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Abstract: Objective Dyslexia diagnosis is a challenging task, since traditional diagnosis methods are
not based on biological markers but on behavioural tests. Although dyslexia diagnosis has been
addressed by these tests in clinical practice, it is difficult to extract information about the brain
processes involved in the different tasks and, then, to go deeper into its biological basis. Thus, the use
of biomarkers can contribute not only to the diagnosis but also to a better understanding of specific
learning disorders such as dyslexia. In this work, we use Electroencephalography (EEG) signals
to discover differences among controls and dyslexic subjects using signal processing and artificial
intelligence techniques. Specifically, we measure phase synchronization among channels, to reveal
the functional brain network activated during auditory processing. On the other hand, to explore
synchronicity patterns risen by low-level auditory processing, we used specific stimuli consisting
in band-limited white noise, modulated in amplitude at different frequencies. The differential
information contained in the functional (i.e., synchronization) network has been processed by an
anomaly detection system that addresses the problem of subjects variability by an outlier-detection
method based on vector quantization. The results, obtained for 7 years-old children, show that the
proposed method constitutes an useful tool for clinical use, with the area under ROC curve (AUC)
values up to 0.95 in differential diagnosis tasks.

Keywords: functional connectivity; EEG; anomaly detection; self-organizing maps; phase locking
value; circular correlation

1. Introduction

Electroencephalography (EEG) is a non-invasive way to obtain information about
brain activity. It has been widely used with different objectives, from the study of cor-
tical brain activity related to the cognitive development under specific tasks [1], to the
exploration of the brain processes involved in neurological diseases such as Alzheimer’s
disease [2,3], Parkinsonian syndromes [4,5], epileptic disorders [6–8], and other psychiatric
disorders such as schizophrenia [9]. Moreover, EEG has been widely used in experimental
neuropsychology in the quest for answers about how the brain processes different stimuli
and the cortex areas involved. This is the case of learning difficulties, since their neural
origin remain unknown. Furthermore, efforts to explain the brain processes involved in
language processing constitute a way for the early diagnosis of these disorders.

One of the most common learning disorders is Developmental Dyslexia (DD), a spe-
cific difficulty in the acquisition of reading and writing skills not related to mental age
or inadequate schooling. DD may severely affect the self-esteem of affected children and
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may determine school failure. Its prevalence is estimated between 5% and 12% of the
population [10], depending on the reading performance benchmark. DD diagnosis is usu-
ally carried out by behavioural tests that can only be performed by readers, whose results
depend on the children mood and the issuance of a diagnostic report requires a detailed
analysis of the results by expert clinicians. On the other hand, the early diagnosis of DD
plays a major role for the success of specific intervention tasks developed to mitigate the
consequences of DD. Then, diagnosis techniques based on the extraction of biological mark-
ers provide valuable and objective information for the clinicians and pave the way for the
early diagnosis, facilitating the application of an intervention program in pre-readers [11].
In fact, neurophysiological signals constitute an objective way to evaluate neurological or
behavioural disorders that are usually subjectively assessed by clinicians.

Brain functional connectivity refers to the coordinated activation of brain areas arising
when the subject performs a specific task or staying in resting state. Indeed, some previous
works have developed different methods to estimate the functional connectivity by search-
ing for patterns that characterize different neurological diseases such as Alzheimer’s or
Parkinson’s Diseases using functional imaging techniques [12–15], EEG [16,17], or classify
different sleep stages [18]. Moreover, the use of brain connectivity has also been used in cog-
nitive neuroscience to identify brain areas involved in language and learning tasks [19,20].
The use of EEG to explore functional connectivity provides opportunities due to its high
temporal resolution, allowing researchers to measure the synchronization between brain
areas. That synchronization can be interpreted as cooperation from the functional connec-
tivity point of view, and inferred from the phase difference between EEG channels, the
statistical relationship between different EEG frequency bands (namely, Cross-Frequency
Coupling), or using techniques that figure out inter-channel causality [21].

In this line, some previous works used EEG and Magnetoencephalography (MEG)
to explore the basis of DD using speech-based stimuli, under the assumption that DD is
characterized by reduced awareness of speech units [22]. Hence, atypical neural entrain-
ment at different rates may arise in affected subjects. Other works in the search of the basis
of speech coding, hypothesize that DD originates from the atypical synchronization in
the right hemisphere to the lower EEG bands [23,24]. In [25] differences between dyslexic
and control groups were found in the preferred phase of entrainment of Delta band after
presenting a visual and auditory stimulus to the child.

An example of EEG classification where an auditory stimulus is used can be found
in [26]. In this work, Gibbon et al. presented either a drumbeat or a syllable to 8-week-old
infants while recording the EEG. They were able to classify whether the EEG correspond to
the drumbeat or the syllable with an AUC of 0.875 for a convolutional neural network and
an AUC of 0.86 for a support vector machine. Changing the task while recording the EEG
from a hearing to writing, Perera et al. [27] were able to detect dyslexic children using a
support vector machine. They recorded EEGs while the subjects were doing a writing task
(pen and paper) and typing task (on a keyboard). Besides using all the channels at once to
classify, they selected the channels distinguishing several brain parts obtaining different
results for each one. Moreover, in [28], several stimuli at different frequencies were shown
to the children. Then, temporal and spectral features from the EEGs at different frequency
were used to build the feature space, obtaining AUC values ranging from 0.69 to 0.89. On
the other hand, [29] uses periodogram-based features. Specifically, the spectral density
is obtained from the EEGs and then Principal Component Analysis is used to reduce the
dimension of the spectral density vector. In order to classify, they use a support vector
machine, comparing the classification performance of the whole spectral density vector and
the reduce version of it. This method provided AUC values up to 0.75. In [30], power-based
connectivity features were computed to train a neural network (denoising autoencoder) to
generate features to represent dyslexic and control groups in a lower dimensional space.

As shown in the works cited above, the use of EEG signals in search of descriptive
patterns requires the use of specific signal processing techniques due to its low signal-
to-noise (SNR) ratio and the presence of multiple artefacts such as ocular, muscular or
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cardiac. These have to be properly removed without affecting useful information. As a
consequence, different preprocessing methods such as Independent Component Analysis
(ICA) are commonly used to remove known artefacts by a source separation process.

On the other hand, the feature extraction process has to provide discriminative enough
descriptors for modelling the categories present in the dataset. These features can be
based on time, frequency [31], or time-frequency [32], that can also be used to derive
complex relationships among brain areas. Depending on the specific descriptor, these
relationships can be interpreted as functional connectivity, as in the case of this work.
Connectivity measures can be derived from frequency and phase variations and power
spectrum, and they can be split into two types depending on the method used to compute
those relationships:

• Methods that characterize the statistical relationships between electrodes but in the
same frequency band. In this way, Spectral Coherence (SC) provides a way to measure
the synchronization between channels, which may indicate a connection from the
functional point of view between the neuron clusters in the two areas involved [33].
Other connectivity measures can be computed from the phase angle differences
between channels over time [21].

• Methods that characterize the statistical relationships between the activity in two
channels at different frequency bands. The measure provided by these methods is
commonly referred as Cross Frequency Coupling (CFC). Phase-Amplitude Coupling
(PAC) is a representative and practical example for computing the CFC which has
neural and physical implications [34].

We use SC descriptors to estimate the connectivity between channels in the five EEG
bands (Delta, Theta, Alpha, Beta, and Gamma) and then, to extract discriminative features
for the differential diagnosis of DD. These EEG were obtained using a novel method based
on the application of auditory stimuli at different frequencies that activate the low-level
processing network in the brain cortex. Moreover, an anomaly detection approach is
implemented using a method that combines unsupervised learning by vector quantization
and a Bayesian classifier. The proposed method allows working with not very large
databases, overcomes the imbalance problem and reduces the overfitting.

The main aim of the work is twofold: firstly, it aims to demonstrate that low-level
auditory processing produces different patterns in the brain networks involved. This
connectivity is studied by means of phase synchronization between EEG channels. This
methodology is not only relevant for diagnostic purposes but also for the study of the
differences in the brain processes developed during auditory processing in controls and
dyslexic children, paving the way to go deeper into the biological basis of dyslexia. Sec-
ondly, the overall classification pipeline provides a method that can detect dyslexic subjects
in an objective way, only using EEG signals. This can be used as an effective tool for clinical
practice. The main contributions of this work can be summarized as:

1. We use low level auditory stimuli to study the brain processes involved in language
processing, instead of previous works that use only speech-based stimuli [22].

2. Connectivity between brain areas is searched by means of phase synchronization
between EEG channels, which is computed using the Circular Correlation.

3. An anomaly detection approach has been implemented using a method that combines
unsupervised learning by vector quantization and a Bayesian classifier. The proposed
method allows working with not very large databases, overcomes the imbalance
problem and reduces the overfitting.

After this introduction, the rest of the paper is organized as follows. Section 2 shows
the materials and methods used in this work, including the database and the acquisition
protocols used to compose it. Moreover, this section presents the foundations of the
methods used to measure the inter channel phase synchrony. Then, Section 4 shows
the proposed classification method that considers the non-control samples as anomalies.
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Sections 5 and 6 presents the main results obtained with the proposed methodology and
the discussion, respectively. Finally, conclusions are drawn in Section 7.

2. Materials and Methods
2.1. Data Acquisition

EEG data used in this work was provided by the Leeduca group at the University of
Málaga. Control and experimental groups are extracted by a carefully screening process
from a cohort (N = 700) followed from 4 years to the second evaluation of 7 years in 20
different primary schools (Junta de Andalucía). This way, the socioeconomic status (SES)
had a longitudinal dynamic evaluation of the subjects, plus ATLAS [35] (A self-report
questionnaire on reading-writing difficulties for adults) family risk information, plus a
complete report at 7 years old, which included standard assessment tasks. Comorbidities
with other neurodevelopmental disorders such as Language Impairment (LI), Speech
Sound Disorder (SSD), Attention Deficit Hyperactivity Disorder (ADHD), Autism, and
other auditory or visual sensory deficit disorders were taken into account in the screening
process, along with information about other relevant conditions which can affect reading
achievement, as immigration or bilingualism [36].

In the experiments, EEG signals were recorded by a Brainvision actiCHamp Plus with
a 32 channels amplifier that allows a sampling rate up to 500 Hz using active electrodes
(actiCAP, Brain Products GmbH, Germany). EEG was recorded during 5-min sessions at
a sampling rate of 500 Hz, while presenting an auditory stimulus to the subject. These
auditory stimuli consisted on white noise 100% amplitude modulated at 4.8 Hz and 16 Hz.
These measures were repeated two times. Stimulus were determined by expert linguistic
psychologists studying the main frequency components present in voice, corresponding
to syllables and phonemes. The study of the statistical distribution of these components
determined a component of 4.8 Hz and 16 Hz for syllables and phonemes, respectively, in
Spanish speakers.

Database descriptive statistics are shown in Table 1. Subjects in the database are
right-handed, Spanish native speakers, and have neither hearing impairments nor vision
problems.

The location of 32 electrodes in the 10–20 standardized system used in the experiments
is shown in Figure 1.

GND

Figure 1. Electrode montage in the extended 10–20 system used in the experiments. All 32 channels
plus GND. Cz is used as reference.
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Table 1. Database. Age range: 88–100 (t(1) = −1.4, p > 0.05).

Group Male/Female Mean Age (Months) Observations

Control 17/15 94.1± 3.3 No reported reading or spelling difficulties
Dyslexia 7/9 95.6± 2.9 Formal diagnosis by a clinician expert

2.2. Data Preprocessing

EEG signals were first preprocessed to remove artefacts related to eye-blinking, and
impedance variations due to movements. Ocular artefacts were removed by source separa-
tion using Independent Component Analysis (ICA) [37] using eye movements recorded
by the EOG channel. Artefacts related to movement or noise from unknown sources were
removed by removing EEG segments. Then, all channels were referenced to the Cz channel.

After this first stage, the EEG channels were band-pass filtered to extract the infor-
mation corresponding to the five EEG frequency bands (Delta, 1.5–4 Hz; Theta, 4–8Hz,
Alpha, 8–13 Hz; Beta, 13–30 Hz; and Gamma, 30–80 Hz), as shown in Figure 2. It is worth
noting that, since we are interested in the phase of the signals, the filtering process cannot
introduce phase distortion. This way, Infinite Impulse Response (IIR) filters cannot be used.
Instead, we used Finite Impulse Response (FIR) filters, which introduce a constant phase
lag that can be corrected afterwards. More specifically, we used a two-way zero-phase lag
band-pass FIR Least-Squares filter, which compensates the phase lag introduced while
filtering by passing the signal forward and backward through the filter, achieving zero-lag
phase in the overall filtering process [38]. Low-pass filtering was applied with a cut-off
frequency of 80 Hz. Additionally, a 50 Hz notch filter was used in the preprocessing stage
to remove this frequency component.

Figure 2. Five main electrophysiological (EEG) frequency bands [39].

3. Functional Connectivity from EEG Signals

In this section, we show the method used to use the phase difference between EEG
channels to infer connectivity, as well as the overall proposed method for classification.
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3.1. Phase-Based Connectivity

One way to estimate the connectivity between two channels consists of analysing the
phase difference of these channels. This has led to the development of different measures for
phase coherence related to the synchronization of these channels. Since the phase of the signal
extracted from an electrode varies over time, it is necessary to compute the phase, φi(t) for
each channel i, namely the instantaneous phase. In this work, the instantaneous phase is
obtained by means of the Hilbert transform computed from band-pass filtered signals.

Hilbert Filter

Hilbert transform (HT) allows to compute the analytic signal from a real one. The ana-
lytic signal is a complex-valued time series which has no negative frequency components.
Thus, it is possible to compute the time varying amplitude, phase and frequency from the
analytic signal, also called instantaneous amplitude, phase and frequency, respectively.
Hilbert Transform (HT) is defined for a signal x(t).

H[x(t)] =
1
π

∫ +∞

−∞

x(t)
t− τ

dτ (1)

and the analytic signal zi(t) for a signal x(t) can be obtained as

zi(t) = xi(t) + jH{xi(t)} = a(t)ejφ(t) (2)

From zi(t), it is straightforward to compute the instantaneous amplitude as

a(t) =
√

re(zi(t))2 + im(zi(t))2 (3)

and the instantaneous, unwrapped phase is

φ(t) = tan−1 im(zi(t))
re(zi(t))

(4)

This way, the use of the previous explained method provide the phase value at each
time point, allowing to estimate synchronization between channels from phase differences.
HT is found useful in the characterization of the EEG through the synchrony of its channels.
For instance, in [40] it is used to detect changes of the phase synchronization in epileptic
subjects. They found evidences that epileptic seizures can be preceded by characteristic
changes in synchronization. In [41], HT is part of a two steps process called empirical
mode decomposition [42]. The authors used this process as a feature extractor that is then
employed to classify various sleep stages.

The implementation of this method can be found in Scipy [43] library.

3.2. Channel Synchronization by Pearson’s Circular Correlation

One method to estimate the connectivity between channels consists of measuring
phase difference between EEG channels. One of the most popular phase-based connectivity
measures that estimates the extent of synchronization between channels is the Phase
Locking Value (PLV). PLV measures the average of phase differences between channels over
time [44], and can be computed from the Hilbert-filtered signal, using the instantaneous
phase values as:

PLV =

∣∣∣∣∣ 1n n

∑
t=0

ej(φxt−φyt)

∣∣∣∣∣ (5)

where φxt and φyt are the phase angle at time point t for the channels x and y, respectively,
and n is the number of samples of the signal.

Phase-based connectivity measures that relies on the phase difference have advantages
over other synchronization measures. One of the most important is the ability to detect false
connectivity due to volume conduction. This consists of capturing signal from the same
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source by two neighbouring electrodes, due to the spreading effect through the skull. Since
PLV values due to volume conduction are clustered around zero, it will reflect a zero value
in the connectivity matrix, indicating the absence of connection between the corresponding
channels. However, PLV is a measure of the consistence of phase difference (average) but it
does not imply information exchange between channels which would imply covariance,
and could eventually provide spurious connections [45]. To overcome this, in this work,
we used Circular Correlation to estimate the phase synchrony. Coherence measures have
some limitations as indicated in [44]: on the one hand, since coherence is a measure of the
linear covariance between two-spectra, it is not recommended for non-stationary signals.
On the contrary, phase-locking based measures do not require the signals to be stationary.
On the other hand, coherence increases with amplitude covariance which could bias the
estimation of the between channels interaction measurement.

As explained in [45], Circular Correlation measures how the phase variance of two
channels co-varies: to determine whether one channel is slightly in advance of its expected
phase at a given time, the phase in the other channel is also advanced (in this example,
we refer to positive correlation). In the case of unrelated channels, the phase variance will
not co-vary and the Circular Correlation will be zero. On the contrary, as the PLV only
measures the phase difference, it is likely to be poorer at discriminating between related
and unrelated signals [44].

Since phase information is circular (in the range [0, 2π]), we use circular statistics [46].
Specifically, the circular equivalent of Pearson’s correlation coefficient [47] can be defined as:

rcircular =

n
∑

t=1

[
sin(φxt − φx)sin(φyt − φy

]
√

n
∑

t=1
sin(φxt − φx)2

√
n
∑

t=1
sin(φyt − φy)2

(6)

where φxt, φyt is the phase value of the channels x and y at time point t, φx, φy the circular
mean of x and y channels, and n the number of samples of the signal. The circular mean of
a channel i can be computed as:

φi = arctan


n
∑

t=1
sin(φit)

n
∑

t=1
cos(φit)

 (7)

According to the above definitions, rcircular measures the circular covariance of differ-
ences between the observed phase and the expected (φi) phase. As a result, relationship
(i.e., synchronization) between channels is detected as a co-variation between the phase
variance of the channels. On the other hand, out-of-sync channels will not co-vary and
the circular covariance will take values close to zero. In the case of Pearson’s correlation,
rcircular will take values in the range [0,1].

4. Diagnosing Dyslexia by Outlier Detection

The most usual way to deal with the classification of instances of a dataset, consists
of obtaining a discriminative model of the classes. However, this is not always possible
for biomedical data: firstly, it is difficult to acquire a balanced dataset, according to the
prevalence of the disorder under study. Moreover, biomedical data acquisition is time-
consuming and requires a careful screening process. On the other hand, depending on the
experimental setup, the nature of the biomedical signals and the objective of the experiment,
one (or both) groups under study may contain a considerable variability. These issues can
generate a biased model, complicating the generalization capabilities. An effective solution
to this situation is using an outlier detection method, modelling the most numerous class
and identifying samples belonging to a different class as an outlier (or anomaly sample).
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In this work, we propose the use of an outlier detection method based on self-organizing
map, which is trained with the aforementioned circular correlation features.

4.1. Outlier Detection Based on Self-Organizing Maps

Self-Organizing Map (SOM) is a vector quantization algorithm that provides a low
dimensional projection of a high dimensional feature space, facilitating the visualization of
the data structure as well as the easy identification of clusters in data. Works with SOM
have been proposed in a wide range of different fields. In medicine [48], SOM was used to
group molecular leukaemia samples using the genes as features. It correctly clustered two
types of cancer cells. In the computer vision field, Lawrence et al. [49] applied the SOM
to reduce the dimensionality of a image at a first step of a pipeline for face recognition.
Betti et al. [50] designed a fault prediction system in large power plants based on SOM.
An improved SOM algorithm was used in the work of Cai et al. [51]. They employed
SOM to classify different sitting postures. In [52], more general experiments were carried
out in order to first the dimensionality of the data and then cluster it. Their results show
that it is worth spending time training a SOM before attempting to cluster the data. Other
fields such as network security have also taken advantage of the properties of SOMs. For
instance, in [53], a SOM-based method allows computing bayesian activation of SOM units
to detect anomalies in computer networks.

We use the minicom [54] package for python to work with SOM.
The SOM algorithm is briefly explained as follows. Let X ∈ Rn be a n-dimensional

dataset. The SOM map is composed of d units, arranged in a 2-dimensional lattice and
each represented by a n-dimensional model vector ωi. For each input data instance x, the
Best Matching Unit (BMU) is defined as the unit ωi closest to x in terms of the euclidean
distance ‖ · ‖:

‖ωi − x‖ ≤ ‖ωj − x‖, ∀x ∈ X, i 6= j (8)

Model vectors in a neighbourhood of the BMU are updated in each iteration, according
to the euclidean distance to the input data sample.

ωi(t + 1) = ωi(t) + α(t)hi(t)(v−ωi(t)) (9)

where α(t) is the learning rate and hi(t) is a function which defines the neighbourhood
around the BMU ωi, and i is a linear index that identify the prototype vectors.

The usual way to progressively reducing α(t) with the number of iterations consist of
applying an exponential decay rule [55]. Similarly, the neighbourhood of each SOM unit
hi is a Gaussian hat [55] whose width shrinks in time (iterations). In order to improve the
convergence of the SOM, it has been linearly initialized to the principal components of
the training data. This way, each dimension of prototypes was arranged proportionally
corresponding principal component [55].

According to the SOM definition shown above, a data sample x will be represented
by the prototype vector of the corresponding BMU. The representation error, known as
quantization error (QE), can be computed as for each BMU as

qe =
1
n

n

∑
k=1
‖ωi − xk‖ ∀xk ∈ RFi (10)

where RFi is the receptive field of the BMU unit ωi, defined as:

RFi = {xk ∈ X :‖ xk −ωi ‖≤‖ xk −ωj ‖ ∀i 6= j} (11)

4.1.1. Band Relevance Using Quantization Error Distribution

QE distribution for Controls and Dyslexia subject can be computed using the values
provided by Equation (10). Figure 3 shows the distribution of the QE obtained for each EEG
band, clearly showing the discriminant capability, as it is possible to find a threshold in QE
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to separate QE values provided by samples of different classes. Moreover, it is possible
to take advantage of this result to select the most discriminant band, since overlapping
between distributions can be seen as a measure of separability. In this case, the Kullback–
Leibler divergence (DKL) [56], defined as:

DKL(P|Q) = ∑
i

P(i)
P(i)
Q(i)

(12)

is used to quantify the overlapping between P and Q distributions and eventually, the
discriminative capability of the corresponding error quantization for each data sample.
Although DKL is not a symmetric measure and cannot be interpreted as a distance, it is
possible to symmetrise by computing a two-ways measure as D̂KL = 0.5 ∗ (DKL(P|Q) +
DKL(Q|P)).

According to this measure, KLgamma > KLbeta > KLtheta > KLalpha > KLdelta for
4.8 Hz stimulus and KLalpha > KLbeta > KLtheta > KLgamma > KLdelta for 16 HZ stimulus.

Figure 3. Quantization error distribution for Controls and Dyslexia subjects. The (a) 4.8 Hz and
(b) 16 Hz stimulus.

4.1.2. Uncertainly in SOM Units Activation

As explained above, SOM is a vector quantization algorithm that projects the high-
dimensional input space into a lower dimensional (usually 2D) lattice. The trained map
poses interesting properties such as topology preservation and vector space interpolation
between units. Since the BMU unit is computed as the nearest prototype according to the
euclidean distance, each data sample will have its BMU, regardless of the resemblance to
the map prototypes. However, the reliability of the unit activation can be measured in terms
of the quantization error. Thus, the prototype of a BMU producing a large quantization
error for a data sample, will barely represent that sample. In Figure 4, the activation of
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SOM units for all the available samples is shown, according to the corresponding mean
quantization error.

Figure 4. SOM map activation for each data sample, according to the corresponding mean quantiza-
tion error. Example for EEG Delta band using 4.8 Hz stimulus. (a) Control (b) Dyslexia.

As shown in Figure 4, dyslexia samples (considered as anomalies) produces a consid-
erably higher quantization error than control samples.

4.2. Bayesian Anomaly Detection for SOM

Naïve Bayes classifiers [57] separate data into different classes by means of the Bayes’
Theorem, along with the assumption of independence among predictors. However, the
extent of this premise in the performance of the classifier has been evaluated and discussed
in the literature, concluding that it is possible to outperform other classifiers even in the
case that all the features are not completely independent [58–60]. As a matter of fact,
there are different works that take advantage of the benefits of Naïve Bayes classifiers for
EEG signal classification. For instance, in [59], a higher number of principal components
(PC) used to project the EEG data does not reduce nether the classification accuracy nor
the AUC value in comparison to the performance obtained with only one PC, where the
feature independence is automatically assumed. On the other hand, Naïve Bayes classifiers
provides a good performance with relatively small datasets while avoiding the problems
derived from the dimensionality, and without suffering from overfitting. This is especially
important with relatively small datasets, where supervised classifiers are easy to overfit,
decreasing its generalization capabilities [61].

As shown in the previous section, the anomaly detection method used here is based on
the quantization error generated by abnormal patterns in comparison to the one produced
by control patterns used to train the map. Since the prototypes only represent control
samples, a higher quantization error will be obtained when representing an abnormal
pattern using the BMU of the map. Then, it is necessary to compute the threshold for the
quantization error to distinguish a normal sample from an anomaly. This threshold can be
computed by a Naïve Bayes strategy as follows. Let CN be the Normal class and DD the
Anomaly class. According to Bayes’s theory, the probability of a new sample x to belong to
the c class can be expressed as:

P(c|x) = P(x|c)P(c)
P(x)

(13)

where P(c) is the prior likelihood of the c class, P(x|c) is the probability of x conditioned
to c, and P(x) is the marginal probability, computed as

P(x) =
#nearest samples to x in terms o f qe

#total number o f samples
(14)



Sensors 2021, 21, 7061 11 of 20

Thus, it is possible to obtain P(c|x) and the most discriminating threshold can be
computed as the value of QE for which P(c|x) = 0. The implementation used for the
classifier can be found in the sklearn python package [62].

5. Results

This section presents the main results obtained with the methodology explained
above. Since data corresponding to 4.8 and 16 Hz stimuli are stored in the EEG database,
we carried out experiments to determine the discriminative power of the different stimuli.
As explained in Section 3, we address the searching of differential patterns from a functional
connectivity point of view, using the circular correlation as a phase synchrony measure.
Thus, in order to show the most significant differences in the connectivity a Mann–Whitney
Wilcoxon (distribution agnostic) hypothesis was used. The methodology described at
Section 4 to extract features and classify them is applied separately for each EEG band and
each stimulus, obtaining the results summarized in Table 2. It is worth noting that this
classification methodology is assessed by stratified k-fold cross-validation (k = 5), in order
to estimate the generalization errs edit test was performed for each band. Thus, Figure 5
shows the most significant connections as those providing p < 0.01 in the hypothesis
test. Moreover, in order to remove possible spurious connections, we performed the FDR
(False Discovery Rate) correction (alpha = 0.05) of the p-values. This also helps to identify
significant connections since resultant matrices are sparser.

The methodology described at Section 4 to extract features and classify them is ap-
plied separately for each EEG band and each stimulus, obtaining the results summarized
in Table 2. It is worth noting that this classification methodology is assessed by stratified
k-fold cross-validation (k = 5), in order to estimate the generalization error.

Table 2. Summary of the best classification results obtained for the different EEG bands. Bands
providing the best accuracy values are highlighted in bold.

Stimulus Band Accuracy Sensitivity Specificity AUC

4.8 Hz Delta 0.74 ± 0.03 0.81 ± 0.03 0.65 ± 0.06 0.81 ± 0.05
Theta 0.85 ± 0.04 0.91 ± 0.03 0.80 ± 0.08 0.88 ± 0.05
Alpha 0.76 ± 0.04 0.82 ± 0.02 0.70 ± 0.09 0.85 ± 0.08
Beta 0.86 ± 0.03 0.92 ± 0.02 0.78 ± 0.06 0.92 ± 0.08
Gamma 0.83 ± 0.02 0.87 ± 0.02 0.76 ± 0.04 0.83 ± 0.05

16 Hz Delta 0.73 ± 0.04 0.78 ± 0.03 0.67 ± 0.08 0.86 ± 0.07
Theta 0.76 ± 0.04 0.79 ± 0.02 0.71 ± 0.08 0.91 ± 0.05
Alpha 0.90 ± 0.02 0.93 ± 0.01 0.82 ± 0.04 0.93 ± 0.09
Beta 0.90 ± 0.02 0.93 ± 0.02 0.86 ± 0.03 0.95 ± 0.09
Gamma 0.79 ± 0.01 0.82 ± 0.02 0.74 ± 0.03 0.93 ± 0.10

Additionally, results in Table 2 are graphically depicted in Figure 6, where the error
bars corresponds to the standard deviation obtained in the cross-validation process. Specif-
ically, Figure 6 left shows the classification results for the 4.8 Hz stimulus, and Figure 6
right for the 16 Hz stimulus.
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Figure 5. Statistically significant connections for meaningful bands. The axes represent the channels
names according to the extended 10–20 EEG montage. Only connections with FDR-corrected p < 0.01
are shown. The (a) 4.8Hz and (b)16 Hz stimulus.
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Figure 6. Classification results for 4.8 Hz (left) and 16 Hz (right).

It is well known that the overall performance of a binary classifier can be assessed
by exploring the Receiver Operating Curve (ROC) space, as it provides the cut-off point
of the sensitivity-specificity trade-off. In other words, it shows the performance of the
classifier in a compact form, regarding it capability of correctly identifying positive and
negative samples. Relatedly, AUC is a very useful metric that represents the probability
of a random positive to have a more extreme value of a negative one (and vice versa).
Indeed, Figure 7a,b show the ROC curves obtained for each band for the 4.8 Hz and 16 Hz
stimulus, respectively, along with the corresponding AUC values computed for each curve.

(a) (b)

Figure 7. ROC Curves corresponding to the classification results for (a) 4.8 Hz and (b) 16 Hz stimulus.

Statistical Significance

As usual in biomedical problems, the number of available samples requires performing
statistical tests to ensure that the results are not biased by the classification stage (i.e., due to
overfitting effects, for instance). In addition, it is necessary to check the probability of these
results was obtained by chance, while these tests that can be relatively relaxed when the
database is large enough, they require special attention in real-world databases, where
classes are not balanced and the sample size is small (in the case of experimental subjects,
it is necessary to take into account the prevalence of the disorder being treated. In the case
of dyslexia, it is about 7% as indicated in the introduction).

The test used consists on generating a null distribution by calculating the accuracy
of the classifier on 1000 permutations of the labels. This provides the distribution for the
null hypothesis, which states the independence between features and labels and allows
calculating the probability of reproducing the classification results with shuffled labels.
This empirical p-value is then computed as:

p− value =
#permutations with accuracy higher than baseline

#Number o f permutations
(15)

The results of the permutation test are depicted in Figure 8, where the null distribution
obtained by permuting the labels as indicated above is shown in blue, and the accuracy
obtained for the non-permuted case is indicated as a vertical red line. A 5-fold stratified



Sensors 2021, 21, 7061 14 of 20

cross-validation is carried out at each permutation iteration. Then, the average of the results
obtained at these 5 folds is taken for the corresponding permutation iteration. Thus, Figure 8
shows the probability density for the classification. This is the most computing demanding
task as the classifier should be trained 1000 times. In our equipment (Dual Intel(R) Xeon(R)
CPU E5-2640 v4 (10 cores)@ 2.40 GHz, 128GB of RAM) it took about one day to complete
the permutations.

(a)

(b)

Figure 8. Permutation test results to assess the statistical significance of the results. Blue distribution
corresponds to the null distribution and red line corresponds to the accuracy obtained with true
labels. The (a) 4.8 Hz stimulus and (b) 16 Hz stimulus.

6. Discussion

In this section, discussion about the methodology, results obtained and validation
strategy is provided, along with a comparison to previous works addressing the problem
of dyslexia classification using biomedical signals.

The proposed method uses the quantization errors corresponding to SOM prototypes
as features, which are subsequently used to train a Naïve Bayes classifier that computes
the optimum separation threshold. The SOM was trained using all the connections, and
the significance of the classification algorithm was assessed by 5-fold cross validation and
a permutation test consisting in making 1000 permutations. This ensures the classification
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results are not obtained by chance, and actual differences are present in patterns belonging
to controls and dyslexic subjects.

This validation strategy estimates the generalization error, and bounds the probability
of the results to be obtained by chance. With this methodology, Figure 6 also provides a
view of the discriminative capabilities of each EEG band. In other words, it can be seen
as the influence of each stimulus in the neuronal oscillations at a specific frequency band.
Thus, beta and gamma bands are providing the best results for 4.8 Hz stimulus, while
the best performance is obtained for Alpha and Beta bands in the case of 16 Hz stimulus.
Detailed results in Table 2, show that an accuracy of 0.82 can be obtained with the 4.8 Hz
stimulus, along with an AUC of 0.92. The AUC value can be interpreted as the probability
of obtaining a higher score for a positive sample than for a negative one, indeed indicating
the misclassification probability. In the case of 16 Hz stimulus, the AUC rises up to 0.95,
concluding that the most discriminative patterns were found for 16 Hz stimulus in the
Beta band.

Moreover, connectivity matrices containing the synchronization measures between
each pair of electrodes, compose a connection graph that helps to identify neuroanatomical
regions involved in each case. Due to the significance level used and the additional FDR
correction, sparse matrices are obtained. This way, the method proposed in this work
contributes as a tool to identify synchronized channels that can be related to connections
between brain regions. Consequently, the circular correlation used to estimate the phase-
synchrony among channels can be effectively used to detect out-of synchrony electrodes,
that contribute here to define the outlier (or abnormal sample).

The highest classification performance is obtained for the alpha, beta and gamma
bands. The results, as demonstrated later, are highly significant, and therefore we can
conclude that there exist connectivity anomalies in the dyslexic brain that the Bayesian
classifier can detect. High-frequency patterns (beta, gamma) are relevant for interpreting
segment-level representations in the brain [63]; therefore, anomalies in this segmentation
would produce cascade effects that would lead into incorrect representation of phonemes in
the brain, as suggested by Virtala et al. [64], and inaccurate subsequent predictive processes.

Digging deeper into the matter, Figure 5 depicts the significant inter-channel con-
nections for each stimuli and band. First of all, we find a recurrent interaction between
occipital electrodes, such as PO9, PO10, O1, O2 and Oz throughout many bands. These
electrodes are very specific to visual processing [65], and could be attributed to differences
in visual activity during the auditory stimuli. Many of the other electrodes have been
proven to be relevant for current language models [63]. This is the case of the connection
between F7/FC5 and P3/CP5, that corresponds to the so-called “dorsal stream” in the
Hickock and Poeppel model, that maps acoustic speech signals to frontal lobe articulatory
networks. This pattern is present in Theta and Alpha for both stimuli, and Beta/Gamma for
the 16 Hz stimulus. The fact that the 16 Hz show additional differences in the Beta/Gamma
may be evidence of phonemic-rate stimuli triggering abnormal functioning of higher
cognitive tasks.

P3 and CP5 reception fields are both around the temporo-parietal junction, and
differences in patterns might be due to differences in placement of the electrodes. However,
is fair to assume that they represent the sensorimotor interface in the Hickock and Poeppel
model. Similarly, F7 and FC5 might be capturing the activity of the Broca’s area, which
is considered an articulatory region in the Hickock and Poeppel model. Occipital-frontal
connections such as PO9 to Fz and F4 might be due to the hypothesized conceptual
networks, distributed throughout the cortex, that connect lexical and articulatory regions.

On the other hand, the right hemisphere display less, but still relevant anomalies
detected by the analysis. There are significant anomalies at the CP6-C4 in the alpha band for
both stimuli. wich may correspond to a connection between the right auditory cortex and
the right sensorimotor cortex. This deficit has not been found anywhere else. However, it
may be coherent with recent research that found atypical rhythmic entrainment in auditory
and sensorimotor coupling at low rates [66]. Finally, two interesting differences are found
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in bilateral connections at the gamma band. First, the P4-F7 anomaly which corresponds to
the main result of Molinaro [22] for dyslexia. In that paper, the between the right auditory
cortex (P4) Then, the P7-T8 deficit, which involves an anomaly in the connection between
the right phonological network (T8) and the right lexical interface on the Hickock and
Poeppel model [63].

Regarding the discriminative capability of the proposed method, it has been assessed
using the Receiver Operating Curves (ROC), that provide a clearer view of the trade-off
between sensitivity and specificity. Hence, ROC curves for all bands are shown in Figure 7
for (a) 4.8 Hz stimulus and (b) 16 Hz stimulus. In both cases a good sensitivity-specificity
balance is achieved.

The number of available EEG studies using auditory stimulus for dyslexia diagnosis is
limited, and usually focused to exploratory analysis [22,24], in the quest for the biological
basis of dyslexia, which is an open research question. Dyslexia classification using biomed-
ical signals is also a current research trend, oppositely to the traditional method based
only on behavioural tests. Works using structural imaging [67], MEG [68] and EEG [27–29]
signals are shown in Table 3. As in [68], the classification problem with biomedical signals is
usually addressed using different features extracted from MEG signals, obtaining accuracy
values up to 0.93. However, it requires a 255-channel MEG acquisition system. At the
same time, MEG data is typically harder to obtain than EEG and more computationally
demanding to work with. On the other hand, there are works that use EEG signals for
dyslexia classification and obtaining accuracy values up to 0.80 [27]. However, these works
usually rely on reading and writing tasks, depending on their own acquired skills and
limiting the diagnosis age. The methodology used in this work, based on the analysis of the
responses to simple auditory stimuli, overcomes these limitations, makes the test simpler
and avoids the possible bias introduced by interactive stimuli or specific task design. On
the other hand, the proposed method contributes to the knowledge of the neural basis of
dyslexia by showing differential functional connectivity patterns when comparing controls
and dyslexic subjects. This has been shown as connectivity matrices to clearly expose the
most significant connections. Additionally, our classification results are similar to those
obtained with MEG signals, but can be performed with EEG equipment (that can be even
portable), facilitating the development of the tasks and their application to young children.
This is especially important to our future work continuing this research with pre-readers.

Table 3. Classification results for various studies related to dyslexia classification. Standard deviation
is indicated in each case. (*) data not reported in the source.

Method Channels Acq.Time Accuracy Sensitivity Specificity AUC

MRI + SVC [67] T1-MRI * 0.8 ± * 0.82 ± * 0.78 ± * *
MEG + SVC + GC [68] 253 3 min 0.63 ± 4.13 0.64 ± 4.01 0.65 ± 4.15 *
MEG + SVC + GE [68] 253 3 min 0.94 ± 1.78 0.93 ± 1.39 0.93 ± 2.32 *
MEG + SVC + CI [68] 253 3 min 0.80 ± 1.14 0.80 ± 1.41 0.79 ± 2.17 *
MEG + SVC + wIFCG [68] 253 3 min 0.97 ± 1.89 0.96 ± 1.89 0.95 ± 1.98 *
EEG + SVC [27] (Writing Task) 32 1 min 0.59 ± * 0.64 ± * 0.53 ± * *
EEG + SVC [27] (Typing Task) 32 1 min 0.78 ± * 0.88 ± * 0.66 ± * *
EEG + OCSVC [28] 32 5 min 0.71 ± * 0.53 ± * 0.78 ± * 0.79 ± *
EEG + DAE [30] 32 5 min 0.56 ± * 0.76 ± * 0.66 ± * 0.74 ± *
Proposed 32 5 min 0.90 ± 0.02 0.93 ± 0.02 0.86 ± 0.03 0.95 ± 0.09

7. Conclusions

In this work, we present a method to detect out-of-synchrony EEG channels using
cross frequency coupling measures. This measure is derived from the instantaneous phase
of the signal acquired from each electrode. In this way, cross frequency coupling techniques
provide the way to compute features related to synchronization between electrodes and
taking into account the frequency band in which the synchronization takes place. Our
proposed method uses the circular correlation of the unwrapped phase to evaluate phase
locking between channels, which is further used to construct a connectivity matrix, indicat-
ing those electrodes that are synchronized at each frequency band. Differential connectivity
patterns demonstrate that low level auditory stimulus generates different interactions
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between brain areas in controls and dyslexic children, revealing differences in auditory
processing from a connectivity point of view. On the other hand, the low SNR of EEG
signals and the inherent differences among subjects introduce a high variability among
EEG patterns, especially in experimental subjects. This has been addressed by an anomaly
detection approach, modelling only patterns from the control subjects to further detect pat-
terns of experimental subjects as outliers. The proposed anomaly detection system is based
on vector quantization using a Self-Organizing Map, by means of the quantization error
associated with each BMU. This allows to measure differences in the quantization error
provided by the prototypes representing control and experimental samples. Additionally,
the threshold in the quantization error that optimally separates between the controls and
experimental patterns is computed using a Bayesian method to constitute a Naïve Bayes
classifier. The results obtained show sensitivity values up to 95% with specificity values up
to 83% (AUC up to 0.95), demonstrating the discriminative capabilities of the proposed
method to detect out-of-synchrony channels. Thus, it clearly differentiates connectivity
patterns from dyslexia subjects from controls, which paves the way to construct an effective
and objective computer-aided diagnosis tool.

It is worth noting that this study is based on non-speech, non-interactive stimuli,
whose properties are derived from the Spanish language (related to the different language
segmentation tasks developed in the brain during language processing). Thus, the study is
limited to Spanish speakers and could not be generalized to other languages. On the other
hand, the subject sample (7 years old children) in this study were all Spanish speakers from
schools of Junta de Andalucía (Andalucía region in the south of Spain). In this way, the
extent of the results are limited to the sample diversity.

As a future work, we plan to use a high-density EEG searching for additional low-level
interactions among brain areas that could be interesting from an exploratory point of view.
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Abbreviations
The following abbreviations are used in this manuscript:

EEG Electroencephalography
DD Developmental Dyslexia
MEG Magnetoencephalography
SNR Signal to Noise Ratio
ICA Independent Component Analysis
SC Spectral Coherence
CFC Cross Frequency Coupling
PAC Phase Amplitude Coupling
LI Language Impairment
SSD Speech Sound Disorder
ADHD Attention Deficit Hyperactivity Disorder
IIR Infinite Impulse Response
FIR Finite Impulse Response
HT Hilbert Transform
PLV Phase Locking Value
SOM Self-Organizing Map
BUM Best Matching Unit
ROC Receiver Operating Curves
AUC Area Under ROC Curve
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