
FoldHSphere: deep hyperspherical
embeddings for protein fold recognition
Amelia Villegas‑Morcillo*, Victoria Sanchez and Angel M. Gomez

Background
Protein structure prediction given the amino acid sequence is a challenging problem in
structural bioinformatics. One of the key steps in the template-based modelling (TBM)
of protein structures is the recognition of the protein fold [1–5]. The goal is to predict the
fold type of a protein domain by comparison with template structures from the Protein
Data Bank (PDB) [6]. Solved structure domains from the PDB are classified into several
levels according to structural and sequence similarities in databases as SCOP [7, 8] and

Abstract

Background: Current state‑of‑the‑art deep learning approaches for protein fold
recognition learn protein embeddings that improve prediction performance at the fold
level. However, there still exists aperformance gap at the fold level and the (relatively
easier) family level, suggesting that it might be possible to learn an embedding space
that better represents the protein folds.

Results: In this paper, we propose the FoldHSphere method to learn a better fold
embedding space through a two‑stage training procedure. We first obtain prototype
vectors for each fold class that are maximally separated in hyperspherical space. We
then train a neural network by minimizing the angular large margin cosine loss to
learn protein embeddings clustered around the corresponding hyperspherical fold
prototypes. Our network architectures, ResCNN‑GRU and ResCNN‑BGRU, process the
input protein sequences by applying several residual‑convolutional blocks followed by
a gated recurrent unit‑based recurrent layer. Evaluation results on the LINDAHL dataset
indicate that the use of our hyperspherical embeddings effectively bridges the perfor‑
mance gap at the family and fold levels. Furthermore, our FoldHSpherePro ensemble
method yields an accuracy of 81.3% at the fold level, outperforming all the state‑of‑
the‑art methods.

Conclusions: Our methodology is efficient in learning discriminative and fold‑repre‑
sentative embeddings for the protein domains. The proposed hyperspherical embed‑
dings are effective at identifying the protein fold class by pairwise comparison, even
when amino acid sequence similarities are low.

Keywords: Protein fold recognition, Deep neural networks, Residual convolutions,
Embedding learning, Hyperspherical space, Thomson problem

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490
https://doi.org/10.1186/s12859‑021‑04419‑7

*Correspondence:
ameliavm@ugr.es
Department of Signal
Theory, Telematics
and Communications,
University of Granada,
Periodista Daniel Saucedo
Aranda, 18071 Granada,
Spain

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04419-7&domain=pdf

Page 2 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

CATH [9]. The objective here is to identify proteins sharing the same fold class—with
similar arrangement of structural elements but differing in the amino acid sequence.

Early computational approaches to recognizing proteins with similar structure and
sequence (homology modelling) were based on sequence-to-sequence (BLAST [10]) or
profile-to-profile (HHpred [11]) alignments, as well as Markov random fields (MRFA-
lign [12]). In addition, threading methods aim to recognize distant-homologous proteins
with low similarity in sequence by using structural properties instead. These methods
include RAPTOR [13], BoostThreader [14], SPARKS-X [15], conditional random field-
based CNFpred [16] and [17], and more recently the EigenTHREADER [18] and CEth-
reader [19] methods, which use predicted contact map information.

In general, the protein fold recognition methods as the ones described above are
derived from the template-based structure prediction problem. Unlike these, in the
taxonomy-based fold classification approaches [20] the protein sequences are directly
mapped into fold classes. To this end, machine learning approaches such as FP-Pred
[21], ACCFold [22], TAXFOLD [23–25], HMMFold [26], ProFold [27], and DKELM-
LDA [28], as well as the deep learning methods Conv-SXGbg-DeepFold [29] and
DeepFrag-k [30], have been proposed to successfully classify into a pre-defined group
of SCOP fold classes. However, the evaluated folds comprise a small set including only
those folds with a higher amount of protein domains (27 or 30 folds), in contrast to the
more than 1000 existing fold classes in the SCOP database.

Several machine learning algorithms have been also introduced for the protein fold
recognition task [31]. First attempts treated the task as a binary classification problem
to decide whether two protein domains belonged to the same fold. Different techniques
were applied here, such as support vector machines (FOLDpro [32]), random for-
ests (RF-Fold [33]) and neural networks (DN-Fold [34]). Moreover, ensemble methods
enhance the recognition performance by combining multiple protein feature representa-
tions and prediction techniques. Examples are TA-Fold [35] and the multi-view learning
ensemble frameworks MT-fold [36], EMfold [37] and MLDH-Fold [38]. On the other
hand, the learning to rank methods, such as Fold-LTR-TCP [39], FoldRec-C2C [40], and
ProtFold-DFG [41], treat the problem as an information retrieval task and try to learn
the relationship among proteins in the datasets.

Furthermore, deep learning-based methods have been recently proposed to identify
the protein fold, such as DeepSF [42], DeepFR [43], DeepSVM-Fold [44], MotifCNN-
fold [45], SelfAT-Fold [46], VGGfold [47], and CNN-BGRU [48]. In these methods, a
supervised neural network model is trained to classify the input protein domain into
one of the possible fold classes. From the trained model, a fold-related embedding
representation is extracted, which is then used to measure the similarity between
each two protein domains. In this context, the learned embeddings constitute a
d-dimensional space in which we can map high-dimensional protein representations
such as evolutionary profiles [48] (L× 20 , where L is the protein sequence length) or
contact maps [43] (L× L). Moreover, these embeddings capture the fold information
during training by placing inputs from the same fold close together in the embed-
ding space. The model architecture for protein fold recognition usually contains a
convolutional neural network (CNN) alone or in combination with recurrent layers—
long-short term memory (LSTM) [49] or gated recurrent unit (GRU) [50] cells—or

Page 3 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

self-attention layers [51]. Hence, in preceding works, most of the effort has been put
into improving the neural network architectures and making them suitable to process
different protein representations, such as predicted contact maps, evolutionary pro-
files or predicted secondary structure elements. In this work, we propose two archi-
tectures formed by several blocks of residual-convolutions [52] and a recurrent layer,
which we name ResCNN-GRU and ResCNN-BGRU. Here, the suffix ‘BGRU’ refers to
bidirectional GRU, while ‘GRU’ indicates the use of a unidirectional GRU. These two
architectures are derived from our previous CNN-GRU and CNN-BGRU models [48],
and can also process arbitrary length protein sequences represented by residue-level
features.

However, unlike previous deep learning approaches, our main interest here is to
improve the fold-related embedding vectors by modifying the neural network optimiza-
tion criterion. While the softmax cross-entropy loss is commonly used for multi-class
classification problems, it lacks sufficient discriminative power for classification [53–
55]. In this regard, modifications on the loss function have been introduced, leading to
improved functions such as the center loss [53], the large margin softmax (L-Softmax)
loss [54], and the angular softmax (A-Softmax) loss [55]. Thus, in this work, we propose
to minimize an angular-based loss function, namely the large margin cosine loss (LMCL)
[56]. LMCL removes any vector norm dependencies by normalizing the input embed-
ding and class weight vectors in the classification layer and therefore distributes them
angularly on a high-dimensional sphere—or hypersphere. The function also introduces
a class boundary margin to enlarge the inter-class angular separation while reducing the
intra-class separation for embeddings within the same fold class.

We further improve the training of our neural network model by minimizing the
LMCL with a fixed weight matrix in the last classification layer. Such a matrix contains a
pre-defined set fold class vectors—hyperspherical prototypes—that are maximally sepa-
rated on the surface of a hypersphere. To ensure maximum angular separation between
prototypes, we draw inspiration from the well-known Thomson problem [57]. Its goal is
to determine the minimum energy configuration of K charged particles on the surface of
a unit sphere. By minimizing a Thomson-based loss function, extended to a hypersphere
of arbitrary number of dimensions, we optimize the angular distribution of our proto-
type vectors. Here we pre-train the prototype matrix separately and keep it fixed during
the optimization of our neural network model. It must be noted that, unlike conven-
tional transfer learning procedures in which the last layers of the network are fine-tuned,
we pre-define the output embedding space given by a set of fold prototypes representing
the cluster centroids for each fold class [58]. In this way, during training, the model is
forced to learn protein embeddings clustered around the corresponding hyperspherical
fold prototypes.

In summary, our main contribution is a training procedure that provides hyperspheri-
cal protein embeddings, learned by minimizing the angular LMCL around pre-defined
prototypes for the fold classes in a hyperspherical space. We obtain these embeddings by
training the ResCNN-GRU and ResCNN-BGRU architectures that are effective at pro-
cessing arbitrary length protein sequences. An overview of our approach is depicted in
Fig. 1. Our proposed methods, named FoldHSphere and FoldHSpherePro, significantly
advance the state-of-the-art performance on well-known benchmark datasets.

Page 4 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

Materials and methods
Datasets

The datasets were obtained from the public protein databases SCOP [7] and the
extended SCOPe [8]. These databases contain a hierarchical structural classification
of protein domains with solved structure. From the top-down view, such hierarchical
levels are structural class, fold, superfamily and family, which group protein domains
with increasing sequence similarity at each level.

Training dataset

We trained our neural network models using the SCOPe 2.06 training set from [43].
Such a training set was obtained after filtering out protein domains having a sig-
nificant sequence similarity to those in the test set. To do so, the following simi-
larity reduction methods were executed: MMseqs2 [59] (sequence identity 25%,
e-value 10−4), CD-HIT-2D [60] (sequence identity 40%) and BLAST+ [61] (e-value
10−4). The final dataset contains 16133 protein domains sharing at most 95% pair-
wise sequence identity, which are classified into K = 1154 folds. For hyperparameter
tuning, we performed a 5-stage cross-validation over the entire training set. Hence,
we split the 16,133 protein domains into 5 groups, including domains from differ-
ent families in each one (Additional file 1: S1). This prevents having proteins in the
validation subsets with similar amino acid sequence to those in the corresponding
training subset.

Protein
features

Neural Network
Optimization

Softmax
fold-related
embeddings

Fold class
vectors wkSoftmax loss

W Prototypes
Optimization

Hyperspherical
prototypes

a.3

c.1

b.36

d.41

f.4

g.50

e.8

Thomson loss

Protein
features

Neural Network
Optimization

Hyperspherical
fold-related
embeddings

Fixed W

LMCL

Cosine
similarity

FoldHSphere
ranking

Pairwise
similarities

DeepFR
score

Random Forest
Optimization

FoldHSpherePro
ranking

(a) (b)

(c)

(d)

Fig. 1 Overview of the FoldHSphere approach for protein fold recognition. In the first stage a we train a
neural network model to map the protein domains into K fold classes using the softmax cross‑entropy as
loss function. From this trained model, we extract fold class weight vectors wk , k = 1, . . . , K learned in the
last classification layer. b We then optimize the position of the wk vectors by our proposed Thomson‑based
loss, so that they are maximally separated in the angular space. c The resulting hyperspherical prototypes
are used as a fixed non‑trainable classification matrix W in the last layer of the neural network model,
which is trained again, but now minimizing the LMCL. The final hyperspherical embeddings are extracted
from the fully‑connected part of this model. d Finally, the cosine similarity is computed between each two
embeddings and a template ranking is performed for each query protein domain (FoldHSphere method).
Moreover, template ranking is further improved by using enhanced scores provided by a random forest
model trained with additional similarity measures as inputs (FoldHSpherePro method)

Page 5 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

Benchmark datasets

We tested the effectiveness of our hyperspherical embeddings using both the well-
known LINDAHL dataset [3] and the updated LINDAHL_1.75 dataset we recently pro-
posed in [48]. The original LINDAHL dataset includes 976 domains from SCOP 1.37
covering 330 folds. Updated to SCOP 1.75, the LINDAHL_1.75 dataset contains the
same number of proteins (976) but now classified into 323 folds. Protein domains within
both test sets share a maximum sequence identity of 40%, as well as with respect to the
training domains. Each dataset is paired and evaluated independently at three differ-
ent levels—family, superfamily and fold. Thus, while the number of individual protein
domains evaluated within the LINDAHL dataset are 555, 434 and 321 for the family,
superfamily and fold levels, in LINDAHL_1.75 we evaluate 547, 431 and 356 domains,
respectively.

Protein residue‑level feature representation

In order to represent the protein amino acid sequence with variable length L, we consid-
ered 45 features for each amino acid as in previous works [42, 48]. These 45 residue-level
features contain the following information:

• Amino acid encoding: one-hot vector of size 20 representing the amino acid type.
• Position-specific scoring matrix (PSSM): 20 elements which contain the evolution-

ary profile information obtained from the multiple sequence alignment (MSA). We
computed the PSSM matrix using PSI-BLAST [10] and the non-redundant database
‘nr90’ for sequence homology searching.

• Secondary structure: one-hot vector of size 3 encoding the helix, strand and loop sec-
ondary structure elements. To predict the secondary structure we used the SSpro
method from the SCRATCH suite [62].

• Solvent accessibility: one-hot vector of size 2 encoding the exposed and buried states.
Similar to before, we used the ACCpro method from SCRATCH to predict the sol-
vent accessibility states.

These L× 45 features are used as input to our neural network models, which are trained
to predict the fold class for each protein domain.

Residual‑convolutional and recurrent neural network

In this study, we improve our previously proposed neural network models, CNN-GRU
and CNN-BGRU [48], with blocks of residual convolutions [52]. As a result, the model
architecture is formed by three main parts, as depicted in Fig. 2: residual-convolutional
(ResCNN), recurrent (RNN) and fully-connected (FC). We named these new models as
ResCNN-GRU and ResCNN-BGRU, depending on the use of unidirectional or bidirec-
tional layers of gated recurrent units (GRU) in the recurrent part.

Residual‑convolutional part

The convolutional neural network (CNN) aims to capture the local context of each
residue in the protein domain and discover short-term patterns within the amino acid

Page 6 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

sequence. At each CNN layer, we apply a 1D-convolution operation along the sequence
dimension, with several convolutional filters of specific length to be learned. Consider-
ing an input of size L× 45 , the output of each 1D-convolutional layer is of size L× Nl ,
where Nl is the number of learned filters in the l-th layer. In our model, the 1D-convolu-
tional layers are grouped into residual blocks [52]. The output R(xb,Wb) of each residual
block is combined with its input xb as xb+1 = xb +R(xb,Wb) , where Wb are the weights
and biases associated to the b-th residual block, and R(·) is the mapping function per-
formed by the block.

Figure 2a presents the ResCNN part of our model. We first apply an initial 1D-convo-
lution to transform the L× 45 input features into L× 256 outputs by using 256 filters of

L × 45 features

1D-Conv (1 × 256)

1D-Conv (5 × 64)

1D-Conv (5 × 256)

+

1D-Conv (5 × 64)

1D-Conv (5 × 256)

+

L × 256

−−−→
GRU
(1024)

←−−−
GRU
(1024)

2 · 1024

−→
hL

←−
hL

FC (512)

512 – Embedding

FC (K) – W

K class predictions

(a) Residual-
Convolutional

Part

(b) Recurrent
Part

(c) Fully-
Connected

Part

embedding extraction
(training and test phases)

classification
(training phase)

Fig. 2 The proposed ResCNN‑BGRU neural network model for fold‑related embedding learning
through protein fold classification. The model architecture contains three differentiated parts. The
residual‑convolutional network a processes the input L× 45 residue‑level features and consists of two
residual blocks with two 1D‑convolutional layers each. Its output is passed through a bidirectional layer of
gated recurrent units (b) to obtain a fixed size representation of the input domain, which is further processed
by two fully‑connected layers (c). The first FC layer learns a 512‑dimensional embedding vector for each
input, while the second one learns a class weight matrix W to perform the classification into K fold classes.
The ResCNN‑GRU model is identical but using a unidirectional GRU layer instead

Page 7 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

length 1. These are then processed by two residual blocks, each one formed by two layers
with 64 and 256 filters of length 5. After each convolution, ReLU activation and Batch-
Normalization [63] are applied.

Recurrent part

The purpose of the recurrent neural network (RNN) is to exploit long-distance rela-
tions through all the amino acid sequence and generate a summary of the whole protein
domain at its output. Here, the L× 256 outputs from the ResCNN are fed into a gated
recurrent unit (GRU) [50] based layer with 1024 state units.

As shown in Fig. 2b, instead of saving all the L× 1024 states of the GRU, we only con-
sider the last state (

−→
hL) as a summary vector of 1024 elements. In this way, our model

architecture can process amino acid sequences of arbitrary length and extract a fixed-
size vector representing the whole protein domain. We refer to this model as ResCNN-
GRU. An alternative architecture is that based on a bidirectional GRU [64] which also
processes the sequence in reverse order. In such a case, last states from both forward
(
−→
hL) and backward (

←−
hL) GRU layers are concatenated into a vector of 2048 elements. We

denote this model as ResCNN-BGRU.

Fully‑connected part

Finally, the fully-connected (FC) part combines the recurrent output to create a fold-
related embedding for the whole protein domain, which is then used to perform a pre-
liminary fold classification. The classification step guides the model during training to
learn a meaningful embedding space, which is related to the protein folds. Then, these
learned embeddings are used for pairwise fold recognition in the test phase.

In particular, the FC part (Fig. 2c) consists of two dense layers. The first one, with 512
units, is used to learn a nonlinear combination of the GRU output vector (1024 or 2048
for the unidirectional and bidirectional architectures, respectively) which shapes the
fold-related embedding. As nonlinearity, both the sigmoid and the hyperbolic tangent
(tanh) activation functions have been tested in our experiments. The last layer performs
a linear classification of the 512-dimensional embeddings using K output units. Here, K
is the number of fold classes in which the input proteins are classified during training.
In the following subsections we detail how this last classification layer can be modified
to learn more discriminative embedding vectors by distributing the fold class vectors in
hyperspherical space.

Neural network model optimization

We trained our neural network models with mini-batches of 64 protein domains. To pro-
cess variable-length sequences, we applied zero-padding to the maximum length within
each mini-batch. After the GRU layer, we kept the last state vector of each domain sam-
ple before the zero-padding, which corresponds to the last amino acid residue of each
domain in the mini-batch. In the bidirectional GRU, the same GRU layers are used but
the amino acid sequences were first reversed for the backward layer, so the last state
(before zero-padding) corresponds to the first residue of each domain. The optimization
process was performed in two different stages by comparing the model predictions with
the true fold classes (ground truth). In the first one (Fig. 1a), we optimized the models

Page 8 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

by minimizing the well-known softmax cross-entropy loss, while in the second stage
(Fig. 1c) we used the large margin cosine loss (LMCL) [56], which is a normalized and
margin discriminative version of the softmax loss. In this case, we also used a fixed (i.e.
non-trainable) weight matrix in the classification layer (W in Fig. 2c) which maximally
separates fold class vectors in hyperspherical space (Fig. 1b). We used the Adam opti-
mizer [65] with an initial learning rate of 10−3 , which we reduced by a factor of 10 at
epoch number 40, whereas the whole optimization process was completed in 80 epochs.
In order to prevent overfitting to the most populated fold classes, we applied L2 penalty
with a small weight decay of 5× 10−4 and dropout [66] with a drop probability of 0.2 in
the convolutional and the first FC layers.

Large margin cosine loss

The softmax cross-entropy loss (softmax loss for simplicity) is one of the most common
loss functions for multi-class classification problems. It is defined as:

where pi is the posterior probability of the xi embedding sample being classified into
its ground-truth class yi , N is the number of training samples in the mini-batch
(i = 1, . . . ,N), K is the number of classes (k = 1, . . . ,K), and fk is the output of the last
linear classification layer with weight matrix W ∈ R

K×d (the bias is set to zero for sim-
plicity). For each input xi , the output corresponding to class k is computed as:

with θk ,i being the angle between the vectors wk and xi . If we enforce that �wk� = 1
through L2 normalization, and �xi� = s by using a tunable scale hyperparameter, the
posterior probability only depends on the cosine of the angle θk ,i . This results in the nor-
malized softmax loss (NSL), defined as:

The feature embeddings learned by NSL are angularly distributed, but they are not nec-
essarily more discriminative than the ones learned by softmax loss. In order to control
the classification boundaries, two variants of the NSL, the angular softmax (A-Softmax)
loss [55] and the large margin cosine loss (LMCL) [56], introduce a margin hyperpa-
rameter (m ≥ 0). The decision margin in LMCL is defined in cosine space rather than in
angle space, which proved to be more beneficial when learning the classification bound-
aries [56]. This is therefore the loss function we adopted to optimize our neural network
models, and is formally defined as:

(1)Lsoftmax = −
1

N

N
∑

i=1

log pi = −
1

N

N
∑

i=1

log
efyi

∑K
k=1 e

fk
,

(2)fk = w
T
k xi = �wk��xi� cos(θk ,i),

(3)Lns = −
1

N

N
∑

i=1

log
es cos(θyi ,i)

∑K
k=1 e

s cos(θk ,i)
.

(4)Llmc = −
1

N

N
∑

i=1

log
es(cos(θyi ,i)−m)

es(cos(θyi ,i)−m) +
∑

k �=yi
es cos(θk ,i)

,

Page 9 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

subject to cos(θk ,i) = ŵ
T
k x̂i , where ŵk and x̂i are the L2 normalized vectors

(ŵk = wk/�wk� and x̂i = xi/�xi�).
As stated in the original paper [56], by L2-normalizing the embedding vectors xi , we

enforce them to be distributed on the surface of a d-dimensional hypersphere. Thus,
the scaling hyperparameter s controls the radius of such hypersphere and its value
increases with the number of classes. The margin hyperparameter m relates to the
capacity of learning more discriminative embeddings. Possible values are in the range
m ∈ [0, K

K−1) , although high values close to the upper-bound could cause failures in
convergence. Having this in mind, we tuned the scale s and margin m hyperparam-
eters for each neural network model through cross-validation.

Thomson‑derived hyperspherical prototypes

We hypothesize that by providing a non-trainable matrix W ∈ R
K×d to the classifica-

tion layer we can ease the training process. Such matrix contains K pre-defined proto-
type vectors representing each fold class, W = {w1, . . . ,wK } . Thus, we can shape the
embedding space to be representative of the protein folds, and so extract more mean-
ingful fold-related embeddings for each protein during the training stage (Fig. 1c).
The use of such prototype networks was first proposed in [58].

Optimal distribution of prototypes

We argue that the optimal configuration of the K prototype vectors is that which pro-
vides maximal separation in the angular space. This can be achieved by placing the K
points equidistant on the surface of a d-dimensional hypersphere, so wk ∈ S

d−1 , as
shown in Fig. 1b. The Thomson problem [57] addresses this by studying the distribu-
tion of K charged particles on the surface of a unit 3D-sphere. The minimum energy
configuration can be optimized by measuring the Coulomb’s law. When using simpli-
fied units for electron charges and Coulomb’s constant, the formula for a pair of elec-
trons reduces to Eij = 1/rij , relying only on the distance (rij) between the two points.

This can be extended to points located on the surface of a hypersphere of d dimen-
sions and computed for all possible pairs of points [67]. We could therefore optimize
the distribution of our wk prototype vectors by minimizing the generalized Thomson
loss (THL), defined as:

The hyperparameter � controls the weight of the norm constraint. Note that the Thom-
son loss uses the Euclidean distance between points, which is affected by the norm of
each vector, while the cosine similarity is more adequate to measure the angular separa-
tion (independent of the norm). In order to remove the norm constraint from the loss
function, we propose to directly maximize the Euclidean distance of the projected (L2
-normalized) vectors. Thus, we can remove the hyperparameter � from equation (5),
obtaining the following Thomson loss (THL–sum):

(5)Lth =

K
∑

k=1

k−1
∑

j=1

1
∥

∥wk − wj

∥

∥

2

2

+
�

2

K
∑

k=1

(�wk�
2 − 1)2.

Page 10 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

Alternatively, we can instead minimize the maximum cosine similarity computed for
each prototype vector [58], using the following loss function (THL–maxcos):

Maximally separated prototype vectors are obtained by means of gradient descent over
the proposed loss function (either THL–sum or THL–maxcos), where it must be noted
that all possible pairs of points are taken to perform a single iteration step.

Initial prototype vectors

As initial matrix of prototypes we can consider a set of K Gaussian random variables
of dimension d, Wrandom . However, we found that the learned classification matrix
from a model previously trained with the softmax cross-entropy loss (Fig. 1a), Wsoftmax ,
provides better results. Unlike Wrandom , the matrix Wsoftmax has been trained to clas-
sify protein domains into folds, somehow preserving the arrangement of the structural
classes within the learned space. To show this, we measured the intra- and inter-struc-
tural class prototype separation, as well as the angular Fisher score (AFS) [55]. Further
details can be found in Additional file 1: S2.

Pairwise similarity scores

Cosine similarity measures

The FoldHSphere method (Fig. 1d) uses the hyperspherical embeddings extracted from
our neural network model to compute a fold similarity measure between each pair of
protein domains. Following previous works [43, 48], we used the cosine similarity
between two embedding vectors [xi, xj] ∈ R

d as metric, computed as:

which is a measure of angular separation (in the range [−1, 1]) and independent of the
norm of each embedding vector.

Random forest enhanced scores

To obtain an improved fold similarity score (FoldHSpherePro in Fig. 1d), we trained a
random forest (RF) model using our cosine similarity score along with the 84 pairwise
similarity measures from [33, 34] and the DeepFR cosine similarity [43]. Thus, each
input vector is of size 86 and corresponds to a pair of protein domains. The RF model
uses this information to determine whether the domains in such a pair share the same
fold class (binary classification). We trained and evaluated the RF models in a 10-stage
cross-validation setting for the LINDAHL and LINDAHL_1.75 test sets independently.
The random forest models used 500 decision trees each as in [43, 48].

(6)Lth_sum =

K
∑

k=1

k−1
∑

j=1

∥

∥

∥

∥

∥

wk

�wk�
−

wj
∥

∥wj

∥

∥

∥

∥

∥

∥

∥

−2

2

.

(7)Lth_maxcos =
1

K

K
∑

k=1

max
j �=k

(

wk · wj

�wk�
∥

∥wj

∥

∥

)

.

(8)cos(xi, xj) =
xi · xj

�xi�
∥

∥xj

∥

∥

,

Page 11 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

Evaluation

Three‑level rank performance accuracy

As originally proposed in [3], we evaluated the test protein domains at three levels
of increasing difficulty—family, superfamily and fold. At each level, we differentiated
between positive and negative pairs of domains. A negative pair contains two protein
domains from different fold classes, while in a positive pair both domains are from
the same fold class. Each level includes all the negative pairs, while positive pairs are
selected according to the SCOP hierarchy [7]. That is, the family level contains pairs
of domains that share the same family class, and therefore the same superfamily and
fold classes. At the superfamily level, the domains in each pair share the same super-
family class—and therefore the same fold—but not the same family. Finally, domains
in positive pairs at the fold level only share the same fold class, but neither share the
same family nor superfamily.

At each of these levels, for every individual protein domain (query) we ranked the
rest of domains (templates) according to their similarity scores. These can be either
cosine similarities or random forest output scores. Then, we assigned the fold class
of the most similar template to the query and computed the ratio of hits—top 1 accu-
racy. We also obtained the ratio of finding the correct fold class within the 5 first-
ranked templates—top 5 accuracy. It must be noted that, instead of using the training
set as the search database, in this evaluation we aim to find template domains inside
the test set itself (either LINDAHL or LINDAHL_1.75).

In order to measure the statistical significance of our top 1 and top 5 accuracy
results, we also provide standard errors estimated as the standard deviation of 1000
bootstrap samples. To do so, we sampled with replacement from the set of individual
protein domains that are tested at each level (555, 434 and 321 domains respectively
in the LINDAHL dataset). Then, for each sampled set we selected all negative pairs
and positive pairs corresponding to the specific level, and proceeded with the evalua-
tion as before.

Fold‑level LINDAHL cross‑validation evaluation

In order to compare with some recent methods [35–41, 44–46] we also provide
results on a fold-level 2-stage cross-validation setting on the LINDAHL test set [22].
Here, the 321 protein domains which form positive pairs at the fold level are sepa-
rated into two subsets LE_a and LE_b, with 159 and 162 domains each. Note that the
rest of domains within LINDAHL (up to 976) are not considered during this evalua-
tion. When evaluating the protein domains in each subset (e.g. LE_a), the domains in
the other subset (LE_b) act as templates for ranking. Thus, the random forest models
are trained using pairs of protein domains from one subset, whereas the evaluation is
performed on the other one. In this evaluation, we report the averaged performance
accuracy over both cross-validation subsets.

Page 12 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

Results

Learning fold‑related embeddings with LMCL

We first assessed the performance of the different neural network models trained
either with the softmax loss (1) or the LMCL (4) (see Fig. 1a), by cross-validation
over the SCOPe 2.06 training set. For the softmax loss, we used the sigmoid activa-
tion in the embedding layer (first FC layer in Fig. 2c), so that we can compare with the
CNN-GRU and CNN-BGRU models from [48]. Then, for each model trained with the
LMCL function, we tuned the scale and margin hyperparameters through cross-val-
idation. We considered two values for the scale s = {30, 50} and margins in the range
m = [0.1, 0.9] . Here we tested two activation functions at the embedding layer: sig-
moid as well as hyperbolic tangent (tanh). We argue that having negative and positive
values ranging from −1 to 1 in the embedding vector (tanh activation) would better
exploit the hyperspherical space than having only positive values (sigmoid activation,
range [0, 1]).

The cross-validation fold classification accuracy on the training set for the differ-
ent models and loss functions is shown in Fig. 3. When using softmax loss, we can
observe that the models applying residual convolutions (ResCNN-GRU and ResCNN-
BGRU) perform better at fold classification than their counterparts (CNN-GRU and

Fig. 3 Cross‑validation fold classification accuracy (%) results for different LMCL margins and scales
s = {30, 50} , using the SCOPe 2.06 training set. The results are provided separately for each neural network
model: CNN‑GRU, CNN‑BGRU, ResCNN‑GRU and ResCNN‑BGRU, trained using different combinations
of activation function (in the embedding layer) and loss function. These are: softmax loss with sigmoid
activation (dash‑dotted horizontal line), LMCL with sigmoid activation (blue lines), LMCL with tanh activation
(magenta lines) and Thomson LMCL with tanh activation (green lines). For the LMCL and Thomson LMCL
results, solid lines and dashed lines correspond to scale values 30 and 50, respectively

Page 13 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

CNN-BGRU). We also observe that the tanh activation function yields better results
than the sigmoid activation for all tested margin values in the LMCL function. In this
case, the scale value s = 30 outperforms s = 50 for both activation functions. As for the
margin, larger values seem to further benefit models applying bidirectional GRU (CNN-
BGRU and ResCNN-BGRU), suggesting that these models have a higher discrimina-
tive capacity. The optimal LMCL hyperparameters for each model are summarized in
Table 1a.

In Table 2 we provide the fold recognition accuracy results on the LINDAHL test
set (at the family, superfamily and fold levels), when using the cosine similarity (8)
as ranking metric. Here, we used the optimal LMCL hyperparameters to train each
model on the whole training set, from which we extracted the fold-related embed-
dings. Table 2a shows that the learned embeddings from the ResCNN-GRU and

Table 1 Optimal set of hyperparameters for the LMCL function

The scale and margin hyperparameters are provided for each neural network model and two approaches: (a) training the
last classification layer end‑to‑end, (b) using the fixed prototype matrix by minimizing the Thomson loss THL–sum. We also
include here the optimal iteration from the Thomson algorithm

Model (a) LMCL (b) Thomson LMCL

Scale Margin Iter THL‑sum Scale Margin

CNN‑GRU 30 0.25 1130 30 0.25

CNN‑BGRU 30 0.55 1172 30 0.45

ResCNN‑GRU 30 0.50 1181 30 0.55

ResCNN‑BGRU 30 0.60 1020 30 0.60

Table 2 Effect of model architecture and loss function choice on FoldHSphere performance using
the LINDAHL dataset

The fold recognition accuracy (%) results are provided at the family, superfamily and fold levels, considering both the top
1 and top 5 ranked templates. We compare the CNN‑GRU, CNN‑BGRU, ResCNN‑GRU and ResCNN‑BGRU neural network
models, trained with different loss functions: (a) Softmax loss with sigmoid activation, (b) LMCL with tanh activation,
and (c) Thomson LMCL with tanh activation. Optimal LMCL hyperparameters are in Table 1. Boldface indicates the best
performance per loss function. For each accuracy result, we also provide in parentheses the standard error estimated using
1000 bootstraps

Model Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

(a) Softmax loss

CNN‑GRU [48] 68.6 (1.94) 89.2 (1.37) 56.2 (2.34) 77.4 (1.96) 56.7 (2.82) 74.1 (2.46)

CNN‑BGRU [48] 71.0 (1.92) 87.7 (1.42) 60.1 (2.30) 77.2 (2.02) 58.3 (2.83) 78.8 (2.27)

ResCNN‑GRU 72.6 (1.87) 90.3 (1.24) 59.4 (2.32) 77.0 (2.00) 58.9 (2.88) 75.1 (2.44)

ResCNN‑BGRU 76.8 (1.78) 91.2 (1.23) 65.0 (2.29) 82.0 (1.84) 59.5 (2.79) 76.6 (2.35)

(b) LMCL

CNN‑GRU 76.6 (1.80) 90.8 (1.25) 64.7 (2.21) 80.2 (1.90) 65.7 (2.69) 79.8 (2.22)

CNN‑BGRU 76.2 (1.79) 89.4 (1.31) 70.5 (2.12) 83.2 (1.80) 72.0 (2.48) 81.0 (2.21)

ResCNN‑GRU 75.7 (1.77) 89.7 (1.25) 66.4 (2.29) 81.1 (1.86) 67.6 (2.63) 80.1 (2.23)

ResCNN‑BGRU 75.1 (1.84) 89.5 (1.30) 69.8 (2.25) 85.3 (1.67) 74.1 (2.42) 82.2 (2.12)

(c) Thomson LMCL

CNN‑GRU 80.0 (1.73) 90.6 (1.24) 66.8 (2.23) 80.2 (1.94) 66.0 (2.62) 80.1 (2.22)

CNN‑BGRU 77.5 (1.75) 91.7 (1.19) 69.8 (2.09) 85.3 (1.64) 72.6 (2.48) 82.2 (2.14)

ResCNN‑GRU 76.9 (1.78) 89.5 (1.28) 69.1 (2.20) 82.9 (1.77) 69.5 (2.57) 79.4 (2.26)

ResCNN‑BGRU 76.4 (1.77) 89.2 (1.30) 72.8 (2.15) 86.4 (1.63) 75.1 (2.47) 84.1 (2.12)

Page 14 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

ResCNN-BGRU models using softmax loss yield slightly better fold recognition
performance at the three levels than the CNN-GRU and CNN-BGRU models. On
the other hand, in Table 2b we observe a large performance boost at all levels when
introducing the LMCL as loss function in comparison with softmax loss. At the fold
level, we achieve performance gains of 9 or more percentage points for most of the
models. More precisely, the CNN-BGRU and ResCNN-BGRU models stand out for
their remarkable results at the fold level, with 72.0% and 74.1% top 1 accuracy values
respectively.

Enhancing embedding discrimination power through Thomson‑derived hyperspherical

prototypes

We then tested the performance of our neural network models trained with a fixed
matrix of prototypes W ∈ R

K×d in the classification layer (Fig. 1c), being the number
of fold classes K = 1154 and embedding dimension d = 512 . The fold prototype vectors
have been maximally separated in the angular space by minimizing the THL–sum (6),
using the Wsoftmax from each model as initial matrix (Fig. 1b). A detailed study compar-
ing the performance of the two variants for the Thomson loss (THL–sum and THL–
maxcos) and two options for the initial matrix (Wsoftmax and Wrandom) can be found in
Additional file 1: S2.

Given the optimized matrix of prototypes for each model, we tuned the LMCL scale
and margin values by cross-validation over the SCOPe 2.06 training set, considering the
tanh activation in the embedding layer. Results from this tuning are also shown in Fig. 3.
As can be observed, the Thomson LMCL achieves better fold classification results,
specially for the models applying residual convolutions, and particularly in the case of
ResCNN-BGRU.

Finally, we set the optimal LMCL hyperparameters for each model (Table 1b) and
trained them to extract fold-related hyperspherical embeddings. The fold recognition
LINDAHL results in Table 2c show that, at the fold level, all the models benefit from the
Thomson LMCL. Our best model, the ResCNN-BGRU, achieves top 1 accuracy values
of 76.4%, 72.8% and 75.1% at the family, superfamily and fold levels, and top 5 accuracy
of 89.2%, 86.4% and 84.1% at each level, respectively.

Analysis of the hyperspherical embeddings

The fold recognition results of our FoldHSphere method using the ResCNN-BGRU
model trained with hyperspherical prototypes reflect the effectiveness and discrimi-
nation capability of the learned hyperspherical embeddings. To further illustrate this,
we analyzed the 512-dimensional embeddings extracted from the 976 protein domains
in the LINDAHL dataset. Figure 4 compares the histogram of cosine similarities com-
puted between each pair of embeddings for the softmax, LMCL and Thomson LMCL
options. For each one, we plotted separately the histogram of negative pairs (different
fold classes) and positive pairs (same fold class). It can be seen that the Thomson LMCL
provides a better separation between positive and negative pairs, with a small overlap
between the two groups. This directly contributes to a better performance in the pair-
wise fold recognition task. Additionally, we provide a two-dimensional visualization of

Page 15 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

the embedding space learned by the three loss functions in Additional file 1: Fig. S6, as
well as a dendroheatmap of the hyperspherical embeddings obtained by the Thomson
LMCL approach in Additional file 1: Fig. S7.

Fig. 4 Cosine similarity probability histograms computed for all unique pairs within the LINDAHL test set
(976 domains), grouping the negative pairs in blue color, and positive pairs in orange. To compute the cosine
similarity scores, we used the embeddings extracted from the ResCNN‑BGRU model trained with (a) softmax
loss with sigmoid activation, (b) LMCL with tanh activation, or (c) Thomson LMCL with tanh activation

Page 16 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

FoldHSphere and FoldHSpherePro pairwise fold recognition performance results

Finally, we compare the results of our FoldHSphere and FoldHSpherePro approaches
with several methods from the state-of-the-art, considering both the LINDAHL
and LINDAHL_1.75 test sets. The FoldHSphere results correspond to those from the
ResCNN-BGRU model trained with hyperspherical prototypes (Table 2). The FoldH-
SpherePro results were obtained after conducting a 10-stage cross-validation on a ran-
dom forest model using the FoldHSphere scores along with other pre-computed protein
pairwise similarities as inputs.

The three-level LINDAHL fold recognition results are shown in Table 3. We
can see that our FoldHSphere method yields better top 1 accuracy values, above
12 percentage points at the superfamily and fold levels compared to the state-of-
the-art method CNN-BGRU [48]. At the family level, we outperform all the deep
learning methods. However, the alignment methods and approaches relying on
pairwise similarities provide better results at this level. We include such informa-
tion in the FoldHSpherePro method, which can be compared to DeepFRpro [43]
and CNN-BGRU-RF+ [48] as all of them apply the same random forest ensemble
approach. Our method provides a significant performance boost, obtaining remark-
able top 1 accuracy results, with values of 79.0% at the superfamily level and 81.3%
at the fold level. In terms of top 5 accuracy values, FoldHSpherePro also achieves
the best performance, providing 89.2% and 90.3% at superfamily and fold levels
respectively. On the other hand, at the family level we obtain on par results with
the CNN-BGRU-RF+ method, being only outperformed by alignment and threading

Table 3 Three‑level LINDAHL fold recognition results of FoldHSphere and FoldHSpherePro in
comparison with the state‑of‑the‑art

The accuracy (%) results are provided at the family, superfamily and fold levels, considering both the top 1 and top 5 ranked
templates. Boldface indicates best performance

Method Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PSI‑BLAST [3] 71.2 72.3 27.4 27.9 4.0 4.7

HHpred [14] 82.9 87.1 58.0 70.0 25.2 39.4

RAPTOR [14] 86.6 89.3 56.3 69.0 38.2 58.7

BoostThreader [14] 86.5 90.5 66.1 76.4 42.6 57.4

SPARKS‑X [15] 84.1 90.3 59.0 76.3 45.2 67.0

FOLDpro [34] 85.0 89.9 55.0 70.0 26.5 48.3

RF‑Fold [34] 84.5 91.5 63.4 79.3 40.8 58.3

DN‑Fold [34] 84.5 91.2 61.5 76.5 33.6 60.7

RFDN‑Fold [34] 84.7 91.5 65.7 78.8 37.7 61.7

MRFalign [43] 85.2 90.8 72.4 80.9 38.6 56.7

CEthreader [48] 76.6 87.2 69.4 81.8 52.3 70.4

DeepFR (s2) [43] 65.4 83.4 51.4 67.1 56.1 70.1

DeepFRpro (s2) [43] 83.1 92.3 69.6 82.5 66.0 78.8

VGGfold [47] 67.9 84.3 53.2 68.4 58.3 73.5

CNN‑BGRU [48] 71.0 87.7 60.1 77.2 58.3 78.8

CNN‑BGRU‑RF+ [48] 85.4 93.5 73.3 87.8 76.3 85.7

FoldHSphere 76.4 89.2 72.8 86.4 75.1 84.1

FoldHSpherePro 85.2 93.0 79.0 89.2 81.3 90.3

Page 17 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

methods. This suggests that the performance of deep learning approaches might be
saturating at this level. Similar conclusions can be drawn when evaluating the LIN-
DAHL_1.75 test set (Table 4). Here we only compare to the DeepFR and CNN-BGRU
methods, as they have been previously tested on such a dataset. The results show
that our FoldHSpherePro approach also performs the best in this dataset, yielding
top 1 accuracy values of 87.9%, 81.2% and 80.9% at the three levels respectively.

Figure 5 includes the evaluation results of the fold-level 2-stage cross-validation
setting on the LINDAHL dataset (over subsets LE_a and LE_b). In this case, we only
compare to ensemble methods that have been assessed with such a methodology,
namely TA-fold [35], the multi-view learning frameworks MT-fold [36], EMfold [37]
and MLDH-Fold [38], the learning to rank approaches Fold-LTR-TCP [39], FoldRec-
C2C [40] and ProtFold-DFG [41], and the deep learning methods DeepSVM-fold
[44], MotifCNN-fold [45] and SelfAT-Fold [46] (residue and motif options). The
results in Fig. 5 show that our FoldHSpherePro method outperforms all of them
yielding an accuracy of 85.6%.

Table 4 Three‑level LINDAHL_1.75 fold recognition results of FoldHSphere and FoldHSpherePro in
comparison with the state‑of‑the‑art

The accuracy (%) results are provided at the family, superfamily and fold levels, considering both the top 1 and top 5 ranked
templates. Boldface indicates best performance

Method Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

DeepFR (s2) [48] 72.2 85.6 46.6 64.3 50.8 67.1

DeepFRpro (s2) [48] 87.0 93.8 71.9 82.6 63.5 77.2

CNN‑BGRU [48] 73.1 88.3 60.1 74.9 60.1 78.7

CNN‑BGRU‑RF+ [48] 88.5 94.3 74.0 86.3 71.1 86.8

FoldHSphere 77.9 89.0 72.4 87.0 75.8 84.3

FoldHSpherePro 87.9 94.1 81.2 90.0 80.9 88.5

Fig. 5 Fold‑level LINDAHL fold recognition accuracy (%) results of our proposed FoldHSpherePro method in
comparison with other ensemble methods from the state‑of‑the‑art. The results are averaged over the two
cross‑validated subsets (LE_a and LE_b)

Page 18 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

Discussion
In order to learn an embedding space that is representative of the protein folds, we have
proposed a two-stage learning procedure. Our intuition here is that pre-defining the struc-
ture of the embedding space through fixed fold prototypes would ease the learning pro-
cess for a neural network that embeds individual proteins into this space. The result of our
experiments indicate that this intuition is well founded.

There are two important considerations when pre-defining the embedding space in our
methodology: the initialization of the fold prototypes and how to obtain a suitable spatial
distribution of these prototypes in the embedding space. Here we find that rather than ini-
tializing with random vectors in the hyperspherical space, better results are obtained by
using the weight matrix from the classification layer of a neural network previously trained
to map proteins to fold classes. Then, by maximally separating the weight vectors in this
matrix in hyperspherical space, we obtain an effective configuration of the fold prototypes.
We believe one of the main reasons is that such a matrix preserves the arrangement of the
structural classes in the learned space, grouping related fold classes together and pushing
them away from folds of unrelated structural classes (see Additional file 1: S2).

Our experimental results in Table 2 display a large performance boost at the superfamily
and fold levels when comparing our methodology (using LMCL) to previous approaches
that use the softmax loss. Our initial intuition for the lower performance of the state-of-
the-art at these levels is that since evaluation is done for pairs of proteins, it is possible that
two proteins from different folds lying near the fold classification boundary are closer to
each other than they are to proteins from their respective folds. This informs our choice for
using the LMCL as loss function, which introduces a margin between fold classes to avoid
these cases.

A further performance gain is seen when combining the LMCL margin with the pre-
trained fold prototypes (Table 2c). Here we use the fold prototypes optimized in the pre-
vious stage as a fixed (non-trainable) classification matrix for each neural network. We
believe that the additional performance improvement is due to the simplified learning pro-
cess that results from having this pre-defined organization of the folds in the embedding
space, which is especially useful with limited and unbalanced training data. Stated differ-
ently, our models can focus on projecting protein embeddings closest to the corresponding
fold prototypes without simultaneously learning where these prototypes should be.

We also observe from Fig. 3 and Table 2 that the models applying residual convolutions
benefit more from the use of pre-trained prototypes compared to only optimizing with
LMCL. This suggests the residual connections might extract more robust features for each
amino acid, which seems to be helpful for the recurrent layer to obtain a better fixed-size
representation for the whole protein domain. In particular, our ResCNN-BGRU architec-
ture provides the best results, which can be attributed to its greater flexibility compared to
the other tested architectures.

Conclusion
In this work we have proposed the FoldHSphere method to tackle the protein fold rec-
ognition problem. We described a neural network training procedure to learn fold-
representative hyperspherical embeddings for the protein domains. The embeddings
were extracted from a residual-convolutional and recurrent network architecture

Page 19 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

(ResCNN-BGRU), which is trained by minimizing the angular large margin cosine
loss (LMCL) around pre-defined prototypes for the fold classes. We used a Thomson-
based loss function to maximally separate the fold prototypes in hyperspherical space.
This way, our embeddings proved to be more effective at identifying the fold class of
each protein domain by pairwise comparison. When evaluating the LINDAHL dataset,
FoldHSphere alone provided a remarkable performance boost at the superfamily and
fold levels, being competitive even with previous ensemble methods. Furthermore, our
FoldHSpherePro ensemble method significantly improved the state-of-the-art results,
outperforming the best method CNN-BGRU-RF+ at these levels. Therefore, due to their
discrimination capability, the hyperspherical embeddings could be used to find template
proteins even when the amino acid sequence similarities are low and thus advance in the
template-based modeling of protein structures.

As future work, we will explore the application of recently proposed embeddings from
language models pre-trained using millions of unannotated protein sequences for the
protein fold recognition task, as they have shown promising results in several down-
stream tasks, such as protein secondary structure prediction and subcellular localization
prediction [68–70].

Abbreviations
BGRU : Bidirectional gated‑recurrent unit; CNN: Convolutional neural network; FC: Fully‑connected; GRU : Gated‑recurrent
unit; LMCL: Large margin cosine loss; MSA: Multiple sequence alignment; NSL: Normalized softmax loss; PDB: Protein
Data Bank; PSI‑BLAST: Position‑specific iterative basic local alignment search tool; PSSM: Position‑specific scoring matrix;
ResCNN: Residual‑convolutional neural network; RF: Random forest; RNN: Recurrent neural network; SCOP: Structural
Classification of Proteins; THL: Thomson loss.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 021‑ 04419‑7.

Additional file 1. Supplementary file 1.

Acknowledgements
Amelia would like to thank Chirag Raman for his valuable input and feedback provided throughout the project.

Authors’ contributions
AVM proposed the use of LMCL to learn more discriminative protein embeddings. AG proposed to apply residual‑
convolutions in the network architecture and came up with the idea of prototype vectors for the fold classes. AVM
implemented the system and designed the experiments with the guidance of AG. AVM wrote the manuscript text and
created the figures. AG and VS supervised the project, participated in the discussions and reviewed the manuscript. All
authors read and approved the final manuscript.

Funding
This work has been supported by the Spanish Ministry of Science, Innovation and Universities Project No.
PID2019‑104206GB‑I00 / SRA (State Research Agency) / 10.13039/501100011033, as well as the FPI Grant
BES‑2017‑079792.

Availability of data and materials
Source code, data and trained models can be found at http:// sigmat. ugr. es/ ~amelia/ FoldH Sphere.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

https://doi.org/10.1186/s12859-021-04419-7
http://sigmat.ugr.es/%7eamelia/FoldHSphere

Page 20 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

Received: 12 May 2021 Accepted: 29 September 2021

References
 1. Chothia C, Finkelstein AV. The classification and origins of protein folding patterns. Annu Rev Biochem.

1990;59(1):1007–35.
 2. Jones DT, Taylor WR, Thornton JM. A new approach to protein fold recognition. Nature. 1992;358(6381):86.
 3. Lindahl E, Elofsson A. Identification of related proteins on family, superfamily and fold level. J Mol Biol.

2000;295(3):613–25.
 4. Schaeffer RD, Daggett V. Protein folds and protein folding. Protein Eng Des Sel. 2010;24(1–2):11–9.
 5. Kolodny R, Pereyaslavets L, Samson AO, Levitt M. On the universe of protein folds. Annu Rev Biophys. 2013;42:559–82.
 6. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank.

Nucleic Acids Res. 2000;28(1):235–42.
 7. Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural classification of proteins database for the investigation

of sequences and structures. J Mol Biol. 1995;247(4):536–40.
 8. Fox NK, Brenner SE, Chandonia J‑M. SCOPe: structural classification of proteins‑extended, integrating SCOP and ASTRAL

data and classification of new structures. Nucleic Acids Res. 2014;42(D1):304–9.
 9. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM. CATH—a hierarchic classification of protein

domain structures. Structure. 1997;5(8):1093–109.
 10. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
 11. Söding J. Protein homology detection by HMM–HMM comparison. Bioinformatics. 2005;21(7):951–60.
 12. Ma J, Wang S, Wang Z, Xu J. MRFalign: protein homology detection through alignment of Markov random fields. PLoS

Comput Biol. 2014;10(3):1003500.
 13. Xu J, Li M, Kim D, Xu Y. RAPTOR: optimal protein threading by linear programming. J Bioinform Comput Biol.

2003;1(1):95–117.
 14. Peng J, Xu J. Boosting protein threading accuracy. In: Annual international conference on research in computational

molecular biology; 2009. pp. 31–45.
 15. Yang Y, Faraggi E, Zhao H, Zhou Y. Improving protein fold recognition and template‑based modeling by employing

probabilistic‑based matching between predicted one‑dimensional structural properties of query and corresponding
native properties of templates. Bioinformatics. 2011;27(15):2076–82.

 16. Ma J, Peng J, Wang S, Xu J. A conditional neural fields model for protein threading. Bioinformatics. 2012;28(12):59–66.
 17. Morales‑Cordovilla JA, Sanchez V, Ratajczak M. Protein alignment based on higher order conditional random fields for

template‑based modeling. PLoS ONE. 2018;13(6):0197912.
 18. Buchan DWA, Jones DT. EigenTHREADER: analogous protein fold recognition by efficient contact map threading. Bioin‑

formatics. 2017;33(17):2684–90.
 19. Zheng W, Wuyun Q, Li Y, Mortuza S, Zhang C, Pearce R, Ruan J, Zhang Y. Detecting distant‑homology protein structures

by aligning deep neural‑network based contact maps. PLoS Comput Biol. 2019;15(10):1–27.
 20. Wei L, Zou Q. Recent progress in machine learning‑based methods for protein fold recognition. Int J Mol Sci.

2016;17(12):2118.
 21. Shen H‑B, Chou K‑C. Ensemble classifier for protein fold pattern recognition. Bioinformatics. 2006;22(14):1717–22.
 22. Dong Q, Zhou S, Guan J. A new taxonomy‑based protein fold recognition approach based on autocross‑covariance

transformation. Bioinformatics. 2009;25(20):2655–62.
 23. Yang J‑Y, Chen X. Improving taxonomy‑based protein fold recognition by using global and local features. Proteins Struct

Funct Bioinform. 2011;79(7):2053–64.
 24. Dehzangi A, Paliwal KK, Lyons J, Sharma A, Sattar A. A segmentation‑based method to extract structural and evolution‑

ary features for protein fold recognition. IEEE/ACM Trans Comput Biol Bioinform. 2014;11(3):510–9.
 25. Paliwal KK, Sharma A, Lyons J, Dehzangi A. Improving protein fold recognition using the amalgamation of evolutionary‑

based and structural based information. BMC Bioinform. 2014;15(16):1–9.
 26. Lyons J, Dehzangi A, Heffernan R, Yang Y, Zhou Y, Sharma A, Paliwal K. Advancing the accuracy of protein fold recogni‑

tion by utilizing profiles from hidden Markov models. IEEE Trans Nanobiosci. 2015;14(7):761–72.
 27. Chen D, Tian X, Zhou B, Gao J. ProFold: protein fold classification with additional structural features and a novel ensem‑

ble classifier. BioMed Res Int. 2016;2016:1–10.
 28. Ibrahim W, Abadeh MS. Protein fold recognition using deep kernelized extreme learning machine and linear discrimi‑

nant analysis. Neural Comput Appl. 2019;31(8):4201–14.
 29. Bankapur S, Patil N. An enhanced protein fold recognition for low similarity datasets using convolutional and skip‑gram

features with deep neural network. IEEE Trans NanoBiosci. 2020;20(1):42–9.
 30. Elhefnawy W, Li M, Wang J, Li Y. DeepFrag‑k: a fragment‑based deep learning approach for protein fold recognition. BMC

Bioinform. 2020;21(6):1–12.
 31. Stapor, K., Roterman‑Konieczna, I., Fabian, P.: Machine learning methods for the protein fold recognition problem. In:

Machine learning paradigms, vol. 149. Springer; 2019. pp. 101–27.
 32. Cheng J, Baldi P. A machine learning information retrieval approach to protein fold recognition. Bioinformatics.

2006;22(12):1456–63.
 33. Jo T, Cheng J. Improving protein fold recognition by random forest. BMC Bioinform. 2014;15(11):14.
 34. Jo T, Hou J, Eickholt J, Cheng J. Improving protein fold recognition by deep learning networks. Sci Rep. 2015;5:17573.
 35. Xia J, Peng Z, Qi D, Mu H, Yang J. An ensemble approach to protein fold classification by integration of template‑based

assignment and support vector machine classifier. Bioinformatics. 2016;33(6):863–70.
 36. Yan K, Fang X, Xu Y, Liu B. Protein fold recognition based on multi‑view modeling. Bioinformatics. 2019;35(17):2982–90.

Page 21 of 21Villegas‑Morcillo et al. BMC Bioinformatics (2021) 22:490

 37. Yan K, An Yong Xu JW, Liu B. Protein fold recognition based on auto‑weighted multi‑view graph embedding learning
model. IEEE/ACM Trans Comput Biol Bioinform. 2020;6:66.

 38. Yan K, Wen J, Xu Y, Liu B. MLDH‑Fold: protein fold recognition based on multi‑view low‑rank modeling. Neurocomput‑
ing. 2021;421:127–39.

 39. Liu B, Zhu Y, Yan K. Fold‑LTR‑TCP: protein fold recognition based on triadic closure principle. Brief Bioinform. 2019;6:66.
 40. Shao J, Yan K, Liu B. FoldRec‑C2C: protein fold recognition by combining cluster‑to‑cluster model and protein similarity

network. Brief Bioinform. 2020;6:66.
 41. Shao J, Liu B. ProtFold‑DFG: protein fold recognition by combining Directed Fusion Graph and PageRank algorithm. Brief

Bioinform. 2020;6:66.
 42. Hou J, Adhikari B, Cheng J. DeepSF: deep convolutional neural network for mapping protein sequences to folds. Bioin‑

formatics. 2018;34(8):1295–303.
 43. Zhu J, Zhang H, Li SC, Wang C, Kong L, Sun S, Zheng W‑M, Bu D. Improving protein fold recognition by extracting fold‑

specific features from predicted residue‑residue contacts. Bioinformatics. 2017;33(23):3749–57.
 44. Liu B, Li C‑C, Yan K. DeepSVM‑fold: protein fold recognition by combining support vector machines and pairwise

sequence similarity scores generated by deep learning networks. Brief Bioinform. 2019;6:66.
 45. Li C‑C, Liu B. MotifCNN‑fold: protein fold recognition based on fold‑specific features extracted by motif‑based convolu‑

tional neural networks. Brief Bioinform. 2019;6:66.
 46. Pang Y, Liu B. SelfAT‑Fold: protein fold recognition based on residue‑based and motif‑based self‑attention networks.

IEEE/ACM Trans Comput Biol Bioinform. 2020;6:66.
 47. Liu Y, Zhu Y‑H, Song X, Song J, Yu D‑J. Why can deep convolutional neural networks improve protein fold recognition? A

visual explanation by interpretation. Brief Bioinform. 2021;6:66.
 48. Villegas‑Morcillo A, Gomez AM, Morales‑Cordovilla JA, Sanchez V. Protein fold recognition from sequences using convo‑

lutional and recurrent neural networks. IEEE/ACM Trans Comput Biol Bioinform. 2020;6:66.
 49. Hochreiter S, Schmidhuber J. Long short‑term memory. Neural Comput. 1997;9(8):1735–80.
 50. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling;

2014. arXiv preprint arXiv: 1412. 3555.
 51. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. Adv

Neural Inf Process Syst. 2017;30:5998–6008.
 52. He K, Zhang X, Ren S, Su J. Deep residual learning for image recognition. In: IEEE conference on computer vision and

pattern recognition; 2016. pp. 770–8.
 53. Wen Y, Zhang K, Li Z, Qiao Y. A discriminative feature learning approach for deep face recognition. In: European confer‑

ence on computer vision (ECCV); 2016. pp. 499–515.
 54. Liu W, Wen Y, Yu Z, Yang M. Large‑margin softmax loss for convolutional neural networks. In: International conference on

machine learning (ICML), vol. 2; 2016. p. 7.
 55. Liu W, Wen Y, Yu Z, Li M, Raj B, Song L. SphereFace: deep hypersphere embedding for face recognition. In: Proceedings of

the IEEE conference on computer vision and pattern recognition (CVPR); 2017. pp. 212–20.
 56. Wang H, Wang Y, Zhou Z, Ji X, Gong D, Zhou J, Li Z, Liu W. CosFace: large margin cosine loss for deep face recognition. In:

Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR); 2018. pp. 5265–74.
 57. Thomson JJ. XXIV. On the structure of the atom: an investigation of the stability and periods of oscillation of a number of

corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory
of atomic structure. Lond Edinb Dublin Philos Mag J Sci. 1904;7(39):237–65.

 58. Mettes P, van der Pol E, Snoek CGM. Hyperspherical prototype networks. In: Advances in neural information processing
systems; 2019.

 59. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat
Biotechnol. 2017;35(11):1026–8.

 60. Li W, Godzik A. Cd‑hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioin‑
formatics. 2006;22(13):1658–9.

 61. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications.
BMC Bioinform. 2009;10(1):1–9.

 62. Magnan CN, Baldi P. SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent
accessibility using profiles, machine learning and structural similarity. Bioinformatics. 2014;30(18):2592–7.

 63. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In:
International conference on machine learning; 2015. pp. 448–56.

 64. Schuster M, Paliwal KK. Bidirectional recurrent neural networks. IEEE Trans Signal Process. 1997;45(11):2673–81.
 65. Kingma DP, Ba J. Adam: a method for stochastic optimization; 2014. arXiv preprint arXiv: 1412. 6980.
 66. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks

from overfitting. J Mach Learn Res. 2014;15(1):1929–58.
 67. Raman P, Yang J. Optimization on the surface of the (hyper)‑sphere; 2019. arXiv preprint arXiv: 1909. 06463.
 68. Heinzinger M, Elnaggar A, Wang Y, Dallago C, Nechaev D, Matthes F, Rost B. Modeling aspects of the language of life

through transfer‑learning protein sequences. BMC Bioinform. 2019;20(1):1–17.
 69. Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, Guo D, Ott M, Zitnick CL, Ma J, et al. Biological structure and function

emerge from scaling unsupervised learning to 250 million protein sequences. Proc Natl Acad Sci. 2021;118(15):66.
 70. Elnaggar A, Heinzinger M, Dallago C, Rehawi G, Yu W, Jones L, Gibbs T, Feher T, Angerer C, Steinegger M, Bhowmik D,

Rost B. ProtTrans: towards cracking the language of lifes code through self‑supervised deep learning and high perfor‑
mance computing. IEEE Trans Pattern Anal Mach Intell. 2021;66:1–16.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1909.06463

	FoldHSphere: deep hyperspherical embeddings for protein fold recognition
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Materials and methods
	Datasets
	Training dataset
	Benchmark datasets

	Protein residue-level feature representation
	Residual-convolutional and recurrent neural network
	Residual-convolutional part
	Recurrent part
	Fully-connected part

	Neural network model optimization
	Large margin cosine loss
	Thomson-derived hyperspherical prototypes
	Optimal distribution of prototypes
	Initial prototype vectors

	Pairwise similarity scores
	Cosine similarity measures
	Random forest enhanced scores

	Evaluation
	Three-level rank performance accuracy
	Fold-level LINDAHL cross-validation evaluation

	Results
	Learning fold-related embeddings with LMCL
	Enhancing embedding discrimination power through Thomson-derived hyperspherical prototypes
	Analysis of the hyperspherical embeddings
	FoldHSphere and FoldHSpherePro pairwise fold recognition performance results

	Discussion
	Conclusion
	Acknowledgements
	References

