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The paper deals with the characterization of Powell-Sabin triangulations allowing the construction of bivariate 
quartic splines of class 𝐶2. The result is established by relating the triangle and edge split points provided 
by the refinement of each triangle. For a triangulation fulfilling the characterization obtained, a normalized 
representation of the splines in the 𝐶2 space is given.
1. Introduction

The polynomial spline functions defined on triangulations are tools 
widely used in many different fields, both theoretical and applied. The 
book by Lai and Schumaker [1] presents an in-deph study of this type 
of functions, focusing mainly on the theoretical aspects.

As shown in [2], class 𝐶𝑚 on an arbitrary triangulation of a polygo-
nal domain is obtained if all derivatives up to order 2𝑚 at the vertices of 
the triangles are given. In particular, to get 𝐶1 triangular splines on an 
arbitrary triangulation the values of the derivatives of order less than 
or equal to 2 at the vertices and the lowest degree is equal to 5 (see [2, 
Thm. 2] and the references therein).

In order to reduce the degree of the spline, it was proposed in 
[3] to refine each triangle by joining its vertices to an interior point. 
The Clough-Tocher refinement thus obtained allows to determine a 𝐶1

spline of degree 3 and also a macro-triangle whose nodal parameters 
yield a 𝐶1 piecewise polynomial of degree 4 (see [4] and the refer-
ences therein). Introduced more than 50 years ago, 𝐶1 cubic splines on 
Clough-Tocher partitions are still a subject of interest. For example, in 
[5] Gaussian quadrature for 𝐶1 cubic Clough-Tocher macro-triangles is 
studied.

In [6], Powell and Sabin introduced a new refinement with the 
specific objective of contour plotting, managing to define a 𝐶1 piece-
wise quadratic function from the values at the nodes of the function to 
be approximated and its gradient. Since then, interest in 𝐶1 quadratic 
Powell-Sabin (PS-) splines has been maintained: for instance, in [7], the 
construction of normalized B-spline bases was addressed; in [8], differ-
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ential and discrete quasi-interpolants were defined; and in [9] Gaussian 
quadrature was studied. Blossoming was also used to build 𝐶1 quadratic 
quasi-interpolants on PS-partitions [10].

In [11] and [12] the study of cubic splines was carried out, con-
structing a normalized basis and quasi-interpolants that yield the opti-
mal approximation order, respectively. Quasi-interpolation in 𝐶1 cubic 
PS-splines was also addressed in [13]. New interesting results for this 
type of splines were published in [14–16].

The construction of 𝐶2 PS-splines needs to consider a degree equal 
to five. In [17], normalized bases are constructed for these spaces, 
and polar forms are used in [18] to construct discrete and differential 
quasi-interpolants reproducing quintic polynomials. Interpolation with 
quintic PS-splines is addressed in [19].

The construction of 𝐶2 quartic PS-splines has only been studied very 
recently, using the idea proposed in [20,14] to deal with the cubic case, 
namely to impose additional smoothness conditions on the nodes or 
inside each triangle.

In [21], this strategy is adopted to construct PS-splines that are 
almost 𝐶2 continuous. Actually, the resulting functions are only 𝐶1 con-
tinuous, although they are of class 𝐶2 except across some edges of the 
refinement.

In some sense, the characterization obtained here can be seen as a 
continuation of the work [22]. Indeed, in [22] 𝐶2 quartic splines on 
a modified Morgan-Scott refinement is discussed. The linear function-
als involved in the Hermite interpolation problems in [22] and in this 
paper are the same, only the refinements are different. Unfortunately, 
the space developed in [22] is only defined under specific geometrical 
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Fig. 1. From left to right, plots of the quartic Bernstein polynomials 𝔅4
400, 𝑇 , 𝔅

4
220, 𝑇 and 𝔅4

211, 𝑇 .
conditions. When the three inner points used to define the refinement 
collapse, this space is not defined, and this is the starting point for the 
work done in this paper. The construction of 𝐶2 quartic splines over re-
fined triangulations with modified Morgan-Scott split is also studied in 
[23] (see [24] in the case of 𝐶1 quadratic splines). The authors in [23], 
first, they analysed the construction of 𝐶2 quartic splines on a single 
macro-triangle endowed with a modified Morgan-Scott split. Then, they 
examined the problem of how to join the local 𝐶2 interpolating splines 
on macro-triangles to a quartic spline that is 𝐶2 continuous everywhere. 
Unfortunately, this results in a global system of linear equations, whose 
solvability, in general, is very difficult to analyse theoretically. This is 
because that, the linear system depends on the positions of the trian-
gle split points and the edge split points that determine the modified 
Morgan-Scott split. The relations between the triangle split points and 
the edge split points involved in [22] can be viewed as a special case 
where this linear system has a unique solution.

Several families of PS-super splines of arbitrary degree (and corre-
sponding regularity) have been introduced in the literature [25,26], and 
also quasi-interpolation operators based on PS-splines of arbitrary class 
𝑟 and degree 3𝑟 − 1 have been defined [27].

In this article, the main objective is to characterize the geometry 
of Powell-Sabin triangulations that allows 𝐶2 class bivariate quartic 
splines to be defined.

The remainder of this paper is organized as follows. Section 2 recalls 
some concepts about the Bernstein-Bézier representation of bivariate 
polynomials defined on triangles. In Section 3, the quartic spline space 
is defined and the interpolation problem that uniquely determines each 
element of the spline space is stated and analyzed. Section 4 is devoted 
to define a basis of the Powell-Sabin space relative to a triangle, char-
acterizing Powell-Sabin refinements allowing 𝐶2 quartic splines on that 
triangle and to define an appropriate basis. In section 5, the dimension 
of the reduced space is given and 𝐶2-continuity on the whole trian-
gulation is addressed. Thus, the construction of a B-spline-like basis is 
outlined. Finally, in Section 6, we summarize the results obtained.

2. Preliminaries and notations

Given a non-negative integer 𝑑, let ℙ𝑑 be the linear space of all 
bivariate polynomials. They can be expressed in terms of the stan-
dard monomial basis 

{
𝑥𝑖𝑦𝑗 , 𝑖 ≥ 0, 𝑗 ≥ 0, 𝑖+ 𝑗 ≤ 𝑑

}
. The construction of 

spline functions on triangulations makes it advisable to represent the 
polynomials on any triangle on the basis of the Bernstein polynomi-
als. Let 𝑇 ⟨𝑉1, 𝑉2, 𝑉3⟩ be a non-degenerated triangle in ℝ2 with vertices 
𝑉𝓁 ∶=

(
𝑥𝓁 , 𝑦𝓁

)
, 𝓁 = 1, 2, 3. Any point 𝑉 = (𝑥, 𝑦) in the plane has a unique 

representation of the form 𝑉 =
∑3

𝓁=1 𝜏𝓁 𝑉𝓁 , where the barycentric co-
ordinates 𝜏 ∶=

(
𝜏1, 𝜏2, 𝜏3

)
satisfy that 𝜏1 + 𝜏2 + 𝜏3 = 1. The Bernstein 

polynomials of degree 𝑑, relative to 𝑇 are defined as

𝔅𝑑
𝛽,𝑇

(𝜏) ∶= 𝑑!
𝛽1!𝛽2!𝛽3!

𝜏
𝛽1
1 𝜏

𝛽2
2 𝜏

𝛽3
3 ,

where 𝛽 ∶=
(
𝛽1, 𝛽2, 𝛽3

)
∈ ℕ3

0 with length |𝛽| ∶= 𝛽1 + 𝛽2 + 𝛽3 = 𝑑. They 
form a partition of unity, i.e. it holds ∑|𝛽|=𝑑 𝔅𝑑

𝛽,𝑇
(𝜏) = 1 for all 𝜏 ∈ ℝ3. 

If 𝑉 belongs to the triangle 𝑇 , then 𝜏𝓁 ≥ 0 and any polynomial 𝑝 can be 
represented on 𝑇 as

𝑝 (𝑥, 𝑦) =
∑

𝑏𝑑
𝛽,𝑇

𝔅𝑑
𝛽,𝑇

(𝜏) , (1)
|𝛽|=𝑑
31
𝑏𝑑
𝛽,𝑇

being its Bézier (B-) ordinates or Bernstein-Bézier (BB-) coefficients 
of 𝑝. We refer to (1) as BB-representation of 𝑝. The BB-coefficients 𝑏𝑑

𝛽,𝑇

of the polynomial 𝑝 with respect to the triangle 𝑇 are associated with 
the domain points 𝜉𝛽,𝑇 ∶=

(
𝛽1
𝑑
,
𝛽2
𝑑
,
𝛽3
𝑑

)
, |𝛽| = 𝑑, which define the lattice 

𝑑,𝑇 ∶=
{
𝜉𝛽,𝑇 , |𝛽| = 𝑑

}
. If there is no possibility of confusion, any refer-

ence to the triangle 𝑇 is omitted in writting the Bernstein polynomials, 
the BB-coefficients, the domain points and the lattice that they define. 
It is well-known that any point (𝑥, 𝑦, 𝑝 (𝑥, 𝑦)), lying in the graph of the 
surface 𝑧 = 𝑝 (𝑥, 𝑦) on the triangle 𝑇 can be written as

(𝑥, 𝑦, 𝑝 (𝑥, 𝑦)) =
∑
|𝛽|=𝑑

(
𝜉𝛽,𝑇 , 𝑏

𝑑
𝛽,𝑇

)
𝔅𝑑
𝛽,𝑇

(𝜏) ,

so that the graph of the surface is obained as convex linear combina-
tions of the so-called control points. At the vertices of 𝑇 , the surface 
interpolates the control points. The Fig. 1 shows the typical view of 
some quartic Bernstein polynomials.

Let Δ be a triangulation of a simply connected polygonal domain 
Ω ⊂ℝ2. Given 0 ≤ 𝑟 < 𝑑, we consider the spline space of degree 𝑑 on Δ
with global 𝐶𝑟 continuity, defined as

𝑆𝑟
𝑑
(Δ) ∶=

{
𝑠 ∈ 𝐶𝑟(Ω) ∶ 𝑠|𝑇 ∈ ℙ𝑑 , 𝑇 ∈ Δ

}
.

The smoothness conditions between adjacent polynomial patches 
are easily expressed in terms of the BB-coefficients relative to the trian-
gles. Let �̂� ∶= ⟨𝑉4, 𝑉2, 𝑉3⟩ be an adjacent triangle to 𝑇 and �̂� a polyno-
mial of total degree 𝑑 defined on �̂� . Assume that 𝑉4 has 𝜏 ∶=

(
𝜏1, 𝜏2, 𝜏3

)
as vector of barycentric coordinates with respect to 𝑇 . Then the func-
tion defined by assembling 𝑝 and 𝑝 is of class 𝐶𝑟 across the edge ⟨𝑉2, 𝑉3⟩
if the B-ordinates �̂�𝛽,�̂� of �̂� satisfy for 𝛽1 = 0, … , 𝑟 and 𝛽2 +𝛽3 = 𝑑 − 𝑟 the 
conditions

�̂�𝛽,�̂� =
∑

|𝛼|=𝛽1 𝑏𝛼+𝛽2𝑒2+𝛽3𝑒3 ,𝑇𝔅
𝑟
𝛼,𝑇 (𝜏) , (2)

where 𝑒2 = (0,1,0) and 𝑒3 = (0,0,1).

3. Quartic Powell-Sabin splines

A Powell-Sabin (PS-) refinement ΔPS of Δ is obtained by decompos-
ing each macro triangle 𝑇 into six micro-triangles as follows [6]:

1. Choose an interior point 𝑍𝑗 in each triangle 𝑇𝑗 and connect it to 
the three vertices of 𝑇𝑗 by straight lines.

2. For each pair of triangles 𝑇𝑖 and 𝑇𝑗 with a common edge, connect 
the two points 𝑍𝑖 and 𝑍𝑗 , and let 𝑅𝑖,𝑗 be the intersection point with 
the common edge.

3. If 𝑇𝑗 is a boundary triangle, then also connect 𝑍𝑗 to an arbitrary 
point on each of the boundary edges.

The choice of the triangle split points determines the position of 
the edge split points. Reciprocally, the location of the edge-split points 
of a given triangle impose restrictions on the positions of the triangle-
split points of the surrounding triangles. Fig. 2 shows on the right a 
triangulation along with the Powell-Sabin refinement of its triangles, 
and on the left a single triangle to introduce the notation to be used. 
In general, the triangle split point 𝑍 and the edge split points 𝑅2,3, 𝑅3,1
and 𝑅1,2 are not collinear with 𝑉1, 𝑉2 and 𝑉3, respectively. However, for 
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𝐙

𝑡1 𝑡2

𝑡3

𝑡4𝑡5

𝑡6

𝑉2𝑉1

𝑉3

𝑅2,3𝑅3,1

𝑅1,2

Fig. 2. (Left) Powell-Sabin split of a single triangle 𝑇 ⟨𝑉1, 𝑉2, 𝑉3⟩. (Right) Powell-Sabin refinement of Δ.
each triangle of the partition the schematic representation on the left in 
Fig. 2 is adopted.

Let  ∶=
{
𝑉𝑖
}𝑛𝑣
𝑖=1,  ∶=

{
𝔢𝑖
}𝑛𝑒
𝑖=1 and  ∶=

{
𝑍𝑖

}𝑛𝑡
𝑖=1 be the subsets of 

vertices and edges in Δ, and split points in ΔPS, respectively. Moreover, 
let ∗ be the subset of edges in ΔPS that connect the split points in  to 
the associated edge split points after applying the steps 1 and 2 in the 
previous algorithm. Denote by  the subset composed by the edge split 
points 𝑅𝑖,𝑗 .

In [21], a normalized basis of the subspace

𝑆1,2
4

(
ΔPS

)
∶=

{
𝑠 ∈ 𝑆1

4
(
ΔPS

)
∶ 𝑠 ∈ 𝐶2 (

 ∪ ∪  ∪ 
∗)} .

of 𝑆1
4
(
ΔPS

)
is constructed. Its dimension is equal to 6𝑛𝑣 + 3𝑛𝑒. The 

splines in this subspace are 𝐶2 continuous everywhere except across 
the edges that connect the split points and the vertices.

In this work, we consider the following subspace of 𝑆1,2
4

(
ΔPS

)
[21]:

𝑆1,2,3
4

(
ΔPS

)
∶=

{
𝑠 ∈ 𝑆1,2

4
(
ΔPS

)
∶ 𝑠 ∈ 𝐶3 (


∗)} . (3)

Here, 𝐶3 (∗) means that for any edge 𝔢 ∈ ∗ the polynomials over the 
two micro-triangles sharing 𝔢 have common derivatives up to order 
three along 𝔢. Splines in 𝑆1,2,3

4
(
ΔPS

)
are 𝐶3 continuous at the set of 

edge split points and 𝐶2 at the set of triangle split points.
This is not a classical super spline space because additional continu-

ity has been imposed across certain, but not all, interior edges of ΔPS.
A spline 𝑠 ∈ 𝑆1,2,3

4
(
ΔPS

)
can be defined by means of the following 

Hermite interpolation problem.

Theorem 1. There exists a unique spline 𝑠 ∈ 𝑆1,2,3
4

(
ΔPS

)
solving the inter-

polation problem

𝐷𝑎
𝑥𝐷

𝑏
𝑦 𝑠

(
𝑉𝑖
)
= 𝑓𝑎,𝑏

𝑖
, 𝑖 = 1,… , 𝑛𝑣, 𝑎 ≥ 0, 𝑏 ≥ 0, 𝑎+ 𝑏 ≤ 2, (4)

𝐷2
𝜔𝑚,𝑛,𝑞

𝑠
(
𝑅𝑚,𝑛

)
= 𝑔𝑚,𝑛 for all 𝑅𝑚,𝑛 ∈, 𝑅𝑚,𝑛 ∈ ⟨𝑉𝑚,𝑉𝑛⟩ ,

for given values 𝑓𝑎,𝑏
𝑖

and 𝑔𝑚,𝑛, 𝜔𝑚,𝑛,𝑞 being a unit direction parallel to ⟨
𝑅𝑚,𝑛,𝑍𝑞

⟩
, where 𝑍𝑞 is the triangle split point of a triangle 𝑇𝑞 having ⟨𝑉𝑚,𝑉𝑛⟩ as an edge.

Proof. The proof will be done on a single macro-triangle. Its extension 
to the whole triangulation is deduced from Theorem 1 in [21]. To prove 
the unisolvency of the interpolation problem on a macro-triangle 𝑇 , we 
only need to determine the BB-coefficients on 𝑇 of a spline 𝑠 satisfying 
(4). For the sake of simplicity, and without loss of generality, consider 
a single macro-triangle 𝑇 ⟨𝑉1, 𝑉2, 𝑉3⟩. On each micro-triangle in 𝑇 , the 
spline 𝑠 is a quartic polynomial (see Fig. 3). We will show how the 
BB-coefficients of 𝑠 are uniquely determined by conditions (4) and the 
smoothness requirements.

Since the spline 𝑠 is 𝐶2 continuous at vertices 𝑉𝑖, 𝑖 = 1, 2, 3, then the 
values and derivatives up to order 2 at each vertex in (4) are uniquely 
determined by the BB-coefficients relative to the domain points lying in 
the disks of radius 2 associated with the vertices of 𝑇 , i.e. the subsets 
32
Fig. 3. The subset 4,𝑇 relative to a macro-triangle 𝑇 of ΔPS. The B-ordinates of 
the restriction to 𝑇 of a spline 𝑠 ∈ 𝑆1,2,3

4

(
ΔPS

)
are determined for the specified 

subsets of domain points from the interpolation conditions at the vertices and 
the regularity of 𝑠.

each consisting of the nine domain points lying in each of the coloured 
neighbouring regions of the vertices shown in Fig. 3, and which are 
represented by the symbols ∙ and ◦.

To deal with 𝐶2 smoothness at triangle split point 𝑍, we define the 
triangle with vertices

𝑊𝑖 ∶=
𝑉𝑖 +𝑍

2
, 𝑖 = 1,2,3. (5)

The BB-coefficients relative to the domain points in this triangle are 
computed by our construction. Also the BB-coefficients marked with ■
are determined from the second derivative of 𝑠 in the specified direction 
given in (4), to give six independent constraints that yield a quadratic 
polynomial 𝑝2 in �̃� ⟨𝑊1,𝑊2,𝑊3⟩ from which the BB-coefficients related 
to the domain points ordinates indicated by □ in Fig. 3 are determined.

The remaining BB-coefficients, indicated by ▴, and placed in the 0th 
and 1st rows parallel to edge 

⟨
𝑉𝑖, 𝑉𝑗

⟩
are computed from 𝐶3 smoothness 

conditions along 
⟨
𝑅𝑖,𝑗 ,𝑍

⟩
. Fot 𝓁 = 0, let 𝑏0

𝑘
, 𝑘 = 1, … , 7, be the seven 

central BB-coefficients placed on 0th row parallel to edge 
⟨
𝑉𝑖, 𝑉𝑗

⟩
. They 

can be considered as the BB-coefficients of the univariate cubic polyno-

mial 𝑝03 defined on the segment 
[
�̂� 0

𝑖,𝑗
, �̃� 0

𝑖,𝑗

]
with

�̂� 0
𝑖,𝑗 ∶=

3
4
𝑉𝑖 +

1
4
𝑅𝑖,𝑗 and �̃� 0

𝑖,𝑗 ∶=
3
4
𝑉𝑗 +

1
4
𝑅𝑖,𝑗

having BB-coefficients 𝑏01, 𝑏
0
2, 𝑏

0
6 and 𝑏07 (see Fig. 4). After subdivision, 

𝑏03, 𝑏
0
4 and 𝑏05 result. This construction ensures that the spline is 𝐶3 at 

𝑅𝑖,𝑗 . To determine the BB-coefficients 𝑏1
𝑘
, 𝑘 = 1, … , 7, associated with the 

domain points lying on the 1st row paralell to edge 
⟨
𝑉𝑖, 𝑉𝑗

⟩
, a similar 

approach is applied, by considering the points

�̂� 1
𝑖,𝑗 ∶=

3
𝑉𝑖 +

1
𝑍 and �̃� 1

𝑖,𝑗 ∶=
3
𝑉𝑗 +

1
𝑍,
4 4 4 4
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𝑏01 𝑏02 𝑏03 𝑏04 𝑏05 𝑏06 𝑏07

𝑏11 𝑏12 𝑏13 𝑏14 𝑏15 𝑏16 𝑏17

↗

�̂� 0
12

↖

�̃� 0
12

↘
�̂� 1

12
↙

�̃� 1
12

Fig. 4. The seven central BB-coefficients placed on 𝓁th (𝓁 = 0,1) row parallel to edge ⟨𝑉1, 𝑉2⟩.

and the polynomial 𝑝13 defined on 

[
�̂� 1

𝑖,𝑗
, �̃� 1

𝑖,𝑗

]
with BB-coefficients 𝑏11, 

𝑏12, 𝑏
1
6 and 𝑏17. The BB-coefficients 𝑏𝓁1 , 𝑏𝓁2 , 𝑏𝓁6 and 𝑏𝓁7 , 𝓁 = 0, 1, have been 

already determined by the interpolation conditions (4) at 𝑉𝑖 and 𝑉𝑗 . This 
construction ensures that the spline is 𝐶3 across the edge 

⟨
𝑅𝑖,𝑗 ,𝑍

⟩
.

The construction above is carried out on the macro-triangle 𝑇 . The 
rest of the proof runs as in [21, Thm. 1]. □

In what follows, we divide the work into two parts. In the first 
one, we discuss the space of quartic Powell-Sabin splines on a single 
macro-triangle 𝑇 , wherein we investigate the necessary and sufficient 
conditions to achieve global 𝐶2 smoothness on 𝑇 . The second part is de-
voted to extend the results obtained for a macro-triangle to the whole 
triangulation.

4. The Powell-Sabin space on a single triangle

As mentioned earlier, we are looking for geometrical conditions en-
suring that 𝑆1,2,3

4
(
ΔPS

)
becomes of 𝐶2 continuity. To do that, we start by 

analysing the Powell-Sabin space relative to a single triangle by defin-
ing an appropriate basis for it, then, we will generalize the obtained 
results on the whole triangulation.

Consider the macro-triangle 𝑇 ⟨𝑉1, 𝑉2, 𝑉3⟩, with 𝑉1 =
(
𝑥1, 𝑦1

)
, 𝑉2 =(

𝑥2, 𝑦2
)

and 𝑉3 =
(
𝑥3, 𝑦3

)
(see Fig. 2 (left)). The barycentric coordinates 

of the vertices 𝑉1, 𝑉2 and 𝑉3 w.r.t. 𝑇 are (1,0,0), (0,1,0) and (0,0,1), 
respectively. Suppose that the barycentric coordinates of 𝑍 =

(
𝑥𝑧, 𝑦𝑧

)
are 

(
𝑧1, 𝑧2, 𝑧3

)
, and let 

(
𝜆1,2, 𝜆2,1,0

)
, 
(
0, 𝜆2,3, 𝜆3,2

)
and 

(
𝜆1,3,0, 𝜆3,1

)
be 

coordinates of 𝑅1,2 =
(
𝑥1,2, 𝑦1,2

)
, 𝑅2,3 =

(
𝑥2,3, 𝑦2,3

)
and 𝑅3,1 =

(
𝑥3,1, 𝑦3,1

)
, 

respectively. Moreover, we can write

𝑅1,2 = 𝜏1,1 𝑉2 + 𝜏2,1𝑅2,3 + 𝜏3,1𝑍, 𝑅2,3 = 𝜏1,2 𝑉3 + 𝜏2,2𝑅3,1 + 𝜏3,2𝑍,

𝑅3,1 = 𝜏1,3 𝑉1 + 𝜏2,3𝑅1,2 + 𝜏3,3𝑍,

where

(
𝜏1,1, 𝜏2,1, 𝜏3,1

)
∶=

(
𝜆1,2𝑧3 + 𝜆3,2

(
𝜆2,1 + 𝑧1 − 1

)
𝜆3,2𝑧1

,−
𝜆1,2𝑧3

𝜆3,2𝑧1
,
𝜆1,2

𝑧1

)
,

(
𝜏1,2, 𝜏2,2, 𝜏3,2

)
∶=

(
−𝑧3𝜆2,3 + 𝜆3,2𝑧2 − 𝜆31

(
𝑧2 − 𝜆2,3

)
𝜆1,3𝑧2

,−
𝜆2,3𝑧1

𝜆1,3𝑧2
,
𝜆2,3

𝑧2

)
,

(6)

(
𝜏1,3, 𝜏2,3, 𝜏3,3

)
∶=

(
𝜆3,1

(
𝑧2 − 𝜆2,1

)
𝜆2,1𝑧3

+ 1,−
𝜆3,1𝑧2

𝜆2,1𝑧3
,
𝜆3,1

𝑧3

)
.

Let us suppose that 𝑇 is decomposed into the following micro-
triangles 𝑡𝓁 , 𝓁 = 1, … , 6:

𝑡1
⟨
𝑉1,𝑅1,2,𝑍

⟩
, 𝑡2

⟨
𝑅1,2, 𝑉2,𝑍

⟩
, 𝑡3

⟨
𝑉2,𝑅2,3,𝑍

⟩
, 𝑡4

⟨
𝑅2,3, 𝑉3,𝑍

⟩
,

𝑡5
⟨
𝑉 ,𝑅 ,𝑍

⟩
, 𝑡6

⟨
𝑅 ,𝑉 ,𝑍

⟩
.
3 3,1 3,1 1

33
Fig. 5. The B-ordinates relative to micro-triangles 𝑡1 and 𝑡6 sharing vertex 𝑉1
are shown. The other follow cyclically. The control net triangles involved in the 
𝐶1 continuity conditions between 𝑠1 and 𝑠6 are shown in blue.

Let 𝑠𝓁 be the restriction of 𝑠 to 𝑡𝓁 , and 𝑠𝓁
𝑖,𝑗,𝑘

, 𝑖 + 𝑗 + 𝑘 = 4, be its BB-
coefficients.

The continuity of 𝑠 on 𝑇 is easily expressed in terms of the BB-
coefficients. For instance, the continuity across the micro-edge ⟨𝑍,𝑉1⟩
is equivalent to the fulfilment of conditions

𝑠14−𝑗,0,𝑗 = 𝑠60,4−𝑗,𝑗 , 𝑗 = 0,… , 4.

The conditions yielding the continuity across ⟨𝑍, 𝑅1,2⟩, ⟨𝑍, 𝑉2⟩, ⟨𝑍,

𝑅2,3⟩, ⟨𝑍, 𝑉3⟩ and ⟨𝑍, 𝑅3,1⟩ are similar and involve the BB-coefficients of {
𝑠1, 𝑠2

}
, 
{
𝑠2, 𝑠3

}
, 
{
𝑠3, 𝑠4

}
, 
{
𝑠4, 𝑠5

}
and 

{
𝑠5, 𝑠6

}
, respectively (see Fig. 5).

We also recall that the 𝐶1 continuity of 𝑠 across ⟨𝑍,𝑉1⟩ is expressed 
as

𝑠61,3−𝑗,𝑗 = 𝜏1,3𝑠
1
4−𝑗,0,𝑗 + 𝜏2,3𝑠

1
3−𝑗,1,𝑗 + 𝜏3,3𝑠

1
3−𝑗,0,𝑗+1, 𝑗 = 0,1,2,3,

where the barycentric coordinates 
(
𝜏1,3, 𝜏2,3, 𝜏3,3

)
of 𝑅3,1 with respect 

to 𝑡1
⟨
𝑉1, 𝑅1,2, 𝑍

⟩
are given in (6). Similar expressions are obtained for 

the 𝐶1 continuity across the micro-edges 
⟨
𝑍,𝑅1,2

⟩
, ⟨𝑍,𝑉2⟩, ⟨𝑍,𝑅2,3

⟩
, ⟨𝑍,𝑉3⟩ and 

⟨
𝑍,𝑅3,1

⟩
that use the barycentric coordinates of 𝑉2, 𝑅2,3, 

𝑉3, 𝑅3,1 and 𝑉1 w.r.t. 𝑡1, 𝑡2, 𝑡3, 𝑡4 and 𝑡5, respectively.

Definition 2. Let 1, 2 and 3 be the unique solutions given by Theo-
rem 1 associated with the interpolation data 𝑓𝑎,𝑏

𝑖
= 0, 𝑖 = 1, 2, 3, 𝑎, 𝑏 ≥ 0, 

𝑎 + 𝑏 ≤ 2, and

𝑔1,2 =
24𝜆1,2𝜆2,1‖𝑍 −𝑅1,2‖2 , 𝑔2,3 = 𝑔3,1 = 0,

𝑔2,3 =
24𝜆2,3𝜆3,2‖𝑍 −𝑅 ‖2 , 𝑔1,2 = 𝑔3,1 = 0,
2,3
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Fig. 6. Bernstein-Bézier coefficients of blending function 1.
𝑔3,1 =
24𝜆3,1𝜆1,3‖𝑍 −𝑅3,1‖2 , 𝑔1,2 = 𝑔2,3 = 0,

respectively. We call 𝓁 , 𝓁 = 1, 2, 3, the blending functions of the first 
kind relative to 𝑉𝓁 .

The 𝑓 -values yielding the blending functions above are all equal to 
zero. New blending functions results when all 𝑔-values are zero.

Definition 3. Let 1 be the unique solution given by Theorem 1 asso-
ciated with the values 𝑔1,2 = 𝑔2,3 = 𝑔3,1 = 0, 𝑓𝑎,𝑏

2 = 𝑓𝑎,𝑏

3 = 0 for 𝑎, 𝑏 ≥ 0 and 
𝑎 + 𝑏 ≤ 2, 𝑓 0,0

1 = 0, and

𝑓 1,0
1 = 4

𝐹1

(
𝑦1 − 𝑦𝑧

)
,

𝑓 0,1
1 = − 4

𝐹1

(
𝑥1 − 𝑥𝑧

)
,

𝑓 2,0
1 = 12

𝐹 2
1

(
𝑦1 − 𝑦𝑧

)(
𝜆1,2𝑦1 +

(
1 + 𝜆2,1

)
𝑦𝑧 − 2𝑦1,2

)
,

𝑓 1,1
1 = 12

𝐹 2
1

(
−𝑥2

(
𝜆1,2

(
𝑦𝑧 − 𝑦1

)
− 2𝑦𝑧 + 𝑦1 + 𝑦1.2

)
+𝑥1

(
−𝜆1,2𝑦1 − 𝜆2,1𝑦𝑧 + 𝑦𝑟

)
+ 𝑥𝑟

(
𝑦1 − 𝑦𝑧

))
,

𝑓 0,2
1 = 12

𝐹 2
1

(
𝑥1 − 𝑥𝑧

)(
𝜆1,2𝑥1 +

(
1 + 𝜆2,1

)
𝑥𝑧 − 2𝑥1,2

)
,

with

𝐹1 ∶= 𝑥𝑧
(
𝑦1,2 − 𝑦1

)
+ 𝑥1

(
𝑦𝑧 − 𝑦𝑟

)
+ 𝑥1,2

(
𝑦1 − 𝑦𝑧

)
.

We call 1 the blending function of the second kind relative to 𝑉1.

For vertices 𝑉2 and 𝑉3, the blending functions of the second kind 2
and 3 are defined respectively as solutions of the Hermite interpola-
tion problem in Theorem 1 with the following datasets:

1. 𝑔1,2 = 𝑔2,3 = 𝑔3,1 = 0, 𝑓𝑎,𝑏
1 = 𝑓𝑎,𝑏

3 = 0 for 𝑎, 𝑏 ≥ 0 and 𝑎 + 𝑏 ≤ 2, 𝑓 0,0
2 = 0, 

and

𝑓 1,0
2 = 4

𝐹2

(
𝑦2 − 𝑦𝑧

)
,

𝑓 0,1
2 = − 4 (

𝑥2 − 𝑥𝑧
)
,

𝐹2

34
𝑓 2,0
2 = 12

𝐹 2
2

(
𝑦2 − 𝑦𝑧

)(
𝜆1,2𝑦2 +

(
1 + 𝜆2,1

)
𝑦𝑧 − 2𝑦2,3

)
,

𝑓 1,1
2 = 12

𝐹 2
2

(
−𝑥𝑧

(
𝜆1,2

(
𝑦𝑧 − 𝑦2

)
− 2𝑦𝑧 + 𝑦2 + 𝑦2,3

)
+𝑥2

(
−𝜆1,2𝑦2 − 𝜆2,1𝑦𝑧 + 𝑦2,3

)
+ 𝑥2,3

(
𝑦2 − 𝑦𝑧

))
,

𝑓 0,2
2 = 12

𝐹 2
2

(
𝑥2 − 𝑥𝑧

)(
𝜆1,2𝑥2 +

(
1 + 𝜆2,1

)
𝑥𝑧 − 2𝑥2,3

)
,

with 𝐹2 ∶= 𝑥𝑧
(
𝑦2,3 − 𝑦2

)
+ 𝑥2

(
𝑦𝑧 − 𝑦2,3

)
+ 𝑥2,3

(
𝑦2 − 𝑦𝑧

)
.

2. 𝑔1,2 = 𝑔2,3 = 𝑔3,1 = 0, 𝑓𝑎,𝑏

1 = 𝑓𝑎,𝑏

2 = 0 for 𝑎, 𝑏 ≥ 0 and 𝑎 + 𝑏 ≤ 2, 𝑓 0,0
3 = 0, 

and

𝑓 1,0
3 = 4

𝐹3

(
𝑦3 − 𝑦𝑧

)
,

𝑓 0,1
3 = − 4

𝐹3

(
𝑥3 − 𝑥𝑧

)
,

𝑓 2,0
3 = 12

𝐹 2
3

(
𝑦3 − 𝑦𝑧

)(
𝜆1,2𝑦3 +

(
1 + 𝜆2,1

)
𝑦𝑧 − 2𝑦3,1

)
,

𝑓 1,1
3 = 12

𝐹 2
3

(
−𝑥𝑧

(
𝜆1,2

(
𝑦𝑧 − 𝑦3

)
− 2𝑦𝑧 + 𝑦3 + 𝑦3,1

)
+𝑥3

(
−𝜆1,2𝑦3 − 𝜆2,1𝑦𝑧 + 𝑦3,1

)
+ 𝑥3,1

(
𝑦3 − 𝑦𝑧

))
,

𝑓 0,2
3 = 12

𝐹 2
3

(
𝑥3 − 𝑥𝑧

)(
𝜆1,2𝑥3 +

(
1 + 𝜆2,1

)
𝑥𝑧 − 2𝑥3,1

)
,

with 𝐹2 ∶= 𝑥𝑧
(
𝑦3,1 − 𝑦3

)
+ 𝑥3

(
𝑦𝑧 − 𝑦3.1

)
+ 𝑥3,1

(
𝑦3 − 𝑦𝑧

)
.

On each micro-triangle 𝑡𝓁 , 𝓁 = 1, … , 6, the splines 1 and 1, are 
quartic polynomials that can be represented according to (1). The cor-
responding BB-coefficients are schematically represented in Figs. 6 and 
7, respectively. They are given by

𝑑𝑒1 = 𝜆2,1, 𝑑
𝑒
2 = 𝜆1,2, 𝑑

𝑒
3 = 𝑧2, 𝑑

𝑒
4 = 𝜆1,2𝑧2 + 𝜆2,1𝑧1, 𝑑

𝑒
5 = 𝑧1, 𝑑

𝑒
6 = 𝜆1,3𝑧2,

𝑑𝑒7 = 𝑧1𝜆2,3, 𝑑
𝑒
8 = 2𝑧1𝑧2,

and

𝑑𝑣1 = 1, 𝑑𝑣2 = 𝜆1,2, 𝑑
𝑣
3 = 𝜆21,2, 𝑑

𝑣
4 = 𝜆31,2, 𝑑

𝑣
5 = 𝜏2,3, 𝑑

𝑣
6 = 𝜏2,3 𝜆1,3,

𝑑𝑣7 = 𝜏2,3 𝜆
2
1,3, 𝑑

𝑣
8 = 𝜏2,3 𝜆

3
1,3.

Fig. 8 shows the typical plots of blending functions.
𝑆1,2,3
4 (𝑇 ) is a linear space with dimension equal to 21 and its sub-

space ℙ4 has dimension 15, so we can think of extending a basis for ℙ4
to one for 𝑆1,2,3 (𝑇 ).
4
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0

0
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0

0
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Fig. 7. Bernstein-Bézier coefficients of blending function 1.

Fig. 8. (Top) Blending functions 𝑖 and (bottom) 𝑖.
Proposition 4. It holds that

𝑆1,2,3
4 (𝑇 ) = ℙ4 ⊕ span

{
1,2,3,1,2,3

}
.

Proof. As all functions 𝓁 and 𝓁 are in 𝑆1,2,3
4 (𝑇 ), it only remains to 

show that no non-trivial linear combination of those functions is in ℙ4. 
Assume that there exist non-zero coefficients 𝑑𝑖 and 𝑐𝑖 such that

𝑃 ∶= 𝑑11 + 𝑑22 + 𝑑33 + 𝑐1 1 + 𝑐2 2 + 𝑐3 3 ∈ ℙ4.

Then, in particular, 𝑃 is of 𝐶4 continuity across 
⟨
𝑍,𝑅1,2

⟩
, 
⟨
𝑍,𝑅2,3

⟩
and 

⟨
𝑍,𝑅3,1

⟩
, so that

0 =
𝑑1𝜆

3
1,2

𝜆42,1

+
𝑑2𝑧3𝜆1,2

𝑧1𝜆2,1𝜆3,2
,

0 =
𝜆2,3

(
𝑑3𝑧1𝜆

3
3,2 + 𝑑2𝑧2𝜆1,3𝜆

2
2,3

)
𝑧2𝜆1,3𝜆

4
3,2

,

0 = −
𝑑1𝑧2𝜆

3
1,3 + 𝑑3𝑧3𝜆2,1𝜆

2
3,1

𝑧3𝜆2,1𝜆
3
3,1

.

The determinant of this system of linear equations is equal to
35
(
1 − 𝜆2,1

)(
1 − 𝜆3,2

)
𝜆42,1𝜆

3
3,1𝜆

4
3,2

(
𝑎 𝜆23,2 + 𝑏 𝜆3,2 + 𝑐

)
,

where

𝑎 ∶= −2𝜆23,1𝜆
2
2,1 + 2𝜆3,1𝜆22,1 − 𝜆22,1 + 2𝜆23,1𝜆2,1 − 𝜆23,1,

𝑏 ∶= 2𝜆22,1𝜆
2
3,1 − 4𝜆2,1𝜆23,1 + 2𝜆23,1,

𝑐 ∶ −𝜆22,1𝜆
2
3,1 + 2𝜆2,1𝜆23,1 − 𝜆23,1.

The discriminant of equation 𝑎 𝜆23,2 + 𝑏 𝜆3,2 + 𝑐 = 0 is given by

Δ=−4
(
1 − 𝜆2,1

) 2𝜆22,1
(
1 − 𝜆3,1

) 2𝜆23,1,

so that it is negative. Therefore, the unique solution is 𝑑1 = 𝑑2 = 𝑑3 = 0.
Taking into account the latter, the polynomial function 𝑃 can be 

rewritten as

𝑃 = 𝑐1 1 + 𝑐2 2 + 𝑐3 3.

The 𝐶4 smoothness of 𝓁 across ⟨𝑉1,𝑍⟩, ⟨𝑉2,𝑍⟩ and ⟨𝑉3,𝑍⟩ yields

0 =
2𝜆33,1

(
𝑧3
(
𝜆3,1

(
𝑐2𝑧2+𝑐3

(
−𝑧2+𝑧3+1

))
−2𝑐3𝑧3

)
+𝑐1𝑧2

(
4𝑧3−

(
−3𝑧2+𝑧3+3

)
𝜆3,1

))
𝑧43

,

0 = 1
𝑧4

(
−2𝜆31,2

(
−𝑐1𝑧1

((
𝑧2 + 2𝑧3 − 2

)
𝜆2,1 + 𝑧2

)

1
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Fig. 9. BB-coefficients involved in the 𝐶1 and 𝐶2 continuity conditions between 
the restrictions of the spline to the micro-triangles 𝑡1 and 𝑡6 .

+𝑧3
(
𝑐2
((
𝑧2 + 4𝑧3 − 4

)
𝜆2,1 + 3𝑧2

)
− 𝑐3𝑧1𝜆1,2

)))
,

0 = 1
𝑧42

(
−2𝜆32,3

(
𝑐1𝑧1𝑧2𝜆2,3 + 𝑐3𝑧1

(
−3𝑧3𝜆2,3 + 4𝑧2𝜆3,2

)
+𝑐2𝑧2

(
𝑧3 −

(
2𝑧2 + 𝑧3

)
𝜆3,2

)))
.

This linear system has the following determinant

32
(
𝜆2,1 − 1

) 3𝜆33,1
(
𝜆3,2 − 1

) 3

𝑧32𝑧
3
3
(
𝑧2 + 𝑧3 − 1

)
3

(
�̄�+ �̄�𝜆2,1

)
,

where,

�̄� ∶= 𝑧2
(
−2𝜆3,1 + 𝑧3

(
−𝜆3,1

)
+ 2𝑧2𝜆3,1 + 3𝑧3

)(
2𝑧3𝜆3,2 + 3𝑧2𝜆3,2 − 2𝑧3

)
,

�̄� ∶= −2𝑧3𝑧22𝜆3,1 − 5𝑧23𝑧2𝜆3,1 + 8𝑧3𝑧2𝜆3,1

− 3
(
𝑧3 − 1

)
𝑧3

(
𝜆3,2 − 1

)((
𝑧3 + 2

)
𝜆3,1 − 3𝑧3

)
− 3𝑧23𝑧2 + 3𝑧32𝜆3,1𝜆3,2 + 5𝑧3𝑧22𝜆3,2 + 3

(
3𝑧3 − 4

)
𝑧22𝜆3,1𝜆3,2

+ 𝑧3
(
17𝑧3 − 14

)
𝑧2𝜆3,2

− 12𝑧3𝑧2𝜆3,1𝜆3,2 + 9𝑧2𝜆3,1𝜆3,2.

The determinant is equal to zero if and only if 𝜆2,1 = − �̄�

�̄�
. Since 𝜆2,1

is in (0, 1), the value of �̄�

�̄�
must be in (−1, 0) for all possible values 

of parameters 𝑧2, 𝑧3, 𝜆3,2 and 𝜆3,1, which is not true (for instance, for 
𝑧2 = 0.802, 𝑧3 = 0.493, 𝜆3,2 = 0.293 and 𝜆3,1 = 0.45 it holds �̄�

�̄�
= 1.07038 ∉

(−1, 0)). Then, it follows that 𝑐1 = 𝑐2 = 𝑐3 = 0. The proof is complete. □

In general, the functions in 𝑆1,2,3
4 (𝑇 ) are not in 𝐶2 (𝑇 ) [21]. There-

fore, it is reasonable to study under which conditions on the Powell-
Sabin refinement of 𝑇 the splines in 𝑆1,2,3

4 (𝑇 ) are 𝐶2 continuous.
In order to achieve completely 𝐶2 quartic Powell-Sabin splines, the 

blending functions need to be 𝐶2 continuous across the micro-edges ⟨𝑍,𝑉1⟩, ⟨𝑍,𝑉2⟩ and ⟨𝑍,𝑉3⟩. We start by analyzing under what condi-
tions the 𝐶2 continuity of blending functions 𝑖, 𝑖 = 1, 2, 3, is achieved. 
Then we will extract the relations between the first kind blending func-
tions under the achieved configuration so that the spline becomes 𝐶2

continuous.
In Fig. 9, a schematic representation of BB-coefficients involved in 

the 𝐶2 smoothness across the edge ⟨𝑍,𝑉1⟩ is done.

Proposition 5. Blending functions of the second kind are 𝐶2 continuous on 
𝑇 ⟨𝑉1, 𝑉2, 𝑉3⟩ if and only if

𝜆2,1 =
𝑧2

1 − 𝑧3
, 𝜆3,1 =

𝑧3
1 − 𝑧2

, 𝜆3,2 =
𝑧3

1 − 𝑧1
.

Proof. Consider 1 and the structure shown in Fig. 9. It is a 𝐶2 contin-
uous function across ⟨𝑉1 ,𝑍⟩ if and only if

𝑠6 = 𝜏2 𝑠1 + 2 𝜏2,3 𝜏1,3 𝑠1 .
1,2 2,3 2,1 3,0

36
Note that 𝑠61,2 = 𝜏2,3𝜆1,3 𝑠
1
3,0 and 𝑠12,1 = 𝜆1,2 𝑠

1
3,0. That gives

𝜏2,3 =
𝜆1,3 − 2𝜏1,3

𝜆1,2
, (7)

Analogously, 2 and 3 are 𝐶2 continuous functions across ⟨𝑉2, 𝑍⟩ and ⟨𝑉3, 𝑍⟩, respectively, if and only if

𝜏2,2 =
𝜆3,2 − 2𝜏1,2

𝜆3,1
and 𝜏2,3 =

𝜆1,3 − 2𝜏1,3
𝜆1,2

. (8)

Equations (7) and (8) can be reformulated as

𝜆3,1𝑧2 + 𝜆2,1
(
𝜆3,1

(
𝑧2 + 𝑧3 − 2

)
+ 𝑧3

)
𝜆1,2𝜆2,1𝑧3

= 0,

𝜆3,2
(
𝜆2,1 +

(
𝜆2,1 − 2

)
𝑧2
)
−
(
𝜆2,1 + 𝜆3,2 − 1

)
𝑧3

𝜆2,3𝜆3,2𝑧1
= 0, (9)

𝜆3,1𝑧2 + 𝜆2,1
(
𝜆3,1

(
𝑧2 + 𝑧3 − 2

)
+ 𝑧3

)
𝜆1,2𝜆2,1𝑧3

= 0.

The unique solution of (9) provides the values in the claim. □

Conditions in Proposition 5 can be geometrically interpreted as fol-
lows.

Proposition 6. Functions 𝑖, 𝑖 = 1, 2, 3, are 𝐶2 continuous if and only if 
the points in each of subsets 

{
𝑉1,𝑍,𝑅2,3

}
, 
{
𝑉2,𝑍,𝑅3,1

}
and 

{
𝑉3,𝑍,𝑅1,2

}
are collinear.

Proof. First, let us prove that the conditions are necessary. Without 
loss of generality, let us consider the third of the subsets. We have to 
prove that 𝑉3, 𝑍 and 𝑅1,2 are collinear. By Proposition 5, the barycentric 
coordinates of 𝑅1,2 w.r.t. 𝑇 are

(
𝜆1,2, 𝜆2,1,0

)
=
(
1 − 𝜆2,1, 𝜆2,1

)
=
(
1 − 𝑧2 − 𝑧3

1 − 𝑧3
,

𝑧2
1 − 𝑧3

,0
)

=
(

𝑧1
1 − 𝑧3

,
𝑧2

1 − 𝑧3
,0
)
.

Then,

𝑅1,2 =
𝑧1

1 − 𝑧3
𝑉1 +

𝑧2
1 − 𝑧3

𝑉2.

Moreover, 𝑍 = 𝑧1𝑉1 + 𝑧2𝑉2 + 𝑧3𝑉3. Taking into account the Cartesian 
coordinates of 𝑍 and the vertices, we get

𝑅1,2 −𝑍 =
𝑧3

1 − 𝑧3

(
𝑧1𝑥1 + 𝑧2𝑥2 +

(
𝑧3 − 1

)
𝑥3, 𝑧1𝑦1 + 𝑧2𝑦2 +

(
𝑧3 − 1

)
𝑦3
)
.

Therefore, the slope of the straight line determined by 𝑍 and 𝑅1,2 is 
equal to

𝑚1,2 ∶=
𝑧1𝑦1 + 𝑧2𝑦2 +

(
𝑧3 − 1

)
𝑦3

𝑧1𝑥1 + 𝑧2𝑥2 +
(
𝑧3 − 1

)
𝑥3

.

On the other hand, the straight line determined by 𝑍 and 𝑉3 has the 
direction of vector

𝑍 − 𝑉3 = 𝑧1𝑉1 + 𝑧2𝑉2 +
(
𝑧3 − 1

)
𝑉3

=
(
𝑧1𝑥1 + 𝑧2𝑥2 +

(
𝑧3 − 1

)
𝑥3, 𝑧1𝑦1 + 𝑧2𝑦2 +

(
𝑧3 − 1

)
𝑦3
)
,

so that its slope is also equal to 𝑚1,2. Consequently, both the straight 
lines defined by 

{
𝑍,𝑅1,2

}
and 

{
𝑍,𝑉3

}
have the same slope and pass 

through the 𝑍 point, and 𝑉3, 𝑍 and 𝑅1,2 are collinear.
Conversely, suppose that 𝑉3, 𝑍 and 𝑅1,2 are collinear. As proved 

above, the slope of the straight line determined by 𝑉3 and 𝑍 is equal to 
𝑚1,2, so that its equation is 𝑦 = 𝑚1,2𝑥 + 𝑛1,2, where 𝑛1,2 is computed by 
imposing that the line passes through 𝑉3 to get
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Fig. 10. B-ordinates of a reduced B-spline.
𝑛1,2 =
𝑦3

(
𝑧1𝑥1 + 𝑧2𝑦2

)
− 𝑥3

(
𝑧1𝑦1 + 𝑧2𝑦2

)
𝑧1𝑥1 + 𝑧2𝑥2 +

(
𝑧3 − 1

)
𝑥3

.

Since 𝑅1,2 = 𝜆1,2𝑉1 + 𝜆2,1𝑉2 can be written in Cartesian coordinates as(
𝜆1,2𝑥1 + 𝜆2,1𝑥2, 𝜆1,2𝑦1 + 𝜆2,1𝑦2

)
=
(
𝜆1,2𝑥1 +

(
1 − 𝜆1,2

)
𝑥2, 𝜆1,2𝑦1 +

(
1 − 𝜆1,2

)
𝑦2
)
,

it must be fulfilled that

𝑚1,2
(
𝜆1,2𝑥1 +

(
1 − 𝜆1,2

)
𝑥2
)
+ 𝑛1,2 = 𝜆1,2𝑦1 +

(
1 − 𝜆1,2

)
𝑦2.

A straightforward calculation gives

𝜆1,2 =
𝑧1

1 − 𝑧3
.

The proof is complete. □

Once 𝐶2 continuity of blending functions of the second kind has 
been characterized, we need now to get 𝐶2 continuity for the spline on 
𝑇 . To this end, we should derive the 𝐶2 smoothness relations between 
the three blending functions of the first kind which are defined on a 
split triangle that meets the conditions in Proposition 5.

Theorem 7. Assume that the PS-split 𝑇PS of 𝑇 meets the conditions in 
Proposition 5. Then, the spline 𝑠 = 𝑝4 +

∑3
𝑖=1

(
𝑑𝑖𝑖 + 𝑐𝑖𝑖

)
, 𝑝4 ∈ ℙ4 (𝑇 ), in 

𝑆1,2,3
4 (𝑇 ) is fully 𝐶2 continuous on 𝑇 if and only if

𝑐1𝑧2 = 𝑐3𝑧3, 𝑐2𝑧3 = 𝑐1𝑧1, 𝑐3𝑧1 = 𝑐2𝑧2. (10)

Proof. The 𝐶2-smoothness conditions across the edge ⟨𝑉1, 𝑍⟩ give the 
equality

0 = 𝜏23,3
(
𝑐1𝑧2 + 𝑐3𝑧3

)
+ 2𝜏3,3𝜏2,3𝑐1𝜆2,1.

Substituting 𝜏3,3, 𝜏2,3 and 𝜆2,1 respectively by their values 1
1−𝑧2

, 1−𝑧3
1−𝑧2

, 
and 𝑧2

1−𝑧3
, we get

𝑐1𝑧2 = 𝑐3𝑧3.

The other two conditions are derived similarly. □
37
Fig. 11. Blending function 𝑡.

Under the hypothesis in Proposition 5, the general solution of sys-
tem (10) depends on one parameter 𝛼 ∈ ℝ and can be written as (
𝑐1, 𝑐2, 𝑐3

)
= 𝛼

(
𝑧3, 𝑧1, 𝑧2

)
, so that any 𝐶2 continuous spline 𝑠 ∈ 𝑆1,2,3

4 (𝑇 )
can be expressed as

𝑠 = 𝑝4 +
3∑
𝑖=1

𝑑𝑖𝑖 + 𝛼𝑡,

where 𝑡 ∶= 𝑧31+𝑧12+𝑧23 is a 𝐶2 (𝑇 ) continuous function associated 
to triangle 𝑇 which will be called blending function of the third kind. 
The condition imposed on the Powell-Sabin refinement of 𝑇 results in a 
lower dimension to 𝑆1,2,3

4 (𝑇 ), 19 instead of 21.
The B-ordinates of 𝑡 are given by

𝑑1 = 𝑧3𝜆2,1, 𝑑9 = 𝑧2𝜆3,1,

𝑑2 = 2𝑧3𝜆1,2𝜆2,1, 𝑑10 = 2𝑧3𝑧2,
𝑑3 = 𝑧3𝜆1,2, 𝑑11 = 2𝑧3

(
𝜆1,2𝑧2 + 𝜆2,1𝑧1

)
,

𝑑4 = 𝑧1𝜆3,2, 𝑑12 = 2𝑧1𝑧3,
𝑑5 = 2𝑧1𝜆2,3𝜆3,2, 𝑑13 = 2𝑧1

(
𝜆2,3𝑧3 + 𝜆3,2𝑧2

)
,

𝑑6 = 𝑧1𝜆2,3, 𝑑14 = 2𝑧1𝑧2,
𝑑7 = 𝑧2𝜆1,3, 𝑑15 = 2𝑧2

(
𝜆1,3𝑧3 + 𝜆3,1𝑧1

)
,

𝑑8 = 2𝑧2𝜆1,3𝜆3,1, 𝑑16 = 6𝑧1𝑧2𝑧3.

They are shown in Fig. 10. The typical plot of a function 𝑡 is shown 
in Fig. 11.

We have just proved that every spline 𝑠 ∈ 𝑆1,2,3
4 (𝑇 ) is 𝐶2 continuous 

on a triangle 𝑇 for which its PS-split meets the condition in Proposi-
tion 5. When the refinement of 𝑇 satisfies the conditions of Proposi-
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Fig. 12. Powell-Sabin triangulation satisfying conditions in Proposition 5.

tion 5, the dimension of 𝑆1,2,3
4 (𝑇 ) diminishes from 21 to 1 ̸ 9, since three 

B-splines of the first kind give rise to a single B-spline of the third kind, 
𝑡.

Now, it remains to prove that the spline 𝑠 is also 𝐶2 continuous over 
the whole triangulation Δ if the split point of each macro-element of Δ
satisfies the conditions in Proposition 5 and the edge split points pro-
duced on common sides of two triangles coincide, i.e. if the opposite 
vertices of each pair of triangles sharing an edge are aligned with the 
corresponding triangle split points. Denote by Δ̃PS this kind of triangu-
lation. Fig. 12 shows a triangulation satisfying these requirements.

5. The Powell-Sabin space on the whole triangulation

This section aims to prove that each quartic spline space over Δ̃PS is 
𝐶2 continuous everywhere and 𝐶3 at the edge split points. To this end, 
we will provide a general representation of 𝑆1,2,3

4
(
ΔPS

)
over an arbitrary 

PS-split ΔPS of Δ, and then we will prove that the provided represen-
tation is totally 𝐶2 continuous over Δ̃PS. Moreover, the B-spline-like 
functions to be constructed in this section will enjoy the usual prop-
erties required when dealing with the construction of bases of spline 
function spaces. They will be non-negative, locally supported and form 
a unit partition. Furthermore, any spline represented in these bases have 
a meaningful geometric interpretation, can be locally controlled and 
evaluated in a stable way.

Since the dimension of 𝑆1,2,3
4

(
ΔPS

)
equals 6𝑛𝑣 + 𝑛𝑒, then such a rep-

resentation will be obtained by defining six B-spline-like functions 𝑣
𝑖,𝛼

, |𝛼| = 2 associated with each vertex and another one, 𝑒
𝓁 , for each edge. 

The B-spline-likes 𝑣
𝑖,𝛼

and 𝑒
𝓁 are called B-spline-likes with respect to 

vertices and edges, respectively. The procedure to construct them fol-
lows the technique in [11,14,17,21,26].

5.1. B-spline-like with respect to vertex

We outline the construction of 𝑣
𝑖,𝛼

in the spirit of [21]. For every 
vertex 𝑉𝑖, let 𝑀𝑖 ∶= ∪𝑇∈Δ,𝑉𝑖∈𝑇 𝑇 be the molecule relative to 𝑉𝑖, i.e. the 
union of all triangles in Δ containing 𝑉𝑖. For all vertex 𝑉𝓁 lying on the 
boundary of 𝑀𝑖 and for all 𝑇𝑗 ⊂𝑀𝑖, let

𝑆𝑖,𝓁 ∶= 1
2
(𝑉𝑖 +𝑅𝑖,𝓁) and 𝐿𝑖,𝑗 ∶=

1
2
(𝑉𝑖 +𝑍𝑗 ),

Points 𝑉𝑖, 𝑆𝑖,𝓁 and 𝐿𝑖,𝑗 are said to be PS4-points associated with 𝑉𝑖. 
Let 𝑡𝑖 ∶=

(
𝑄𝑖,1, 𝑄𝑖,2, 𝑄𝑖,3

)
be a triangle containing the PS4-points of 𝑉𝑖. 

It will be called PS4-triangle. Denote by 𝔅2
𝑡𝑖,𝛼

, |𝛼| = 2, the Bernstein 
polynomials of degree 2 with respect to 𝑡𝑖, and define the values

𝛾𝑎,𝑏
𝑖,𝛼

∶= 12
(4 − 𝑎− 𝑏)(3 − 𝑎− 𝑏)

(1
2

)𝑎+𝑏
𝜕𝑎𝑥𝜕

𝑏
𝑦𝔅

2
𝑡𝑖 ,𝛼

(𝑉𝑖)

for all 𝑎 ≥ 0, 𝑏 ≥ 0,0 ≤ 𝑎+ 𝑏 ≤ 2.
(11)

They are used to define the B-spline-like 𝑣 as follows.

𝑖,𝛼

38
Fig. 13. B-ordinates of a B-spline-like with respect to vertex 𝑉1.

Without loss of generality, consider the vertex 𝑉1. 𝑣
1,𝛼 is defined as 

the unique solution of the Hermite interpolation problem (4) with all 𝑓 -
and 𝑔-values equal to zero except 𝑓𝑎,𝑏

1 = 𝛾𝑎,𝑏1,𝛼 , 𝑔1,2 = 𝛽𝛼1,2 and 𝑔3,1 = 𝛽𝛼3,1, 
where the 𝛽-values are chosen as follows.

Let 𝑇 ⟨𝑉1, 𝑉2, 𝑉3⟩ be a triangle included in the molecule 𝑀1. In each 
of the six micro-triangles of 𝑇 , 𝑣

1,𝛼 is a quartic polynomial. The B-
ordinates in its Bernstein-Bézier representation are shown in Fig. 13. 
Many of them are null. The non-zero B-ordinates are determined from 
the given data and the smoothness conditions. Note that

𝛽𝛼1,2 =
12‖𝑍 −𝑅1,2‖2 (

𝑑𝑣11 − 2𝑑𝑣13 + 𝑑𝑣19
)

and

𝛽𝛼3,1 =
12‖𝑍 −𝑅3,1‖2 (

𝑑𝑣15 − 2𝑑𝑣17 + 𝑑𝑣20
)
.

The B-ordinates 𝑑𝑣1 , … , 𝑑𝑣9 are computed from the chosen parameters 
𝛾𝑎,𝑏1,𝛼 , 𝑎 ≥ 0, 𝑏 ≥ 0, 0 ≤ 𝑎 + 𝑏 ≤ 2. The ordinates 𝑑𝑣18, …, 𝑑𝑣25 are computed 
from 2 smoothness at the triangle split point 𝑍. Let 𝑝2 be the quadratic 
polynomial defined on the triangle ⟨𝑊1, 𝑊2, 𝑊3⟩ with vertices 𝑊𝑖 =
1
2

(
𝑉𝑖 +𝑍

)
in such a way that all B-ordinates are equal to zero except 

𝑏2,0,0 = 𝑑𝑣7 . Then, by subdivision, the following relationships result:

𝑑𝑣18 = 𝜆12 𝑑
𝑣
7 , 𝑑𝑣19 = 𝜆212 𝑑

𝑣
7 , 𝑑𝑣20 = 𝜆213 𝑑

𝑣
7 , 𝑑𝑣21 = 𝜆13 𝑑

𝑣
7 ,

𝑑𝑣22 = 𝑧1 𝑑
𝑣
7 , 𝑑𝑣23 = 𝜆12𝑧1 𝑑

𝑣
7 , 𝑑𝑣24 = 𝜆13𝑧1 𝑑

𝑣
7 , 𝑑𝑣25 = 𝑧21 𝑑

𝑣
7 .

The B-ordinates 𝑑𝑣10, … , 𝑑𝑣17 are computed from 3-smothness across ⟨
𝑅1,2, 𝑍

⟩
and 

⟨
𝑅3,1, 𝑍

⟩
. Let us define the univariate cubic polynomials, 

𝑝03 and 𝑝13, on the lines 
⟨ 3𝑉1+𝑅1,2

4 ,
3𝑉2+𝑅1,2

4

⟩
and 

⟨ 2𝑉1+𝑅1,2+𝑍
4 ,

2𝑉2+𝑅1,2+𝑍
4

⟩
, 

respectively, having B-ordinates

𝑏03,0 = 𝑑𝑣2 , 𝑏02,1 =
𝑑𝑣5 − 𝜆1,2𝑑

𝑣
2

𝜆2,1
=∶ 𝑑𝑣5 , 𝑏01,2 = 0, 𝑏00,3 = 0,

and

𝑏13,0 = 𝑑𝑣3 , 𝑏12,1 =
𝑑𝑣6 − 𝜆1,2𝑑

𝑣
3

𝜆2,1
=∶ 𝑑𝑣6 , 𝑏11,2 = 0, 𝑏10,3 = 0.

Then, after subdivision,

𝑑𝑣10 = 𝜆21,2𝑑
𝑣
2 + 2𝜆1,2𝜆2,1𝑑𝑣5 , 𝑑𝑣11 = 𝜆31,2𝑑

𝑣
2 + 2𝜆21,2𝜆2,1𝑑

𝑣
5

and

𝑑𝑣12 = 𝜆21,2𝑑
𝑣
3 + 2𝜆1,2𝜆2,1𝑑𝑣6 , 𝑑𝑣13 = 𝜆31,2𝑑

𝑣
3 + 2𝜆21,2𝜆2,1𝑑

𝑣
6 .

Similarly,

𝑑𝑣 = 𝜆2 𝑑𝑣 + 2𝜆1,3𝜆3,1𝑑𝑣, 𝑑𝑣 = 𝜆3 𝑑𝑣 + 2𝜆2 𝜆3,1𝑑
𝑣,
14 1,3 4 9 15 1,3 4 1,3 9
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𝑉1

𝑍

𝑉2
𝑅1,2

𝑍

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 𝑑𝑒1 𝑑𝑒2
𝑑𝑒3 0

𝑑𝑒4
𝑑𝑒5 𝑑𝑒6

𝑑𝑒7

0 𝑐𝑒1 𝑐𝑒2
𝑐𝑒3 0

𝑐𝑒4 𝑐𝑒5 𝑐𝑒6

𝑐𝑒7

0 0 0 0 0 0 0

Fig. 14. B-ordinates of a B-spline-like 𝑒
1 on the four micro triangles that have

⟨
𝑉1, 𝑅1,2

⟩
or

⟨
𝑉2, 𝑅1,2

⟩
as an edge.
and

𝑑𝑣16 = 𝜆21,3𝑑
𝑣
3 + 2𝜆1,3𝜆3,1𝑑𝑣8 , 𝑑𝑣17 = 𝜆31,3𝑑

𝑣
3 + 2𝜆21,3𝜆3,1𝑑

𝑣
8 ,

where 𝑑𝑣8 ∶=
𝑑𝑣8−𝜆1,3𝑑

𝑣
3

𝜆3,1
and 𝑑𝑣9 ∶=

𝑑𝑣9−𝜆1,3𝑑
𝑣
4

𝜆3,1
.

The restriction of 𝑣
1,𝛼 on 𝑇 can be written in terms of 𝑖, 𝑖 = 1, 2, 3, 

and 𝑡. Then, 𝑣
1,𝛼 is 𝐶2 continuous on 𝑇 , if and only if 𝑇PS meets the 

conditions in Proposition 5. In what follows, we will confirm this result.
The BB-coefficients involved in 𝐶2 continuity conditions between 

the restrictions of 𝑣
1,𝛼 to the micro-triangles 𝑡1 and 𝑡6 are divided into 

three categories. The BB-coefficients lying in the area in light red colour
satisfy the 𝐶2 smoothness because they are computed from the deriva-
tive values up to order two of 𝑣

1,𝛼 . The BB-coefficients lying in the area 
in blue colour also satisfy the 𝐶2 smoothness. By construction, they are 
computed throughout the values of a quadratic polynomial defined on 
the triangle with vertices 𝑊𝑖 in (5). It remains to check the 𝐶2 smooth-
ness conditions between the BB-coefficients lying in the area in green 
colour. Using equation (2), the remaining 𝐶2 condition between the 
BB-coefficients lying in the area in green colour is given by

𝑑𝑣16 = 𝜏22,3𝑑
𝑣
12 + 2𝜏2,3𝜏3,3𝑑𝑣18 + 𝜏23,3𝑑

𝑣
22 + 2𝜏3,3𝜏1,3𝑑𝑣7 + 𝜏21,3𝑑

𝑣
3 + 2𝜏1,3𝜏2,3𝑑𝑣6 .

By substituting the relevant BB-coefficients by their values, it is veri-
fied that the condition is fulfilled. By Theorem 1, it follows that 𝑣

1,𝛼 is 
globally 𝐶2 continuous over Δ̃PS.

5.2. B-spline-like with respect to edge

Let 𝑇 ⟨𝑉1, 𝑉2, 𝑉3⟩ and 𝑇 ⟨𝑉1, 𝑉2, 𝑉4⟩ be two triangles sharing the com-
mon edge 𝔢1 = ⟨𝑉1, 𝑉2⟩. Let 𝑒

1 be the B-spline-like with respect to the 
edge 𝔢1. It is defined as the unique solution of the Hermite interpolation 
problem (4) with all 𝑓 - and 𝑔-values equal to zero except 𝑔1,2 = 𝛽1,2. For 
the sake of simplicity, we chose 𝜔𝑚,𝑛,𝑞 =

𝑍−𝑅1,2‖𝑍−𝑅1,2‖ (see Theorem 1). The 
𝛽-values can be chosen as in Definition 2. For instance we consider an 
arbitrary value for 𝛽1,2.

Let 𝑍 be the inner spilt point of 𝑇 . The BB-coefficients of 𝑒
1 on 𝑇

are computed in a similar way to those of 1 . Now we deal only with 
the BB-coefficients associated with the domain points located in the 
four micro-triangles that have 

⟨
𝑉1, 𝑅1,2

⟩
or 

⟨
𝑉2, 𝑅1,2

⟩
as an edge. They 

are schematically presented in Fig. 14. In order to prove that 𝑒
1 is 𝐶2

continuous across ⟨𝑉1, 𝑉2⟩, we need to provide the value of 𝑑𝑒1, 𝑑
𝑒
2 , 𝑑𝑒3 , 

𝑐𝑒1, 𝑐
𝑒
2 and 𝑐𝑒3. The first ones are

𝑑𝑒2 =
𝛽1,2

12
‖𝑍−𝑅1,2‖2, 𝑑𝑒1 =

𝛽1,2

24𝜆
‖𝑍−𝑅1,2‖2, 𝑑𝑒3 =

𝛽1,2

24𝜆
‖𝑍−𝑅1,2‖2.
1,2 2,1

39
If 𝑅1,2 = 𝜆 𝑍 + (1 − 𝜆)𝑍, then, for the remaining ones we have

𝑐𝑒2 =
(

𝜆

1 − 𝜆

)2 𝛽1,2

12
‖𝑍 −𝑅1,2‖2, 𝑐𝑒1 =

(
𝜆

1 − 𝜆

)2 𝛽1,2

24𝜆1,2
‖𝑍 −𝑅1,2‖2,

𝑐𝑒3 =
(

𝜆

1 − 𝜆

)2 𝛽1,2

24𝜆2,1
‖𝑍 −𝑅1,2‖2.

The 𝐶2 smoothness conditions across ⟨𝑉1, 𝑉2⟩ are

𝑐𝑒1 =
(

𝜆

1 − 𝜆

)2
𝑑𝑒1 , 𝑐𝑒2 =

(
𝜆

1 − 𝜆

)2
𝑑𝑒2 and 𝑐𝑒3 =

(
𝜆

1 − 𝜆

)2
𝑑𝑒3 .

The conditions are all fulfilled, which confirms that 𝑒
1 is 𝐶2 continuous 

across ⟨𝑉1, 𝑉2⟩.
The value of 𝛽1,2 must be fixed in order to ensure that the B-splines 

form a partition of unity. To this end, it suffices to chose 𝛽1,2 =
24𝜆1,2𝜆2,1‖𝑍−𝑅1,2‖2 .

The blending function of the third kind 𝑡 associated with 𝑇 is 
written as a convex combination of B-spline-like functions with re-
spect to the edges of 𝑇 with a suitable choice of coefficients which 
guarantees that it is 𝐶2 continuous on 𝑇 . Indeed, if we chose 𝑔2,3 =
𝛽2,3 =

24𝜆2,3𝜆3,2‖𝑍−𝑅2,3‖2 and 𝑔3,1 = 𝛽3,1 =
24𝜆3,1𝜆1,3‖𝑍−𝑅3,1‖2 for the other two edges, then 

𝑡 = 𝑧3
𝑒
1 + 𝑧1

𝑒
2 + 𝑧2

𝑒
3, and the 𝐶2 smoothness is ensured.

Hence, it is stated that the B-spline-like functions with respect to 
the vertices and the blending functions of the third kind are all 𝐶2

everywhere. Furthermore, each quartic spline defined on Δ̃PS is 𝐶2 con-
tinuous everywhere and 𝐶3 at the edge split points, so that it would be 
appropriate to write 𝑆2,3

4
(
Δ̃PS

)
for the spline space. Its dimension is re-

duced to 6𝑛𝑣 + 𝑛𝑡 because of the conditions imposed on Δ̃PS, which on 
a single triangle give way to a blending function on the third kind 𝑡

instead of three B-spline-likes with respect to edges.

6. Conclusions and discussions

We have proved that under certain geometrical conditions regarding 
the triangle and edge split points associated with an arbitrary triangu-
lation of a polygonal domain Ω, the space of almost 𝐶2 (Ω) continuous 
Powell-Sabin splines introduced in [21] becomes a subspace of a 𝐶2 (Ω). 
This has been done by constructing for an arbitrary triangle 𝑇 endowed 
with a Powell-Sabin refinement a specific basis and deriving the con-
ditions that must be verified for the global regularity to be 𝐶2 instead 
of 𝐶1. For a triangulation whose triangles satisfy those conditions, the 
dimension of the corresponding space of 𝐶2 quartic splines is reduced.

Except in exceptional cases (including type-1 and criss-cross trian-
gulations), the sub-triangulation obtained by connecting the opposite 
vertices of each pair of triangles sharing an edge of the triangulation 
does not satisfy the conditions in Proposition 5, which characterizes 
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Fig. 15. Example of a mixed triangulation arising when the procedure to get a 
Powell-Sabin sub-triangulation allowing 𝐶2-quartic splines is applied.

𝐶2 continuity. In some cases it will be possible, resulting in a Powell-
Sabin sub-triangulation such that for each triangle the interior edges 
intersect at a point, as shown in Fig. 12. In other cases, Morgan-Scott 
sub-triangulations will be obtained, which easily give rise to modi-
fied Morgan-Scott sub-triangulations [22]. In other cases, mixed sub-
triangulations will appear, as Fig. 15 shows.

It has been proved that, when the triangulation fulfils the condi-
tions of Proposition 5, it is possible to construct 𝐶2 quartic splines. If 
a Morgan-Scott sub-triangulation is obtained, then it is also possible to 
construct such splines on the corresponding modified Morgan-Scott sub-
triangulation (see [22]). Otherwise, a mixed refinement will result. The 
work in progress deals with the geometrical construction of a B-spline-
like basis for the space of quartic splines that can be defined over this 
sub-triangulation in order to get a normalized B-spline-like representa-
tion, whose coefficients will be expressed in terms of polar forms.
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