalizable with 
eigenvalues 0 and 1. We compute an eigenbasis and thus a diagonalization. Let geg−1

be the diagonal matrix with 0s and 1s in the diagonal. Let w be a matrix where all the 
zeros in the diagonal of geg−1 are switched to 1s except at one place. Then w generates a 
maximal left ideal which contains geg−1. This implies that the maximal left ideal g−1wg

contains e. �
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Now we are ready to prove Theorem 28.

Proof of Theorem 28. Let us consider the code C generated by [e, σm(e), . . . ,
σm(k−2)(e)]l. Let A′ = M [x, φ]/(xn − λ) as defined in Proposition 29 and compute 
β as described in Lemma 30. Let α be an element in M which generates a normal basis 
of the extension M |Mφ. Let a = βα

φ(α) and let γ = φ(α)α−1. Now consider the embedding 
θ of A′ into B = M [y, φ]/(yn − 1) defined by:

θ :
n−1∑

i=0
aix

i 	→
n−1∑

i=0
aiNi(a)yi.

The maximal left ideal of A′ generated x −β maps to the maximal left ideal y− β
a = y−γ. 

Thus the left ideal C embeds isometrically into the left ideal of B generated by

[y − γ, y − φm(γ), . . . , φm(k−2)]�.

Proposition 25 shows that the Hamming distance of C is at least k (as it is contained in 
a code which has Hamming distance at least k). Decoding also works now in a natural 
way. We decode the code in B (this is now a skew-cyclic RS-code). Then we compute its 
preimage via the map θ (the method for computing the inverse of θ is described in the 
previous subsection). �

Theorem 28 shows that these constacyclic codes are subcodes of skew-cyclic RS codes 
over extensions of Fq(t). The bound we prove on their Hamming distance is tight in the 
sense that if A is a division algebra then the Hamming distance of any constacyclic code 
is 1.
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