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Background
Protein structure prediction given the amino acid sequence is a challenging problem in 
structural bioinformatics. One of the key steps in the template-based modelling (TBM) 
of protein structures is the recognition of the protein fold [1–5]. The goal is to predict the 
fold type of a protein domain by comparison with template structures from the Protein 
Data Bank (PDB) [6]. Solved structure domains from the PDB are classified into several 
levels according to structural and sequence similarities in databases as SCOP [7, 8] and 
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CATH [9]. The objective here is to identify proteins sharing the same fold class—with 
similar arrangement of structural elements but differing in the amino acid sequence.

Early computational approaches to recognizing proteins with similar structure and 
sequence (homology modelling) were based on sequence-to-sequence (BLAST [10]) or 
profile-to-profile (HHpred [11]) alignments, as well as Markov random fields (MRFA-
lign [12]). In addition, threading methods aim to recognize distant-homologous proteins 
with low similarity in sequence by using structural properties instead. These methods 
include RAPTOR [13], BoostThreader [14], SPARKS-X [15], conditional random field-
based CNFpred [16] and [17], and more recently the EigenTHREADER [18] and CEth-
reader [19] methods, which use predicted contact map information.

In general, the protein fold recognition methods as the ones described above are 
derived from the template-based structure prediction problem. Unlike these, in the 
taxonomy-based fold classification approaches [20] the protein sequences are directly 
mapped into fold classes. To this end, machine learning approaches such as FP-Pred 
[21], ACCFold [22], TAXFOLD [23–25], HMMFold [26], ProFold [27], and DKELM-
LDA [28], as well as the deep learning methods Conv-SXGbg-DeepFold [29] and 
DeepFrag-k [30], have been proposed to successfully classify into a pre-defined group 
of SCOP fold classes. However, the evaluated folds comprise a small set including only 
those folds with a higher amount of protein domains (27 or 30 folds), in contrast to the 
more than 1000 existing fold classes in the SCOP database.

Several machine learning algorithms have been also introduced for the protein fold 
recognition task [31]. First attempts treated the task as a binary classification problem 
to decide whether two protein domains belonged to the same fold. Different techniques 
were applied here, such as support vector machines (FOLDpro [32]), random for-
ests (RF-Fold [33]) and neural networks (DN-Fold [34]). Moreover, ensemble methods 
enhance the recognition performance by combining multiple protein feature representa-
tions and prediction techniques. Examples are TA-Fold [35] and the multi-view learning 
ensemble frameworks MT-fold [36], EMfold [37] and MLDH-Fold [38]. On the other 
hand, the learning to rank methods, such as Fold-LTR-TCP [39], FoldRec-C2C [40], and 
ProtFold-DFG [41], treat the problem as an information retrieval task and try to learn 
the relationship among proteins in the datasets.

Furthermore, deep learning-based methods have been recently proposed to identify 
the protein fold, such as DeepSF [42], DeepFR [43], DeepSVM-Fold [44], MotifCNN-
fold [45], SelfAT-Fold [46], VGGfold [47], and CNN-BGRU [48]. In these methods, a 
supervised neural network model is trained to classify the input protein domain into 
one of the possible fold classes. From the trained model, a fold-related embedding 
representation is extracted, which is then used to measure the similarity between 
each two protein domains. In this context, the learned embeddings constitute a 
d-dimensional space in which we can map high-dimensional protein representations 
such as evolutionary profiles [48] ( L× 20 , where L is the protein sequence length) or 
contact maps [43] ( L× L ). Moreover, these embeddings capture the fold information 
during training by placing inputs from the same fold close together in the embed-
ding space. The model architecture for protein fold recognition usually contains a 
convolutional neural network (CNN) alone or in combination with recurrent layers—
long-short term memory (LSTM) [49] or gated recurrent unit (GRU) [50] cells—or 
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self-attention layers [51]. Hence, in preceding works, most of the effort has been put 
into improving the neural network architectures and making them suitable to process 
different protein representations, such as predicted contact maps, evolutionary pro-
files or predicted secondary structure elements. In this work, we propose two archi-
tectures formed by several blocks of residual-convolutions [52] and a recurrent layer, 
which we name ResCNN-GRU and ResCNN-BGRU. Here, the suffix ‘BGRU’ refers to 
bidirectional GRU, while ‘GRU’ indicates the use of a unidirectional GRU. These two 
architectures are derived from our previous CNN-GRU and CNN-BGRU models [48], 
and can also process arbitrary length protein sequences represented by residue-level 
features.

However, unlike previous deep learning approaches, our main interest here is to 
improve the fold-related embedding vectors by modifying the neural network optimiza-
tion criterion. While the softmax cross-entropy loss is commonly used for multi-class 
classification problems, it lacks sufficient discriminative power for classification [53–
55]. In this regard, modifications on the loss function have been introduced, leading to 
improved functions such as the center loss [53], the large margin softmax (L-Softmax) 
loss [54], and the angular softmax (A-Softmax) loss [55]. Thus, in this work, we propose 
to minimize an angular-based loss function, namely the large margin cosine loss (LMCL) 
[56]. LMCL removes any vector norm dependencies by normalizing the input embed-
ding and class weight vectors in the classification layer and therefore distributes them 
angularly on a high-dimensional sphere—or hypersphere. The function also introduces 
a class boundary margin to enlarge the inter-class angular separation while reducing the 
intra-class separation for embeddings within the same fold class.

We further improve the training of our neural network model by minimizing the 
LMCL with a fixed weight matrix in the last classification layer. Such a matrix contains a 
pre-defined set fold class vectors—hyperspherical prototypes—that are maximally sepa-
rated on the surface of a hypersphere. To ensure maximum angular separation between 
prototypes, we draw inspiration from the well-known Thomson problem [57]. Its goal is 
to determine the minimum energy configuration of K charged particles on the surface of 
a unit sphere. By minimizing a Thomson-based loss function, extended to a hypersphere 
of arbitrary number of dimensions, we optimize the angular distribution of our proto-
type vectors. Here we pre-train the prototype matrix separately and keep it fixed during 
the optimization of our neural network model. It must be noted that, unlike conven-
tional transfer learning procedures in which the last layers of the network are fine-tuned, 
we pre-define the output embedding space given by a set of fold prototypes representing 
the cluster centroids for each fold class [58]. In this way, during training, the model is 
forced to learn protein embeddings clustered around the corresponding hyperspherical 
fold prototypes.

In summary, our main contribution is a training procedure that provides hyperspheri-
cal protein embeddings, learned by minimizing the angular LMCL around pre-defined 
prototypes for the fold classes in a hyperspherical space. We obtain these embeddings by 
training the ResCNN-GRU and ResCNN-BGRU architectures that are effective at pro-
cessing arbitrary length protein sequences. An overview of our approach is depicted in 
Fig. 1. Our proposed methods, named FoldHSphere and FoldHSpherePro, significantly 
advance the state-of-the-art performance on well-known benchmark datasets.
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Materials and methods
Datasets

The datasets were obtained from the public protein databases SCOP [7] and the 
extended SCOPe [8]. These databases contain a hierarchical structural classification 
of protein domains with solved structure. From the top-down view, such hierarchical 
levels are structural class, fold, superfamily and family, which group protein domains 
with increasing sequence similarity at each level.

Training dataset

We trained our neural network models using the SCOPe 2.06 training set from [43]. 
Such a training set was obtained after filtering out protein domains having a sig-
nificant sequence similarity to those in the test set. To do so, the following simi-
larity reduction methods were executed: MMseqs2 [59] (sequence identity 25%, 
e-value 10−4 ), CD-HIT-2D [60] (sequence identity 40%) and BLAST+ [61] (e-value 
10−4 ). The final dataset contains 16133 protein domains sharing at most 95% pair-
wise sequence identity, which are classified into K = 1154 folds. For hyperparameter 
tuning, we performed a 5-stage cross-validation over the entire training set. Hence, 
we split the 16,133 protein domains into 5 groups, including domains from differ-
ent families in each one (Additional file 1: S1). This prevents having proteins in the 
validation subsets with similar amino acid sequence to those in the corresponding 
training subset.
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Fig. 1 Overview of the FoldHSphere approach for protein fold recognition. In the first stage a we train a 
neural network model to map the protein domains into K fold classes using the softmax cross‑entropy as 
loss function. From this trained model, we extract fold class weight vectors wk , k = 1, . . . , K  learned in the 
last classification layer. b We then optimize the position of the wk vectors by our proposed Thomson‑based 
loss, so that they are maximally separated in the angular space. c The resulting hyperspherical prototypes 
are used as a fixed non‑trainable classification matrix W in the last layer of the neural network model, 
which is trained again, but now minimizing the LMCL. The final hyperspherical embeddings are extracted 
from the fully‑connected part of this model. d Finally, the cosine similarity is computed between each two 
embeddings and a template ranking is performed for each query protein domain (FoldHSphere method). 
Moreover, template ranking is further improved by using enhanced scores provided by a random forest 
model trained with additional similarity measures as inputs (FoldHSpherePro method)



Page 5 of 21Villegas‑Morcillo et al. BMC Bioinformatics          (2021) 22:490  

Benchmark datasets

We tested the effectiveness of our hyperspherical embeddings using both the well-
known LINDAHL dataset [3] and the updated LINDAHL_1.75 dataset we recently pro-
posed in [48]. The original LINDAHL dataset includes 976 domains from SCOP 1.37 
covering 330 folds. Updated to SCOP 1.75, the LINDAHL_1.75 dataset contains the 
same number of proteins (976) but now classified into 323 folds. Protein domains within 
both test sets share a maximum sequence identity of 40%, as well as with respect to the 
training domains. Each dataset is paired and evaluated independently at three differ-
ent levels—family, superfamily and fold. Thus, while the number of individual protein 
domains evaluated within the LINDAHL dataset are 555, 434 and 321 for the family, 
superfamily and fold levels, in LINDAHL_1.75 we evaluate 547, 431 and 356 domains, 
respectively.

Protein residue‑level feature representation

In order to represent the protein amino acid sequence with variable length L, we consid-
ered 45 features for each amino acid as in previous works [42, 48]. These 45 residue-level 
features contain the following information:

• Amino acid encoding: one-hot vector of size 20 representing the amino acid type.
• Position-specific scoring matrix (PSSM): 20 elements which contain the evolution-

ary profile information obtained from the multiple sequence alignment (MSA). We 
computed the PSSM matrix using PSI-BLAST [10] and the non-redundant database 
‘nr90’ for sequence homology searching.

• Secondary structure: one-hot vector of size 3 encoding the helix, strand and loop sec-
ondary structure elements. To predict the secondary structure we used the SSpro 
method from the SCRATCH suite [62].

• Solvent accessibility: one-hot vector of size 2 encoding the exposed and buried states. 
Similar to before, we used the ACCpro method from SCRATCH to predict the sol-
vent accessibility states.

These L× 45 features are used as input to our neural network models, which are trained 
to predict the fold class for each protein domain.

Residual‑convolutional and recurrent neural network

In this study, we improve our previously proposed neural network models, CNN-GRU 
and CNN-BGRU [48], with blocks of residual convolutions [52]. As a result, the model 
architecture is formed by three main parts, as depicted in Fig. 2: residual-convolutional 
(ResCNN), recurrent (RNN) and fully-connected (FC). We named these new models as 
ResCNN-GRU and ResCNN-BGRU, depending on the use of unidirectional or bidirec-
tional layers of gated recurrent units (GRU) in the recurrent part.

Residual‑convolutional part

The convolutional neural network (CNN) aims to capture the local context of each 
residue in the protein domain and discover short-term patterns within the amino acid 
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sequence. At each CNN layer, we apply a 1D-convolution operation along the sequence 
dimension, with several convolutional filters of specific length to be learned. Consider-
ing an input of size L× 45 , the output of each 1D-convolutional layer is of size L× Nl , 
where Nl is the number of learned filters in the l-th layer. In our model, the 1D-convolu-
tional layers are grouped into residual blocks [52]. The output R(xb,Wb) of each residual 
block is combined with its input xb as xb+1 = xb +R(xb,Wb) , where Wb are the weights 
and biases associated to the b-th residual block, and R(·) is the mapping function per-
formed by the block.

Figure 2a presents the ResCNN part of our model. We first apply an initial 1D-convo-
lution to transform the L× 45 input features into L× 256 outputs by using 256 filters of 

L × 45 features

1D-Conv (1 × 256)
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Fig. 2 The proposed ResCNN‑BGRU neural network model for fold‑related embedding learning 
through protein fold classification. The model architecture contains three differentiated parts. The 
residual‑convolutional network a processes the input L× 45 residue‑level features and consists of two 
residual blocks with two 1D‑convolutional layers each. Its output is passed through a bidirectional layer of 
gated recurrent units (b) to obtain a fixed size representation of the input domain, which is further processed 
by two fully‑connected layers (c). The first FC layer learns a 512‑dimensional embedding vector for each 
input, while the second one learns a class weight matrix W to perform the classification into K fold classes. 
The ResCNN‑GRU model is identical but using a unidirectional GRU layer instead
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length 1. These are then processed by two residual blocks, each one formed by two layers 
with 64 and 256 filters of length 5. After each convolution, ReLU activation and Batch-
Normalization [63] are applied.

Recurrent part

The purpose of the recurrent neural network (RNN) is to exploit long-distance rela-
tions through all the amino acid sequence and generate a summary of the whole protein 
domain at its output. Here, the L× 256 outputs from the ResCNN are fed into a gated 
recurrent unit (GRU) [50] based layer with 1024 state units.

As shown in Fig. 2b, instead of saving all the L× 1024 states of the GRU, we only con-
sider the last state ( 

−→
hL ) as a summary vector of 1024 elements. In this way, our model 

architecture can process amino acid sequences of arbitrary length and extract a fixed-
size vector representing the whole protein domain. We refer to this model as ResCNN-
GRU. An alternative architecture is that based on a bidirectional GRU [64] which also 
processes the sequence in reverse order. In such a case, last states from both forward 
( 
−→
hL ) and backward ( 

←−
hL ) GRU layers are concatenated into a vector of 2048 elements. We 

denote this model as ResCNN-BGRU.

Fully‑connected part

Finally, the fully-connected (FC) part combines the recurrent output to create a fold-
related embedding for the whole protein domain, which is then used to perform a pre-
liminary fold classification. The classification step guides the model during training to 
learn a meaningful embedding space, which is related to the protein folds. Then, these 
learned embeddings are used for pairwise fold recognition in the test phase.

In particular, the FC part (Fig. 2c) consists of two dense layers. The first one, with 512 
units, is used to learn a nonlinear combination of the GRU output vector (1024 or 2048 
for the unidirectional and bidirectional architectures, respectively) which shapes the 
fold-related embedding. As nonlinearity, both the sigmoid and the hyperbolic tangent 
(tanh) activation functions have been tested in our experiments. The last layer performs 
a linear classification of the 512-dimensional embeddings using K output units. Here, K 
is the number of fold classes in which the input proteins are classified during training. 
In the following subsections we detail how this last classification layer can be modified 
to learn more discriminative embedding vectors by distributing the fold class vectors in 
hyperspherical space.

Neural network model optimization

We trained our neural network models with mini-batches of 64 protein domains. To pro-
cess variable-length sequences, we applied zero-padding to the maximum length within 
each mini-batch. After the GRU layer, we kept the last state vector of each domain sam-
ple before the zero-padding, which corresponds to the last amino acid residue of each 
domain in the mini-batch. In the bidirectional GRU, the same GRU layers are used but 
the amino acid sequences were first reversed for the backward layer, so the last state 
(before zero-padding) corresponds to the first residue of each domain. The optimization 
process was performed in two different stages by comparing the model predictions with 
the true fold classes (ground truth). In the first one (Fig. 1a), we optimized the models 
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by minimizing the well-known softmax cross-entropy loss, while in the second stage 
(Fig. 1c) we used the large margin cosine loss (LMCL) [56], which is a normalized and 
margin discriminative version of the softmax loss. In this case, we also used a fixed (i.e. 
non-trainable) weight matrix in the classification layer ( W in Fig. 2c) which maximally 
separates fold class vectors in hyperspherical space (Fig. 1b). We used the Adam opti-
mizer [65] with an initial learning rate of 10−3 , which we reduced by a factor of 10 at 
epoch number 40, whereas the whole optimization process was completed in 80 epochs. 
In order to prevent overfitting to the most populated fold classes, we applied L2 penalty 
with a small weight decay of 5× 10−4 and dropout [66] with a drop probability of 0.2 in 
the convolutional and the first FC layers.

Large margin cosine loss

The softmax cross-entropy loss (softmax loss for simplicity) is one of the most common 
loss functions for multi-class classification problems. It is defined as:

where pi is the posterior probability of the xi embedding sample being classified into 
its ground-truth class yi , N is the number of training samples in the mini-batch 
( i = 1, . . . ,N  ), K is the number of classes ( k = 1, . . . ,K  ), and fk is the output of the last 
linear classification layer with weight matrix W ∈ R

K×d (the bias is set to zero for sim-
plicity). For each input xi , the output corresponding to class k is computed as:

with θk ,i being the angle between the vectors wk and xi . If we enforce that �wk� = 1 
through L2 normalization, and �xi� = s by using a tunable scale hyperparameter, the 
posterior probability only depends on the cosine of the angle θk ,i . This results in the nor-
malized softmax loss (NSL), defined as:

The feature embeddings learned by NSL are angularly distributed, but they are not nec-
essarily more discriminative than the ones learned by softmax loss. In order to control 
the classification boundaries, two variants of the NSL, the angular softmax (A-Softmax) 
loss [55] and the large margin cosine loss (LMCL) [56], introduce a margin hyperpa-
rameter ( m ≥ 0 ). The decision margin in LMCL is defined in cosine space rather than in 
angle space, which proved to be more beneficial when learning the classification bound-
aries [56]. This is therefore the loss function we adopted to optimize our neural network 
models, and is formally defined as:

(1)Lsoftmax = −
1

N

N
∑

i=1

log pi = −
1

N

N
∑

i=1

log
efyi

∑K
k=1 e

fk
,

(2)fk = w
T
k xi = �wk��xi� cos(θk ,i),

(3)Lns = −
1

N

N
∑

i=1

log
es cos(θyi ,i)

∑K
k=1 e

s cos(θk ,i)
.

(4)Llmc = −
1

N

N
∑

i=1

log
es(cos(θyi ,i)−m)

es(cos(θyi ,i)−m) +
∑

k �=yi
es cos(θk ,i)
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subject to cos(θk ,i) = ŵ
T
k x̂i , where ŵk and x̂i are the L2 normalized vectors 

( ŵk = wk/�wk� and x̂i = xi/�xi�).
As stated in the original paper [56], by L2-normalizing the embedding vectors xi , we 

enforce them to be distributed on the surface of a d-dimensional hypersphere. Thus, 
the scaling hyperparameter s controls the radius of such hypersphere and its value 
increases with the number of classes. The margin hyperparameter m relates to the 
capacity of learning more discriminative embeddings. Possible values are in the range 
m ∈ [0, K

K−1 ) , although high values close to the upper-bound could cause failures in 
convergence. Having this in mind, we tuned the scale s and margin m hyperparam-
eters for each neural network model through cross-validation.

Thomson‑derived hyperspherical prototypes

We hypothesize that by providing a non-trainable matrix W ∈ R
K×d to the classifica-

tion layer we can ease the training process. Such matrix contains K pre-defined proto-
type vectors representing each fold class, W = {w1, . . . ,wK } . Thus, we can shape the 
embedding space to be representative of the protein folds, and so extract more mean-
ingful fold-related embeddings for each protein during the training stage (Fig.  1c). 
The use of such prototype networks was first proposed in [58].

Optimal distribution of prototypes

We argue that the optimal configuration of the K prototype vectors is that which pro-
vides maximal separation in the angular space. This can be achieved by placing the K 
points equidistant on the surface of a d-dimensional hypersphere, so wk ∈ S

d−1 , as 
shown in Fig. 1b. The Thomson problem [57] addresses this by studying the distribu-
tion of K charged particles on the surface of a unit 3D-sphere. The minimum energy 
configuration can be optimized by measuring the Coulomb’s law. When using simpli-
fied units for electron charges and Coulomb’s constant, the formula for a pair of elec-
trons reduces to Eij = 1/rij , relying only on the distance ( rij ) between the two points.

This can be extended to points located on the surface of a hypersphere of d dimen-
sions and computed for all possible pairs of points [67]. We could therefore optimize 
the distribution of our wk prototype vectors by minimizing the generalized Thomson 
loss (THL), defined as:

The hyperparameter � controls the weight of the norm constraint. Note that the Thom-
son loss uses the Euclidean distance between points, which is affected by the norm of 
each vector, while the cosine similarity is more adequate to measure the angular separa-
tion (independent of the norm). In order to remove the norm constraint from the loss 
function, we propose to directly maximize the Euclidean distance of the projected ( L2
-normalized) vectors. Thus, we can remove the hyperparameter � from equation  (5), 
obtaining the following Thomson loss (THL–sum):

(5)Lth =

K
∑

k=1

k−1
∑

j=1

1
∥

∥wk − wj

∥

∥

2

2

+
�

2

K
∑

k=1

(�wk�
2 − 1)2.
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Alternatively, we can instead minimize the maximum cosine similarity computed for 
each prototype vector [58], using the following loss function (THL–maxcos):

Maximally separated prototype vectors are obtained by means of gradient descent over 
the proposed loss function (either THL–sum or THL–maxcos), where it must be noted 
that all possible pairs of points are taken to perform a single iteration step.

Initial prototype vectors

As initial matrix of prototypes we can consider a set of K Gaussian random variables 
of dimension d, Wrandom . However, we found that the learned classification matrix 
from a model previously trained with the softmax cross-entropy loss (Fig. 1a), Wsoftmax , 
provides better results. Unlike Wrandom , the matrix Wsoftmax has been trained to clas-
sify protein domains into folds, somehow preserving the arrangement of the structural 
classes within the learned space. To show this, we measured the intra- and inter-struc-
tural class prototype separation, as well as the angular Fisher score (AFS) [55]. Further 
details can be found in Additional file 1: S2.

Pairwise similarity scores

Cosine similarity measures

The FoldHSphere method (Fig. 1d) uses the hyperspherical embeddings extracted from 
our neural network model to compute a fold similarity measure between each pair of 
protein domains. Following previous works [43, 48], we used the cosine similarity 
between two embedding vectors [xi, xj] ∈ R

d as metric, computed as:

which is a measure of angular separation (in the range [−1, 1] ) and independent of the 
norm of each embedding vector.

Random forest enhanced scores

To obtain an improved fold similarity score (FoldHSpherePro in Fig. 1d), we trained a 
random forest (RF) model using our cosine similarity score along with the 84 pairwise 
similarity measures from [33, 34] and the DeepFR cosine similarity [43]. Thus, each 
input vector is of size 86 and corresponds to a pair of protein domains. The RF model 
uses this information to determine whether the domains in such a pair share the same 
fold class (binary classification). We trained and evaluated the RF models in a 10-stage 
cross-validation setting for the LINDAHL and LINDAHL_1.75 test sets independently. 
The random forest models used 500 decision trees each as in [43, 48].
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Evaluation

Three‑level rank performance accuracy

As originally proposed in [3], we evaluated the test protein domains at three levels 
of increasing difficulty—family, superfamily and fold. At each level, we differentiated 
between positive and negative pairs of domains. A negative pair contains two protein 
domains from different fold classes, while in a positive pair both domains are from 
the same fold class. Each level includes all the negative pairs, while positive pairs are 
selected according to the SCOP hierarchy [7]. That is, the family level contains pairs 
of domains that share the same family class, and therefore the same superfamily and 
fold classes. At the superfamily level, the domains in each pair share the same super-
family class—and therefore the same fold—but not the same family. Finally, domains 
in positive pairs at the fold level only share the same fold class, but neither share the 
same family nor superfamily.

At each of these levels, for every individual protein domain (query) we ranked the 
rest of domains (templates) according to their similarity scores. These can be either 
cosine similarities or random forest output scores. Then, we assigned the fold class 
of the most similar template to the query and computed the ratio of hits—top 1 accu-
racy. We also obtained the ratio of finding the correct fold class within the 5 first-
ranked templates—top 5 accuracy. It must be noted that, instead of using the training 
set as the search database, in this evaluation we aim to find template domains inside 
the test set itself (either LINDAHL or LINDAHL_1.75).

In order to measure the statistical significance of our top 1 and top 5 accuracy 
results, we also provide standard errors estimated as the standard deviation of 1000 
bootstrap samples. To do so, we sampled with replacement from the set of individual 
protein domains that are tested at each level (555, 434 and 321 domains respectively 
in the LINDAHL dataset). Then, for each sampled set we selected all negative pairs 
and positive pairs corresponding to the specific level, and proceeded with the evalua-
tion as before.

Fold‑level LINDAHL cross‑validation evaluation

In order to compare with some recent methods [35–41, 44–46] we also provide 
results on a fold-level 2-stage cross-validation setting on the LINDAHL test set [22]. 
Here, the 321 protein domains which form positive pairs at the fold level are sepa-
rated into two subsets LE_a and LE_b, with 159 and 162 domains each. Note that the 
rest of domains within LINDAHL (up to 976) are not considered during this evalua-
tion. When evaluating the protein domains in each subset (e.g. LE_a), the domains in 
the other subset (LE_b) act as templates for ranking. Thus, the random forest models 
are trained using pairs of protein domains from one subset, whereas the evaluation is 
performed on the other one. In this evaluation, we report the averaged performance 
accuracy over both cross-validation subsets.
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Results

Learning fold‑related embeddings with LMCL

We first assessed the performance of the different neural network models trained 
either with the softmax loss (1) or the LMCL (4) (see Fig.  1a), by cross-validation 
over the SCOPe 2.06 training set. For the softmax loss, we used the sigmoid activa-
tion in the embedding layer (first FC layer in Fig. 2c), so that we can compare with the 
CNN-GRU and CNN-BGRU models from [48]. Then, for each model trained with the 
LMCL function, we tuned the scale and margin hyperparameters through cross-val-
idation. We considered two values for the scale s = {30, 50} and margins in the range 
m = [0.1, 0.9] . Here we tested two activation functions at the embedding layer: sig-
moid as well as hyperbolic tangent (tanh). We argue that having negative and positive 
values ranging from −1 to 1 in the embedding vector (tanh activation) would better 
exploit the hyperspherical space than having only positive values (sigmoid activation, 
range [0, 1]).

The cross-validation fold classification accuracy on the training set for the differ-
ent models and loss functions is shown in Fig.  3. When using softmax loss, we can 
observe that the models applying residual convolutions (ResCNN-GRU and ResCNN-
BGRU) perform better at fold classification than their counterparts (CNN-GRU and 

Fig. 3 Cross‑validation fold classification accuracy (%) results for different LMCL margins and scales 
s = {30, 50} , using the SCOPe 2.06 training set. The results are provided separately for each neural network 
model: CNN‑GRU, CNN‑BGRU, ResCNN‑GRU and ResCNN‑BGRU, trained using different combinations 
of activation function (in the embedding layer) and loss function. These are: softmax loss with sigmoid 
activation (dash‑dotted horizontal line), LMCL with sigmoid activation (blue lines), LMCL with tanh activation 
(magenta lines) and Thomson LMCL with tanh activation (green lines). For the LMCL and Thomson LMCL 
results, solid lines and dashed lines correspond to scale values 30 and 50, respectively
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CNN-BGRU). We also observe that the tanh activation function yields better results 
than the sigmoid activation for all tested margin values in the LMCL function. In this 
case, the scale value s = 30 outperforms s = 50 for both activation functions. As for the 
margin, larger values seem to further benefit models applying bidirectional GRU (CNN-
BGRU and ResCNN-BGRU), suggesting that these models have a higher discrimina-
tive capacity. The optimal LMCL hyperparameters for each model are summarized in 
Table 1a.

In Table 2 we provide the fold recognition accuracy results on the LINDAHL test 
set (at the family, superfamily and fold levels), when using the cosine similarity (8) 
as ranking metric. Here, we used the optimal LMCL hyperparameters to train each 
model on the whole training set, from which we extracted the fold-related embed-
dings. Table  2a shows that the learned embeddings from the ResCNN-GRU and 

Table 1 Optimal set of hyperparameters for the LMCL function

The scale and margin hyperparameters are provided for each neural network model and two approaches: (a) training the 
last classification layer end‑to‑end, (b) using the fixed prototype matrix by minimizing the Thomson loss THL–sum. We also 
include here the optimal iteration from the Thomson algorithm

Model (a) LMCL (b) Thomson LMCL

Scale Margin Iter THL‑sum Scale Margin

CNN‑GRU 30 0.25 1130 30 0.25

CNN‑BGRU 30 0.55 1172 30 0.45

ResCNN‑GRU 30 0.50 1181 30 0.55

ResCNN‑BGRU 30 0.60 1020 30 0.60

Table 2 Effect of model architecture and loss function choice on FoldHSphere performance using 
the LINDAHL dataset

The fold recognition accuracy (%) results are provided at the family, superfamily and fold levels, considering both the top 
1 and top 5 ranked templates. We compare the CNN‑GRU, CNN‑BGRU, ResCNN‑GRU and ResCNN‑BGRU neural network 
models, trained with different loss functions: (a) Softmax loss with sigmoid activation, (b) LMCL with tanh activation, 
and (c) Thomson LMCL with tanh activation. Optimal LMCL hyperparameters are in Table 1. Boldface indicates the best 
performance per loss function. For each accuracy result, we also provide in parentheses the standard error estimated using 
1000 bootstraps

Model Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

(a) Softmax loss

CNN‑GRU [48] 68.6 (1.94) 89.2 (1.37) 56.2 (2.34) 77.4 (1.96) 56.7 (2.82) 74.1 (2.46)

CNN‑BGRU [48] 71.0 (1.92) 87.7 (1.42) 60.1 (2.30) 77.2 (2.02) 58.3 (2.83) 78.8 (2.27)

ResCNN‑GRU 72.6 (1.87) 90.3 (1.24) 59.4 (2.32) 77.0 (2.00) 58.9 (2.88) 75.1 (2.44)

ResCNN‑BGRU 76.8 (1.78) 91.2 (1.23) 65.0 (2.29) 82.0 (1.84) 59.5 (2.79) 76.6 (2.35)

(b) LMCL

CNN‑GRU 76.6 (1.80) 90.8 (1.25) 64.7 (2.21) 80.2 (1.90) 65.7 (2.69) 79.8 (2.22)

CNN‑BGRU 76.2 (1.79) 89.4 (1.31) 70.5 (2.12) 83.2 (1.80) 72.0 (2.48) 81.0 (2.21)

ResCNN‑GRU 75.7 (1.77) 89.7 (1.25) 66.4 (2.29) 81.1 (1.86) 67.6 (2.63) 80.1 (2.23)

ResCNN‑BGRU 75.1 (1.84) 89.5 (1.30) 69.8 (2.25) 85.3 (1.67) 74.1 (2.42) 82.2 (2.12)

(c) Thomson LMCL

CNN‑GRU 80.0 (1.73) 90.6 (1.24) 66.8 (2.23) 80.2 (1.94) 66.0 (2.62) 80.1 (2.22)

CNN‑BGRU 77.5 (1.75) 91.7 (1.19) 69.8 (2.09) 85.3 (1.64) 72.6 (2.48) 82.2 (2.14)

ResCNN‑GRU 76.9 (1.78) 89.5 (1.28) 69.1 (2.20) 82.9 (1.77) 69.5 (2.57) 79.4 (2.26)

ResCNN‑BGRU 76.4 (1.77) 89.2 (1.30) 72.8 (2.15) 86.4 (1.63) 75.1 (2.47) 84.1 (2.12)
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ResCNN-BGRU models using softmax loss yield slightly better fold recognition 
performance at the three levels than the CNN-GRU and CNN-BGRU models. On 
the other hand, in Table 2b we observe a large performance boost at all levels when 
introducing the LMCL as loss function in comparison with softmax loss. At the fold 
level, we achieve performance gains of 9 or more percentage points for most of the 
models. More precisely, the CNN-BGRU and ResCNN-BGRU models stand out for 
their remarkable results at the fold level, with 72.0% and 74.1% top 1 accuracy values 
respectively.

Enhancing embedding discrimination power through Thomson‑derived hyperspherical 

prototypes

We then tested the performance of our neural network models trained with a fixed 
matrix of prototypes W ∈ R

K×d in the classification layer (Fig.  1c), being the number 
of fold classes K = 1154 and embedding dimension d = 512 . The fold prototype vectors 
have been maximally separated in the angular space by minimizing the THL–sum (6), 
using the Wsoftmax from each model as initial matrix (Fig. 1b). A detailed study compar-
ing the performance of the two variants for the Thomson loss (THL–sum and THL–
maxcos) and two options for the initial matrix ( Wsoftmax and Wrandom ) can be found in 
Additional file 1: S2.

Given the optimized matrix of prototypes for each model, we tuned the LMCL scale 
and margin values by cross-validation over the SCOPe 2.06 training set, considering the 
tanh activation in the embedding layer. Results from this tuning are also shown in Fig. 3. 
As can be observed, the Thomson LMCL achieves better fold classification results, 
specially for the models applying residual convolutions, and particularly in the case of 
ResCNN-BGRU.

Finally, we set the optimal LMCL hyperparameters for each model (Table  1b) and 
trained them to extract fold-related hyperspherical embeddings. The fold recognition 
LINDAHL results in Table 2c show that, at the fold level, all the models benefit from the 
Thomson LMCL. Our best model, the ResCNN-BGRU, achieves top 1 accuracy values 
of 76.4%, 72.8% and 75.1% at the family, superfamily and fold levels, and top 5 accuracy 
of 89.2%, 86.4% and 84.1% at each level, respectively.

Analysis of the hyperspherical embeddings

The fold recognition results of our FoldHSphere method using the ResCNN-BGRU 
model trained with hyperspherical prototypes reflect the effectiveness and discrimi-
nation capability of the learned hyperspherical embeddings. To further illustrate this, 
we analyzed the 512-dimensional embeddings extracted from the 976 protein domains 
in the LINDAHL dataset. Figure 4 compares the histogram of cosine similarities com-
puted between each pair of embeddings for the softmax, LMCL and Thomson LMCL 
options. For each one, we plotted separately the histogram of negative pairs (different 
fold classes) and positive pairs (same fold class). It can be seen that the Thomson LMCL 
provides a better separation between positive and negative pairs, with a small overlap 
between the two groups. This directly contributes to a better performance in the pair-
wise fold recognition task. Additionally, we provide a two-dimensional visualization of 



Page 15 of 21Villegas‑Morcillo et al. BMC Bioinformatics          (2021) 22:490  

the embedding space learned by the three loss functions in Additional file 1: Fig. S6, as 
well as a dendroheatmap of the hyperspherical embeddings obtained by the Thomson 
LMCL approach in Additional file 1: Fig. S7.

Fig. 4 Cosine similarity probability histograms computed for all unique pairs within the LINDAHL test set 
(976 domains), grouping the negative pairs in blue color, and positive pairs in orange. To compute the cosine 
similarity scores, we used the embeddings extracted from the ResCNN‑BGRU model trained with (a) softmax 
loss with sigmoid activation, (b) LMCL with tanh activation, or (c) Thomson LMCL with tanh activation
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FoldHSphere and FoldHSpherePro pairwise fold recognition performance results

Finally, we compare the results of our FoldHSphere and FoldHSpherePro approaches 
with several methods from the state-of-the-art, considering both the LINDAHL 
and LINDAHL_1.75 test sets. The FoldHSphere results correspond to those from the 
ResCNN-BGRU model trained with hyperspherical prototypes (Table  2). The FoldH-
SpherePro results were obtained after conducting a 10-stage cross-validation on a ran-
dom forest model using the FoldHSphere scores along with other pre-computed protein 
pairwise similarities as inputs.

The three-level LINDAHL fold recognition results are shown in Table  3. We 
can see that our FoldHSphere method yields better top 1 accuracy values, above 
12 percentage points at the superfamily and fold levels compared to the state-of-
the-art method CNN-BGRU [48]. At the family level, we outperform all the deep 
learning methods. However, the alignment methods and approaches relying on 
pairwise similarities provide better results at this level. We include such informa-
tion in the FoldHSpherePro method, which can be compared to DeepFRpro [43] 
and CNN-BGRU-RF+ [48] as all of them apply the same random forest ensemble 
approach. Our method provides a significant performance boost, obtaining remark-
able top 1 accuracy results, with values of 79.0% at the superfamily level and 81.3% 
at the fold level. In terms of top 5 accuracy values, FoldHSpherePro also achieves 
the best performance, providing 89.2% and 90.3% at superfamily and fold levels 
respectively. On the other hand, at the family level we obtain on par results with 
the CNN-BGRU-RF+ method, being only outperformed by alignment and threading 

Table 3 Three‑level LINDAHL fold recognition results of FoldHSphere and FoldHSpherePro in 
comparison with the state‑of‑the‑art

The accuracy (%) results are provided at the family, superfamily and fold levels, considering both the top 1 and top 5 ranked 
templates. Boldface indicates best performance

Method Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PSI‑BLAST [3] 71.2 72.3 27.4 27.9 4.0 4.7

HHpred [14] 82.9 87.1 58.0 70.0 25.2 39.4

RAPTOR [14] 86.6 89.3 56.3 69.0 38.2 58.7

BoostThreader [14] 86.5 90.5 66.1 76.4 42.6 57.4

SPARKS‑X [15] 84.1 90.3 59.0 76.3 45.2 67.0

FOLDpro [34] 85.0 89.9 55.0 70.0 26.5 48.3

RF‑Fold [34] 84.5 91.5 63.4 79.3 40.8 58.3

DN‑Fold [34] 84.5 91.2 61.5 76.5 33.6 60.7

RFDN‑Fold [34] 84.7 91.5 65.7 78.8 37.7 61.7

MRFalign [43] 85.2 90.8 72.4 80.9 38.6 56.7

CEthreader [48] 76.6 87.2 69.4 81.8 52.3 70.4

DeepFR (s2) [43] 65.4 83.4 51.4 67.1 56.1 70.1

DeepFRpro (s2) [43] 83.1 92.3 69.6 82.5 66.0 78.8

VGGfold [47] 67.9 84.3 53.2 68.4 58.3 73.5

CNN‑BGRU [48] 71.0 87.7 60.1 77.2 58.3 78.8

CNN‑BGRU‑RF+ [48] 85.4 93.5 73.3 87.8 76.3 85.7

FoldHSphere 76.4 89.2 72.8 86.4 75.1 84.1

FoldHSpherePro 85.2 93.0 79.0 89.2 81.3 90.3
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methods. This suggests that the performance of deep learning approaches might be 
saturating at this level. Similar conclusions can be drawn when evaluating the LIN-
DAHL_1.75 test set (Table 4). Here we only compare to the DeepFR and CNN-BGRU 
methods, as they have been previously tested on such a dataset. The results show 
that our FoldHSpherePro approach also performs the best in this dataset, yielding 
top 1 accuracy values of 87.9%, 81.2% and 80.9% at the three levels respectively.

Figure  5 includes the evaluation results of the fold-level 2-stage cross-validation 
setting on the LINDAHL dataset (over subsets LE_a and LE_b). In this case, we only 
compare to ensemble methods that have been assessed with such a methodology, 
namely TA-fold [35], the multi-view learning frameworks MT-fold [36], EMfold [37] 
and MLDH-Fold [38], the learning to rank approaches Fold-LTR-TCP [39], FoldRec-
C2C [40] and ProtFold-DFG [41], and the deep learning methods DeepSVM-fold 
[44], MotifCNN-fold [45] and SelfAT-Fold [46] (residue and motif options). The 
results in Fig.  5 show that our FoldHSpherePro method outperforms all of them 
yielding an accuracy of 85.6%.

Table 4 Three‑level LINDAHL_1.75 fold recognition results of FoldHSphere and FoldHSpherePro in 
comparison with the state‑of‑the‑art

The accuracy (%) results are provided at the family, superfamily and fold levels, considering both the top 1 and top 5 ranked 
templates. Boldface indicates best performance

Method Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

DeepFR (s2) [48] 72.2 85.6 46.6 64.3 50.8 67.1

DeepFRpro (s2) [48] 87.0 93.8 71.9 82.6 63.5 77.2

CNN‑BGRU [48] 73.1 88.3 60.1 74.9 60.1 78.7

CNN‑BGRU‑RF+ [48] 88.5 94.3 74.0 86.3 71.1 86.8

FoldHSphere 77.9 89.0 72.4 87.0 75.8 84.3

FoldHSpherePro 87.9 94.1 81.2 90.0 80.9 88.5

Fig. 5 Fold‑level LINDAHL fold recognition accuracy (%) results of our proposed FoldHSpherePro method in 
comparison with other ensemble methods from the state‑of‑the‑art. The results are averaged over the two 
cross‑validated subsets (LE_a and LE_b)
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Discussion
In order to learn an embedding space that is representative of the protein folds, we have 
proposed a two-stage learning procedure. Our intuition here is that pre-defining the struc-
ture of the embedding space through fixed fold prototypes would ease the learning pro-
cess for a neural network that embeds individual proteins into this space. The result of our 
experiments indicate that this intuition is well founded.

There are two important considerations when pre-defining the embedding space in our 
methodology: the initialization of the fold prototypes and how to obtain a suitable spatial 
distribution of these prototypes in the embedding space. Here we find that rather than ini-
tializing with random vectors in the hyperspherical space, better results are obtained by 
using the weight matrix from the classification layer of a neural network previously trained 
to map proteins to fold classes. Then, by maximally separating the weight vectors in this 
matrix in hyperspherical space, we obtain an effective configuration of the fold prototypes. 
We believe one of the main reasons is that such a matrix preserves the arrangement of the 
structural classes in the learned space, grouping related fold classes together and pushing 
them away from folds of unrelated structural classes (see Additional file 1: S2).

Our experimental results in Table 2 display a large performance boost at the superfamily 
and fold levels when comparing our methodology (using LMCL) to previous approaches 
that use the softmax loss. Our initial intuition for the lower performance of the state-of-
the-art at these levels is that since evaluation is done for pairs of proteins, it is possible that 
two proteins from different folds lying near the fold classification boundary are closer to 
each other than they are to proteins from their respective folds. This informs our choice for 
using the LMCL as loss function, which introduces a margin between fold classes to avoid 
these cases.

A further performance gain is seen when combining the LMCL margin with the pre-
trained fold prototypes (Table 2c). Here we use the fold prototypes optimized in the pre-
vious stage as a fixed (non-trainable) classification matrix for each neural network. We 
believe that the additional performance improvement is due to the simplified learning pro-
cess that results from having this pre-defined organization of the folds in the embedding 
space, which is especially useful with limited and unbalanced training data. Stated differ-
ently, our models can focus on projecting protein embeddings closest to the corresponding 
fold prototypes without simultaneously learning where these prototypes should be.

We also observe from Fig. 3 and Table 2 that the models applying residual convolutions 
benefit more from the use of pre-trained prototypes compared to only optimizing with 
LMCL. This suggests the residual connections might extract more robust features for each 
amino acid, which seems to be helpful for the recurrent layer to obtain a better fixed-size 
representation for the whole protein domain. In particular, our ResCNN-BGRU architec-
ture provides the best results, which can be attributed to its greater flexibility compared to 
the other tested architectures.

Conclusion
In this work we have proposed the FoldHSphere method to tackle the protein fold rec-
ognition problem. We described a neural network training procedure to learn fold-
representative hyperspherical embeddings for the protein domains. The embeddings 
were extracted from a residual-convolutional and recurrent network architecture 
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(ResCNN-BGRU), which is trained by minimizing the angular large margin cosine 
loss (LMCL) around pre-defined prototypes for the fold classes. We used a Thomson-
based loss function to maximally separate the fold prototypes in hyperspherical space. 
This way, our embeddings proved to be more effective at identifying the fold class of 
each protein domain by pairwise comparison. When evaluating the LINDAHL dataset, 
FoldHSphere alone provided a remarkable performance boost at the superfamily and 
fold levels, being competitive even with previous ensemble methods. Furthermore, our 
FoldHSpherePro ensemble method significantly improved the state-of-the-art results, 
outperforming the best method CNN-BGRU-RF+ at these levels. Therefore, due to their 
discrimination capability, the hyperspherical embeddings could be used to find template 
proteins even when the amino acid sequence similarities are low and thus advance in the 
template-based modeling of protein structures.

As future work, we will explore the application of recently proposed embeddings from 
language models pre-trained using millions of unannotated protein sequences for the 
protein fold recognition task, as they have shown promising results in several down-
stream tasks, such as protein secondary structure prediction and subcellular localization 
prediction [68–70].
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