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A symmetry-preserving treatment of mesons, within a Dyson-Schwinger and Bethe-Salpeter equations
approach, demands an interconnection between the kernels of the quark gap equation and meson Bethe-
Salpeter equation. Appealing to those symmetries expressed by the vector and axial-vector Ward-Green-
Takahashi identitiges (WGTI), we construct a two-body Bethe-Salpeter kernel and study its implications in
the vector channel; particularly, we analyze the structure of the quark-photon vertex, which explicitly
develops a vector meson pole in the timelike axis and the quark anomlaous magnetic moment term, as well
as a variety of ρ meson properties: mass and decay constants, electromagnetic form factors, and valence-
quark distribution amplitudes.

DOI: 10.1103/PhysRevD.104.054038

I. INTRODUCTION

Quantum chromodynamics (QCD) is regarded as the
underlying theory of the nuclear strong interactions, and
so hadron physics. Even though its Lagrangian is appa-
rently simple, high-level complexity phenomena take
place, such as quark-gluon confinement and the emergence
of hadron masses (EHM) [1]. The Dyson-Schwinger
equations (DSE) formalism has proven to be a very
robust approach to QCD in the continuum [2,3], capable
of taming its nonperturbative character. Supplemented
by the bound-state Bethe-Salpeter (BS) and Faddeev
equations [4,5], the DSE formalism becomes an ideal
platform for the calculation of hadron masses and several
structural properties; see, for example Refs. [6–9]. The
derivation of QCD’s DSEs do not require any assumptions
on the running coupling, therefore, both perturbative and
nonperturbative facets of the strong interactions can be
addressed within this formalism. At the same time, the DSE
approach is not restricted to a certain domain of current
quark masses [9–12]. Moreover, hadron observables can be
traced down to fundamental pieces, namely propagators
and vertices, hence maintaining a clear connection to
QCD’s fundamental degrees of freedom, quarks and gluons
[13–16]. The structure of the DSEs is such that any n-point
Green function is related to at least one higher order
function, therefore yielding an infinite set of coupled

integral equations [2]. In order to arrive at a tractable
problem, a sensible truncation is needed; thus, system-
aticity and symmetry principles become imperative
[17–19]. Historically, Ward-Green-Takahashi identities
(WGTI) [20–22] have been crucial in symmetry-preserving
studies of hadron properties. Such relations ensure, among
other things, current-conservation and the appearance of
Goldstones modes in connection with dynamical chiral
symmetry breaking (DCSB) [18,19]. Furthermore, WGTI
impose relationships between propagators and vertices, as
well as constraints between the kernels of the one-body and
two-body problems [23,24]. Nevertheless, the mathemati-
cal form of the one-body and two-body kernels (quark self
energy and BS equation kernels), which satisfy such
consistency relations, is not always unique [25]. Taking
advantage of this fact, we derive a modified version of the
so called rainbow-ladder (RL) truncation. Subsequently,
within a contact interaction (CI) model, we analyze its
impact on the structure of the quark-photon vertex (QPV)
and ρ meson properties, as derived from their correspond-
ing Bethe-Salpeter equations. More precisely, we shall
expose how, in addition to the ρ meson pole in the timelike
axis, the structure of the QPV develops an anomalous
magnetic moment (AMM) term. It is known that DCSB
generates an anomalous chromonagnetic moment (ACM)
for dressed light-quarks, which is large at infrared momenta
and generates an electromagnetic moment with commen-
surate size but opposite sign [26,27]. Thus, it is a highly
desirable feature for the QPV, exhibited quite transparently
in our present approach. Its impact on the structural
properties of hadrons is put in manifest when studying
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electromagnetic form factors (EFF): while the elastic EFF
of spin-0 mesons is unaltered by the AMM piece, the latter
displays from mild to notorious impact on EFF involving
spin-1 mesons (and baryons as well) [28–30].
The manuscript is organized as follows: Sec. II intro-

duces aspects of constructing symmetry-preserving
truncations of quark DSE and meson BS equation, based
upon vector and axial-vector WGTIs. In Sec. III, we present
the CI model within the RL truncation and its modified
version (MRL). The mass spectrum of light-mesons fπ; ρg
is included to compare and contrast. Section IV focuses on
the derivation and structure of the QPV. Subsequent sec-
tions capitalize on ρ meson structural properties: EFFs of
the ρmeson are discussed in Sec. V, while its valence-quark
distribution amplitudes (PDAs) are derived in Sec. VI.
Conclusions and final remarks are presented in Sec. VII.

II. SYMMETRY-PRESERVING TRUNCATIONS

Within the DSE approach, the properties of valence
quark/antiquark bound-states are encoded within solutions
of its BS equation. Mesons appear as poles in the
corresponding inhomogeneous BS equation [23,24], which
takes the form [23,24]:

ΓHðp;PÞ ¼ γ̃H þ
Z
q
Kð2Þðq; p;PÞχHðq;PÞ; ð1Þ

where χHðq;PÞ ¼ SðqþÞΓHðq;PÞSðq−Þ denotes the BS
wave function, such that: ΓHðq;PÞ corresponds to the
BS amplitude of a meson H, whose specific structure in
terms of Dirac matrices depends on its quantum numbers;
Sðq�Þ represent the quark and antiquark propagators.
The two particle irreducible quark/antiquark scattering
kernel is denoted by Kð2Þðq; p;PÞ; and γ̃H, as the BS
amplitude, is defined by a specific combination of Dirac
matrices that specify the JPC channel (γ̃H ¼ γμ for the
vector vertex and γ̃H ¼ γ5γμ for the axial-vector vertex).
Herein, we use the notation

R
q to refer to four dimensional

Euclidean integral, regularized in a Poincaré covariant
manner. Finally, the kinematics is defined as follows:
P is the total momentum of the quark/antiquark system;
qþ ¼ qþ ηP and q− ¼ q − ð1 − ηÞP, with η ∈ ½0; 1�
defining the relative momentum (in a Poincaré covariant
framework, no single observable depends on η). The fully
dressed quark propagator obeys a DSE of the form:

S−1ðpÞ ¼ ½Sð0ÞðpÞ�−1 þ
Z
q
Kð1Þðq; pÞSðqÞ; ð2Þ

where Sð0ÞðpÞ ¼ ½iγ · pþmbm�−1 corresponds to the bare
quark propagator, with a Lagrangian current quark mass
mbm, and Kð1Þðq; pÞ the one-body kernel. The above
equation is often referred to as gap equation. In both
Eqs. (1), (2), and throughout the rest of the manuscript, we

suppress all remormalization constants, as well as color and
flavor indices, for notational convenience.
As has been pointed out in the Introduction, a practical

way to construct and relate Kð1Þ and Kð2Þ, relies upon
WGTIs. The chiral limit vector and axial vector WGTIs
take the form:

iPμΓμðk;PÞ ¼ S−1ðkþÞ − S−1ðk−Þ: ð3Þ

PμΓ5μðk;PÞ ¼ S−1ðkþÞiγ5 þ iγ5S−1ðk−Þ; ð4Þ

where Γμ and Γ5μ are the vector and axial-vector vertices.
Now consider the gap equation in QCD [2]:

S−1ðpÞ ¼ ½Sð0ÞðpÞ�−1 þ 4

3
g2

Z
q
Dμνðp − qÞγμSðqÞΓνðp; qÞ;

ð5Þ

where g is the Lagrangian coupling constant; Dμν and Γν

are the fully dressed gluon propagator and quark-gluon
vertex (QGV), respectively. Thus we can identify

Kð1Þðq; pÞ ¼ 4

3
g2Dμνðp − qÞγμ ⊗ Γνðq; pÞ: ð6Þ

If we restrain ourselves to the tree-level QGV Γν → γν,
hence neglecting all the rich structure that the fully-dressed
vertex might have [27,31,32], and replace the gluon pro-
pagator by an effective one, Dμν → Deff

μν , to compensate the
missing pieces in Γν [33,34], the one-body kernel becomes

Kð1Þðq; pÞ ¼ 4

3
g2Deff

μν ðp − qÞγμ ⊗ γν: ð7Þ

The two-body kernel Kð2Þ can be obtained by combining
Eqs. (1)–(4) and Eq. (7), which yields

Z
q
Kð2Þðq; p;PÞ½SðqþÞ − Sðq−Þ�

¼ −g2
4

3

Z
q
Deff

μν ðp − qÞγμ½SðqþÞ − Sðq−Þ�γν; ð8Þ

Z
q
Kð2Þðq; p;PÞ½SðqþÞγ5 þ γ5Sðq−Þ�

¼ −g2
4

3

Z
q
Deff

μν ðp − qÞγμ½SðqþÞγ5 þ γ5Sðq−Þ�γν: ð9Þ

Then the simplest choice that satisfies the vector and axial-
vector WGTIs symmetry constraints is

Kð2Þðq;p;PÞ ¼−
4

3
g2Deff

μν ðp−qÞγμ ⊗ γν ¼−Kð1Þðq;p;PÞ:
ð10Þ
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Such kernels define the RL truncation: Kð1Þ refers to the
rainbow part, while Kð2Þ corresponds to the ladder piece.
Notably, this simple choice is sufficient to ensure the
appearance of pions as Goldstone bosons of DCSB
[18,19], while also being a sensible approximation to
compute its structural properties [13,14,35].
It is worth pointing out that the solution to Eqs. (8)–(9) is

not unique. In fact, given the rainbow approximation for the
one body problem, it is possible to derive a fully consistent
symmetry-preserving two body kernel that extends beyond
the RL truncation, as it is discussed in Refs. [25,36]. In
addition to the ladder part, other terms of the form

Kð2Þðq; p;PÞ ¼ D̃jðq; pÞΓ̃jðq; pÞ ⊗ Γ̃jðq; pÞFjðq; pÞ;
ð11Þ

can be added to the two-body kernel [37]. Herein, Fj

are Lorentz invariant scalar functions, Γ̃j are different
combinations of Dirac matrices, and D̃j are tensor struc-
tures that might be needed to contract Lorentz indices.
The particular choices Γ̃jðq; pÞ ¼ fI; γ5; i=

ffiffiffi
6

p
σμνg and

D̃jðp; qÞFjðp; qÞ → ξD̃, the latter being reduced to a
simple constant, preserve the consistency constraints and
so Eqs. (8)–(9). Thus, the inhomogeneous BS equation
becomes

ΓHðq;PÞ ¼ γ̃H −
4

3
g2

Z
q
Deff

μν ðp − qÞγμχHðq;PÞγν

þ ξD̃
Z
q
Γ̃jχHðq;PÞΓ̃j: ð12Þ

The product ξD̃ sets the strength of the nonladder (NL)
term. In the next section we shall discuss about the
truncation herein derived, Eq. (12), within a vector-vector
symmetry-preserving contact interaction (CI) model of
QCD [28,38,39].

III. CONTACT INTERACTION MODEL

Let us recall the quark gap equation in the RL truncation:

S−1ðpÞ ¼ ½Sð0ÞðpÞ�−1 þ 4

3

Z
q
g2Deff

μν ðp − qÞγμSðqÞγν: ð13Þ

Clearly, the quark DSE decouples from the QGV and
gluon DSEs. The only remaining ingredient is Deff

μν ðp − qÞ,
the effective gluon propagator. This piece is supposed to
compensate for all the missing pieces in the QGV [33,34],
often requiring an artificial enhancement in the infrared
[32]. Thus we appeal to the illustrative CI model introduced
in Refs. [38,39],

g2Deff
μν ðp − qÞ → 1

m2
G
δμν; ð14Þ

where mG ¼ 0.132 GeV is an infrared mass scale. Besides
preserving the relevant symmetries, the CI model typically
yields semialgebraic expressions and captures the non-
perturbative traits of QCD [28,38,39]. In addition, the CI
model produces sensible results for the hadron mass
spectrum [40–43], including tetraquarks [44], while also
providing crucial benchmarks for many hadron structural
properties [28–30,45–48]. The following sections are
dedicated to illustrate some of the implications of the
gluon model Ansatz from Eq. (14), in the RL and MRL
truncations.

A. Contact interaction in RL truncation

In the CI model, the DSE for the quark propagator adopts
the form

S−1ðpÞ ¼ ½Sð0ÞðpÞ�−1 þ 4

3m2
G

Z
q
γμSðqÞγμ; ð15Þ

while the homogeneous meson BS equation is written as

ΓHðp;PÞ ¼ −
4

3m2
G

Z
q
γμχHðq;PÞγμ: ð16Þ

As it can be noticed, Eq. (15) possesses a quadratic
divergence. A general solution adopts the form S−1ðpÞ ¼
iγ · pþM, which exhibits a momentum independent mass
function, M. The gap equation thus becomes

M ¼ mþ M
3π2m2

G

Z
∞

0

ds
s

sþM2
: ð17Þ

Following standard literature, [38,49], we then perform a
proper time regularization1:

1

sþM2
¼

Z
∞

0

dτe−τðsþM2Þ →
Z

τ2IR

τ2UV

dτe−τðsþM2Þ: ð18Þ

The mass scale ΛIR ≔ 1=τIR ¼ 0.24 GeV guarantees con-
finement by ensuring the absence of quark production
thresholds, while ΛUV ≔ 1=τUV ¼ 0.905 GeV represents
an ultraviolet cutoff, setting the scale of all dimensioned
quantities because the theory is non renormalizable.
Therefore, the mass function can be obtained by solving

M ¼ mþ M
3π2m2

G
CiuðM2Þ; ð19Þ

1A substraction scheme is also possible, as illustrated in
Ref. [50].
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CiuðM2Þ
M2

¼ Γð−1;M2τ2UVÞ − Γð−1;M2τ2IRÞ; ð20Þ

where Γða; zÞ is the incomplete Gamma function.
Concerning the meson BS equation in the CI, Eq. (16), it

is clear that a dependence on the relative momentum is
forbidden by the interaction. Then, the pseudoscalar and
vector meson BS amplitudes adopt the form

Γ0−ðPÞ ¼ γ5

�
iE0−ðPÞ þ

γ · P
M

F0−ðPÞ
�
; ð21Þ

Γ1−
μ ðPÞ ¼ γTμE1−ðPÞ þ

1

M
σμνPνF1−ðPÞ; ð22Þ

where γTμ ¼ γμ −
γ·P
P2 Pμ. In a RL treatment of the CI,

F1−ðPÞ ¼ 0 (an analogous result holds for the axial-vector
meson). Appealing to the WGTIs from Eqs. (3), (4), and
contracting with Pμ, one arrives at the chiral limit identities
(P2 ¼ 0 ¼ −m2

H):

M ¼ 8M
3m2

G

Z
q

�
1

q2 þM2
þ 1

ðq − PÞ2 þM2

�
;

0 ¼
Z
q

�
P · q

q2 þM2
−

P · ðq − PÞ
ðq − PÞ2 þM2

�
; ð23Þ

which must be satisfied even after regularization, therefore
imposing

M ¼ 16M
3m2

G

Z
q

1

q2 þM2
ð24Þ

0 ¼
Z
q

q2

2
þM2

ðq2 þM2Þ2 : ð25Þ

Notice that Eq. (24) is merely the chiral-limit gap
equation, whereas Eq. (25) entails that the axial-vector
WGTI is satisfied if, and only if, the model is regularized
so as to ensure there are no quadratic or logarithmic
divergences [39].

B. Contact interaction in modified RL

Let us now consider the BS equation in the MRL
truncation, Eq. (12). Supplemented by the effective gluon
in the CI model, Eq. (14), and setting D̃ ¼ 4=3m2

G, the
modified homogeneous BS equation becomes

ΓHðPÞ ¼ −
4

3m2
G

Z
q
½γμχHðPÞγμ − ξΓ̃jχHðPÞΓ̃j�; ð26Þ

where we have made evident the momentum-independent
nature of the BS amplitude and quark mass function.
Recalling that Γ̃j ¼ fI; γ5; i=

ffiffiffi
6

p
σμνg and performing

Fierz transformatioon, it can be shown that the NL
term, the one proportional to ξ, can be rewritten as
1
3
σαβtrD½σαβχHðPÞ� and does not contribute in the case of

pseudoscalar and axial-vector mesons; it impacts, however,
the vector meson case. Particularly, the F1−ðPÞ BS ampli-
tude in Eq. (22) is no longer zero. This is a crucial
difference with respect to the well known CI-RL truncation,
which is clearly recovered in the limit case ξ ¼ 0.
The BS equation can be recast into an eigenvalue

equation by finding proper projectors that decouple
E1− and F1− in Eq. (22), such that Eq. (26) yields

�
E1−ðPÞ
F1−ðPÞ

�
¼ 1

3π2m2
G

�
K1−

EE K1−

EF

K1−

FE K1−

FF

��
E1−ðPÞ
F1−ðPÞ

�
; ð27Þ

where the integration kernels, Kij ≔ 3π2m2
GKij, are

written as

K1−

EE ¼ −P2ĨðP2Þ; K1−

EF ¼ −
P2

2
IðP2Þ; ð28Þ

K1−

FE ¼ ηξIðP2Þ; K1−

FF ¼ ηξ

�
IðP2Þ − P2

M2
ĨðP2Þ

�
; ð29Þ

the integrals:

IðQ2Þ ≔ 1

3π2m2
G

Z
1

0

dαC̄iu1 ðωðM2; α; Q2ÞÞ; ð30Þ

ĨðQ2Þ ≔ 1

3π2m2
G

Z
1

0

dααð1 − αÞC̄iu1 ðωðM2; α; Q2Þ; ð31Þ

the argument ωðM2; α; P2Þ ≔ M2 þ αð1 − αÞP2 and,
finally,

ηξ ≔
2M2ξ

3
; C̄iu1 ðωÞ ≔ −

d
dω

CiuðωÞ:

Physical solutions of Eq. (27) are only valid for discrete
values of P2 ¼ −m2

H. The smallest P2 that satisfies the
eigenvalue equation yields the ground-state meson mass.
To produce other physical observables, the BS amplitudes
must be canonically normalized, according to the condition

1 ¼ 2Nc
d

dP2

�
1

3
trD

Z
q
Γμð−KÞSðqÞΓμðKÞSðq − PÞ

�
K¼P

:

ð32Þ

Computing the vector meson leptonic decay constant,
and its tensor counter part, is straightforward from the
expressions

fvmv ¼
Nc

3

Z
q
trDγμSðqÞΓμSðq − PÞ; ð33Þ
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f⊥v m2
v ¼

Nc

3

Z
q
σμνPνSðqÞΓμSðq − PÞ: ð34Þ

The computed masses and decay constants of π and ρ
mesons, as well as the mass of the axial-vector a1 meson,
are collected in Table I, in both RL and MRL truncations.
The parameter ξ ¼ 0.6 has been tuned to produce mρ ¼
0.770 GeV, as compared with mρ ¼ 0.929 GeV, obtained
in the CI-RL; on the other hand, the decay constants barely
change with varying ξ. Canonically normalized BS ampli-
tudes of the ρ meson are listed in Table I as well. To
compute π and a1 listed properties we have followed
standard literature, e.g., [39,43,51]
Since the NL term in the BS kernel does not contribute in

the pseudoscalar and axial-vector channels, the static
properties of π and a1 mesons remain unchanged.
Subsequently, the mass of the a1 meson is independent
of ξ, thus fixed by its CI-RL valuema1 ¼ 1.08 GeV. Under
such circumstances, the a1 − ρ mass splitting is completely
determined by the computed value of mρ, such that ma1 −
mρ ¼ 0.151 GeV in the CI-RL truncation and ma1 −mρ ¼
0.310 GeV in the CI-MRL case. Experimentally, one
would expect ma1 −mρ ¼ 0.455 GeV [52]. The latter
might be obtained by doubling our preferred value of
ξ → 2ξ ¼ 1.2, in such a way that mρ ¼ 0.625 GeV, which
is at some extent undesirable. One should rather focus on
the failure of the RL and MRL truncations to describe the
a1 meson. The dressed quark ACM, enhanced by DCSB,
produces a increased spin-orbit (SO) repulsion in the case
of l ¼ 1 mesons [16,24,26]. In neither case, RL nor MRL,
the ACM term has been incorporated; as a consequence,
ma1 is visibly underestimated. Often in CI model literature
[40,43,53], SO repulsion is mimicked by attaching a
multiplicative factor gso to the RL kernel in the correspond-
ing channels, tuned as gso ¼ 0.24 to produce the empirical
a1 − ρ mass splitting. With the ρ meson mass computed in
the CI-MRL truncation, gso ≈ 1=2 yields the value ma1−
mρ ≈ 0.45 GeV. A more rigorous treatment of the a1
meson is under investigation.

IV. QUARK-PHOTON VERTEX IN MODIFIED RL

The quark-photon vertex in the CI-MRL satisfies the
inhomogeneous BS equation

Γγ
μðQÞ ¼ γμ −

4

3m2
G

Z
q
γαSðqÞΓμðQÞSðq −QÞγα

þ 4ξ

3m2
G

Z
q
Γ̃jSðqÞΓμðQÞSðq −QÞΓ̃j ð35Þ

A general solution of Eq. (35) admits a decomposition in
terms of 3 tensor structures, namely:

Γγ
μðQÞ ¼ V1ðQ2ÞγLμ þ V2ðQ2ÞγTμ þ V3ðQ2ÞγAμ ;

γLμ ¼ γμ − γTμ ; γTμ ¼ γμ −
=QQμ

Q2
; γAμ ¼ σμνQν

M
:

ð36Þ

This simplicity is due to the momentum independent nature
of the CI model. By solving Eq. (35), plainly one obtains
that the longitudinal piece is simply

V1ðQ2Þ ≔ PLðQ2Þ ¼ 1; ð37Þ

while the transverse dressing functions are expressed as

V2ðQ2Þ ¼
�
P−1
T ðQ2Þ þ ηξ

Q2

2

I2ðQ2Þ
1 − ηξĪðQ2Þ

�−1
; ð38Þ

V3ðQ2Þ ¼ ηξIðQ2Þ
P−1
T ðQ2Þ½1 − ηξĪðQ2Þ� þ ηξ

Q2

2
I2ðQ2Þ

; ð39Þ

where PTðQ2Þ ≔ ½1þQ2ĨðQ2Þ�−1, and

ĪðQ2Þ ≔ IðQ2Þ − Q2

M2
ĨðQ2Þ: ð40Þ

The V2ðQ2Þ dressing function produces a timelike vector
meson pole atQ2 ¼ −m2

ρ, while V3ðQ2Þ can be regarded as
a profile function for the anomalous magnetic moment
term, γAμ . Notably, in the Q2 → 0 limit, the fully dressed
QPV becomes

Γγ
μðQÞ ¼Q2→0

γμ þ
σμνQν

2M

�
2ηξIð0Þ

1 − ηξIð0Þ
�
; ð41Þ

such that, with the parameters listed in Table I, one gets

ζMRL ≔
�

2ηξIð0Þ
1 − ηξIð0Þ

�
≈ 0.19: ð42Þ

The automatic incorporation of the AMM piece to the
QPV, via inhomogeneous BS equation, is a desirable
feature of the MRL truncation. The CI model plainly
exposes it. This characteristic is not present in the RL
approximation [26], and so in the CI-RL case; the latter
corresponding to the case ξ ¼ 0, which implies V2ðQ2Þ ¼
PTðQ2Þ and V3ðQ2Þ ¼ 0 [39,51]. Within the CI-RL

TABLE I. CI model results in the RL and MRL truncations.
The model parameters: mG ¼ 0.132 GeV, ΛUV ¼ 0.905 GeV,
ΛIR ¼ 0.240 GeV and ξ ¼ 0.6. The current quark mass is set to
m ¼ mu=d ¼ 7 MeV, which yields M ¼ 0.368 GeV.

mπ fπ ma1 mρ fρ f⊥ρ Eρ Fρ

CI-RL 0.140 0.101 1.08 0.929 0.129 0.133 1.531 -
CI-MRL 0.140 0.101 1.08 0.770 0.125 0.134 1.230 0.503
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approach, the AMM term is typically added by hand, such
that the behavior of V3ðQ2Þ is modeled according to the
exponential Ansatz [28–30]:

VCI−RL
3 ðQ2Þ ≔ ζCI−RL

2
exp½−Q2=ð4M2Þ�; ð43Þ

where ζRL ∈ ½0; 0.5� is a strength parameter, fully compat-
ible with ζMRL ≈ 0.19. Thus, when dealing with the CI-RL
truncation, we modify the QPV to account for the AMM,
such that

Γγ
μ ≔
RL

γLμ þ γTμPTðQ2Þ þ γAVCI−RL
3 ðQ2Þ: ð44Þ

The vertex dressing V2ðQ2Þ is compared with its CI-RL
counterpart, PTðQ2Þ, in the upper panel of Fig. 1. The
presence of the vector meson pole atQ2 ¼ −m2

ρ is a natural

artifact of the RL truncation when obtaining the QPV
through its corresponding BS equation [54–57]. It is then
expected that electromagnetic form factors, in the vicinity
of Q2 ¼ 0, be affected by the ρ pole (for instance, it
influences the associated charge radius) [58]; but the effects
should be otherwise immaterial at large spacelike momenta
[13,58]. TheQ2 profiles of the AMM dressing functions, in
both truncations, are displayed in the lower panel of Fig. 1.
It is clear that V3ðQ2Þ enhances the strength of the QPV in
the low Q2 domain, and its contribution vanishes as Q2

grows; the CI-MRL case is power-law suppressed, in
contrast with the Gaussian Ansatz in Eq. (43). In any case,
the enhancement-damping patterns manifest in electromag-
netic form factors involving spin-1 mesons, but are strictly
ruled out in elastic form factors of spin-0 mesons [28–30].
Finally, it is worth noticing that the QPV defined through

Eqs. (36), (39) exhibits the correct asymptotic limit, i.e.,
Γγ
μðQÞ → γμ as Q2 → ∞; therefore exposing that a dressed

quark becomes pointlike for a large-Q2 probe [59]. In the
next section, we study the ρmeson elastic EFF, capitalizing
on how it is affected by the anomalous magnetic moment.

V. ELECTROMAGNETIC FORM FACTORS

The coupling of a photon to a 1− meson is characterized
by three elastic form factors, such that the γρ vertex can be
expressed as [51]:

Λλ;μνðK;QÞ ¼
X3
j¼1

TðjÞ
λ;μνðK;QÞFjðQ2Þ ð45Þ

Tð1Þ
λ;μνðK;QÞ ¼ 2KλPT

μαðpiÞPT
ανðpfÞ;

Tð2Þ
λ;μνðK;QÞ ¼

�
Qμ − pi

μ
Q2

2m2
ρ

�
PT
λνðpfÞ

−
�
Qν þ pf

ν
Q2

2m2
ρ

�
PT
λμðpiÞ; ð46Þ

Tð3Þ
λ;μνðK;QÞ ¼ Kλ

m2
ρ

�
Qμ − pi

μ
Q2

2m2
ρ

��
Qν þ pf

ν
Q2

2m2
ρ

�
: ð47Þ

The kinematic variables are defined as follows: pi ¼ K −
Q=2 and pf ¼ K þQ=2 denote the incoming and out-
going meson momenta, respectively, and Q is the photon
momentum; the on-shell conditions, p2

i ¼ p2
f ¼ −m2

ρ,
impose K ·Q ¼ 0, K2 ¼ −m2

ρ −Q2=4; and, as explained
elsewhere [51], a symmetry-preserving treatment demands
the WGTIs:

pi
μΛλ;μν ¼ pf

νΛλ;μν ¼ QλΛλ;μν ¼ 0:

In the impulse approximation [60], meson EFFs are
completely described in terms of quark propagators, BS

FIG. 1. Quark-photon vertex dressing functions as obtained
from Eqs. (36)–(39). The upper panel displays the dressing
function V2, associated with the ρ meson pole. Vertical grid lines
indicate the location of the poles, Q2 ¼ −m2

ρ, such that mρ ¼
0.929 GeV in CI-RL and mρ ¼ 0.770 GeV in CI-MRL. Notably,
V2ðQ2Þ ¼ PTðQ2Þ in the CI-RL case. The lower panel depicts
the dressing of the AMM piece of the QPV. Strictly speaking,
the CI-RL case implies V3ðQ2Þ ¼ 0; therefore, the Gaussian
Ansatz from Eq. (43) and Refs. [28–30] is displayed instead
(ζCI−RL ¼ ζCI−MRL ¼ 0.19).
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amplitudes and the QPV. Particularly, the elastic form
factor of the ρ meson reads

Λλ;μνðQ2Þ ¼ 2Nctr
Z
q
½Γρ

νð−pfÞSðqþ pfÞ

× iΓγ
λðQÞSðqþ piÞΓρ

μðpiÞSðqÞ�; ð48Þ

where Γρ
μ is the BS amplitude and Γγ

λðQÞ is the QPV. Form
factors are obtained from Eqs. (45), (46), (48), choosing
appropriate projectors that decouple them from Λλ;μν. The
particular expressions for FiðQ2Þ are shown explicitly in
Appendix A. It turns out convenient to relate the form
factors FjðQ2Þ with the electric, magnetic and quadrupole
form factors, respectively

GEðQ2Þ ¼ F1ðQ2Þ þ 2

3

Q2

4M2
ρ
GQðQ2Þ;

GMðQ2Þ ¼ −F2ðQ2Þ;

GQðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ þ F3ðQ2Þ
�
1þ Q2

4M2
ρ

�
:

ð49Þ

Naturally, the Q2 → 0 limit defines the charge, magnetic
and quadrupole moments:

GEðQ2 → 0Þ ¼ 1;

GMðQ2 → 0Þ ¼ μρ;

GQðQ2 → 0Þ ¼ Qρ: ð50Þ

The computed form factors are depicted in Fig. 2. The
electric form factorGE exhibits a zero and remains negative
thereafter. For the CI-MRL truncation, the zero is located at

Q2 ≈ 1.96 GeV2, while the CI-RL exhibits a zero at
Q2 ≈ 5 GeV2. This crossing was predicted by the DSE-
BS approach from Ref. [61], although at Q2 ≈ 6 GeV2.
Figure 3 compares all of those calculations. Notably,
although showing a steep drop toward its zero crossing,
the CI-MRL result is in keen agreement with that produced
in Ref. [61] at small momentum; the CI-RL shows a slower
fall due to the larger value of mρ. As Q2 increases, CI form
factors are evidently harder, as a consequence of the
limitations of the CI model (momentum independent mass
function and BS amplitudes). The magnetic form factor
GM, also displayed in Fig. 4, turns out to be positive
definite and monotonically decreasing, and quite similar in
both truncations on the domain shown. The largest differ-
ence is appreciated at low Q2. This can be attributed to the

FIG. 2. ρmeson form factors. From top to bottom:GM,GE,GQ.
Solid thick lines are the results obtained in the CI-MRL
truncation, whereas the dotted lines are their analogous in the
CI-RL approach [51].

FIG. 3. ρ meson electric form factor. Solid thick line corre-
sponds to the CI-MRL result, whereas the dotted line depicts the
CI-RL computation. We have included the DSE prediction from
Ref. [61], which employs a RL approximation with a sophisti-
cated gluon model. The large Q2 behavior of the CI results is
visibly harder.

FIG. 4. ρ meson magnetic form factor. Solid thick line
corresponds to the CI-MRL result. For the CI-RL case, we have
employed the QPVAnsatz from Eqs. (43), (44). With the strength
parameter set to ζCI−RL ¼ ζCI−MRL ¼ 0.19 in such case, the
resemblance to the CI-MRL result is striking.

QUARK ANOMALOUS MAGNETIC MOMENT AND ITS EFFECTS … PHYS. REV. D 104, 054038 (2021)

054038-7



lack of AMM term in the QPV for the CI-RL truncation,
which enhances the value of GM in a vicinity of Q2 ¼ 0,
without altering the large Q2 behavior. In Fig. 4 we also
observe that, if the AMM piece is included in the CI-RL
description, by using the vertex Ansatz from Eqs. (43),
(44), magnetic form factors become even more similar. The
effects on GE and GQ are immaterial and not shown. The
quadrupole form factor GQ is negative and decreases in
magnitude asQ2 increases; CI-MRL and CI-RL truncations
produce results with notorious different magnitudes.
Some static properties that can be read from the form

factors are collected in Table II, namely charge, magnetic
and quadrupole moments. For completeness, we have also
included the corresponding radii, as defined from

hr2i i ¼ −6
1

Gið0Þ
dGiðQ2Þ
dQ2

����
Q2¼0

: ð51Þ

As can be inferred from Table II, the MRL truncation
produces results which are closer to those obtained from
using sophisticated gluon models [57,61] and lattice QCD
[62], whereas the CI-RL gives results closer to the
structureless meson limit. As explained before, the QPV
Ansatz from Eqs. (43), (44) makes the CI-RL magnetic
form factor GMðQ2Þ more similar to the CI-MRL case, and
therefore the static properties derived from there.

VI. DISTRIBUTION AMPLITUDES

To scrutinize a little further into the structure of the ρ
meson, and the effects of BS kernel truncation, we now
examine the so called valence-quark distribution ampli-
tudes. Particularly, let us consider two leading-twist dis-
tributions amplitudes of the ρ meson: ϕkðxÞ and ϕ⊥ðxÞ.
Intuitively, those describe the light-front momentum carried
by the quark in a longitudinally or transversely polarized ρ,

[63]. In terms of quark propagators and BS amplitudes, the
distributions can be written as [64]:

n · PfρϕkðxÞ ¼ mρNctr
Z
q
δxnðqþÞγ · nnνχρνðq;PÞ;

f⊥ρ ϕ⊥ðxÞ ¼ −
1

2
Nctr

Z
q
δxnðqþÞnμσμαO⊥

ανχ
ρ
νðq;PÞ;

ð52Þ

where δxnðqþÞ ≔ δðn · q − xn · PÞ andO⊥
αν ¼ δαν þ nαn̄ν þ

n̄αnν; n is a lightlike four-vector such that n2 ¼ 0,
n · P ¼ −mρ; n̄ is a conjugate lightlike four-vector,
n̄2 ¼ 0, n · n̄ ¼ −1; and, with the above definitions,R
1
0 dxϕkðxÞ ¼

R
1
0 dxϕ⊥ðxÞ ¼ 1.

The PDAs can be derived from their corresponding
Mellin moments, hxmi ¼ R

1
0 dxx

mϕðxÞ. After evaluating
the Dirac trace, a series of algebraic manipulations involv-
ing Feynman parametrization, supplemented by the unique-
ness of Mellin moments, enable us to identify

ϕkðxÞ ¼
1

fρ

Nc

4π2
mρ½2xð1 − xÞE1− þ F1− �

× C̄iu1 ðωðM2; x;−m2
ρÞÞ; ð53Þ

ϕ⊥ðxÞ ¼
1

f⊥ρ
Nc

4π2
M

�
E1− þ

�
1þm2

1−

M2
xð1 − xÞ

�
F1−

�

× C̄iu1 ðωðM2; x;−m2
ρÞÞ: ð54Þ

The obtained PDAs are displayed in Fig. 5. Both
distributions manifest symmetry under the exchange
1 ↔ 1 − x, which is expected in the isospin symmetric
limit mu ¼ md. The parallel distribution, ϕk, is more
compressed with respect to its perpendicular counterpart,
an expect pattern from sophisticated momentum-dependent
interactions [64]. It is evident that the derived PDAs do not

TABLE II. ρ meson static properties, as obtained from its
elastic electromagnetic form factors. The CI-RL results match
those from Ref. [51]. In our current framework, it corresponds to
the ξ ¼ 0 limit of the CI-MRL truncation. For comparison, we
have included novel DSE results from [61]. Additionally, Lattice
QCD [62] predicts μρ ¼ 2.21ð8Þ and rE ¼ 0.82ð4Þ fm, and the
structureless meson limit dictates μρ ¼ 2 and Qρ ¼ −1.

CI-MRL CI-RL DSE

rE=fm 0.692 0.561 0.72
rM=fm 0.603 0.515 0.69
rQ=fm 0.612 0.512 -
rEmρ 2.706 2.644 2.76
rMmρ 2.359 2.430 2.63
rQmρ 2.394 2.414 -
μρ 2.500 2.110 2.01
Q −0.327 −0.850 −0.36

FIG. 5. ρ meson PDAs. Computed distributions, Eq. (54), in the
CI-MRL truncation.
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vanish at the endpoints, in contradiction with QCD pre-
scriptions [63–65]. The same occurs for the pion leading-
twist PDA in the CI model, for which ϕπðxÞ ¼ 1 in the
chiral limit [39]. Nonetheless, it is quite interesting that, in
the absence of the Fρ BS amplitude (the CI-RL case), the
distribution ϕk actually exhibits soft endpoint behavior.
This is in apparent contradiction with the observed patterns,
which is also well understood from Eqs. (54) and drawn
in Fig. 6.

VII. CONCLUSIONS

Starting from the leading-order symmetry-preserving
RL truncation for the two-body problem, we have illus-
trated how, although the vector and axial-vector WGTIs
provide necessary consistency conditions to construct the
interrelated one body and two body kernels, these turn out
insufficient to determine the kernels in an unambigous
manner [25]. Particularly, we construct a two-body kernel
completely consistent with the aforementioned WGTIs that
includes NL terms. The MRL truncation lets unaltered the
pseudoscalar and axial-vector meson properties, but yields
some implications in the vector channel. This can be well

illustrated by employing the CI model described in Sec. III.
Among other things, we have seen how solutions of the
QPV BS equations, using the MRL kernel, automatically
generate an anomalous magnetic moment term in the vertex
structure. This is in addition to the vector meson pole at
Q2 ¼ −m2

ρ, which is an artifact of the RL truncation [56].
In the presence of DCSB, a dressed light-quark possesses
a large anomalous electromagnetic moment [26,27].
Therefore, the automatic incorporation of such term is
an important outcome of the constructed two-body kernel
in MRL truncation. Immediate consequences are naturally
noted in the ρ meson properties. For instance, although the
produced decay constants are practically invariant under the
effects of the NL pieces we have introduced in the BS
kernel, the experimental mass of the ρ can be faithfully
obtained within the CI-MRL, in contrast with the CI-RL
approach which produces a larger value [51]. In some way,
the NL term of the two-body kernel mimics the effects of
the pion cloud effects, which correct the inflated masses
produced when they are not considered [66]; whether or not
our kernel is actually related to pion cloud effects is
currently under investigation. On another note, whereas
the CI-RL truncation yields static properties (as derived
from the corresponding EFF) closer to the structureless
meson limit, CI-MRL results are more compatible with
those obtained from more sophisticated approaches
[61,62]. Focusing on the magnetic form factor, we have
reinforced the importance of the AMM for a good descrip-
tion of vector mesons. Finally, we have derived the ρmeson
ϕkðxÞ and ϕ⊥ðxÞ distribution amplitudes. The necessity of
employing a regularization scheme, and subsequently cut-
offs, to deal with the CI model, makes the PDAs not
vanishing at the endpoints. This is also observed in the pion
case: the chiral limit pseudoscalar yields ϕπðxÞ ¼ 1 [39].
Interestingly, in the absence of the Fρ piece of the Bethe-
Salpeter amplitude (the CI-RL case), the distribution ϕkðxÞ
actually vanishes at the endpoints. Although it is an
expected behavior from QCD grounds, [64], it seems rather
incompatible with the pion result and the CI framework in
general. Having exposed some impacts of the two-body
kernel on the QPV structure and ρ meson properties, via
masses and decay constants, electromagnetic form factors
and distribution amplitudes, the question on its implications
on the distribution functions remains unanswered. This is
an aspect of the ρ meson structural properties that will
be addressed elsewhere. A similar study for the open flavor
case, in particular the Kaon sector, will be conducted
as well.
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FIG. 6. ρ meson PDAs. Computed distributions, Eq. (54), in the
CI-RL and CI-MRL truncations. Notably, ϕkðxÞ in the CI-RL
exhibits soft endpoint behavior.
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APPENDIX: APPENDIX ρ FORM FACTORS

The vertex characterizing the elastic EFFs of the ρ meson is written in Eq. (46). With properly chosen projection
operators, the three form factors FiðQ2Þ are written, in general:

Fi ¼
Z

1

0

du1

Z
1−u1

0

du2AiC̄iu1 ðΩÞ þ BiC̄iu2 ðΩÞ ðA1Þ

where Ωðu1; u2;M2; P2; Q2Þ ¼ M2 − P2ðu1 þ u2Þðu1 þ u2 − 1Þ þ u1u2Q2 and C̄iu2 ðΩÞ ¼ d2

dΩ2 CiuðΩÞ. X i ¼ XEE
i ðQ2ÞE2

c þ
XEF

i ðQ2ÞEcFc þ XFF
i ðQ2ÞF2

c, for X ¼ A;B and i ¼ 1, 2, 3. Explicitly, we arrive at the following expressions for the
different pieces:

AEE
1 ðQ2Þ ¼ −

Nc

4π2

�
Q2ðu1 − u2Þð6m4

ρ þ 5m2
ρQ2 þQ4Þ

4m4
ρðQ2 þ 4m2

ρÞ
V1ðQ2Þ þ ðu1 þ u2 − 2ÞV2ðQ2Þ

	

AEF
1 ðQ2Þ ¼ Nc

4π2

�
4V2ðQ2Þ −Q2ðu1 þ u2Þ

M2
V3ðQ2Þ

	

AFF
1 ðQ2Þ ¼ Nc

4π2

�
Q2ðu1 − u2ÞðQ2 þ 2m2

ρÞ
4M2ðQ2 þ 4m2

ρÞ
V1ðQ2Þ þ m2

ρ

M2
ðu1 þ u2ÞV2ðQ2Þ

	
ðA2Þ

AEE
2 ðQ2Þ ¼ −

Nc

4π2

�
2ðu1 − u2ÞðQ2 þ 3m2

ρÞ
Q2 þ 4m2

ρ
V1ðQ2Þ þ 2ðu1 þ 1ÞV2ðQ2Þ þ 4V3ðQ2Þ

	

AEF
2 ðQ2Þ ¼ Nc

4π2

�
−4V2ðQ2Þ þ 4m2

ρðu1 þ u2 − 1Þ þ 2u2Q2

M2
V3ðQ2Þ

	

AFF
2 ðQ2Þ ¼ Nc

4π2

�
2m4

ρðu1 − u2Þ
M2ðQ2 þ 4m2

ρÞ
V1ðQ2Þ − 2u2m2

ρ

M2
V2ðQ2Þ

	
ðA3Þ

AEE
3 ðQ2Þ ¼ Nc

4π2

�ðu1 − u2Þð60m6
ρ þ 32m4

ρQ2 þ 7m2
ρQ4 þQ6Þ

m2
ρðQ2 þ 4m2

ρÞ2
V1ðQ2Þ þ 4

m2
ρðu1 − u2Þ
Q2 þ 4m2

ρ
V2ðQ2Þ

	

AEF
3 ðQ2Þ ¼ Nc

4π2

�
4m2

ρQ2ðu1 − u2Þ
M2ðQ2 þ 4m2

ρÞ
V3ðQ2Þ

	

AFF
3 ðQ2Þ ¼ Nc

4π2

�
−
m2

ρðu1 − u2Þð20m4
ρ þ 4m2

ρQ2 þQ4Þ
M2ðQ2 þ 4m2

ρÞ2
V1ðQ2Þ þ 4m4

ρðu2 − u1Þ
M2ðQ2 þ 4m2

ρÞ
V2ðQ2Þ

	
ðA4Þ

BEE
1 ðQ2Þ

¼ Nc

4π2

�
Q2ðu1 − u2ÞðQ2 þ 2m2

ρÞ
8m4

ρðQ2 þ 4m2
ρÞ

× ½−M2ðQ2 þ 3m2
ρÞ þm4

ρðu1 þ u2 − 1Þð9u1 þ 9u2 − 2Þ þm2
ρQ2ðð7u1 − 3Þu2 þ 3ðu1 − 1Þu1 þ 3u22Þ þ u1u2Q4�V1ðQ2Þ

þ 1

2
½M2ð2− u1 − u2Þ þm2

ρðu1 þ u2 − 1Þðu1 þ u2Þð3u1 þ 3u2 − 4Þ þ 3u1u2ðu1 þ u2 − 2ÞQ2�V2ðQ2Þ−Q2V3ðQ2Þ
	

BEF
1 ðQ2Þ

¼ Nc

4π2

�
−
Q2ðu1 − u2ÞðQ2 þ 2m2

ρÞ
4m2

ρ
V1ðQ2Þ − 8m4

ρðu1 þ u2 − 1Þð2u1 þ 2u2 þ 1Þ þ 4m2
ρQ2ð4u1u2 þ u1 þ u2Þ

4m2
ρ

V2ðQ2Þ

þQ2ððu1 þ u2Þðm2
ρðu1 þ u2 − 1Þð3u1 þ 3u2 þ 2Þ þ 3u1u2Q2Þ−M2ðu1 þ u2 þ 4ÞÞ

2M2
V3ðQ2Þ
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BFF
1 ðQ2Þ

¼ Nc

4π2

�
Q2ðu1 − u2ÞðQ2 þ 2m2

ρÞð−3M2 þm2
ρðu1 þ u2 − 1Þðu1 þ u2 þ 2Þ þ u1u2Q2Þ

8M2ðQ2 þ 4m2
ρÞ

V1ðQ2Þ

þ
�
m2

ρðm2
ρðu1 þ u2 − 2Þðu1 þ u2 − 1Þðu1 þ u2Þ þQ2ð−u21u2 þ 2u21ðu1 − 1Þ − ð2þ u1Þu22 þ 2u32ÞÞ

2M2

−
1

2
ðm2

ρð3u1 þ 3u2 − 4Þ þ 2Q2ðu1 þ u2ÞÞ
�
V2ðQ2Þ

þQ2ð−M2 þm2
ρðu1 þ u2 − 2Þðu1 þ u2Þ þ u1u2Q2Þ

M2
V3ðQ2Þ

	
ðA5Þ

BEE
2 ðQ2Þ

¼ Nc

4π2

� ðu1 − u2Þ
Q2 þ 4m2

ρ

× ½−M2ðQ2 þ 3m2
ρÞ þm4

ρðu1 þ u2 − 1Þð9u1 þ 9u2 − 2Þ þm2
ρQ2ðð7u1 − 3Þu2 þ 3ðu1 − 1Þu1 þ 3u22Þ þ u1u2Q4�V1ðQ2Þ

þ ½−ðu1 þ 1ÞM2 þm2
ρðu1 þ u2 − 1Þð3u21 þ 3u1u2 þ u1 þ 3u2Þ þ u1ð3u1 þ 1Þu2Q2�V2ðQ2Þ

þ ½2m2
ρðu1 þ u2 − 1Þð2u1 þ 2u2 þ 1Þ þ 2u1ð2u2 þ 1ÞQ2�V3ðQ2Þ

	

BEF
2 ðQ2Þ

¼ Nc

4π2

�
½2m2

ρðu2 − u1Þ�V1ðQ2Þ þ ½2ðm2
ρð2u21 þ u1ð4u2 − 3Þ þ u2ð2u2 − 3Þ− 1Þ þ 2u1u2Q2Þ�V2ðQ2Þ

þ
�
−6m4

ρðu1 þ u2 − 1Þ2ðu1 þ u2Þ þm2
ρQ2ð−2u31 þ u21ð2− 5u2Þ þ u1ð7− 6u2Þu2 − 3ðu2 − 1Þu22Þ − u1u2Q4

M2

þ 2m2
ρðu1 þ u2 − 3Þ þQ2ð2u1 þ u2Þ

�
V3ðQ2Þ

	

BFF
2 ðQ2Þ

¼ Nc

4π2

�
m4

ρðu1 − u2Þð−3M2 þm2
ρðu1 þ u2 − 1Þðu1 þ u2 þ 2Þ þ u1u2Q2Þ
M2ðQ2 þ 4m2

ρÞ
V1ðQ2Þ

þ
�
m2

ρð−ðu2 þ 2ÞM2 þm2
ρðu1 þ u2 − 1Þð3u1u2 þ 2u1 þ 3u22Þ þ 3u1u22Q

2Þ
M2

�
V2ðQ2Þ

þ 2m2
ρð−M2 þm2

ρðu1 þ u2 − 1Þðu1 þ u2 þ 1Þ þ ðu1 þ 1Þu2Q2Þ
M2

V3ðQ2Þ
	

ðA6Þ

BEE
3 ðQ2Þ

¼ Nc

4π2

�
−ðu1 − u2Þð20m4

ρ þ 4m2
ρQ2 þQ4Þ

2m2
ρðQ2 þ 4m2

ρÞ2
× ½−M2ðQ2 þ 3m2

ρÞ þm4
ρðu1 þ u2 − 1Þð9u1 þ 9u2 − 2Þ þm2

ρQ2ðð7u1 − 3Þu2 þ 3ðu1 − 1Þu1 þ 3u22Þ þ u1u2Q4�V1ðQ2Þ

þ 2m2
ρðM2ðu1 − u2Þ−m2

ρðu1 þ u2 − 1Þð2ð8u1 þ 1Þu2 þ u1ð3u1 − 2Þ− 3u22Þ− u1u2Q2ð7u1 þ u2 − 4ÞÞ
Q2 þ 4m2

ρ
V2ðQ2Þ

−
4m2

ρð4m2
ρðu1 þ u2 − 1Þ þ ð2u1 − 1ÞQ2Þ

Q2 þ 4m2
ρ

V3ðQ2Þ
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BEF
3 ðQ2Þ

¼ Nc

4π2

�ðu1 − u2Þð20m4
ρ þ 4m2

ρQ2 þQ4Þ
Q2 þ 4m2

ρ
V1ðQ2Þ þ ½4m2

ρðu1 þ u2Þ�V2ðQ2Þ

þ 2m2
ρ

M2ðQ2 þ 4m2
ρÞ
½−M2ð8m2

ρðu1 þ u2 − 2Þ þQ2ð3u1 þ u2 − 4ÞÞ þ 8m4
ρðu1 þ u2 − 1Þ2ðu1 þ u2Þ

þm2
ρQ2ðu1 þ u2Þð−4u1u2 þ ðu1 − 3Þu1 þ 3u22 − 5u2 þ 2Þ − u1u2Q4ð3u1 þ u2Þ�V3ðQ2Þ

	

BFF
3 ðQ2Þ

¼ Nc

4π2

�
−
m2

ρðu1 − u2Þð20m4
ρ þ 4m2

ρQ2 þQ4Þð−3M2 þm2
ρðu1 þ u2 − 1Þðu1 þ u2 þ 2Þ þ u1u2Q2Þ

2M2ðQ2 þ 4m2
ρÞ2

V1ðQ2Þ

þ 2m2
ρ

M2ðQ2 þ 4m2
ρÞ
½M2ðm2

ρð7u1 þ 9u2Þ þ 2Q2ðu1 þ u2ÞÞ þm2
ρðQ2ð−2u31 þ u21ðu2 þ 2Þ − 5u1u22 − 2ðu2 − 1Þu22Þ

−m2
ρðu1 þ u2 − 1Þðu1ð5u1 þ 2Þ þ u2ð11u2 − 2ÞÞÞ�V2ðQ2Þ

−
4m2

ρð−M2ðQ2 þ 4m2
ρÞ þ 4m4

ρðu1 þ u2 − 1Þðu1 þ u2Þ þm2
ρQ2ð6u1u2 þ ðu1 − 2Þu1 þ u22Þ þ u1u2Q4Þ

M2ðQ2 þ 4m2
ρÞ

V3ðQ2Þ
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