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a b s t r a c t 

Background and Objective: Color variations in digital histopathology severely impact the performance of 

computer-aided diagnosis systems. They are due to differences in the staining process and acquisition 

system, among other reasons. Blind color deconvolution techniques separate multi-stained images into 

single stained bands which, once normalized, can be used to eliminate these negative color variations 

and improve the performance of machine learning tasks. Methods: In this work, we decompose the ob- 

served RGB image in its hematoxylin and eosin components. We apply Bayesian modeling and inference 

based on the use of Super Gaussian sparse priors for each stain together with prior closeness to a given 

reference color-vector matrix. The hematoxylin and eosin components are then used for image normal- 

ization and classification of histological images. The proposed framework is tested on stain separation, 

image normalization, and cancer classification problems. The results are measured using the peak signal 

to noise ratio, normalized median intensity and the area under ROC curve on five different databases. 

Results: The obtained results show the superiority of our approach to current state-of-the-art blind color 

deconvolution techniques. In particular, the fidelity to the tissue improves 1,27 dB in mean PSNR. The 

normalized median intensity shows a good normalization quality of the proposed approach on the tested 

datasets. Finally, in cancer classification experiments the area under the ROC curve improves from 0.9491 

to 0.9656 and from 0.9279 to 0.9541 on Camelyon-16 and Camelyon-17, respectively, when the original 

and processed images are used. Furthermore, these figures of merits are better than those obtained by 

the methods compared with. Conclusions: The proposed framework for blind color deconvolution, normal- 

ization and classification of images guarantees fidelity to the tissue structure and can be used both for 

normalization and classification. In addition, color deconvolution enables the use of the optical density 

space for classification, which improves the classification performance. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Histopathological tissues utilized for cancer diagnosis are 

tained using different dyes, commonly Hematoxylin-Eosin (H&E) 

1] . This process facilitates the analysis made by pathologists. The 

hole-Slide Images (WSIs) obtained by high-resolution scanners 

ave many advantages: images do not deteriorate over time, they 

an be easily accessed and shared and, very importantly, enable 

athologists to study slides on a screen and the development of 
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omputer-Aided-Diagnosis (CAD) systems. The performance of CAD 

ystems can be significantly affected by color variations of histo- 

ogical images [2] . These variations, which can be inter- and intra- 

aboratory are introduced in the acquisition procedure. Caused by 

ariables like fixatives, staining manufactures, lab condition and 

emperatures, and the use of different scanners, among others, see 

3] for details. Two main approaches have been proposed to mini- 

ize the influence of color variations on the obtained images and 

heir posterior analysis. Blind Color Deconvolution (BCD) and Color 

ormalization (CN). 

BCD techniques separate the stains in an image by estimating 

ts stain color-vectors and the corresponding stain concentrations. 

he process should lead to structure, nuclei (hematoxylin), cyto- 

lasm and collagen of the stroma (eosin), etc, preservation. BCD 

an be used for image normalization (by normalizing each stain 

eparately), but this is only one of the possible solutions it offers 

o deal with color variation. Stain separation also allows CAD sys- 

ems to use the information provided by each stain separately [4] . 

urthermore, concentrations can be directly used for classification 

4,5] . 

CN focuses on transforming histological images to a com- 

on color range, usually obtained from a reference WSI. Tosta 

t al. [3] classifies direct CN methods into histogram matching and 

olor transfer. Histogram matching techniques adjust image colors 

sing histogram information. This is a common solution for gen- 

ral images but it is not appropriate for histological images as 

t assumes that stains are equally distributed and disregards lo- 

al information. Stain concentration is closely related to the tissue 

nd cell structures which need to be preserved. Color transfer of- 

en includes a segmentation step to identify histological regions or 

yes. Then a stain-specific based color correction is applied. How- 

ver, the selective transformation occasionally causes artifacts on 

he images. Most Deep Learning (DL) methods are included in this 

ategory as they usually perform CN without Color Deconvolution 

CD) [6,7] . 

.1. Related work 

A wide range of solutions have been proposed to find the stain 

olor-vector in the images. They can be experimentally obtained 

s Ruifrok and Johnston [8] did in one of the pioneer works in 

he CD field. The empirically obtained color-vectors proposed in 

8] do not tackle stain color variation. To take variablity into ac- 

ount, the selection of pixels corresponding to each stain was pro- 

osed in [9] . The amount of slides available quickly made this so- 

ution obsolete. Formulating the problem as blind source separa- 

ion, Non-negative Matrix Factorization (NMF) was used in [10] . 

sing the same principles [11] and [12] further developed this re- 

earch approach including regularization and sparsity terms which 

ncapsulate the assumption that each stain fixes only to specific 

issue structures, forcing most of the pixels to respond to one type 

f stain only. Singular Value Decomposition (SVD), was applied in 

13] for H&E stain separation and then further developed in [14] by 

onsidering the interaction between stains. It was recently revis- 

ted in [15] where the steps were reorganized to obtain a time- 

ptimized pipeline. The NMF memory and time requirements were 

educed in [16] with the use of Non-Negative Least Squares (NNLS). 

n [17] , stain vectors were estimated through clustering in the 

axwellian chromacity plane. In [18] , supervised relevant vector 

achines are used to segment background, hematoxylin and eosin 

ixels. The color-vector for each stain is then defined as the mean 

f the pixels in each class. Recently, Salvi et al. [19] have presented 

 three steps method using Gabor kernels, structure segmenta- 

ion and a final deconvolution step. Independent Component Anal- 

sis (ICA) was utilized in [20] and extended in [21,22] , using the 

avelet transform that reduces the independence condition be- 
2 
ween sources. The method in [13] was revised in [23] , where the 

uthor state that they obtained better result applying it in the lin- 

arly inverted RGB-space instead of the (logarithmically inverted) 

bsorbency space. The work by Zheng et al. [24] includes the de- 

onvolution by Ruifrok as a starting point and optimizes the color- 

ector and concentration values using a prior knowledge-based ob- 

ective function. 

In this work, we develop a Bayesian framework for BCD, CN, 

nd classification of histological images using both normalized and 

tain separated images. Like the approaches presented in [25] and 

5] , this work uses Bayesian modeling and inference. In [25] , a 

imilarity prior to reference stain color-vectors, together with a 

moothness Simultaneous Autoregressive (SAR) prior model on the 

tain concentrations were used. Since the SAR prior oversmooths 

dges, in [5] , we presented the use of a Total Variation (TV) prior 

n the stain concentrations. The TV prior preserves sharp edges 

hile reducing noise in the images [26] , but unfortunately, in some 

ases, it tends to flatten areas which, together with the edges, are 

ssential for image classification. For blind natural image decon- 

olution, we proposed in [26,27] a general framework to model 

nd restore the the image from its blurred and noisy version. We 

ntroduced a large class of sparse image priors, the so called Su- 

er Gaussians (SGs) which represent well sharp image character- 

stics. Most sparse image models used in the literature are in- 

luded in the formulation as special cases. In this work we pro- 

ide a complete mathematical derivation of how to combine SG 

rior models with the likelihood associated to blind color decon- 

olution of histological images. The proposed approach is tested on 

tain separation, image normalization, and classification problems 

sing five different databases. Preliminary results were presented 

n [28,29] where a limited theoretical derivation was provided and 

 reduced set of SG priors and datasets were utilized in the ex- 

erimental validation. In this work we extend [28,29] by provid- 

ng a complete and clearer mathematical derivation of the model. 

e also provide an extensive experimental validation using three 

dditional databases including images from different laboratories. 

he validation now includes: Application of the SG prior models 

o stain normalization, a complete evaluation of the stain normal- 

zation results, additional classification experiments using normal- 

zed images and stain concentrations separately, time comparison 

f the competing methods, and analysis of the similarity prior on 

he color-vectors. Furthermore we also evaluate the use of normal- 

zed images or stain concentrations for classification tasks, and dis- 

uss the use of a third residual stain. 

The paper is organized as follows: Section 2 introduces the BCD 

roblem and its mathematical formulation. Section 2.2 presents 

he modeling and Bayesian inference proposed for the estima- 

ion of the color-vector matrix, the stain concentrations, and all 

he model parameters. In Section 4 , we use H&E stained im- 

ges to evaluate the proposed framework and provide a compar- 

son with classical and state-of-the-art CD methods using four dif- 

erent histolopathology related tasks: BCD stain separation, im- 

ge normalization, deconvolution based prostate cancer classifica- 

ion, and breast cancer classification using normalized images and 

tain concentrations. Section 5 includes the discussion and finally, 

ection 6 concludes the paper. 

. Methods 

.1. Problem formulation 

For each WSI, the tissue observed by a brightfield miscroscope 

s represented as an MN × 3 matrix I . Each color plane is stacked 

nto a MN × 1 column vector i c = (i 1 c , . . . , i MNc ) 
T , c ∈ { R, G, B } . The

ransmitted light on the color band c ∈ { R, G, B } for the i th pixel in

he slide is stored in i . Stain deconvolution methods usually ap- 
ic 
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Table 1 

Some penalty functions. 

Label ρ(s ) ρ′ (s ) / | s | 
� p , 0 < p ≤ 1 1 

p 
| s | p | s | p−2 
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Fig. 1. Penalties corresponding to functions in Table 1 . log | s | is bounded for better 

visualization. 
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ly the Beer-Lambert law to transform slide images to the Optical 

ensity (OD) space, where the n s stained slide can be expressed as 

 

T = MC 

T + N 

T , (1) 

he observed OD image Y ∈ R 

MN×3 contains three channels, i.e., 

 = [ y R y G y B ] and each channel y c ∈ R 

MN×1 is defined as y c =
log 10 

(
i c / i 

0 
c 

)
, with i 0 c the incident light (Typically 255 for RGB 

mages). The values for y c are computed element-wise. The ma- 

rix C ∈ R 

MN×n s contains the stain concentration, M ∈ R 

3 ×n s is the 

olor-vector matrix and N ∈ R 

MN×3 is a random noise matrix with 

.i.d. zero mean Gaussian components with variance β−1 . 

The BCD aproach aims to estimate both C and M . In C , the con-

entration of each stain in the i th Y pixel value, y i, : , is expressed

s the i th row c T 
i, : 

= (c i 1 , . . . , c in s ) and the whole contribution of

he s th stain to the image is the s th column c s = (c 1 s , . . . , c MNs ) 
T .

n the color-vector matrix M , each m s column contains the color 

omposition of the s th stain. 

.2. SG Bayesian model 

Using the Beer-Lambert model in (1) , the observation model 

s 

(Y | C , M , β) = 

MN ∏ 

i =1 

N (y i, : | Mc i, : , β
−1 I 3 ×3 ) . (2) 

The Bayesian approach requires to select a prior distribution on 

he unknowns. Here we adopt SG distributions as priors for the 

tain concentrations in the filtered space. SG priors are known to 

reserve sharp images [26] . They induce sparsity and allow us to 

nd the key values for each stain. We use a set of J high-pass filters 

oted as { D ν} J ν=1 
to obtain the filtered concentrations c ν s = D νc s .

he filtered space remarks the edges in the image that we want to 

reserve. 

(C | α) = 

J ∏ 

ν=1 

n s ∏ 

s =1 

p( c ν s | ανs ) 

= 

J ∏ 

ν=1 

n s ∏ 

s =1 

MN ∏ 

i =1 

Z( αν s ) exp [ −αν s ρ( c ν s (i )) ] , (3) 

ith αν s > 0 and Z( αν s ) a partition function. For p( c ν s | ανs ) in

3) to be SG, the penalty function ρ(. ) has to be symmetric around

ero. In addition, ρ( 
√ 

s ) has to be increasing and concave for s ∈
0 , ∞ ) , which is equivalent to ρ ′ (s ) /s being decreasing on (0 , ∞ ) .

he latter condition allows ρ to be written as follows 

( c ν s (i ) ) = inf 
ην s (i ) > 0 

L ( c ν s (i ) , ην s (i ) ) (4) 

here L ( c ν s (i ) , ην s (i ) ) = 

1 
2 ην s (i ) c ν2 

s (i ) − ρ∗( 1 
2 ην s (i ) 

)
, inf denotes 

nfimum and ρ∗( ·) is the concave conjugate of ρ(·) and ην s = 

 ην s (i ) } MN 
i =1 

are positive parameters. The relationship dual to (4) is 

iven by Rockafellar [30] 

∗
(

1 

2 

ην s (i ) 
)

= inf 
c ν s (i ) 

1 

2 

ην s (i ) c ν
2 
s (i ) − ρ( c ν s (i ) ) . (5) 

able 1 and Fig. 1 show possible choices for the penalty function 

nd their corresponding SG distributions (for additional SG distri- 

utions, see [26] ). 
3 
The color-vector matrix M = [ m 1 , . . . , m n s ] is also unknow, but 

t is expected to be similar to a reference color-vector matrix M = 

 m 1 , . . . , m n s 
] . Therefore we use a similarty prior as 

(M | γ ) = 

n s ∏ 

s =1 

p(m s | γs ) 

∝ 

n s ∏ 

s =1 

γ
3 
2 

s exp 

(
−1 

2 

γs ‖ m s − m s ‖ 

2 
)

, (6) 

here the parameter γs , s = 1 , . . . , n s , measures the confidence on

he accuracy of the reference m s . 

The joint probability distribution is then defined as 

(Y , C , M , β, α, γ ) = p(M | γ )p( γ )p(Y | C , M , β)p(β) 

×
J ∏ 

ν=1 

n s ∏ 

s =1 

p( c ν s | ανs )p(ανs ) , (7) 

here we include the hyperpriors p( γ ) , p(β) and p(ανs ) on the 

odel hyperparameters for automatic estimation. 

Following the Bayesian paradigm, the estimation of M and C 

s based on our estimation of the posterior distribution p(
| Y ) 

ith 
 = { C , M , β, α, γ} including all the unknowns. Our ap-

roach approximates p(
| Y ) using the mean-field variational 

ayesian model [31] , by the distribution q(
) of the form q(
) = 

 n s 
s =1 

q(m s ) 
∏ J 

ν=1 
q(c νs ) that minimizes the Kullback-Leibler (KL) 

ivergence [32] defined as 

L ( q( �) || p( �| Y ) ) = 

∫ 
q(
) log 

q(
) 

p(
, Y ) 
d
 + log p(Y ) . (8) 

However, the SG prior for C ν makes the evaluation of this diver- 

ence intractable. To tackle this problem we will make use of the 

uadratic bound for ρ to bound the prior in (3) with a Gaussian 

orm 

 ( c ν s (i ) | αν s ) ≥ Z( αν s ) exp [ −αν s L ( c ν s (i ) , ην s (i ))] , (9) 

 ην s (i ) > 0 . Then we define 

 ν (C , ην | αν ) = 

n s ∏ 

s =1 

MN ∏ 

i =1 

Z( αν s ) exp [ −αν s L ( c ν s (i ) , ην s (i )) ] (10) 

nd 

(
, Y ) = p(M , γ )p( γ )p(Y | C , M , β)p(β) 

×
∏ 

ν

M ν (C , ην | αν )p( αν ) , (11) 

btaining the bound log p(
, Y ) ≥ log F(
, Y ) . 

Using F(
, Y ) for the posterior distribution in (8) we can now 

inimize KL ( q(
) || F(
, Y ) ) instead of KL ( q(
) || p(
| Y ) ) . 

As described in [31] , q(θ ) , for each unknown θ ∈ �, can be 

ritten as 

(θ ) ∝ exp 〈 log F(
, Y ) 〉 q( �\ θ ) , (12) 
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here 〈 ·〉 is the expectation and q(
\ θ ) indicates that it is taken 

ith respect to all parameters in � except θ . The mean is used 

hen a point estimation is required. 

.3. Updating the concentrations 

We define 

 

−s 
i, : 

= y i, : −
∑ 

k � = s 
〈 c ik 〉 〈 m k 〉 

z −s 
i 

= 〈 m s 〉 T e −s 
i, : 

, i = 1 , . . . , MN, (13) 

rom Eq. (12) we can obtain that q(c s ) = N (c s | 〈 c s 〉 , �c s ) , where

he inverse of the covariance matrix is given by 

−1 
c s 

= β
〈‖ m s ‖ 

2 
〉
I M N×M N + 

∑ 

ν

ανs D 

T 
νdiag ( ηνs ) D ν (14) 

nd the mean is obtained as 

−1 
c s 〈 c s 〉 = βz −s . (15) 

.4. Updating the color-vector matrix 

Similarly, from (13) , we obtain that q(m s ) = N (m s | 〈 m s 〉 , �m s ) ,

here 

�−1 
m s 

= 

( 

J ∑ 

ν=1 

βν

MN ∑ 

i =1 

〈
c 2 νis 

〉
+ γs 

) 

I 3 ×3 , 

−1 
m s 

〈 m s 〉 = 

( 

J ∑ 

ν=1 

βν

MN ∑ 

i =1 

〈 c νis 〉 e −s 
νi, : 

+ γs m s 

) 

. (16) 

o ensure 〈 m s 〉 to be a unitary vector, we replace 〈 m s 〉 by 〈 m s 〉 / ‖ 
 

m s 〉 ‖ and �m s by �m s / ‖ 〈 m s 〉 ‖ 2 . 
.5. Updating the variational parameter 

The estimation of the η matrix, requires to solve, for each s ∈ 

 1 , . . . , n s } , ν ∈ { 1 , . . . , J} and i ∈ { 1 , . . . , MN} 
ˆ ηνs (i ) = arg min 

ην s (i ) 
〈 L ( c ν s (i ) , ην s (i ) ) 〉 q(c s ) 

= arg min 

ην s (i ) 

1 

2 

ην s (i ) u ν
2 
s (i ) − ρ∗

(
1 

2 

ην s (i ) 
)

(17) 

here u ν s (i ) = 

√ 〈
c ν2 

s (i ) 
〉
. Since 

∗( 
ˆ ηνs (i ) 

2 

) = min 

x 

1 

2 

ˆ ηνs (i ) x 2 − ρ(x ) (18) 

hose minimum is achieved at x = u ν s (i ) . Then, differentiating the 

ight hand side of (18) with respect to x , equating it to zero and

ubstituting the value for x at its minimum, we have, 

ˆ νs (i ) = ρ ′ ( u ν s (i )) / | u ν s (i ) | . (19) 

.6. Updating the hyperparameters 

The estimates of the parameters controlling the noise and color- 

ectors confidence are calculated from 

ˆ −1 = 

tr 
〈
(Y 

T − MC 

T )(Y 

T − MC 

T ) T 
〉
q( �) 

3 MN 

, (20) 

ˆ −1 
s = 

tr ( 
〈
(m s − m s )(m s − m s ) 

T 
〉
) 

3 

. (21) 

Using (12) the distribution for ανs is written as follows 

(ανs ) = const + 

MN ∑ 

i =1 

log Z( αν s ) exp [ −αν s ρ( u ν s (i )) ] , (22) 
4 
here u ν s (i ) was defined in Section 2.5 . Estimating ανs with the 

ode of (22) , we obtain ˆ ανs from 

∂ log Z( ̂  ανs ) 

∂ ̂  ανs 
= 

1 

MN 

MN ∑ 

i =1 

ρ( u ν s (i )) . (23) 

From the penalty functions shown in Table 1 , � p produces 

roper priors, where we can evaluate the partition function. How- 

ver, the log penalty function produces an improper prior. To tackle 

his problem we examine the behaviour of 

(ανs , K) 
−1 = 

∫ K 

−K 

exp [ −αν s ρ(t) ] dt (24) 

hen ανs � = 1 , and keeping in ∂ Z(ανs ) /∂ ανs the term that depends

n ανs . This produces for the log prior 

∂Z( ̂  ανs ) 

∂ ̂  ανs 
= ( ̂  ανs − 1) −1 . (25) 

alues for ˆ ανs can be obtained substituting this last expression into 

23) . Flat hyperpriors have been used for all the hyperparamenters. 

.7. Covariance matrices for the concentration 

We have to find the covariance matrix �c s in order to calculate 

ts trace as well as ˆ ηνs (i ) . Unfortunately, this is computationally 

ntensive. To reduce the impact of the calculation, we propose to 

pproximate �c s as follows. First, we approximate diag ( ηνs ) by 

iag ( ηνs ) ≈ z( ηνs ) I , (26) 

here we use the mean of the diagonal values to calculate z( ηνs ) . 

hen we approximate 

−1 
c s 

≈ β
〈‖ m s ‖ 

2 
〉
I M N×M N + 

∑ 

ν

ανs z( ηνs ) D 

T 
νD ν = B . 

inally we have 
〈
c ν

2 
s (i ) 

〉
≈ ( 〈 c ν s (i ) 〉 ) 2 + 

1 
MN tr 

[
B 

−1 D 

T 
νD ν

]
. 

.8. Proposed algorithm 

Considering the previous inference, we propose the Fully Varia- 

ional Bayesian SG BCD in Algorithm 1 . Fig. 2 depicts the pipeline 

lgorithm 1 Fully Variational Bayesian SG BCD. 

equire: Observed RGB image I and reference (prior) color-vector 

matrix M . 

Obtain the OD image Y from I and set 〈 m s 〉 (0) = m s , �
(0) 
m s 

= 0 , 

�(0) 
c s = 0 , 〈 c s 〉 (0) , ∀ s = 1 , . . . , n s , from the matrix C obtained as

C 

T = M 

+ Y 

T , with M 

+ the Moore-Penrose pseudo-inverse of M , 

and n = 0 . 

while convergence criterion is not met do 

1. Set n = n + 1 . 

2. Obtain β(n ) , γ (n ) 
s and α(n ) 

νs from (20), (21) and (23). 

3. Using 〈 c s 〉 (n −1) and �(n −1) 
c s ∀ s , update variational parameters 

ˆ η(n ) 
νs from (19) ∀ ν . 

4. Using 〈 c s 〉 (n −1) , �(n −1) 
c s and 〈 m s 〉 (n −1) update �(n ) −1 

m s 
and 

solve (16) for the color-vectors 〈 m s 〉 (n ) , ∀ s . 

5. Using 〈 m s 〉 (n ) , �(n ) 
m s 

and 

ˆ η(n ) 
νs ∀ ν update �(n ) −1 

c s from (14) and 

solve (15) for the concentrations 〈 c s 〉 (n ) , ∀ s . 

end while 

Output color-vector ˆ m s = 〈 m s 〉 (n ) and 

ˆ c s = 〈 c s 〉 (n ) . 

ollowed by the proposed framework. We use the Conjugate Gra- 

ient approach to solve the linear equation problem in step 4 of 
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Fig. 2. Pipeline of the proposed framework. First, the H&E image is converted to the OD space. The OD image Y and the reference matrix M are given to the SG Bayesian 

framework. The values of all parameters are automatically estimated during the inference procedure using the KL divergence. Finally, the estimated color-vector matrix ˆ M 

and concentrations ˆ C are obtained. 
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1 https://camelyon17.grand-challenge.org/ . 
lg. 1 . The inference procedure iterates between concentration up- 

ate, color-vector update, variational parameter update, and pa- 

ameter update. When necessary, a single-stain RGB image ̂  I 
sep 
s , can 

e obtained from the outputs in Algorithm 1 as follows 

 ̂

 I sep 
s ) T = exp 10 (− ˆ m s ̂  c T s ) (27) 

.9. Use of the algorithm on WSIs 

The size of WSI images is usually on the order of Gigapixels, 

aking their processing challenging. The proposed method could, 

n principle, be used directly on WSIs but Bayesian methods are 

omputationally expensive and the computational burden would 

e considerable, notice that M and N would be huge. However, 

SIs are not usually processed at once and most classification or 

nalysis tasks require patching [4,33] or focusing only on Regions- 

f-Interest (RoI) [22] . 

For classification purposes it is possible to deconvolve patches 

eparately. This approach can tackle local variations but will cre- 

te variations in the estimated color-vector matrix for each patch. 

nother possible solution is to select a RoI in order to obtain the 

olor matrix. This is the approach we follow in this paper. First, 

e select the biggest connected RoI within the patches of inter- 

st and estimate the color-vector matrix ˆ M for the complete WSI. 

hen, the concentrations of the remaining patches are obtained us- 

ng C 

T = 

ˆ M 

+ Y 

T , with 

ˆ M 

+ the Moore-Penrose pseudo-inverse of ˆ M . 

otice that a single color-vector matrix is obtained for all patches 

elonging to the same WSI and that they can be stitched together 

ithout artifacts if necessary. 

An alternative approach is to use the prior on the concentra- 

ions in Eq. (3) and the observation model in Eq. (2) for all the

atches in the WSI we want to use. In other words, Eq. (2) be-

omes a product over patches of interest. Notice that the new vari- 

tional distributions are similar to those derived in the paper but 

ow have to consider all the utilized patches. 

. Data material 

Five databases, were used in the experiments Warwick 

tain Separation Benchmark (WSSB) [22] , SICAPv1 [4] , SICAP-GR, 

amelyon-16 [34] and Camelyon-17 [35] . Details for each database 

re provided below: 

.1. WSSB 

WSSB is a multi-tissue dataset (breast, colon, and lung) that 

ontains 24 H&E stained images from different laboratories and 

aptured with different microscopes. Colon images were captured 

t 20 × magnification and Breast and Lung at 40 ×. Hematoxylin- 

nd Eosin-only pixels manually selected by expert pathologists 
5 
ere used to obtain the ground truth stain color-vector matrix for 

ach image. Then, the ground truth concentration is calculated in 

22] as 

 

T 
GT = M 

+ 
GT Y 

T . (28) 

hen using (27) , a single-stain RGB image was calculated for both 

ematoxylin and eosin. This database will be used for BCD evalua- 

ion. 

.2. SICAPv1 

This database comes from Hospital Clínico Universitario de Va- 

encia , Spain, it contains 79 H&E WSI from 48 patients, 19 be- 

ign prostate tissue biopsies (negative class) and 60 pathological 

rostate tissue biopsies (positive class). The images were digitized 

sing a Ventana iScan Coreo scanner at 40 × magnification. Malig- 

ant regions of each pathological WSI were annotated by expert 

athologists. 60 WSI (17 benign and 43 pathological) were used as 

raining set and the remaining 19 WSI (2 benign and 17 patholog- 

cal) were utilized for testing. This database will be used for clas- 

ification purposes and some of its slides will also be used for CN 

s we describe next. 

.3. SICAP-HUVNGR 

This dataset contains 26 prostate H&E WSI: 13 slides at 40 ×
agnification from Hospital Universitario Virgen de las Nieves de 

ranada (HUVNGR) and 13 slides from Hospital Clínico Universitario 

e Valencia (randomly extracted from SICAPv1 dataset). These WSIs 

ill be used for CN evaluation. 

.4. Camelyon-16 and 17 

These two databases are part of the Camelyon challenge 1 for 

ancer metastasis detection in the lymph node. We will use them 

n CN and classification experiments. Both Camelyon databases 

ere scanned at 40 ×. They are described below. 

• Camelyon-16 contains 400 H&E-stained lymph node multires- 

olution WSIs from 2 different laboratories. 270 are used from 

training (159 referred as normal and 111 as tumor) and 130 for 

testing. Cancer regions were annotated by expert pathologists 

in tumor and test images. All the annotations are available. 
• Camelyon-17 contains 10 0 0 WSIs from 5 medical centers. Only 

the training set, which contains 500 WSIs, was used since the 

annotations for the testing WSIs are not yet available. The 

https://camelyon17.grand-challenge.org/
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Table 2 

Camelyon 17 dataset labeling structure. 

stage label 

Subset WSI total negative itc micro macro 

Whole training set 500 318 36 59 87 

annotated 50 0 16 17 17 

no annotated 450 318 20 42 70 

Table 3 

Experiments performed for each database. 

database Stain separation Color normalization Classification 

WSSB � 

SICAPv1 � � 

HUVNGR 

Camelyon-16 � � 

Camelyon-17 � � 
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dataset comprises 20 patients per center and 5 slides per pa- 

tient. Cancer regions were annotated by pathologists only on 50 

WSIs, but the stage label: negative, isolated tumor cells (itc), 

micrometastasis (micro), macrometastasis (macro) is available 

for all the slides in the training set. See Table 2 for details. 

or a clearer perspective, we include Table 3 that shows the exper- 

ments performed for each database. 

. Experiments and results 

As mentioned previously, BCD techniques are used to facilitate 

he visual analysis and to improve the automatic classification of 

SIs. These are frequently conflicting goals due to the differences 

etween the human eye and computer vision. Usually, the high- 

st classification performance is not obtained with the most accu- 

ate color deconvolved images, where each stain is accurately sep- 

rated. 

We have designed a set of experiments to test the performance 

f the algorithms on the most common histological color decon- 

olution related tasks: stain separation, image normalization, and 

lassification. Our first experiment is devoted to assess the quality 

f the stain separated images, that is, of the concentration matrices 

nd color vector. Then, in the second one, we analyze the quality 

f these matrices in CN. In the CN step a reference WSI is selected 

nd the color-vectors of the image to normalize are substituted by 

hose of the reference image, keeping the concentrations. Finally, 

he obtained deconvolved and normalized images are evaluated on 

istological classification problems. 

The proposed SG framework was compared with the following 

B)CD methods frequently used in the literature: the classical non- 

lind CD method by Ruifrok and Johnston [8] and the BCD meth- 

ds by Macenko et al. [13] , Vahadane et al. [11] , Alsubaie et al.

22] , Hidalgo-Gavira et al. [25] , Pérez-Bueno et al. [5] and Zheng 

t al. [24] . They will be denoted by RUI, MAC, VAH, ALS, HID, PER,

nd ZHE, respectively. Since SG represents a family of prior distri- 

utions, we have selected two of its representative members, the 

orresponding to � p and log energy functions. They will be de- 

oted by L1 and LOG, respectively, in the experiments. 2 For the 

 p function we experimentally compared values for p in the in- 

erval [0 . 6 , 1] and found no significant differences. For simplicity, 

e choose � 1 . The proposed L1 and LOG methods were run un- 

il the criterion ‖ 〈 c s 〉 (n ) − 〈 c s 〉 (n −1) ‖ 2 / ‖ 〈 c s 〉 (n ) ‖ 2 < 10 −3 was met 

y all the stains. Vertical, horizontal and diagonal differences were 
2 The code used in the experiments will be made available at https://github.com/ 

ipgugr upon acceptance of the paper. 

v

o

c

s

6 
sed as high-pass filters in the concentration prior (Eq. (3) ). All the 

odel parameters are automatically estimated. 

.1. BCD stain separation experiments 

We begin the experimental assessment by comparing the fi- 

elity to the H&E separation obtained by the different BCD meth- 

ds on the WSSB database, see Section 3 . From this dataset, we 

how an observed RGB image ( Fig. 3 (a)) and the corresponding 

round truth H&E-only RGB image ( Fig. 3 (b)). 

To set an adequate prior for our method, we consider that the 

tain color properties may change for the different tissues types in 

SSB (Colon, breast, lung). For each tissue, an H&E reference color- 

ector matrix M was selected by a non-medical expert using a sin- 

le pixel for each stain. Following the widely used implementation 

36] of Ruifrok’s method, when a third residual component is used, 

he reference color-vector is calculated using the vector product of 

he H&E components in the color matrix. 

The single stain images obtained from the observed image in 

ig. 3 (a) are shown in Fig. 3 (c-k). The standard color vector used 

y RUI obtains a separation that do not represent the ground truth. 

he proposed methods, L1 and LOG, and MAC, HID, and PER are 

ble to find colors that are close to the ground truth separation in 

ig. 3 (b). The Bayesian methods HID, PER and the proposed ones 

hare the same prior for the color-vectors, but their differences lay 

n the concentration prior. HID uses a SAR model, that tends to 

versmooth images. The TV based method PER keeps edges sharp, 

ut flattens the inner area of the tissues. The proposed SG meth- 

ds does not suffer from the Gaussian oversmoothing, obtaining 

harper edges depending on the prior chosen and richer details 

han MAC and the just described methods. 

The quantitative comparison on the stain separated images 

as performed using the Quaternion Structural Similarity (QSSIM) 

37] and the Peak Signal to Noise Ratio (PSNR) metrics. The mean 

alue for each tissue in the dataset is presented in Table 4 . The re-

ults show that the proposed L1 with n s = 2 achieves outperform 

he competitors. The proposed LOG slightly improves the results of 

he TV based method PER. This table also includes the performance 

f our proposed methods when three color vectors are used. As 

e will later show, the use of a residual component facilitates the 

lassification task, see also [5] . Although the use of three compo- 

ents deteriorates the quality of the stained separated images, our 

ethods perform similarly to some other methods (not the worst 

nes) in terms of PSNR and QSSIM values. 

As it can be observed in Figs 3 (j-m) the differences when a 

hird component is used are difficult to distinguish. For a better vi- 

ual comparison, Fig. 4 shows zoomed in details from Fig. 3 (k&m). 

otice that we report L1 results since this method obtains the 

est PSNR and QSSIM values with n s = 2 and the difference with 

he n s = 3 results is wider. The difference between hematoxylin 

 Figs 4 (a&d) and eosin ( Fig. 4 4 (b&e) colors is small. The third com-

onent captures only residual information extracted from the H&E 

ands. The third band is discarded, which implies less fidelity to 

he original image. Then, the experimental design in [22] implies 

hat removing information will lead to lower PSNR and QSSIM val- 

es. In spite of the lower figures of merit, we will see in following 

ections that the use of a third component leads to better classifi- 

ation performances. 

.1.1. Dependency on the reference color-vector M 

The similarity prior in (6) requires the use of a reference color- 

ector matrix M . On one hand, the prior on M ensures that the 

btained result agrees with our previous knowledge on the H&E 

hannels. On the other hand, it reduces the search space of fea- 

ible solutions. The prior for our model should be as accurate as 

https://github.com/


F. Pérez-Bueno, M. Vega, M.A. Sales et al. Computer Methods and Programs in Biomedicine 211 (2021) 106453 

Table 4 

Mean PSNR and QSSIM values for all the methods on the WSSB dataset [22] . 

RUI MAC VAH ALS HID PER ZHE LOG LOG L1 L1 

n s = 2 n s = 3 n s = 2 n s = 3 

Image Stain 

Colon H 22.27 23.91 25.83 21.11 28.57 28.62 17.89 28.66 24.12 29.01 24.12 

E 20.70 21.55 26.29 21.94 27.58 27.60 14.76 27.74 25.31 28.38 25.31 

Breast H 15.27 26.24 25.46 24.60 28.81 29.14 15.31 29.23 27.56 30.50 27.56 

E 17.66 23.62 27.68 25.92 26.60 26.76 14.99 26.74 27.19 27.71 27.19 

Lung H 22.47 19.52 25.87 20.62 32.91 33.10 19.51 31.21 24.69 35.21 24.69 

E 22.05 18.09 25.53 23.95 30.77 31.02 16.23 29.99 25.50 33.07 25.50 

Mean H 20.00 23.22 25.72 22.11 30.10 30.29 17.57 29.70 25.46 31.57 25.46 

E 20.14 21.08 26.50 23.94 28.32 28.46 15.33 28.16 26.00 29.72 26.00 

QSSIM 

Image Stain 

Colon H 0.8841 0.8581 0.9536 0.5369 0.9635 0.9163 0.7490 0.9556 0.9168 0.9696 0.9168 

E 0.5670 0.6133 0.8656 0.7642 0.8713 0.6111 0.4407 0.8455 0.8404 0.9011 0.8404 

Breast H 0.7721 0.9859 0.9881 0.7347 0.9919 0.6813 0.5231 0.9903 0.9852 0.9918 0.9852 

E 0.7721 0.8907 0.9695 0.8068 0.9598 0.5527 0.3108 0.9567 0.9594 0.9605 0.9594 

Lung H 0.9206 0.6973 0.9489 0.4603 0.9959 0.9519 0.7747 0.9894 0.9442 0.9957 0.9442 

E 0.5368 0.3500 0.8064 0.7983 0.9401 0.6226 0.3359 0.8807 0.8405 0.9433 0.8405 

Mean H 0.8589 0.8471 0.9635 0.5773 0.9838 0.8499 0.6823 0.9784 0.9488 0.9857 0.9488 

E 0.6253 0.6180 0.8805 0.7898 0.9237 0.5955 0.3624 0.8943 0.8801 0.9349 0.8801 

Fig. 3. Single breast observed H&E RGB image from WSSB [22] , corresponding ground truth single stain E-only and H-only images and separation obtained by the BCD 

methods. Eosin and hematoxylin separations are presented on the left and right hand sides of each image, respectively. 

p

p

e

d

b

U  

a

p

a

v

a

a

s

u

m

4

t

i  

R

ossible. However, the color variability in the WSIs might ham- 

er the accuracy of our prior. To assess the impact of the refer- 

nce matrix M we have evaluated a breast image on the WSSB 

ataset using different values of M . Variations of M were obtained 

y adding random values sampled from an uniform distribution 

(−σ, σ ) , with σ ∈ [0 . 05 , 0 . 3] . Then, each row is normalized to

chieve ‖ m s ‖ = 1 . Twenty different color-vectors were used as 

rior for the L1 method. Fig. 5 depicts some values for M , PSNR, 

nd QSSIM as σ increases. Values of σ � 0 . 2 produce low quality 

alues for the prior, as they do not represent the stains in the im- 

ge and even reach unreal values for the H&E channels. The vari- 
l

7 
tions on the prior have a considerable impact on the obtained 

eparation. The proposed method is able to deal with variations 

p to σ = 0 . 1 while obtaining values comparable to the competing 

ethods. 

.1.2. Time comparison 

Using a single WSSB image, we measured the time needed for 

he competing methods to deconvolve the image. The comparison 

s shown in Fig. 6 as a joint plot with the PSNR values obtained.

UI, which does not require color-vector estimation, obtains the 

owest time. More complex blind methods require more compu- 
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Fig. 4. Detail of the of the bottom left corner of Fig. 3 (a) and its H-only, E-only and third component separations. Separations in the top and bottom rows were obtained 

with the proposed method L1 with two components Fig. 3 (k) and three components Fig. 3 (m), respectively. 

Fig. 5. Evolution of the results for different values of M . a) Different combinations of H&E color-vectors used as M . Each column shows different values obtained with a 

fixed variance. b&c) Evolution of PSNR and QSSIM as the variance in M increases, respectively. The red dashed line indicates the performance of the separation by RUI. 

Fig. 6. Joint plot of mean PSNR and running time for deconvolving a 20 0 0 × 20 0 0 

image. The time is counted in seconds and the x axis is presented in logarithmic 

scale. The time was measured in a shared server running CentOS 7 with 32 CPU 

Intel(R) Xeon(R) (2.4 GHz). 
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ational time to estimate the color-vector matrix. ZHE implements 

 similar deconvolution step to RUI using a similar time. ALS re- 

uires as much time as HID but its PSNR and QSSIM values are 
8 
ower. The proposed approach is severely impacted by the cho- 

en prior. Using LOG the proposed method is expensive in time 

ost. However L1 reduces by half the time spent by the TV-based 

ethod, PER. L1 requires a longer time than some of the compet- 

ng methods but also obtains the best figures-of-merit as already 

eported in Table 4 . Considering a third stain component increases 

he time required by L1 but reduces it for LOG. This is due to a

igher number of parameters to estimate but less iterations re- 

uired to converge, specially for LOG. L1 required 6 iterations to 

econvolve the image in both cases while LOG used 10 and 6 with 

 s = 2 and n s = 3 , respectively. Notice, also, that the proposed fully

ayesian approach includes estimation of all model parameters to- 

ether with the stain concentrations and color-vector matrix All 

hese estimations increase the running time but make our meth- 

ds parameter free. 

.2. CN experiments 

Deep learning based CAD systems usually make use of the ob- 

erved H&E images instead of the separated bands [38] . Therefore, 

hey are highly affected by stain color variations. CN aims to pro- 

ide an improved input to CAD system. The images are prepro- 
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Fig. 7. Pipeline of the normalization procedure. Both, reference and original image are color deconvolved. To obtain the normalized image, the dynamic range of the con- 

centration ˆ C is adjusted to be the same as that of ˆ C re ference and the color matrix ˆ M is substituted by ˆ M re ference . Then, the normalized image ˆ Y Normalized is transformed back to 

RGB space. 
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Fig. 8. Violin plots of NMI values for the original and normalized images by the 

compared methods on the SICAP-HUVNGR dataset. The bars mark the maximum, 

median and minimum values for each plot. 
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Table 5 

NMI SD and NMI CV comparison for diferent normalization 

methods on SICAP-HUVNGR dataset. 

Method NMI SD NMI CV 

Original Data 0.0591 0.0705 

MAC 0.0782 0.1079 

VAH 0.0796 0.1099 

ALS 0.0799 0.1114 

HID 0.0313 0.0378 

PER 0.0296 0.0356 

ZHE 0.0398 0.0472 

LOG n s = 2 0.0330 0.0400 

LOG n s = 3 0.0307 0.0368 

L1 n s = 2 0.0306 0.0368 

L1 n s = 3 0.0287 0.0342 
essed to reduce the staining variations without modifying their 

tructure. CN can easily be achieved as an additional step after 

CD, as stain color information is separated from the structure 

f stain concentration. This section performs a comparison on the 

olor variations between the original data and the CN obtained by 

ll the competing methods. 

To normalize the images a reference image, I re ference is used. 

et ˆ M re ference and ˆ C re ference be the estimated color and concentra- 

ion matrices in the OD space obtained using one of our proposed 

ethods on the image Y re ference (obtained from I re ference ). Following 

11] , given a new image I , the dynamic range of its corresponding
ˆ 
 is adjusted to be the same as that of ˆ C re ference and the color ma- 

rix ˆ M is substituted by ˆ M re ference to obtain the normalized image 

s follows: 

 ̂

 Y normalized ) 
T = 

n s ∑ 

s =1 

−( ̂  m s ) re ference ̂  c T s 

P 99 ( ( ̂ c s ) re ference ) 

P 99 ( ̂ c s ) 
(29) 

here P 99 (v ) represents the pseudo maximum (99%) of vector v . 

he normalized RGB image ˆ I normalized is then 

 

 normalized = exp 10 
ˆ Y normalized (30) 

Fig. 7 depicts the pipeline followed to obtain the normalized 

mage. 

To measure the quality of a CN procedure, we use the normal- 

zed median intensity (NMI) measure [39] defined as 

MI(I ) = Median (u ) / P 95 (u ) (31) 

here I denotes a WSI and u is a vector where each u i component

s the mean value of the R, G, and B channels at the i th pixel, [40] .

The NMI value is calculated for each WSI in a given dataset. 

owever, we require information about the distribution of the NMI 

alues in the dataset. Then, the standard deviation of the NMI val- 

es in the dataset (NMI SD) and the coefficient of the variation 

NMI CV), i.e., NMI SD divided by mean of the dataset, were used 

s metrics. Lower values of NMI SD and NMI CV indicate a more 

onsistent normalization. 

Three datasets containing images from different centers were 

sed in this section. SICAP-HUVNGR, Camelyon-16 and Camelyon- 

7, see Section 3 . 

In the SICAP-HUVNGR dataset, to avoid the influence of large 

ackground regions, 512 × 512 pixel patches at 40 × magnification, 

ith at least 70% tissue, were sampled from each WSI. This patch 

ize is motivated by the prostate slide appearance. They are nar- 

ow tissue segments surrounded by background which is also vis- 

ble inside glands. The use of a larger patch size, while maintain- 

ng the above tissue percentage, discard most patches containing 

lands and keep only stroma patches mainly stained with eosin, 

ecause they have low nuclear density. The NMI for each WSI is 

alculated over all the pixels in the patches. The number of patches 

sed from each WSI was evaluated from 20 to 120, observing that 

eyond 60 the NMI value did not change. 
9 
For Camelyon-16 and Camelyon-17 datasets, 224 × 224 pixel 

atches, with at least 70% tissue, were sampled from each WSI. 

his will also be the patch size used for classification, see 

ection 4.4 . Following [24] , 500 patches were sampled from each 

SI in the datasets for CN and classification purposes. 

Let us now describe the obtained results. First we notice that 

UI does not estimate the color-vectors in the images, therefore it 

s not possible to use it for CN. Furthermore, the prior color-vector 

atrix M used by our method is fixed to the standard proposed by 

uifrok and Johnston [8] . 

NMI values for the SICAP-HUVNGR dataset are shown in 

able 5 . The proposed methods, LOG and L1, reduce by half the 

MI SD and NMI CV values of the original data. L1 obtains the 

est value with n s = 3 . ZHE significantly reduces both values, but 

he results are not as clustered as the obtained by HID and PER. 

AC, VAH, and ALS do not improve the initial NMI values. Fig. 8 

epicts the distribution of NMI values using violin plots. In the first 

olumn of the figure, two different NMI distributions can be ap- 

reciated on the original data. They correspond to the two centers 

he images come from. The two centers are still visible when MAC, 

AH, ALS and ZHE are used, but disappear when HID, PER, and 

he proposed L1 and LOG are utilized. The proposed L1 and LOG 
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Table 6 

NMI SD and NMI CV comparison for diferent normalization methods on Camelyon-16. 

database Camelyon-16 

subset All images Tumor Normal Test 

Method SD CV SD CV SD CV SD CV 

Original Data 0.0629 0.0860 0.0497 0.0693 0.0528 0.0684 0.0538 0.0778 

Macenko 0.0799 0.1359 0.0553 0.0826 0.0629 0.1122 0.0678 0.1221 

Vahadane 0.1127 0.2112 0.0877 0.1404 0.0741 0.1471 0.1274 0.2573 

Alsubaie 0.0698 0.1262 0.1186 0.2015 0.1048 0.1540 0.1923 0.3271 

Hidalgo-Gavira 0.0645 0.0915 0.0373 0.0480 0.0552 0.0795 0.037 8 0.0572 

Pérez-Bueno 0.0624 0.0900 0.0375 0.0492 0.0506 0.0740 0.0351 0.0539 

Zheng 0.0477 0.0616 0.0394 0.0519 0.0396 0.0516 0.0551 0.0693 

� 1 prior n s = 2 0.0532 0.0775 0.0376 0.0491 0.0357 0.0549 0.0532 0.0785 

� 1 prior n s = 3 0.0793 0.1136 0.0493 0.0622 0.0617 0.0910 0.0457 0.0708 

Fig. 9. Violin plots of NMI values for the normalized patches from Camelyon-16 dataset by the compared methods. The bars mark the maximum, median and minimum 

values for each plot. 
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Table 7 

NMI SD and NMI CV comparison for diferent normalization methods on Camelyon- 

17 dataset. 

All images Non-Negative Negative 

Method SD CV SD CV SD CV 

Original Data 0.0773 0.1035 0.0812 0.1087 0.0750 0.1004 

Macenko 0.1031 0.1689 0.0993 0.1581 0.1040 0.1731 

Vahadane 0.1058 0.1823 0.1010 0.1685 0.1069 0.1878 

Alsubaie 0.0992 0.1806 0.0989 0.1753 0.0984 0.1819 

Hidalgo-Gavira 0.0635 0.0948 0.0671 0.0987 0.0606 0.0913 

Pérez-Bueno 0.0629 0.0941 0.0668 0.0984 0.0598 0.0902 

Zheng 0.0489 0.0631 0.0488 0.0628 0.0489 0.0632 

� 1 prior n s = 2 0.0624 0.0935 0.0720 0.1051 0.0534 0.0813 

� 1 prior n s = 3 0.0793 0.1136 0.0684 0.1037 0.0638 0.0994 
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orrectly identify the H&E distribution on the WSIs. When CN is 

pplied, the color distribution is equalized for all the WSIs and the 

olor properties of each stain are fixed to those in the reference 

mage, reducing the NMI SD and CV values. 

The CN analysis on Camelyon databases is provided below. 

ue to the computational cost of CD and parameter estimation 

See Fig. 6 ) on the large volume of WSIs in those databases and

lso to the superior performance in previous experiments (See 

ables 4 & 5 ) only the proposed L1, and not LOG, was used in the

omparison. 

In addition to undesired color variance due to the staining pro- 

edure and also to the acquisition system used, pathology related 

olor variations also appear in the WSIs (e.g: tumor images usually 

ave a higher percentage of hematoxylin pixels). The fully labeled 

amelyon-16 allows us to study the pathological color variance. For 

hat matter, NMI SD and NMI CV were calculated for the whole 

ataset and for the tumor, normal and test WSIs as separated sub- 

ets. NMI SD and NMI CV values obtained for the Camelyon-16 

ataset are shown in Table 6 and Fig. 9 . The best result for the

omplete dataset is obtained by ZHE, closely followed by our pro- 

osed L1. However, in the separated normal and tumor subsets, the 

roposed method obtained the best values. Images normalized by 

ur method are more similar to those in the same subset, but the 

ifference between classes is preserved. The proposed L1 method 

ith n s = 3 obtains higher NMI values than the original dataset 

hen all images are considered, however it is reduced in the nor- 

al and tumor subsets. This is caused by a wide separation on the 

a

10 
olors for the hematoxylin and eosin channels, that will be useful 

or classification as we will see in the following sections. 

In Fig. 9 (a–c) we observe that the NMI variation on Camelyon- 

6 dataset comes not only from different centers but also from 

ifferent pathologies. Images in tumor, and normal image subsets 

how different distributions on the original data. The normalized 

mages by HID, PER, and the proposed L1 preserve those differ- 

nces, keeping a separation on the median NMI value of both sub- 

ets. ZHE, designed to optimize NMI values, tends to overnormalize 

he images, eliminating most of the NMI difference between tumor 

nd normal subsets. 
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Fig. 10. Violin plots of NMIs for the normalized patches from Camelyon-17 dataset 

by the compared methods. The bars mark the maximum, median and minimum 

values for each plot. 
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The NMI values obtained for Camelyon-17 are shown in Table 7 

nd Fig. 10 . The labeling is more complex on this dataset (See 

able 2 ), so the NMI is calculated for the negative (normal WSIs) 

nd non negative (itc, micro and macro) subsets, along with the 

ull dataset. The original WSIs from Camelyon-17 have larger color 

ariations than previous datasets, although they are not as bal- 

nced in terms of normal and tumoral WSIs. From Fig. 10 (a–c) 

t can be appreciated that the subset distributions are similar to 

he whole dataset distribution, meaning that the NMI differences 

aused by pathologies are overwhelmed by the differences be- 

ween centers. In the non-negative subset there is also variation 

ue to the significant differences between itc, micro and macro. 

he lower NMI SD and CV values are obtained by ZHE. The pro- 

osed L1 with n s = 2 obtains the second lowest value in most 

ases. L1 obtained its lowest values on the negative subset while 

antaining a wide distribution on the non negative, probably due 

o the inter-subset differences mentioned. The Bayesian methods 

ID and PER show similar results to the proposed one. 

To conclude this section we include Fig. 11 to qualitatively com- 

are the CNs obtained by the competing methods. The reference 

mage and some of their 224 × 224 extracted patches are shown 

n the first row. The remaining rows contain patches from differ- 

nt WSIs in the Camelyon-16 dataset normalized using the com- 

eting methods. MAC and VAH tend to saturate the color in the 

mages. ALS introduces artifacts in some of the patches. ZHE over- 

righten the images. HID and PER effectively transformed the color 

o that of the reference image. The proposed L1 keeps the struc- 

ure and tissue differences but set the stain properties to those 

bserved in the reference image. The normalization with the pro- 

osed L1 and n s = 2 is the most similar to the reference image.

hen using a third component, the eosin is clearer. and more dis- 

inguishable from the hematoxylin. The difference between patches 

s higher, but the stains keep the common color properties. The ef- 

ect of the residual component is clearly appreciated in the first 
11 
nd third rows of the last column. Although the removal of the 

esidual produces artifacts, small hematoxylin structures are elim- 

nated and nuclei appear more clearly separated. As discussed in 

revious sections, discarding the residual reduces the fidelity to 

he original image. In the following sections, we will demonstrate 

he beneficial effect of the third component on classification tasks. 

.3. Deconvolution based classification 

BCD allows CAD systems to use the single stained bands sep- 

rately, which can improve the classifier performance [4] . The 

eparated H&E concentrations are used to extract features and 

rain four different classifiers. The prostate cancer histopathological 

ICAPv1 database [4] was used for this purpose. In the 10 × scale, 

e use patches of size 1024 × 1024 pixels with the purpose of cap- 

uring complete glands within the patches. Training patches have 

0% overlap and we discarded those containing mostly background 

75%). From the WSI annotated as benign we obtained 1909 nega- 

ive patches. A minimum of 25% of malignant tissue was required 

or malignant patches, obtaining 344 pathological ones. 

The proposed and competing methods were used to color de- 

onvolve the dataset. Following [4] , the hematoxylin and eosin OD 

oncentration images were used to extract the concatenation of 

eodesic granulometries (GeoGran) [4] and Local Binary Patterns 

ariance (LBPV) [41] features. The H&E GeoGran descriptor was 

roposed in [4] for prostate cancer classification, obtaining stain- 

pecific information. From the hematoxylin, it recovers the gland 

rontiers formed by the nuclei structure (those that enclosed their 

umen and cytoplasm). From the eosin, it encodes how the stroma 

s affected by the lumen and nuclei structure. LBPV features are ex- 

racted from the hematoxylin band to capture texture and contrast 

nformation. The use of both Geogran and LBPV features, recov- 

rs texture and structural information in the stain separated bands, 

nd has been proven to be an accurate descriptor for histopatho- 

ogical image classification [4] . 

With the described descriptors, the following set of state-of-art 

lassifiers were trained: Random Forest (RF) [42,43] , Extreme Gra- 

ient Boosting (XgBoost) [44] , Gaussian Processes (GP) [45] and 

eep Gaussian Processes (DGP) [46] . The classifiers were configured 

ollowing [4] to achieve an unbiased classification benchmark. For 

F and XgBoost we use 10 0 0 estimators and a maximum depth of 

0 and 30, respectively. The learning rate for XgBoost is fixed to 

.01. GP and DGP classifiers were configured following the same 

pproach as in [4] . A GP classifier with Radial Basis Function (RBF) 

ernel [47] using variational inference and a three-layer DGP clas- 

ifier with RBF kernel and 100 inducing points per layer, following 

he doubly stochastic inference proposed in [48] . DGP uses a mini- 

atch size of 10 0 0 and the inducing points were initialized us- 

ng kmeans. Both models GP and DGP were optimized using Adam 

ith a learning rate of 0.01. 

To tackle the unbalance of positive and negative patches (com- 

on in cancer classification), we use a five-fold cross-validation. 

ach patient is assigned to a single fold to avoid correlation be- 

ween training and testing sets. With this configuration, each clas- 

ifier was built using all positive patches and a subset of the nega- 

ive ones. The classifiers were trained from scratch using each de- 

onvolution method 

AUCs obtained by all the compared methods are shown in 

able 8 and Fig. 12 . Since HID oversmooths the images, it performs 

orse as it happens to methods like MAC which obtain less de- 

ailed images. ZHE scores poorly even when its deconvolution step 

s based on RUI. Although L1 and LOG using n s = 2 do not obtain

he best results, the use of n s = 3 leads to a performance com- 

arable to RUI and PER. With XgBoost, LOG obtains the best re- 

ult. Notice that the best AUC (0.9856) is obtained using PER and 

P, closely followed by RUI, L1, and LOG. Notice also that L1 and 
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Fig. 11. Example patches from different WSIs in Camelyon-16. The first row shows the reference image used an a sample of 224 × 224 patches extracted from the reference. 

The original patch is shown in the first column. 

Fig. 12. ROC curves and AUC for the competing methods and classifiers on the SICAPv1 dataset. Each sub-image contains a single classifier trained with all deconvolution 

methods. 

12 
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Table 8 

AUC obtained by different classifiers when trained with dif- 

ferent deconvolution methods on the SICAPv1 cross valida- 

tion. 

Method RF GP XgBoost DGP 

RUI 0.9789 0.9855 0.9764 0.9737 

MAC 0.9315 0.9535 0.9425 0.8802 

VAH 0.9222 0.9479 0.9295 0.9420 

ALS 0.9262 0.9442 0.9246 0.9344 

HID 0.9157 0.9542 0.9228 0.8997 

PER 0.9798 0.9856 0.9797 0.9718 

ZHE 0.9194 0.9420 0.9263 0.9251 

LOG n s = 2 0.9256 0.9497 0.9281 0.9303 

LOG n s = 3 0.9796 0.9842 0.9798 0.9723 

L1 n s = 2 0.9256 0.9497 0.9281 0.9303 

L1 n s = 3 0.9796 0.9842 0.9796 0.9729 
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Fig. 13. Examples of the OD concentrations channels obtained by the proposed 

method L1 n s = 2 for different patches and used to train VGG19 using a 2-band 

image as input. 
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Table 9 

AUC Performance of the VGG19 over Cameylon-16 testing set 

using CN images and OD concentrations obtained by the pro- 

posed and competing deconvolution methods. 

Training set 

Method Camelyon-16 Camelyon-17 

CN OD CN OD 

Original images 0.9491 NA 0.9279 NA 

RUI NA 0.9458 NA 0.9003 

MAC 0.9564 0.9608 0.8652 0.8503 

ALS 0.9557 0.9556 0.9144 0.8874 

HID 0.9479 0.9558 0.9042 0.7994 

PER 0.9627 0.9552 0.9106 0.8941 

ZHE 0.9466 0.9621 0.9370 0.9380 

L1 n s = 2 0.9656 0.9429 0.9289 0.9009 

L1 n s = 3 0.9505 0.9634 0.9378 0.9541 
OG perform very similarly. This is due to the very close estimated 

olor vector matrix which leads to very similar extracted features. 

The results obtained by L1 and LOG are in agreement with 

hose obtained in our previous work [5] . Including a third resid- 

al component ( n s = 3 ) in the deconvolution step leads to better

lassification performance although the obtained stain separation 

s not as close to the ground-truth separation as that obtained us- 

ng n s = 2 . Despite of a lower fidelity, the information captured by 

he residual channel makes the nuclei in the hematoxylin chan- 

el to appear more clearly separated and with less noise. The dis- 

ribution of nuclei is usually considered be the most determinant 

eature for classification [4] . We believe this is the most plausible 

eason for the discriminative power of the residual band. 

.4. Normalization based classification 

As we have already indicated, CN can be considered as a pre- 

rocessing step whose goal is to increase the performance of CAD 

ystems [49] , specially those using as input the original RGB im- 

ges. To conclude the experimental section, in our last experiment 

e compare the performance of VGG19 [50] , a common CNN used 

n cancer classification [4,38] , when it is fed with the original and 

olor normalized patches. We also analyze the VGG19 performance 

hen trained and tested using the OD concentrations obtained by 

he different methods, as they can be seen as a two channel im- 

ge. Fig. 13 shows an example of Camelyon-16 patches and their 

D concentration channels. 

From the patches extracted in Section 4.2 , 55,0 0 0 tumor anno- 

ated (positive class) patches and 55,0 0 0 normal (negative class) 

atches from negative WSIs were randomly sampled from each 

amelyon dataset training set, see Section 3 . Since Camelyon-17 

ontains only 50 tumor annotated WSIs, to complete its 55,0 0 0 tu- 

or annotated patches, additional tumor patches were extracted 

ollowing the procedure described in Section 4.2 . Using the above 

rotocol, Camelyon-16 testing set contains approximately 190 0 0 

umor patches, and from this testing dataset 190 0 0 normal patches 

ere sampled. VGG19 was trained and tested in two scenarios. In 

he first case, we explore how normalization affects performance 

ithin a single database (using Camelyon-16 training and testing 

et). In the second scenario we use Camelyon-17 for training and 

ince Camelyon-17 test set labels are not available, Camelyon-16 is 

sed for test. This experiment provides information on the inter- 

eneralization capabilities of the model. 

VGG19 with batch normalization was trained during 100 epochs 

n each case, which was enough for the network to converge. A 

atch size of 64 samples was used, constrained by the available 

emory of the Nvidia Titan X GPU utilized in this work. The learn- 

ng rate was initially set to 0.01 and was reduced by factor 0.5 each 

0 epochs. AUCs were calculated on the test set using the training 

est performing epoch for each method. 
13 
The obtained AUCs are shown in Table 9 and the ROC curves in 

ig. 14 . Notice that for Camelyon-16, VGG19 performs well on the 

riginal images (better than some of the methods). The proposed 

1 with n s = 2 is however the best feed to VGG19 since its AUC

ncreases from 0.9479 (original data) to 0.9656. The oversmoothing 

f the edges by HID and the overnormalization of ZHE obtained a 

lightly lower value than the non-normalized original data. The use 

s input to VGG19 of Camelyon-16 OD concentrations, was a boost 

or the methods ZHE and the proposed L1 using n s = 3 , and had a

lightly beneficial effect for most methods. 

Camelyon-17 training set contains more WSIs than Camelyon- 

6, furthermore its color variance is considerable as images come 

rom 5 different centers. An adequate preprocessing has a higher 

mpact on the generalization capability of the CNN. In this case, 
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Fig. 14. ROC curve and AUC obtained by the VGG19 when trained with normalized images and OD concentrations by competing methods. Testing set is always the one from 

Camelyon 16. a) Training set from Camelyon 16 normalized. b) Training set from Camelyon 16 concentrations. c) Training set from Camelyon 17 normalized. d) Training set 

from Camelyon 17 concentrations. 
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he original data reached an AUC = 0.9279. Using CN, the proposed 

1 with n s = 3 obtained the best result with 0.9377. ZHE performs 

etter in this experiment than in the previous one. In this inter 

atabase case, only ZHE and L1 with n s = 3 were boosted by the

se of OD concentrations to train the network. The L1 AUC raised 

o 0.9541 when using n s = 3 . 

The effect of using a third component was limited using nor- 

alized images in the Camelyon-16 dataset. However, this config- 

ration obtained the best performance in OD and in both cases 

hen using Camelyon-17. As discussed in previous sections, the 

ost plausible reason is that the third residual component makes 

uclei to appear more different from other structures. This effect 

an be also appreciated on normalized images in Fig. 11 . Where 

he patches in the last column show a bigger difference between 

ematoxylin and eosin colors. 

. Discussion 

BCD is a critical step towards normalization and classification 

f histological images. The stain separation allows to measure the 

delity to the tissue and facilitate feature extraction. The obtained 

esults clearly show that SG priors are a good choice for color de- 

onvolution of histopathological images. As previously indicated, 

ach stain should fix only and completely to specific proteins 

n the tissue, leading to sparse stain concentration differences at 

eighbouring pixels [11] . However, the experimental results show 

hat the sparsity on the differences is moderated. The � 1 prior, with 

 lower kurtosis than the log prior, allows to keep more non-zero 

alues. This makes � 1 a good prior for this problem, as its induced 

parsity is softer than that of the log prior. 
14 
We have analyzed the effect of using two or three stain compo- 

ents in our proposed approach to deconvolution. The carried out 

xperiments indicate that using two components produces stains 

loser to the original ones and also provides good CN. The use of 

 third component to capture residual information from the H&E 

mages, makes it possible to obtain a clearer stain separation. In 

he hematoxylin band, the nuclei appear more clearly enhancing 

ucleus information and the noisy background is reduced. The ef- 

ect of the third component in the eosin band is reduced but the 

ontrast is increased. Then, we should choose whether to use the 

hird component for BCD depending on our goal. Its use may re- 

uce the fidelity to the tissue in terms of PSNR and SSIM values, 

ut it improves the performance of feature based and CNN classi- 

cation methods, improving class separation and helping the de- 

criptors or CNN layers to capture the relevant information. 

Finally, the use of BCD allows to extract stain-specific informa- 

ion from H&E channels. Our comparison between classification us- 

ng the normalized images and OD concentrations have shown that 

N of histopathological images improves the performance of CNN 

ethods, however the use of CD to obtain the separated H&E con- 

entrations leads to better performance. The H&E separation is di- 

ectly provided to the CNN by the OD concentration and directly 

elated to a better class separation. 

. Conclusions 

In this work we have proposed the use of SG priors for blind 

olor deconvolution of histological images. The framework pre- 

ented includes a novel variational Bayesian blind color deconvolu- 

ion algorithm which automatically estimates the color-vector ma- 
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rix, the concentration of stains, and all the model parameters. SG 

riors are used to model neighbouring pixel differences. The use 

f the SG family is a powerful tool to fine tuning the sparsity of 

oncentration differences, reducing the noise in the images while 

reserving the tissue structure without oversmoothing the edges. 

wo penalty functions, named L1 and LOG, corresponding to SG 

istribution have been used. The information obtained through the 

roposed deconvolution guarantees fidelity to the tissue structure 

nd can be used both for normalization and classification of histo- 

ogical images. 

The proposed LOG and L1 methods have been experimentally 

ompared to classical and state-of-art methods on a set of exper- 

ments covering the most common histological color deconvolu- 

ion related tasks: stain separation, image normalization and can- 

er classification. They obtained very good results on all the per- 

ormed experiments. 

We have analyzed the effect of using a third residual stain com- 

onent during deconvolution, showing that an affordable reduction 

f the fidelity to the tissue improves classification performance us- 

ng descriptors or CNN classifiers 

Finally, our study includes a comparison between classification 

sing the normalized images and OD concentrations showing that 

lthough CN improves the performance of classifiers over the raw 

ata, stain separated OD concentrations lead to better classification 

erformance. 
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