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A B S T R A C T   

Conversational interfaces have recently become a ubiquitous element in both the personal sphere by easing 
access to services, and industrial environments by the automation of services, improved customer support and its 
corresponding cost savings. However, designing the dialog model used by these interfaces to decide system 
responses is still a hard-to-accomplish task for complex conversational interactions. This paper describes a data- 
driven dialog management technique, which provides flexibility to develop, deploy and maintain this module. 
Various configurations for classification algorithms are assessed with two dialog corpora of different application 
domains, size, dimensionalities and set of possible system responses. The results of the evaluation show satis
factory accuracy and coherence rates in both tasks. As a proof of concept, our proposal has also been integrated 
with DialogFlow, a platform provided by Google to design conversational user interfaces. Our proposal has been 
assessed with a real use case, proving that it can be deployed in conjunction with commercial platforms, 
obtaining satisfactory results for the objective and subjective assessments completed.   

1. Introduction 

Dialog systems are computer programs that support conversational 
interactions with their users through speech, text, or multimodal inter
action [1–3]. These systems have recently become mainstream and a key 
research subject with the generalized use of mobile personal assistants 
(e.g., Apple’s Siri, Google Assistant, Microsoft’s Cortana), advances in 
automatic speech recognition and natural language understanding with 
the application of deep learning techniques, the greater computing 
processing power to process these algorithms, and the availability of 
greater amounts of data to train them [4]. Current uses of conversational 
systems include the interaction with smart speakers (e.g., Amazon Echo 
and Google Nest), social robots (e.g., Pepper and Furhat), and conver
sational systems for e-government tasks increasingly used due to the 
conditions of lockdown and teleworking originated by the COVID-19 
pandemic (e.g., the chatbot system developed by the WHO). Such sys
tems are making this range of services more efficient without the need 
for human resources, hence generating a potential billion-dollar in
dustry around them [3]. 

Task-oriented dialog systems (also known as slot-filling systems) 
engage an interaction with the users by means of asking them a series of 

questions to complete a specific task instead of engaging them in general 
conversational interaction (in comparison to chatbots). In these tasks, 
the main objective of the conversational system is to fulfill a data 
structure with a set of slots required to complete the transactions. Users 
can interact with flexibility in order to formulate their queries to the 
system and provide additional information to the one strictly required 
by the system prompts. 

Although expert systems are still used to develop commercial dialog 
systems [5,6], statistical data-driven approaches are currently the pri
mary trend to develop academic and industrial conversational systems 
[1]. These approaches can tackle deviations from the users’ expected 
inputs, are easier to adapt to other domains, and evolve learning from 
the observed conversations. 

Spoken conversational interfaces are traditionally made up of four 
different components: an automatic speech recognizer (ASR), which 
records the sequence of words uttered by the speaker; a natural language 
understanding module (NLU), which obtains the semantics from the 
recognized sentence by performing morphosyntactic analysis; a dialog 
manager (DM), which decides the next response of the system, inter
preting the semantic representation of the input in the context of the 
dialog; and a text-to-speech synthesizer (TTS), which transforms the 
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response in natural language into synthesized speech. Statistical tech
niques are providing very positive results in most of these areas, such as 
speech recognition and spoken language understanding [7,8]. However, 
its potential for dialog management has started to be studied more 
recently [2,9,10]. 

Designing good dialog models is a key task to develop conversational 
interfaces given that this model controls the main guidelines of the 
conversation flow related to the design of effective and natural system 
prompts; detect, prevent and recover from errors; offer help and act 
cooperatively; effectively recognize users’ intentions promote engage
ment and retention; consider context information; adapt the interaction 
and make it more personal and pleasant; promote engagement, etc. 

Early models for dialog strategies were implemented using expert 
systems, predefined rules and dialog trees [11]. This methodology 
consists of manually determining the system’s response to each of the 
user inputs. Such approach, which is still broadly used nowadays in most 
commercial platforms, can be appropriate for very simple use cases; for 
instance, systems answering a reduced set of isolated frequently asked 
questions. However, more complex dialog systems usually require 
several user-system interactions for a successful interaction, thus mak
ing the use of this methodology unfeasible for maintainability and 
scalability [1]. 

As a solution to this problem, new methodologies for statistical 
dialog modeling have been proposed during the last years [12]. Recent 
literature includes proposals based on partially observable Markov de
cision processes [13] and reinforcement deep learning [14], which 
generate user-system interaction simulations to learn the appropriate 
response for every input. Supervised-learning-based solutions have also 
been proposed, including the use of neural networks [15], stochastic 
finite-state transducers [16], Bayesian networks [17], and other deep 
learning techniques [18]. 

In this paper, we describe a proposal for statistical dialog manage
ment based on a classification process that decides the next system ac
tion by considering a data structure that encodes the dialog history. A 
comparative assessment of different classification algorithms has been 
completed using two dialog corpora of different application domains, 
size, languages and complexity. The evaluation results show the effects 
related to the use of different classifiers with regard the representation of 
the input features and the configuration of the network’s hyper- 
parameters. 

There currently exist several frameworks that ease the task of 
building industrial conversational agents, being Google’s DialogFlow1 

one of the most popular ones. Most of these toolkits allow specifying 
tree-based implementations for the dialog manager, in which the system 
will respond to the specified user utterances [4]. However, some tool
kits, like DialogFlow, also allow developers to integrate on the cloud 
their own statistical model of the dialog manager for the agent imple
mentation. This brings a huge potential to develop and maintain such 
module for commercial and industrial set-ups. 

To achieve this objective, in this paper we also show how our pro
posal to develop statistical-based dialog managers can be easily inte
grated with toolkits like DialogFlow. As a proof of concept, we have 
implemented a practical conversational system for one of the proposed 
tasks, in which we use the functionalities provided by DialogFlow for 
natural language understanding and integrate a statistical dialog man
ager developed using our proposal with the corresponding corpus. 

The remainder of the paper is as follows. Section 2 describes related 
work on statistical data-driven dialog management as well as the main 
available frameworks for the development of dialog systems. Section 3 
presents our proposal to develop statistical dialog managers for 
conversational systems, which has been implemented and evaluated 
with two different tasks. Section 4 describes the experimental set-up and 
corpora used and presents a discussion of the results. We have also 

integrated our proposal with a commercial toolkit, which is described in 
Section 5 to provide a proof-of-concept of the practical deployment in 
one of the application domains studied. Finally, Section 6 presents the 
conclusions and future research lines. 

2. State of the art 

The main task of the dialog manager of a conversational system is to 
decide the next system action considering the current user’s input and 
the state of the dialog [19,1]. This implies detecting and correcting 
possible errors and misrecognitions made by the ASR and NLU modules, 
deciding when to ask for a confirmation (using the confidence scores 
provided by these modules), consider additional information provided 
by the user not strictly required by the system, decide when to consult 
the data repositories of the system, etc. Considering this list of tasks and 
the knowledge sources that must be considered to deal with them (e.g., 
user utterances, data repositories, confidence scores, context informa
tion, etc.), the DM can be considered the central component of a spoken 
dialog system [20,21]. 

As described in the previous section, the use of expert systems to 
develop dialog systems are costly to design and maintain, cannot be 
easily extended or adapted to other application domains, and are not 
robust to unexpected inputs [22,23]. These models are also static unless 
manually updated (i.e., cannot be automatically adapted using conver
sational data) and cannot be guaranteed to be optimal [24]. In addition, 
manually designing all the rules for the dialog manager is very difficult 
(sometimes an impossible task) for practical domains, given the uncer
tainty of the inputs provided to the DM by the ASR and NLU modules. 

2.1. Statistical data-driven dialog management 

Statistical data-driven dialog models have been proposed to address 
these critical problems. These models are used to decide and optimize 
the subsequent system response according to a probabilistic process that 
considers the uncertainty of the outputs generated by the ASR and NLU 
modules (i.e., the system’s belief about the current state of the dialog 
considering multiple hypotheses). 

Different methodologies can be differentiated according to the data 
and algorithms used to learn the statistical dialog model. Corpus-based 
or example-based methods use data from previous dialogs in the same 
domain (provided by human-human conversations, acquired employing 
the Wizard of Oz (WoZ) technique, using conversational systems pre
viously developed for similar application domains or through user 
simulation methods) to learn the parameters of the statistical dialog 
model [25,15]. This methodology has been benefited from the avail
ability of labeled large datasets (e.g., MultiWoZ [26]), the definition of 
challenges in which datasets are available for research groups and 
companies to define statistical proposals for a set of evaluation tasks (e. 
g., DSTC), and the use of few-shot and zero-shot learning techniques 
when there is not sufficient data to train the models. 

Reinforcement learning methods usually employ simulated users 
(given the number of dialogs that are required) to iteratively optimize 
the dialog strategy followed by the system (also known as dialog policy) 
by means of maximizing the expected rewards associated with selecting 
actions in Markov decision processes (MDPs) [27]. These methods have 
been mainly applied to develop dialog managers for slot-filling tasks 
[28,29]. 

MDPs do not allow to consider the uncertainty associated to the 
different processes that must be completed by the conversational system 
(ASR, NLU, DM, and response generation). Partially Observable Markov 
Decision Processes (POMDP) allow considering this uncertainty using a 
probability distribution associated to the set of states in which the sys
tem could be [30,31]. However, the size of the space of states is usually 
very large for practical domains, making exact belief state updating 
intractable. Different solutions have been proposed to address this 
problem: create summary spaces or partitioning the state space into 1 https://dialogflow.com/ (Last access: August 2021). 
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partition beliefs to scale the problem [32,13], using a framework for 
Bayesian updates of dialog states [17], exploit similarities among the 
different spaces [33], etc. However, there are still several problems that 
must be addressed to apply this methodology for developing practical 
commercial systems: optimization requires a large number of dialogs to 
train the dialog policy, it is not easy to define the aspects to take into 
account to define the reward function, practical deployment is chal
lenging, etc. 

In these techniques, the dialog manager is usually divided into two 
main components. The Dialog Context Model (or Dialog State Tracking) 
determines the state of the dialog at each moment. To do this, this 
component stores information related to the history of the dialog, in
formation to be gathered in the dialog, information about the domain (e. 
g., specific restrictions and regulations), discourse obligations, infor
mation related to the users (e.g., personal information, preferences, 
goals, etc.). The Dialog Control component (or Dialog Policy) decides 
the next system action considering the user’s utterance and the state 
provided by the dialog context model. Dialog State Tracking has been 
explored extensively in the different editions of the Dialog State 
Tracking Challenge (DSTC), where multiple belief tracking approaches 
are compared on a shared task [34–37]. 

Other statistical approaches for dialog management include 
example-based dialog management [38], dialog modeling using hidden 
Markov models [39], stochastic finite state transducers [40,41], and 
Bayesian networks [42,43]. 

Conversational systems have adopted deep learning techniques in 
recent years. Deep neural networks (DNNs) have replaced hidden Mar
kov models (HMMs) in ASR from around 2010, with a dramatic increase 
in accuracy [7]. Convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs) are also widely used in NLU for utterance 
classification [44], slot filling [45], classify intents and extract entities 
[46], frame semantic parsing [47], etc. Natural language generation 
(NLG) systems have also been recently developed using end-to-end 
neural approaches [8], long short-term memory (LSTM) recurrent neu
ral networks [48], gated recurrent units (GRU) and transformers [49], or 
sequence to sequence (Seq2Seq) systems [8]. TTS systems have been 
developed using DNNs, showing promising results [50]. These ap
proaches are also currently used to develop end-to-end neural dialog 
systems, in which the objective is to use DNNs within a Seq2seq archi
tecture to map the user’s input utterance to the system’s prompt also in 
natural language without intermediate processes and representations 
[51,52]. 

With regard to dialog management, deep learning techniques have 
been mainly applied in recent years for dialog state tracking in combi
nation with reinforcement learning [53–56]. The input information 
considered by the neural networks usually includes the last system 
prompt, the last user utterance, and the values of the slots collected in 
the previous turns [57,58]. General dialog models can be also special
ized to more specific domains as proposed in [59,60]. The use of RNNs 
has been proposed to incorporate feedback from the user in the reward 
function and reduce the time required to train the dialog policy [61,55, 
62]. Multi-attention dialog state tracking networks have been also 
recently proposed to encode the dialog history to capture slots semantic 
relationships [63]. 

Hybrid methods have also been proposed to leverage the best of rule- 
based, statistical data-driven and neural dialog approaches, for instance, 
to combine reinforcement learning methods with knowledge from ex
perts [64], use probabilistic rules for the statistical dialog model [65, 
66], or avoid generating repetitive or nonsense responses [67,68]. 

There is also a current research interest to develop end-to-end ar
chitectures for conversational systems, which try to directly map the 
input user’s utterance to an output system response without requiring 
the traditional modular architecture to develop these systems (see Sec
tion 3). This approach is usually based on RNNs, the Sequence-to- 
Sequence (Seq2Seq) architecture, the use of word embeddings, or 
LSTM models [69,70]. These models were initially applied to 

open-domain dialog systems. However, the application of the end-to-end 
approach to task-oriented systems is still very preliminary and there are 
many issues to be addressed (e.g., context modeling, semantic consis
tency, response diversity, etc.) [1]. 

In this paper, we explore the utility of using statistical classification 
algorithms for the development of a complete statistical dialog manager. 
Firstly, we propose an encoding to represent the state of the dialog, and 
we apply it to two dialog corpora of different application domains, size, 
dimensionalities, and set of possible system responses. Secondly, we run 
experiments using both traditional machine learning and deep learning 
algorithms to understand the potential benefits of the latter for this type 
of task. We also analyze the potential of recurrent-like architectures by 
using the system’s output for the previous interaction to predict the 
answer of the following turn. All the architectures in our experiments 
were trained on a single GPU using PyTorch2 and Scikit-learn3 

frameworks. 

2.2. Platforms and frameworks to develop dialog systems 

Several tools have been developed during recent years to develop 
and deploy dialog systems [71]. Advanced toolkits and frameworks 
(such as Google DialogFlow, Google Assistant, Amazon Alexa Skills Kit, 
Microsoft Bot Framework, or RASA) use machine learning algorithms to 
complete the NLU task classifying the user’s utterances as intents and 
extracting entities. Most of these tools also include predefined categories 
of intents and entities (e.g., dates, cities, numbers, etc.) to facilitate 
developers to specify just the additional ones specific to the application 
domain. 

DM and NLG tasks are usually completed in these tools by defining 
handcrafted rules, defining context conditions as input and output for 
each of the intents (e.g., DialogFlow). It is also possible to specify slots 
associated to queries (e.g., IBM Watson Assistant and the Amazon Alexa 
Skills Kit). 

DialogFlow and IBM Watson Assistant use a parameter table to 
specify and extract the slots required by the system’s prompts. Amazon 
Alexa and DialogFlow allow creating dialog models specifying required 

Fig. 1. Pipeline architecture for a spoken dialog system.  

2 https://pytorch.org/ (Last access: August 2021).  
3 https://scikit-learn.org/ (Last access: August 2021). 
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and optional slots with assigned systems prompts. Slot-filling dialogs can 
be controlled by means of properties that determine if the objectives of 
the dialog have been already completed or additional steps are required. 
Microsoft Bot Builder allows defining slot-filling dialog management 
models based on forms or sequences of steps followed to collect infor
mation from users. 

Only RASA and Alexa Conversations allow the use of an interactive 
learning mode to train a statistical dialog model in which developers 
must provide feedback to indicate whether the responses selected by the 
system were correct or wrong. This way, the dialog policy is optimized 
after this training. Alexa Conversations also allows using a dialog 
simulator that developers can configure by providing annotated dialog 
samples, the list of system prompts, and expected actions. 

In this paper, we integrate our proposal into the DialogFlow plat
form. To achieve this, our model is stored in a cloud hosting service, and 
the commercial platform interacts with it via cloud functions to update 
the dialog state, handle the logic to resolve the user’s request, and make 
a prediction for the following system response. 

3. Our proposal for statistical dialog management 

Fig. 1 shows a typical pipeline for a spoken dialog system. Multi
modal conversational systems consider additional input/output modal
ities (text, gestures, emotional states, etc.). The following processes are 
sequentially completed in the flow to simulate the same processes that 
human beings follow to carry out a conversation:  

1. The user provides a response to a system prompt (e.g., a query, 
command, provide slots values, etc.), which can be denoted as a 
dialog act DAu rendered as an acoustic signal Xu.  

2. The acoustic signal is the input of the ASR, that generates a list of the 
N-best recognition hypotheses or a word graph (wu− 0…wu− n) and the 
confidence scores associated to each one of them (CSu− 0 … CSu− n).  

3. These make up the input of the NLU module, which interprets the 
user’s dialog act and estimates the dialog act DAu (represented by 
D̃Au) with a set of semantic concepts (usually represented by intents 
and entities provided by the user for the slots related to the appli
cation domain).  

4. The DM takes the estimated dialog act as input in order to complete 
the following tasks. Firstly, the system’s Dialog Context Model is 
updated to reflect the current state of the dialog by incorporating the 
information in the frames of the estimated dialog act. Secondly, the 
Dialog Decision Model decides the next system action given the in
formation in the Dialog Context Model, which may involve produc
ing a system dialog act as DAs.  

5. The NLG component converts system DAs into a word string ws.  
6. The TTS component renders ws as an acoustic signal Xs which may 

prompt the user for further input leading to another cycle through 
the process. 

In our proposal for statistical dialog management, a dialog is repre
sented with a sequence of states si that consist of pairs (system turn Ai – 
user turn Ui). The main objective of the DM at each time i is to select the 
best system action (represented by means of a dialog act DAs− i) given the 
preceding dialog states: 

D̂As− i = argmax
DAs− i∈𝒟𝒜s

P(DAs− i|S1,…, Si− 1) (1)  

where set 𝒟𝒜s contains all the possible system answers. 
As the number of possible states sequences is very large, we define a 

data structure (that we called Dialog Register, DR) that denotes the 
representation of dialog states for the dialog state tracking component. 
The DRi stores the intents and entities values provided by the user 
throughout the previous history of the dialog (i.e., a summary of the 
information in the sequence S1, …, Si− 1 considering that the different 

sequences of state spaces that lead to the same DR are equivalent). Using 
this data structure, the selection of the next system action by the DM is 
carried out using the following equation: 

D̂As− i = argmax
DAs− i∈𝒟𝒜s

P(Ai|DRi,DAs− i− 1) (2)  

where the updated DR at time i and the action selected by the DM in the 
previous turn (DAs− i− 1) are considered to decide the best system action 
for the current system turn (DAs− i). 

The classification function to implement the previous equation can 
be defined in several ways. In previous work, we have evaluated clas
sical techniques employed in machine learning and natural language 
processing (e.g., multinomial naive Bayes classifiers, n-gram based 
classifiers, classifier based on grammatical inference techniques and 
classifier based on neural networks [72,73,15]. In this work, we evaluate 
the benefits of using neural networks to define the classification func
tion. The input layer of the network holds the input pair (DRi, Ai− 1) 
corresponding to the dialog register and the state. The values of the 
output layer can be seen as an approximation of the a posteriori prob
ability of belonging to the class associated to the dialog act DAs. 

In our proposal, the information in the DR is coded considering the 
presence or absence of intents and entities along with its confidence 
score rather than representing the actual value. The value 0 for a specific 
slot in the DR denotes that this slot is empty (i.e., there is no reference to 
the user having provided a value for such intent or entity). The value 1 
denotes that the user has provided a value for the corresponding slot and 
the ASR and NLU modules have indicated that the value is reliable ac
cording to the confidence measures that these modules provide to the 
DM. Finally, the value 2 denotes that there is a value for the corre
sponding slot, but the confidence scores show that it is not reliable. 

This codification allows completing the classification reducing the 
number of different inputs for the classifier, given that the only infor
mation that the DM requires in slot-filling tasks to select the next system 
action is the presence or absence of values in this data structure. In 
addition, the DR can be modified to include additional values for the 
codification according to additional requirements of each task, infor
mation related to the regulations of the task or related to the users, task- 
independent information (e.g., affirmation, negation, and not-understood 
dialog acts), use different codifications for each slot, etc. 

The codification of the input (DRi, DAs− i− 1) for the classifier is as 
follows:  

• The last system answer (DAs− i− 1) is modeled using a variable, which 
has as many bits as possible actions defined as output for the DM (i.e., 
classes). 

DA̅→
s− i =

(
x11 , x12 , x13 ,…, x151

)
∈ {0, 1}N  

where N is the number of system actions defined for the DM.  
• For the experiments described in the paper, each slot in the Dialog 

Register (DRi− 1) can take the values {0, 1, 2}. Therefore, every 
characteristic has been modeled using a variable with three bits. 

DR̅→
i− 1 =

(
xi1 , xi2 , xi3

)
∈ {0, 1}3i = 1,…,M  

where M is the number of slots in the DR. 

4. Experiments 

The following section describes the design of the experiments fol
lowed in this research. It includes the description of the corpora used, 
the model architectures employed, and the results of the different 
experiments. 
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4.1. Corpora 

Two dialog datasets have been used to evaluate our proposal. 

4.1.1. DIHANA 
The DIHANA corpus [25] is a dialog dataset in the train scheduling 

domain, where users plan a rail trip around Spain. Users can ask the 
conversational interface for recommendations based on different slots, 
and the system process the petition and retrieve the required informa
tion. The corpus consists of a set of 900 dialogs acquired using the WoZ 
technique. DIHANA’s main characteristics are shown in Table 1. 

The DIHANA corpus contains a total of 10 informable slots. An 
informable slot describes any entity that the user can provide a value for, 
to constraint the search during the dialog. There are also five requestable 
slots, which define any entity that the user can ask for information 
about. DIHANA’s informable and requestable slots are shown in Table 2. 

To create the classification configuration, we followed the codifica
tion described in our proposal. We have identified 19 different input 

features:  

• The previous action taken by the system.  
• Five task-dependent attributes, corresponding to the requestable slots 

the user can ask for.  
• Ten task-dependent attributes, which denote each of the informable 

slots that have been mentioned in the dialog.  
• Three task-independent attributes, which will provide important 

information to build a more complete system. These are: acceptance, 
if the user has confirmed a piece of information; rejection, if the user 
has denied some information; and not-understood, if the system has 
not identified the user’s input. 

System DAs were labeled attending to 28 different possible system 
responses. These include asking the user for a slot, confirming the value 
of a slot, retrieving information regarding a slot, and opening and 
closing remarks. The preprocessed corpus consists of 4,006 samples. 

Fig. 2 shows an example of the encoding process followed. 

4.1.2. Dialog State Tracking Challenge 2 
The Dialog State Tracking Challenge 2 (DSTC2) dataset was pre

sented by Henderson et al. [34] in the format of a competition for 
SIGDIAL 20144 . It consists of 2235 dialogs collected using Amazon 
Mechanical Turk in a restaurant information domain, in which users of 
the conversational system search for a restaurant based on their pref
erences. Its main characteristics are shown in Table 3. 

Similar to the DIHANA corpus, DSTC2 contains a set of informable 
and requestable slots. However, unlike DIHANA, the range of slots to 
define a search is more limited, while the variety of request options 
becomes larger. There are four informable slots and eight requestable 
slots, shown in Table 4. 

Table 1 
DIHANA corpus’ main features.  

Main features Values 

Number of users 225 
Number of dialogs per user 4 
Number of user turns 6280 
Average number of user turns per dialog 7 
Average number of words per user turn 7.7 
Vocabulary size 823 
Duration of the recording (h) 10.86  

Table 2 
DIHANA corpus’ informable and requestable slots.  

Informable slot 
Origin city 
Destination city 
Departure date 
Arrival date 
Departure hour 
Arrival hour 
Ticket class 
Train type 
Order number 
Services list 
Requestable slot 
Timetable 
Price 
Train type 
Order number 
Services list  

Fig. 2. Example of encoding for the train scheduling domain corpus.  

Table 3 
DSTC2 corpus’ main features.  

Main features Values 

Average number of utterances per dialog 14 
Vocabulary size 1229 
Training dialogs 1618 
Validation dialogs 500 
Test dialogs 117 
Number of entity types (slots) 8 
Number of distinct entities 452  

4 https://www.sigdial.org/files/workshops/sigdial2014/ (Last access: August 
2021). 
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DSTC2 was preprocessed analogously to DIHANA. Therefore, attri
butes were codified with the values 0, 1, 2 according to the status of each 
attribute in the dialog: no information, complete information, low 
confidence information. Nevertheless, due to the richness of the dialogs, 
we analyzed 23 input attributes:  

• The previous action taken by the system.  
• Eight task-dependent attributes, corresponding to the requestable 

slots the user can ask for.  
• Four task-dependent attributes, which will denote each of the 

informable slots that have been mentioned in the dialog. 
• Ten task-independent attributes, which will provide important in

formation regarding the user’s input. They become active for the 
following user’s actions: greeting the system, trying to end the 
dialog, an acknowledgment, an affirmation, a negation, thanking the 
system, requesting alternative suggestions, requesting more infor
mation in general, asking the system to repeat what it just said, and 
asking the system to start from the beginning. 

The amount of classes is also larger for this task. A total of 38 
different system responses were identified, ranging from confirming 
values, giving information about a particular slot or requesting the user 
to provide a value for a slot, asking the user to repeat its utterance or 
confirming the domain. The corpus includes a total of 11,537 training 
examples, three times the size of DIHANA. 

4.2. Experiment design 

In this subsection, we describe the machine learning models evalu
ated as classification functions and the evaluation methodology that we 
have followed. 

4.2.1. Machine learning models 
We have used a wide variety of traditional machine learning models 

together with deeper architectures, to perform an assessment on the 
utility of the latter for the proposed tasks. The algorithms used are the 
following:  

1. Logistic regression.  
2. K-nearest neighbors (KNN).  
3. Decision tree.  
4. Gradient boosting.  
5. Five multilayer perceptron (MLP) architectures, with a different 

number of hidden layers (one to five). Each hidden layer has a linear 
activation function, while the output layer has a sigmoid activation 
function. 

Further deep learning architectures based on convolutions were 
considered, but they were discarded due to their inappropriateness to 
the dataset format used for this task. While CNNs are suitable to create 
high-level representations of data where a spatial inductive bias applies, 
the 1-D vector encoding representation we crafted provides low poten
tial to this type of architectures. 

4.2.2. Evaluation methodology 
We have run experiments for the nine described machine learning 

models on the DIHANA and DSTC2 corpora. Specifically, two batches of 
experiments for each dataset, including and excluding the previous 
response attribute. This variable introduces a recurrent structure to our 
network, where the output of a specific entry influences the prediction 
for the following. With this, we seek to analyze the influence of 
including the context of previous interactions in the quality of the sys
tem answer. 

We split both datasets for training and testing. While the DSTC2 
corpus is already divided by its creators, we performed a random 80/20 
split for the DIHANA corpus. We later performed a fivefold cross- 
validation phase with cross-entropy loss to determine the best values 
for the optimizer and model hyperparameters. In particular, we set:  

• Five neighbors for the KNN algorithm.  
• Entropy as the function to measure the quality of the decision tree 

split.  
• ADAM optimizer, no L2 regularization penalty, and 256 neurons per 

hidden layer for each MLP model.  
• Learning rates of 0.0005 for the MLPs with 1 and 2 hidden layers, 

0.0001 for the MLPs with 3 and 4 hidden layers, and 0.00005 for the 
one with 5 hidden layers.  

• Number of training epochs of 200 for the MLPs with 1 and 2 hidden 
layers, and 300 for the rest. 

The metrics used to evaluate the experiments were the following:  

• Accuracy: percentage of turns in which the DM 1-best hypothesis is 
the same as in the reference answer in the corpus. This measures raw 
1-best accuracy.  

• Coherence: percentage of turns in which the system response is found 
for the same input in the whole training set. We have defined this 
metric because we have identified that the system will have a sto
chastic behavior when different responses could be given without 
affecting the quality of the dialog. This introduces some noise that 

Table 4 
DSTC2 corpus’ informable and requestable slots.  

Informable slot 
Area 
Food 
Name 
Price range 
Requestable slot 
Area 
Food 
Name 
Price range 
Address 
Phone 
Post code 
Signature  

Table 5 
DIHANA corpus’ result (best results are presented in bold).  

Model Accuracy Acc. w/o context Coherence Coh. w/o context p-value against best 

Logistic regression 88.53% 87.66% 93.27% 92.64% 1.5 × 10− 9 

KNN 86.78% 88.27% 91.77% 93.27% 2.06 × 10− 9 

Decision tree 91.65% 90.65% 97.01% 95.64% 1.2 × 10− 5 

Gradient boosting 91.27% 90.40% 96.13% 95.26% 3.6 × 10− 9 

MLP 1 hidden 92.02% 90.65% 96.88% 95.76% – 
MLP 2 hidden 91.65% 90.52% 96.76% 95.76% 1.3 × 10− 4 

MLP 3 hidden 91.27% 90.27% 96.26% 95.51% 6.9 × 10− 7 

MLP 4 hidden 90.65% 90.52% 95.76% 95.76% 2.04 × 10− 7 

MLP 5 hidden 90.77% 89.40% 95.76% 94.64% 1.05 × 10− 4  
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Table 6 
DSTC2 corpus’ results (best results are presented in bold).  

Model Accuracy Acc. w/o context Coherence Coh. w/o context p-value against best 

Logistic regression 71.59% 70.95% 97.46% 97.25% 1 × 10− 16 

KNN 70.44% 64.99% 97.69% 91.34% 1 × 10− 16 

Decision tree 73.57% 70.72% 98.97% 97.12% – 
Gradient boosting 73.50% 70.05% 98.23% 96.50% 1 × 10− 16 

MLP 1 hidden 72.73% 70.87% 98.40% 97.28% 1 × 10− 16 

MLP 2 hidden 71.05% 70.69% 98.61% 97.25% 1 × 10− 16 

MLP 3 hidden 72.80% 70.90% 98.38% 97.28% 3.7 × 10− 8 

MLP 4 hidden 70.75% 70.82% 98.28% 97.20% 8.4 × 10− 11 

MLP 5 hidden 70.85% 70.87% 98.23% 97.20% 9 × 10− 15  

Fig. 3. Examples of accuracy and coherence evolution for the best performing models in each cohort.  

Fig. 4. Confusion matrix – MLP 3 hidden layers for DSTC2.  
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the models are not able to distinguish, so we defined a measure of 
dialog coherence to assess the quality of our proposal. 

We have carried out a paired t-test to compare the different model 
results and verify that the evaluation metrics are statistically significant. 

4.3. Results and discussion 

Tables 5 and 6  describe the results obtained for the experiments in 
the DIHANA and DSCT2 corpora, respectively. Overall, we can observe 
very slight differences in performance between traditional machine 
learning models and deeper architectures, but nothing leading to a clear 
advantage towards the latter for this type of tasks. 

We can also see how every model performs worse when trained 
without the previous response feature. This proves that a recurrent-like 
structure where the context of the previous interaction is saved provides 
a better quality predictor to guess what the next response should be. 

Regarding the DIHANA corpus, we can observe that the best per
forming model is the MLP with one hidden layer. We report a 1-best 
guess rate of 92.02% and a coherence rate of 96.88%, which are sta
tistically supported by the paired t-test. This model’s micro-averaged 
precision, recall, and F1-score are 91.40%, 92.00%, and 91.70%, 
respectively. Fig. 3 (left) presents the accuracy evolution for this model, 
showing fast and converging learning with no overfitting. At the same 
time, the results show good calibration even for the large class unbal
ancing found in the dataset. 

With regard to the DSTC2 corpus, we can observe that, while the 
coherence rate is very high, the accuracy largely decreases for this 
cohort. This is due to the high stochasticity of the system from which the 
dataset was created, since it would retrieve different answers for the 
same inputs, introducing a significant noise and making it hard to make 
an accurate 1-best guess. This is also confirmed in the confusion matrix 
plotted (Fig. 4), where we can observe a set of classes that are hard to 
distinguish. 

However, this system will still be valid in a production setting, since 
the probability of giving an answer that would be coherent in a real 
scenario is very high. Fig. 3 (right) shows the coherence evolution for the 
MLP model with three hidden layers, which is one of the best performers 
for this metric. 

The best accuracy performance is obtained by the decision tree 
model, with an accuracy of 73.57%, statistically significant as shown by 
the paired t-test results. Besides, this model’s micro-averaged precision, 
recall, and F1-score are 73.57%, 73.72%, and 73.64%, respectively. 

Finally, we can observe that none of the deeper MLP architectures 

evaluated has a better performance versus the one hidden layer model in 
any of the metrics proposed. 

5. Integration with commercial solutions 

Developing a dialog manager in most commercial conversational 
platforms involves defining a set of possible responses for each user 
intent. However, this set of responses is static and hence limits the 
flexibility of the dialog system. 

For example, let us imagine a scenario based on the DIHANA corpus, 
where a user requests information to buy a train ticket. The user could 
start the interaction querying for different pieces of information: origin 
and destination cities, departure and arrival dates, price range, duration, 
services, train type, etc. A possible option is to define a single intent for 
these requests, as all of them are related to the same user’s intention to 
book a train ticket. However, the number of combinations of parameters 
to consider becomes exponentially large for practical domains. More
over, suppose the user does not provide all the information pieces. In 
that case, the agent needs to ask for the remaining data, and the range of 
context possibilities to take into account increases. Another option is to 
define unique intents for each piece of information, but again taking into 
account all the different combinations makes dialog management 
unfeasible. 

To solve this, we have integrated our statistical dialog manager 
model with a commercial solution, and substitute the rule-based 
implementation. For our proposal, we have used Google’s DialogFlow, 
since it is one of the most prominent and widely adopted platforms. 

5.1. DialogFlow 

DialogFlow facilitates the development of conversational interfaces 
by automatically implementing the natural language understanding 
module with training phrases provided for each intent (end-users 
intention for a conversation turn) and defining the dialog manager by 
using context conditions for each intent and the responses to return to 
the end-users for each of them. 

DialogFlow currently supports 32 languages and dialects.5 Conver
sational interfaces developed using this toolkit can be integrated into 
wearable devices, cars, intelligent speakers, web plugins, and other 
mobile applications. 

Fig. 5. Proposal for the statistical dialog manager implementation.  

5 https://cloud.google.com/dialogflow/docs/reference/language (Last ac
cess: August 2021). 
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Regarding the NLU module development, DialogFlow has three basic 
concepts:  

1. Intents: An intent is a specific action that users can invoke by using 
sentences that match their NLU model. Developers must provide a set 
of training phrases for each intent. As a result, depending on the user 
input, the agent maps each user response to a specific intent in order 
to provide a system response. Therefore, each intent represents a 
dialog turn within the conversation.  

2. Entities: An entity represents a term or object relevant to the intents 
and provides a specific context for them. The entities are usually 
keywords used for identifying and extracting valuable data from user 
inputs. DialogFlow provides a wide variety of predefined system 
entities, such as dates, times, cities, colors, or units of measure, but 
developers can also define their own domain-dependent entities. An 
entity consists of an entity type (e.g., fruit) and entity values (e.g., 
banana, strawberry, orange).  

3. Contexts: They represent the current state of the interaction and 
allow agents to carry information from one intent to another. They 
can be combined to control the conversational path in order to define 
conditions required to access an intent (input contexts) or defined 
after accessing them (output contexts). 

Using the fulfillment functionality provided by DialogFlow, it is 
possible to connect natural language understanding and processing for 
each intent to any business logic, such as querying databases, accessing 
third-party APIs, or using machine-learning-based models to predict an 
adequate response given the dialog context. We use this functionality to 
integrate our proposal for more scalable statistical dialog models for the 
DM. 

5.2. Proposed approach to statistical dialog management 

Fig. 5 shows the architecture for the proposed statistical DM 
approach. As it can be observed, it integrates Firebase applications6 to 
provide cloud functions, real-time databases, and hosting. Nonetheless, 
other internal or third-party services can be used to facilitate these 
services. 

DialogFlow’s NLP module is used to select the user intents and the 
entities in their utterances. Instead of defining a tree-based model, in
tents are not used to retrieve a predefined response, but to extract the 
context information to feed the statistical DM model appropriately with 
the dialog history. The context is sent to the cloud function, which will 
first obtain the dialog state from the previous interaction with such user. 

The statistical dialog model (see Section 3) selects the next system 
response according to the dialog state defined by the context (for 
instance, confirm a particular piece of information, request additional 
information pieces, or inform about the results of a query). Depending 
on the type of response, the framework could require accessing a third 
party or internal database for completing the request (e.g., to inform 
about the ticket price for a specific train). The dialog state is updated 
with the data gathered and crafted during the interaction, in order to be 
ready for the next user input. 

The framework’s architecture provides modularity, scalability, 
speed, domain-independence, ability to handle complex and long in
teractions, and easiness for assembling with the rest of the modules 
required by complex conversational systems. 

5.3. Use case: train scheduling domain 

DIHANA’s train scheduling domain was used to implement our 
proposed dialog management framework. The best performing model, a 
multilayer perceptron with one hidden layer, was trained and stored as a 

JSON object in a Firebase Hosting instance. 
DialogFlow’s NLP module was created by defining the set of intents, 

parameters and entities required for the use case. A total of 13 intents 
were defined, each related to a specific request or piece of information 
that the user could ask. Table 7 shows an example of some of the training 
phrases that were defined for two of those intents, the one providing 
information about the departure schedule, and the one asking for the 
duration of the trip. 

The set of entities corresponds to the ten attributes shown in Table 8. 
Seven of these entities were already predefined in DialogFlow, while the 
rest were custom-defined by us. 

A specific handler for each of the different DialogFlow intents was 
implemented for the cloud function. Following the previously described 
architecture, the first step is to access the Firebase Realtime Database 
instance to obtain the previous system response, as well as all the in
formation that was already stored for the interaction. After this, 
depending on each specific intent, new information is added to the state 
(e.g., for the Say-Departure-Date shown in Table 7, departure schedule 
data). 

The dialog state is then encoded and sent to the statistical dialog 
model, which uses this information as input to predict the next system 
response. Depending on the type of response (e.g., to provide the 
schedule for a train route), a new request to a third party or internal 
business layer can be required to inform about the trains fulfilling the 
conditions required by the user. 

After this, the updated state is inserted in the Firebase Realtime 
Database, together with the system response, so that this information is 

Table 7 
Intent examples for the train scheduling domain.  

Intent 
name 

Training phrases (Spanish/English transl.) Parameters 

Say- 
Departure- 
Date 

Para mañana. 
Me gustaría salir el 
2 de abril. 
Para mañana a las 
3. 
Salgo el 4 de marzo 
a las 8 de la tarde. 
Me gustaría coger el 
tren a las 5.15 de 
hoy. 
Me gustaría salir el 
2 de abril a las 
16:00. 

For tomorrow. 
I would like to depart 
April the 2nd. 
For tomorrow at 3. 
I depart March the 
4th at 8 pm. 
I would like to take 
the train today at 
5.15. 
I would like to depart 
April the 2nd at 
16:00 

departureDate 
departureHour 

Ask-Route- 
Duration 

Sí, ?‘cuál es la 
duración del 
trayecto? 
?‘Cuál es el tiempo 
de recorrido? 
Sí, me gustaría 
saber el tiempo que 
se tarda. 
?‘Cuánto se tarda? 
?‘Cuánto tarda el 
tren en llegar? 

Yes, what is the route 
duration? 
What is the route 
duration? 
Yes, I would like to 
know how long does 
it take 
How long it takes? 
How long does the 
train take to arrive?   

Table 8 
Parameters and entities defined for the train scheduling domain.  

Parameter name Entity type Entity values 

origin city (system) Madrid, Barcelona, Vigo, … 
destination   
departureDate date (system) 2020-05-04, tomorrow, … 
arrivalDate   
departureHour time (system) 09:30, 4 pm, noon, … 
arrivalHour   
ticketClass ticketClass (crafted) tourist, preference 
trainType trainType (crafted) AVE, Alvia, Cercanías, … 
services services (crafted) cafeteria, wifi, newspaper, …  

6 https://firebase.google.com/ (Last access: August 2021). 
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available for the next interaction. Finally, the new system response is 
sent to DialogFlow. 

5.4. Deployment and evaluation 

One of the main reasons that make chatbot platforms such as Dia
logFlow ideal for industrial applications is their straightforward inte
gration with a wide collection of popular environments. DialogFlow’s 
integrations include Facebook Messenger, Twitter, Slack, Skype, 

Telegram, Google Assistant, and Amazon Alexa, among others, as well as 
embeddings for web applications. 

A preliminary evaluation process was followed to validate our pro
posal and the quality of the conversational agent. As a result, a total of 
20 recruited users with diverse ages (ranging from 16 to 61), gender 
(40% female, 60% male), educational and technological backgrounds 
were selected and interviewed to evaluate the train scheduling chatbot. 
Each of them interacted with the system in 3 different dialogs, making a 
total of 60 interactions, and answered a satisfaction questionnaire. 

First, an objective evaluation of the system was completed, analyzing 
seven metrics extracted from the interactions between the users and the 
system. Table 9 shows the metrics and results of the evaluation. The 
results show that the success rate is acceptable and the turn coherence is 
high. The percentage of unique dialogs also points that the system is 
quite versatile. 

Users were asked to provide their subjective opinion on the system’s 
performance with seven questions, scoring from 1 (lowest) to 5 (high
est). Results, presented in Table 10, show a positive perception of the 
application. While the weakest point is the error recovery capability, 
users believe that the interaction with the system is clear and fast. The 
overall satisfaction is also high, with a large percentage of returning 
customers. This information validates the viability of the proposed so
lution for industrial purposes. 

Fig. 6 shows an example of a successful dialog extracted from one of 
the tests. Although the user speaks with colloquial wording, providing 
unnecessary extra information and other tags such as ‘more or less’ or 
‘everything has become clear to me’, the system is able to retrieve very 
accurate responses, and successfully complete the interaction. 

6. Conclusions and future work 

In this paper we have presented an approach for developing slot- 

Table 9 
Results of the objective evaluation.  

Metric Evaluation value 

Dialog success rate 80% 
Turn coherence rate 78% 
Average #turns 7 
Average #requests 2.89 
#Turns shortest dialog 10 
#Turns longest dialog 5 
% Different dialogs 55%  

Table 10 
Results of the subjective evaluation.  

Question Score 

How well did you understand the system messages? 5.00 ± 0.00 
How well did the system understand you? 3.80 ± 0.83 
Was it easy for you to get the requested information? 4.00 ± 1.12 
Was the interaction with the system quick enough? 4.60 ± 0.71 
If there were system errors, was it easy for you to correct them? 3.30 ± 1.41 
In general, are you satisfied with the performance of the system? 4.40 ± 0.73 
Would you use this system to schedule your future train rides? 4.20 ± 0.68  

Fig. 6. Example of a successful dialog extracted from the evaluation. The dialog is presented in the original language, Spanish, while a translation into English is 
shown enclosed in parentheses. 
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filling dialog managers based on machine learning techniques, and 
provided a lightweight representation of the conversation context that 
allows considering the dialog history and easily extend and adapt this 
information for different application tasks. We have evaluated the pro
posal with two corpora in different application domains, attaining 
satisfactory accuracy rates, being the MLP the machine learning model 
that shows the best performance. 

We have integrated our proposal within the DialogFlow platform, 
easily assembling the set of components in the interface, and deploying a 
ready-to-use application that can be integrated into different environ
ments and devices. We have validated our proposal developing and 
evaluating a dialog system based on a real use case, a train scheduling 
domain. This implementation has covered the end-to-end process of 
developing a personalized conversational interface learning a statistical 
dialog manager for the task and integrating it with DialogFlow using our 
framework. The evaluation results show the viability and potential value 
of our proposal to develop commercial conversational systems. 

Advanced algorithms for text processing have recently emerged, it 
would be interesting to study their suitability for dialog management 
tasks. Moreover, it would be valuable to explore further the scalability of 
our proposal for larger and more complex datasets. Future work also 
includes extending the evaluation to compare different classification 
alternatives with real users and the automation of the processes required 
for creating the structure of intents and entities in toolkits such as 
DialogFlow. 
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