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The understanding of the dynamics of nonequilibrium cooling and heating processes at the nanoscale is
still an open problem. These processes can follow surprising relaxation paths due to, e.g., memory effects,
which significantly alter the expected equilibration routes. The Kovacs effect can take place when a
thermalization process is suddenly interrupted by a change of the bath temperature, leading to a
nonmonotonic evolution of the energy of the system. Here, we demonstrate that the Kovacs effect can
be observed in the thermalization of the center of mass motion of a levitated nanoparticle. The temperature
is controlled during the experiment through an external source of white Gaussian noise that mimics an
effective thermal bath at a temperature that can be changed faster than any relaxation time of the system. We
describe our experiments in terms of the dynamics of a Brownian particle in a harmonic trap without any
fitting parameter, suggesting that the Kovacs effect can appear in a large variety of systems.
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Memory effects (MEs) are a unique feature of non-
equilibrium systems. The appearance of memory involves
the influence of the past history of a system on its present
state and can critically affect its evolution [1]. Most MEs
appear as the transient evolution from a particular choice of
initial conditions or as a response to a perturbation before the
system relaxes to the equilibrium or stationary state. They
are ubiquitous in science, appearing in almost every field,
including physics, chemistry, biology, and materials sci-
ence.MEs have been intensively studied in prototypical out-
of-equilibrium systems, such as disordered media [2–4],
active matter [5], and polymers [6].
Thermalization processes are of utmost importance in

many technological applications and are prone to feature
MEs. As an example, the counterintuitive Mpemba effect
has been recently rediscovered and attracted significant
attention [7]. When the Mpemba effect takes place, the
hotter of two systems can be cooled faster (or the cooler of
two systems can be heated faster). This effect has been
found in Markovian systems [8,9], granular matter [10,11],
spin glasses [12], water [13], the quantum Ising spin model
[14], and very recently in a generalization to Markovian
open quantum systems [15]. Under different conditions, the

Kovacs effect (KE) [16,17] appears when trying to accel-
erate the cooling with a more elaborated protocol. Consider
a system that at time t ¼ 0 is in equilibrium with a hot
thermal reservoir at temperature TH and that needs to be
cooled down quickly to a warm temperature TW < TH. The
Kovacs protocol first quenches the system by setting a cold
temperature TC < TW and then applies the target temper-
ature TW at a later time tW , when the system’s temperature
is already TW. Intuition tells us that with the Kovacs
protocol the system reaches TW faster than in a one-step
process. What actually happens, however, is that the
system’s temperature may not remain at TW : it may instead
evolve following a nonmonotonic path that features
a hump.
KE and analogous crossover effects have been theoreti-

cally predicted in a large number of models, including spin
glasses [2], glasses [18], granular matter [19,20], active
matter [21], molecular gases [22] and it has been gener-
alized to athermal systems [23]. As far as we know,
however, the experimental observations are scarce. Apart
from the original experiment with polymers [16,17], the KE
has been observed only in ferroelectrics [24] and granular
matter [25].
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An optically trapped particle is an outstanding platform
to experimentally explore nonequilibrium dynamics at the
microscale [26,27]. MEs due to the inertia of the fluid have
been previously observed with microparticles dispersed in a
liquid, both freely diffusing [28] and trapped with optical
tweezers [29,30]. Recent studies have engineered optimum
protocols to speed up the thermalization process by taking
advantage of the Mpemba effect [31] and of the system’s
transient response upon a sudden change of a control
parameter [32,33]. In this Letter, we demonstrate both
experimentally and theoretically that the KE can be
observed using an optically levitated nanoparticle. We
show that our results can be explained by the interplay
of the different equilibration timescales predicted by the
dynamics of a Brownian particle in a harmonic trap with
intermediate damping, i.e., in the transition from the over-
to underdamped regime. This regime, which has been
shown to feature very interesting phenomena, such as
the recently observed Kramers turnover [34], remains to
date largely unexplored.
Our experimental setup is shown in Fig. 1(a). We create

an optical potential for a charged silica nanoparticle (radius
≈90 nm) by focusing an x-polarized laser beam traveling
along the z axis through a 0.8 NA microscope objective.

We collect the trapping and the scattered light with a
collection lens and apply a standard homodyne detection
scheme to measure the position of the particle [35,36].
We use a pair of electrodes mounted along the x axis to
control the motion of the particle through an externally
applied electrostatic force [37,38]. To first order, the
motion of the particle along the x axis obeys the following
equation:

mẍþmΓ_xþmΩ2
0x ¼ F th þ F v; ð1Þ

with analogous expressions for the other two axes y and z. In
Eq. (1), m ≈ 6.6 fg is the mass of the particle, Ω0 ¼
2π × 159ð1Þ kHz is the resonance frequency of the optical
trap along the x axis, and Γ ¼ 2π × 399ð2Þ kHz is the
damping rate due to collisionswith gasmolecules at ambient
pressure (around 1 bar). By virtue of the fluctuation-
dissipation theorem, the damping Γ leads to a fluctuating
force F th with hF thðtÞi¼0 and hF thðtÞF thðtþτÞi¼
2mkBTCΓδðτÞ, whereTC ¼ 298 K is the laboratory temper-
ature [39]. Throughout this Letter, the notation h·i refers to
the ensemble average and not to a time average.Note that our
system lives in the largely unexplored damping regime that
is neither underdamped (Γ < 2Ω0) nor deeply overdamped
(Γ ≫ Ω0). By adding an external stochastic force F v, we
increase the strength of the fluctuation without affecting the
dissipation, such that the net effect is to tune the effective
temperature of the c.m. motion [37]. The c.m. temperature is
controlled in time by a custom programmed field program-
mable gate array (FPGA) that tunes the variance of F v, as
shown in Fig. 1(b). The bandwidth ofF v is 5MHz, such that
it can be considered a white Gaussian force for all purposes
(see Fig. S2 in the SupplementalMaterial [40]). In the rest of
this Letter, we consider three values of the c.m. temperature:
(i) cold temperature TC ¼ 298 K (whenF v ¼ 0), (ii) warm
temperature TW ¼ 1290 K, and (iii) hot temperature
TH ¼ 2450 K.
The thermodynamic quantity of interest is the particle’s

potential energy, defined as hUi ¼ mΩ2
0hx2i=2. We mea-

sure the time evolution of hUi by computing the ensemble
average over 10000 trajectories of the particle that start
from the same equilibrium state. Figure 2 displays the
evolution of the potential energy and the corresponding
changes in effective temperature for three different
protocols.
The first protocol is the equilibration from the hot to the

cold temperature (light blue triangles). This quenching of
the effective temperature from TH to TC induces an
equilibration of the potential energy of the particle that
takes about 4 μs. Interestingly, rather than decaying
exponentially toward kBTC=2, the potential energy remains
at kBTH=2 for a duration of 1=Γ ≈ 400 ns before decaying.
In general, the potential energy of an underdamped
(overdamped) oscillator would follow a simple exponen-
tial decay with rate given by Γ (Ωc ¼ Ω2

0=Γ) [31,43].

(a)

(b)

FIG. 1. (a) A 1064 nm wavelength laser is focused through a
microscope objective to create an optical trap for a charged silica
nanoparticle. We use homodyne detection to record the particle’s
position with a quadrant photodiode (QPD). We use a custom
programmed FPGA to tune the effective temperature of the
particle along the x axis by applying a white Gaussian electro-
static force. The instantaneous temperature T is stored together
with the position signal by a data acquisition card (DAQ).
(b) Force F v applied on the particle by the FPGA and corre-
sponding temperature T during the Kovacs protocol shown in
Fig. 2(b). f0 is a reference force in arbitrary units.
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The nonexponential equilibration of hUi for our intermedi-
ate damping regime suggests that more than one timescale
is involved in the particle’s equilibration.
The second protocol we analyze is the equilibration

between hot and warm temperature (silver diamonds). The
TH → TW equilibration exhibits the same qualitative
behavior of TH → TC except for the final state, which in
this case is kBTW=2. During the TH → TC equilibration, the
intermediate value of kBTW=2 is reached after a time
tW ¼ 1.7 μs.
Finally, we apply the Kovacs protocol (red circles in

Fig 2): (i) we let the system equilibrate at TH, (ii) at time
t ¼ 0 we change the temperature to TC, and (iii) at time tW
we switch the temperature to TW [20,44,45]. Despite the
fact that hUi is already at its correct steady-state value at
t ¼ tW , its value keeps following the TH → TC equilibra-
tion curve and only later reverts back toward kBTW=2. The
observed behavior is known as the “anomalous Kovacs
effect” [20]. In the Supplemental Material [40], we show
that the very same behavior is observed when the initial
state is prepared at TC and a heating Kovacs protocol is
applied to reach TW (Figs. S3 and S4).
We resort to an analytical solution of Eq. (1), which

bears qualitative similarity to the one developed in
Ref. [46], to explain the measurements. As detailed in
Sec. IVof the Supplemental Material [40], the equilibration
of the potential energy can be described by the following
equation:

hŨi ¼ 1þ a1e−2λ1t þ a2e−2λ2t þ a3e−Γt; ð2aÞ

λ1 ¼
1

2

�
Γþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 − 4Ω2

0

q �
; ð2bÞ

λ2 ¼
1

2

�
Γ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 − 4Ω2

0

q �
; ð2cÞ

where Ũ is the potential energy normalized to its final value
kBTf=2 (Tf being the final temperature), λ1 and λ2 are the
two poles of Eq. (1), and fag ¼ fa1; a2; a3g are coeffi-
cients that depend on the initial and final states and whose
explicit expressions are given in Eqs. (S33) and (S34) in the
Supplemental Material [40]. The equilibrations TH → TC
and TH → TW can be computed in a straightforward
fashion by substituting the values of the fag coefficients
that correspond to the specific initial and final thermal
states. For the case of the Kovacs protocol, we must
compute the equilibration in three steps: (i) we use the
equilibration TH → TC up to t ¼ tW , (ii) we use the
instantaneous value hUiðtWÞ and the final temperature
TW to determine the new values of the a coefficients,
and (iii) compute the rest of the equilibration. The dashed,
dash-dotted, and continuous lines in Fig. 2(b) represent the
theoretical equilibrations computed from Eq. (2), which are
in good agreement with the experiment. All quantities have
been estimated independently and no fitting has been used
in Fig. 2.
Deeper insight into the system’s equilibration can be

gained if we use the measured trajectories to estimate the
position’s probability distribution ρ̃ðx; tÞ. The distributions
for each of the three equilibration protocols are shown in
Fig. 3. The position distributions exhibit a Gaussian shape
at all instants of time. Specifically, during the Kovacs
protocol, the distribution at the switch time tW is the same
as in the steady state t → ∞, i.e., Gaussians with the same
variances. The fact that the distribution keeps narrowing for
t > tW instead of remaining constant, however, implies that
the particle’s state is actually a nonequilibrium one. The
solution to this apparent contradiction lies in the fact that
Eq. (1) has two state variables, position x and velocity v.
The true state of the particle in phase space consists thus of
a distribution ρðx; v; tÞ with two variables ðx; vÞ that
changes in time. When measuring the position of the
particle, we are averaging away the information about
the velocity. In other words, the distributions in Fig. 3 are
given by ρ̃ðx; tÞ ¼ R

R dv ρðx; v; tÞ. These measurements do
not describe the full state of the particle, and for this reason
they cannot, in general, discern equilibrium states from
nonequilibrium ones.
In order to reconstruct the evolution of the full distri-

bution ρðx; v; tÞ, analog formulas to Eq. (2) have been
derived for the kinetic energy hKi and for the correlation
hxvi, see Eqs. (S47) and (S49) in the Supplemental
Material [40]. Figure 4 shows the theoretical curves of

(a)

(b)

FIG. 2. (a) Temperature of the effective bath during the cooling
protocol TH → TC (dashed light blue line), cooling protocol
TH → TW (dash-dotted silver line), and Kovacs protocol (red
solid line). (b) Average potential energy during the protocols
described in (a). Discrete symbols (light blue triangles, silver
diamonds, and red circles) are used for experimental data,
whereas lines are used for the theoretical curves. The horizontal
dotted line is the equilibrium value kBTW=2 related to the warm
temperature. The vertical dotted line signals the switch time
between TC and TW for the Kovacs protocol. The estimation of
the error bars is described in [40].
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hUi, hKi, and hEi ≔ hU þ Ki during the Kovacs protocol.
We can see in Fig. 4 that these three energies follow
different evolutions. As a result, the Kovacs protocol can be
applied only to one of these thermodynamic quantities at a
time. Remarkably, when the protocol is applied to the
kinetic or to the total energy, a standard Kovacs effect is
expected, as we show in Fig. S5 of the Supplemental
Material [40]. It appears thus that a harmonic oscillator at
intermediate damping values can exhibit either anomalous
or standard Kovacs effect depending on the imposed
protocol. The inset in Fig. 4 represents a snapshot of
ρðx; v; tÞ taken at the Kovacs switch time t ¼ tW . The
distribution is Gaussian and presents classical squeezing. In
addition to this, there is a visible anticorrelation in hxvi.
This intermediate distribution is a nonequilibrium state,
which explains the equilibrations in Fig. 2 despite the
Gaussian distributions of Fig. 3. We refer to the
Supplemental Material [40] for the time evolution of
ρðx; v; tÞ for all t ≥ 0.
In a deeply overdamped harmonic oscillator, one typi-

cally considers the dynamics of the particle as governed by
a single timescale given by the cutoff frequency Ωc ¼
Ω2

0=Γ [31,32]. However, a single timescale could not
generate nonequilibrium states like the ones in Fig. 4,
but rather only states that correspond to some intermediate
temperature. A second, intrinsic timescale of the system is
given by the damping coefficient Γ. The particle exhibits
ballistic motion when its evolution is resolved within
intervals on the order of 1=Γ, such that the overdamped
approximation is never fully valid [47]. In the intermediate
regime of our experiment, the ballistic and the cutoff
timescales are close to each other. The result is that the
equilibration of the potential energy is given by a super-
position of three exponentials with time constants
derived from both Γ and Ωc. The superposition of these

exponentials is the key to explain the measured Kovacs
effect. In the case of the potential energy, the particle cannot
respond instantaneously to the changes in temperature
because of the ballistic motion over short times. This
inertialike effect forces hUi during the Kovacs protocol
to continue its decreasing trend even after the switch to TW ,
generating thus an anomalous hump. Unlike hUi, the
changes of the kinetic energy are instantly affected by

(a) (b) (c)

FIG. 3. (a) Measured position distribution ρ̃ðx; tÞ of the particle during the equilibration TH → TC, (b) TH → TW , (c) TH → TC → TW
(Kovacs protocol). The vertical black line indicates the time t ¼ 0where the effective temperature is first changed. (c) The vertical dotted
white line shows the switch time t ¼ tW between TC and TW . The dashed white lines represent the standard deviations inferred from
Fig. 2. At all times, the distributions are Gaussian. All the distributions are normalized to the maximum value of (a).

FIG. 4. Theoretical curves of potential hUi, kinetic hKi, and
total hEi ¼ hU þ Ki energies during the Kovacs protocol for
hUi. At t ¼ 0 the effective temperature is switched from TH to
TC. At time tW (gray dotted vertical line), the effective temper-
ature is switched to TW . Since the thermal forces affect the
velocity instantaneously, we see that the evolution of hKi (and
consequently hEi) presents kink points whenever the effective
temperature is changed. In [40], we show that a Kovacs protocol
applied to either the kinetic or the total energy would actually
generate a standard Kovacs effect, i.e., the hump after tW points
upward. Inset: phase space distribution ρðx; v; tÞ at t ¼ tW . The
distribution is classically squeezed and has a nonzero hxvi
correlation. The inset is normalized to its respective maximum
and the same color bar as in Fig. 3 is used.
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the changes in temperature, which is the reason why Fig. 4
presents kink points in the evolution of hKi. In [40], we
prove that the Kovacs protocol applied to the kinetic energy
presents a standard Kovacs effect. This can be understood

as follows. At the switching time tðKÞW (different, in general,
from tW), the kinetic energy has the correct steady-state
value, but the potential energy is higher. In order to reach
equilibrium with TW , the potential energy must first be
converted to kinetic energy and then dissipated. It is this
transfer from potential to kinetic energy that increases hKi
at tðKÞW and gives rise to a standard Kovacs hump (see
Fig. S5 in [40]).
In contrast, when the particle experiences low friction

Γ ≪ Ω0, the dynamics are underdamped and one finds a new
separation of the effects of the two different timescales. On
the one hand, the resonance frequency Ω0 induces coherent
oscillations in the motion of the particle. On the other hand,
the friction induces random fluctuations and dissipates the
excess energy. For this underdamped regime, the first two
exponentials of Eq. (2a) become vanishingly small and we
recover an equilibration given by a single timescale, namely,
1=Γ [40]. TheKovacs effect in the harmonic oscillator is thus
a result of the intermediate damping regime, which has been
so far only marginally explored.
In conclusion, we have demonstrated that the energy

equilibration of the harmonic oscillator can exhibit the
Kovacs effect. This observation on one of the most widely
used models in physics, the harmonic oscillator, highlights
the generality and the importance of this phenomenon
across fields. We emphasize that our experiments have been
performed in the overdamped regime (Γ2 > 4Ω2

0), but
under a situation where the frequently used overdamped
approximation, i.e., neglecting the first addend on the lhs
term of Eq. (1), cannot be applied. This warns against the
adoption of such an approximation under certain circum-
stances, because it may return erroneous conclusions and
predictions, as has been previously observed in similar
situations of low damping [48] or when the temperature of
the system is allowed to evolve with time [49,50]. The
accurate quantification of timescales in thermalization
processes of Brownian systems is also required for the
correct evaluation of performances and efficiencies in the
implementation of thermodynamics processes and thermal
machines at the microscale, the so-called stochastic thermo-
dynamics [51–53]. Thermalization processes can also be
engineered in order to achieve shorter relaxation times,
although at a significant energetic cost [32]. Interestingly,
the regime we explored here encompasses the critical
damping, where the fastest relaxation naturally occurs
and the efficiency of an engine can therefore be optimized
[27,50]. An appropriate optimization needs to consider the
occurrence of the Kovacs effect.
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