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To patients who suffer from systemic autoimmune diseases 

To scientists who struggle with CyTOF 
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Nikomu z nas życie, zdaje się, bardzo łatwo nie idzie, ale cóż robić, trzeba mieć odwagę i 

głównie wiarę w siebie, w to, że się jest do czegoś zdolnym i że do tego czegoś dojść 

potrzeba. A czasem wszystko się pokieruje dobrze, wtedy kiedy najmniej się człowiek tego 
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Resumen 

El lupus eritematoso sistémico (LES), la artritis reumatoide (AR), la esclerosis sistémica (SSC), el 

síndrome de Sjögren (SSJ), la enfermedad mixta del tejido conectivo (MCTD) y el síndrome 

antifosfolípido primario (PAPS) se clasifican como enfermedades autoinmunes sistémicas (EAS 

o SAD en inglés). Estas enfermedades se caracterizan por signos de autoinmunidad que 

incluyen la producción de autoanticuerpos y el daño a diferentes órganos. Aunque tienen 

definiciones clínicas y criterios de diagnóstico clínico separados, estas enfermedades son 

difíciles de diagnosticar de manera diferencial, ya que los pacientes tienen síntomas muy 

superpuestos y signos clínicos variados, particularmente en las primeras etapas de la 

enfermedad. Este panorama clínico superpuesto impide el diagnóstico correcto y la 

administración temprana de fármacos. Si bien durante mucho tiempo se sospechó de la 

semejanza molecular entre las EAS, la falta de biomarcadores compartidos bien descritos 

dificulta el tratamiento y el diagnóstico. Por tanto, es necesario realizar estudios moleculares y 

celulares para clasificar a los pacientes en función del mecanismo fisiopatológico subyacente 

en una estrategia de medicina personalizada. 

Para estudiar la complejidad del sistema inmunológico a nivel de una sola célula, es necesario 

utilizar tecnologías adecuadas. La citometría de masas (Citometría por tiempo de vuelo, CyTOF, 

CM) es una técnica de alta dimensión que permite medir más de 50 marcadores en una sola 

célula. Por lo tanto, es una buena herramienta para realizar estudios de fenotipado profundo 

rastreando varios tipos de células o niveles de marcadores de activación celular. Sin embargo, 

para observar los patrones celulares específicos del paciente, es necesario reclutar números 

importantes de individuos, lo que a menudo involucra a diferentes centros de investigación. 

Por tanto, es necesario establecer un diseño experimental adecuado. La preservación de 

sangre completa es una forma atractiva de recolectar muestras de centros ubicados lejos de 

las instalaciones del centro donde se realiza la CM, sin embargo, hasta ahora no se han 

validado suficientes protocolos de preservación de sangre para CM. Además, debido a que las 

muestras adquiridas a través del instrumento CyTOF sufren obstrucción por el material celular 

así como caída de señal asociada a adquisiciones prolongadas y efectos de lote, se debe tener 

especial cuidado al analizar los datos cuando se estudian múltiples grupos de muestras. Por lo 

tanto, es necesario utilizar un flujo de análisis de datos que considere la normalización de 

datos, el control de calidad y la naturaleza de alta dimensión de los datos de CM. Además, para 

analizar cientos de muestras, el flujo de análisis debe adaptarse para estudios a gran escala e 
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idealmente debe automatizarse tanto como sea posible. Sin embargo, hasta ahora, no se ha 

desarrollado tal flujo de trabajo con esas características. 

En esta tesis doctoral hemos estudiado 7 EAS diferentes con el fin de encontrar nuevos 

biomarcadores que permitan la reclasificación de pacientes según firmas de leucocitos circulan 

tes. Nuestro objetivo fue realizar un estudio de fenotipado profundo que incluya marcadores 

funcionales relevantes para las EAS. Como queríamos tener la imagen más completa del 

sistema inmunológico, decidimos recolectar muestras de sangre completa y usar citometría de 

masas para analizarlas. Para ello realizamos la recogida de muestras de sangre en diferentes 

centros ubicados en Granada y Córdoba. Por tanto, tuvimos que establecer un protocolo de 

criopreservación adecuado para estudios multicéntricos. Como en total se recolectaron más 

de cien muestras, también establecimos un protocolo experimental que minimiza la variación 

experimental, y se optimizó un proceso de análisis y control de calidad junto con el 

preprocesamiento de datos automatizado. 

Utilizando estos ajustes, hemos demostrado que los estudios de inmunofenotipificación de 

alto contenido se pueden realizar con éxito con pequeñas cantidades de sangre fijada / 

congelada. La fijación inmediata de sangre completa se beneficia de tiempos de manipulación 

más cortos, lo que evita la muerte celular, especialmente en el compartimento de neutrófilos. 

Diseñamos un flujo de trabajo experimental que limita la variación experimental y reportamos 

un flujo de trabajo de curación de datos basado en R que limpia los datos recolectados y 

corrige los efectos por lotes introducidos durante la preparación y tinción de la muestra. Este 

flujo está semiautomatizado y optimizado para estudios grandes que involucran fenotipado de 

sangre humana, junto con marcadores funcionales. Finalmente, demostramos que CM se 

puede utilizar con éxito para detectar grupos (clusters) de pacientes que tienen patrones 

inmunes similares, lo que respalda el desarrollo de la medicina personalizada en las EAS. 

Hemos construido un marco de reclasificación de pacientes utilizando frecuencias celulares y 

niveles de expresión de marcadores funcionales. Los cuatro grupos de pacientes identificados 

difieren en la frecuencia y el estado de activación de células mieloides y linfoides. Además, 

también se caracterizaron por diferentes niveles de citoquinas pro- y antiinflamatorias. Cada 

grupo contiene una mezcla de diferentes enfermedades, lo que confirma la alta 

heterogeneidad de cada etiqueta diagnóstica. 
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Abstract 

Systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSC), 

Sjögren’s syndrome (SJS), mixed connective tissue disease (MCTD) and primary 

antiphospholipid syndrome (PAPS) are classified as systemic autoimmune diseases (SADs). 

These diseases are characterized by signs of autoimmunity that include the production of 

autoantibodies and the damage of different organs. Although having separated clinical 

definitions and clinical diagnostic criteria, these diseases are difficult to diagnose differentially, 

as patients have highly overlapping symptoms and varied clinical signs, particularly at early 

disease stages. This overlapping clinical landscape impedes the correct diagnosis and early 

drug administration. While molecular resemblance between SADs was suspected for a long 

time, the lack of well described, shared biomarkers makes treatment and diagnosis difficult. 

Therefore, molecular and cellular-based studies need to be undertaken to classify the patients 

based on the physiopathological mechanism underlying the diseases in an strategy of 

personalized medicine.  

In order to study the complexity of the immune system at the single cell level, proper 

technologies need to be used. Mass cytometry (Cytometry by Time-Of-Flight, CyTOF, MC) is a 

high-dimensional technique that allows to measure more than 50 markers in one single cell. 

Thus, it is a good tool to perform deep-phenotyping studies tracking several cell types or levels 

of cellular activation markers. However, in order to observe patient-specific cellular patterns, 

significant amounts of individuals need to be recruited, involving often different research 

centers. Hence a proper experimental design needs to be established. Whole blood 

preservation seems to be an attractive way to gather samples from centers located far away 

from MC-core facility, yet not many blood-preservation protocols were validated for MC so far. 

Additionally, because samples acquired through the CyTOF instrument suffer from cell 

clogging, signal drop associated to long acquisition and batch effects, special care needs to be 

taken when analyzing the data when multiple groups of samples are studied. Thus, a data 

analysis pipeline that considers data normalization, quality control and the high-dimensional 

nature of MC data needs to be used. Additionally, in order to analyze hundreds of samples the 

analysis pipeline needs to be adapted for large-scale studies and ideally be automatized as 

much as possible. However up to now, no such workflow was developed. 

In this PhD thesis we studied 7 different SADs in order to find new biomarkers that allow for 

patient reclassification according to immune cell signatures. We aimed at performing a deep 

phenotyping study including functional markers relevant for SADs. As we wanted to have the 
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most complete picture of the immune system we decided to collect whole blood samples and 

use MC cytometry to analyze them. In order to do this we collected blood samples in different 

centers located in Granada and Córdoba. Thus, we had to establish a cryopreservation 

protocol suitable for multicenter studies. As in total more than one hundred samples were 

collected, we established also an experimental protocol minimizing experimental variation, and 

a quality control and analysis pipeline was also optimized together with automatized data 

preprocessing.  

Using these settings we have demonstrated that high-content immunophenotyping studies 

can be successfully performed with small amounts of fixed/frozen blood. Immediate whole 

blood fixation benefits from shorter manipulation times, hence preventing cell death specially 

in the neutrophil compartment. We designed an experimental workflow that limits 

experimental variation and reported an R-based data curation workflow that cleans collected 

data and corrects the batch effects introduced during the sample preparation and staining. 

This pipeline is semi-automated and optimized for large studies involving human blood 

phenotyping, together with functional markers. Finally, we showed that MC can be successfully 

used to detect groups (clusters) of patients having similar immune landscapes, supporting the 

personalized medicine development in SADs. So far, we constructed a patient reclassification 

framework using cell frequencies and expression levels of functional markers. The four 

detected clusters differed in the frequency and activation state of both myeloid and lymphoid 

cells. Additionally, they were also characterized by different levels of pro and anti-

inflammatory cytokines. Each cluster contained a mixture of different diseases, confirming the 

high heterogeneity of each diagnosis label.  
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Introduction 

1 Systemic autoimmune diseases (SADs) 

1.1 Epidemiology of SADs 

The most important function of immune system is to recognize foreign antigens and protect 

the host from infectious agents, and thus, maintain homeostasis. However, when the immune 

system fails to do so, two major types of disorders can develop. First, immunodeficiency 

syndromes, when proper response cannot be triggered, and second, the autoimmune 

disorders when cells fails to distinguish self-antigens from nonself1. The second group of 

disorders are of the interest of this thesis and will be further discussed. 

Self-reactivity ranges from low, “physiological” level that is crucial for lymphocyte selection 

and immune-system homeostasis, to the intermediate level characterized by the presence of 

circulating autoantibodies and minor tissue infiltrates without clinical symptoms, to pathogenic 

auto-reactivity associated with immune-system mediated tissue injury2. The mechanism 

involved in switching from physiological to destructive autoimmunity is not fully understood 

but it is characterized by the breakdown of self-tolerance leading to an adaptive immune 

response to self-antigens and damage to self-tissues.  

On the basis of the tissue involved, autoimmune diseases can be characterized as organ-

specific, like multiple sclerosis (MS) or inflammatory bowel diseases (IBD) or systemic disorders 

also known as connective tissue diseases, where multiple organs are affected1. Various 

disorders can be found in this group being the most common systemic lupus erythematosus 

(SLE), rheumatoid arthritis (RA) or primary Sjogren’s syndrome (SJS), and more rare like 

systemic sclerosis (SSC), mixed connective tissue disease (MCTD), and primary anti-

phospholipid syndrome (PAPS). These multi-organ diseases are highly heterogeneous and 

associated with substantial morbidity and mortality. They can present classically, which makes 

the diagnosis simpler or, as they share many common features, patients can show a mixture of 

the symptoms which makes the diagnosis difficult3.  

SADs are mostly characterized by a gender imbalance, as the female-to-male incidence ratio is 

above one, being the most marked in SJS 10:14 and SLE 9:15. Although both diseases can occur 

at all ranges of age they are mainly diagnosed between 30 – 50 for SjS6 and between puberty 

to menopause for SLE, with an earlier incidence in African American women than in the 

Caucasian population7. For RA and SSC these differences between sexes are less obvious as the 
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ratio drops to 3:18,9. For SSC the incidence is highest among women in child-bearing age9 and 

for RA most women become symptomatic around middle age or at the time of menopause10. 

The incidence rate in PAPS for females and males is the same after excluding patients with SLE 

and with obstetric antiphospholipid syndrome and its prevalence increases with age11,12.  

The number of people affected by these diseases, the age of onset and the mortality varies 

considerably between countries. The most complete information comes from European and 

North American continents and less data is available from Africa, South America, Asia and 

Oceania, which can also result in an incidence and prevalence underestimation13. The 

incidence rate of SLE can reach 2 – 7.6 and 1 – to 4.9 per 100.000 and year in United States 

and Europe, respectively with a prevalence reaching 19 – 159 and 28 – 97 per 100.000 in both 

continents, respectively5,14–16. For SJS the incidence in Europe is around 5.310 and 3 – 46 per 

100.000 and year in North America, while for RA it is 9 – 36 and 31 – 45 per 100.000 and year, 

respectively17. In a small study group the incidence of MCTD was estimated at the level of 2 

per 100.000 and year18 and 5 per 100.000 and year for PAPS12, placing them as the rarest 

SADs.  

Ethnic differences in the prevalence were also reported: for example, SLE is 3 to 4 times more 

common in non-Caucasian populations especially with African origin. It was shown that these 

individuals develop the disease at younger age and have a higher risk to suffer more severe 

manifestations, such as lupus nephritis5. Similar results were observed for SSC, as it is more 

common and more aggressive in African-American than in Caucasian with similar socio-

economic status19. Additionally, this disease is more common in Australia (23 – 100 000) and 

North America (27 – 100 000) than in Japan (4 – 100 000) or Europe (15 – 100 000). More 

interestingly, an increasing prevalence was reported along a North-South gradient in Europe20.  

It is worth to point out that the wide ranges and differences between continents and countries 

can be due to different study designs and different criteria used to define these disorders, 

which only emphasizes the difficulty in the diagnosis process of SADs, and also means that the 

prevalence of these disorders can be much higher than estimated. On the other hand, these 

differences can point out towards both genetic and environmental factors that trigger the 

autoimmune response and disease progression.  

1.2 Common pathogenesis mechanism of SADs  

Dysregulation of both innate and adaptive immune responses plays an important role in the 

pathogenesis of SADs. Although the autoimmune response affects different tissues in different 
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SADs, the mechanisms triggering this response seem to be shared between patients.  Evidence 

of common pathogenesis includes alteration in the number and function of blood circulating 

immune cells, the interferon (IFN) signature in blood and affected tissues, elevated levels of 

proinflammatory cytokines and the presence of autoantibodies that can be shared between 

different diseases.  

1.2.1 Autoantibodies and the source of autoantigens in SADs 

Autoantibodies can target different biological molecules like lipids, proteins or nucleic acids. 

These antigens can be located both intracellularly, either in the nucleus or cytoplasm, or can 

be found on the surface of the cells or in the extracellular milieu21. The most frequent 

autoantibody class in SADs is called antinuclear antibodies (ANA) as they mostly recognize the 

antigens in the nucleus. In this group anti-double-stranded DNA (anti-dsDNA) antibodies (Abs) 

are present in 43% - 92% of SLE patients and are used as part of the diagnostic criteria, as they 

have high specificity for this disease. However it should be noticed that they can also be found 

in the healthy population22,23, albeit at a lower titer, and in MCTD24. Additionally their 

correlation with disease activity is variable in different studies25. As DNA is never present as a 

pure nucleic acid but rather as a part of nucleosomes, other type of anti-DNA autoantibodies is 

also observed in SADs. Anti-nucleosome Abs exist in around 60% of patients with SLE, and the 

probability that the patients with this Abs have SLE is greater than using anti-dsDNA Abs as a 

marker25. Additionally, a positive correlation with disease progression was shown for anti-

nucleosome26,27 Abs. These Abs are also found in some patients with SSC, SS, RA and MCTD, 

and thus they are not unique for SLE25. Anti-histone Abs are also present in SLE and SSC28, and 

they can be induced by certain drug treatments, resulting in SLE-like clinical features29.   

The antigens can be post-translationally modified creating the so-called neoantigens. One 

example is the citrullination of proteins like histones, triggering the induction of Abs against 

citrullinated proteins (ACPA). The Abs against citrullinated H3 and in general ACPA are seen 

especially in RA, but patients with SLE30, SSC31, SJS and MCTD32 can also be positive for anti-

ACPA. RNA-binding proteins (RBP) are another example of autoantigens and anti-Ro and anti-

La Abs occur in SADs, especially in SLE and SJS. In SLE they are associated with disease 

manifestations of the skin33 and with cytopenia34 and in SJS with earlier disease presentation, 

longer duration and greater severity of glandular symptoms35. In both diseases anti-Ro52 Abs 

are associated with congenital heart block (CHB) in infants of positive mothers36. Another 

example of anti-RBP are anti-Sm and anti-RNP, that are found in SSC, SLE and MCTD37,38.  
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The autoantigens sequestered in the intracellular compartments can be exposed to the 

extracellular milieu upon cell death. In rheumatic diseases programed cell death like apoptosis, 

and lytic cell death like necrosis, and NETosis, are thought to promote inflammation and lead 

to a vicious cycle of chronic inflammation, a hallmark of SADs39.  

Upon apoptosis the redistribution of nuclear and cytoplasmic content into membrane blebs 

and mircoparticles allows antibody opsonization. This opsonized immune complexes can be 

taken up via Fc receptors resulting in autoantigen presentation, and amplifying the 

autoimmune response40. Furthermore, if excessive apoptosis takes place there is no time for 

its effective clearance, and thus dying cells can progress into secondary necrosis, resulting in 

the release of cellular content and danger-associated signals (DAMPs) like high-mobility group 

box 1 (HMGB1), whose main role is to trigger the inflammatory response through 

inflammatory cell recruitment41. Elevated levels of this protein were reported in various 

SADs42. Apoptosis is also a source of protein modification and can result in histone 

acetylation43,44 and methylation45 being a source of new autoantigens.  

The NETosis is a special mechanism of neutrophil cell death in response to microbial46 but also 

sterile inflammatory signals like autoantibodies, immune complexes and inflammatory 

cytokines47. DNA released upon NETosis is present in large meshes (NETs) decorated by 

proteins and cytoplasmic granules48, and is an important source of autoantigens. The direct 

role of this cell death was shown for SADs, especially for SLE in the context of kidney 

involvement, as netting neutrophils were found in the glomeruli and were correlated with 

enhanced activity indexes in the kidney and elevated autoantibody levels49. Higher 

spontaneous NETosis and low-density neutrophils (LDL) known to be prone to NETosis were 

also observed in PAPS suggesting a protrombotic potential of the NETs50. Similarly to apoptosis, 

various posttranslational modifications can also occur upon NET release51 so they can be an 

additional source of cytoplasmic and nuclear autoantigens in SADs52. It was also shown that 

DNA decorated by cationic peptides like LL-37 is more accessible for plasmacytoid dendritic 

cells (pDC)53,54, thus self-DNA can activate intracellular receptors like toll-like receptors (TLR), 

leading to excessive IFNα production54.  

The autoantigens released constantly by dead cells promote cell activation, as they can directly 

stimulate pattern recognition receptors (PRR), or can alternatively be recognized by 

autoantibodies creating immune complexes. These complexes are next phagocytosed through 

the FcRγ receptor and are able to activate TLR molecules, known to be involved in SADs 
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pathogenesis. These responses can result in proinflammatory cytokines or autoantibody 

production, depending on the cells activated. Figure 1 shows how cell death can trigger 

autoimmune responses.  

 

Figure 1 Apoptosis and NETosis as an autoimmune amplification loop in SADs. 

For simplicity neutrophils are shown as the initiating source of autoantigens but any dying cell could be a driver in 
this process. This process requires the impaired clearance of dead cells, activation of DCs and presentation of 
autoantigens to autoreactive Th cells. Th cells next stimulate B cells to produce autoantibodies that amplify the 
loop by increasing cell death and DC cell activation. Figure is adapted from Darrah and Andrade, 2013. 

1.2.2 Toll-Like-Receptors in SADs  

TLR are the best characterized innate immune sensor family that are expressed on both innate 

immune cells like dendritic cells (DC), monocytes, granulocytes and adaptive immune cells like 

T and B cells55. Every cell type expresses a specific TLR combination. TLRs are located either at 

the cell surface (TLR1, TLR2, TLR4, TLR5 and TLR6) or intracellularly in the endoplasmic 

reticulum of resting cells (TLR3, TLR7, TLR8 and TLR9)56,57. Based on the PAMPs that they 

recognize, TLR can be grouped into 3 specificities: lipids and lipopeptides (TLR2/1, TLR2/TLR6 

and TLR4), proteins (TLR5) and nucleic acids (TLR3 for double-stranded RNA (dsRNA), TLR7 and 

TLR8 for single-stranded RNA (ssRNA), TLR9 for unmethylated CpG-rich DNA 

oligonucleotides)58,59. Besides recognition of PAMPS, TLRs are also specialized in recognition of 

DAMPS released from damaged tissue and apoptotic cells such as heat shock proteins, fatty 

acids or HMGB160. Their downstream signaling pathways lead to the activation of various 

transcription factors like nuclear factor-κB (NF-κB), Interferon response factors (IRF) and 

mitogen-activated protein kinases (MAPK), which induce the transcription of various immune 

response genes, like chemokines, costimulatory molecules, inflammatory cytokines and type 1 

interferons60. One of the hallmarks of SADs is the finding of an IFN signature and high levels of 

proinflammatory cytokines.  
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The importance of TLR in SADs is reflected in the drugs used as a first line of treatment. 

Antimalarial drugs like chloroquine and hydroxycholoquine are disease-modifying anti-

rheumatic drugs (DMARDS) currently approved for treatment of SLE in all cases61, RA in mild 

cases62, SJS with joint involvement4 and APS during pregnancy63. They were introduced in 

rheumatic disease treatment since 194064. Back then their mechanism of action was not 

known, however currently conducted studies gave light on their immunoregulatory and anti-

inflammatory effects. These drugs change the pH of endosomes65 and can directly bind to 

nucleic acids. Because of this they affect the activation of intracellular TLRs like TLR966,67 and 

TLR767,68. Because they disrupt the function of the lysosomal pathway they also affect the 

antigen processing and its presentation via MHC class II, and impair the maturation of 

autophagosomes affecting the process of autophagy64. Various inflammatory cytokines are 

reduced upon treatment with antimalarial drugs in vitro culture, affecting the expression of 

inflammatory cytokines by PBMC69 but also more specifically TNFα, IFNα, IL-6 and CCL4 (MIP1-

β) in pDCs70,71. The reduction of IFNα, TNFα and disease severity was observed in patients with 

SLE72. Also the production of autoantibody is diminished by the drug interference with TLR9 

and differentiation of memory B cells into antibody producing plasmablasts73. Inhibitors of 

IRAK4 kinase, a molecule involved in TLR signaling (Figure 2), were shown to be more effective 

in reducing the production of proinflammatory cytokines than antimalarial drugs71. This 

component is involved in many clinical trials in RA patients74. An anti-TLR4 monoclonal 

antibody is also under investigation in a clinical trial, however recently published results 

showed no benefits for the treated patients75.  

1.2.3 IFN signature in SADs.  

IFNs are functionally related cytokines which have an important role in antiviral response but 

also in inflammation, cancer and autoimmunity. Three major types of IFNs can be 

distinguished, type I, II, and III. IFN-I family consists 8 different interferons and among them 

IFNα and IFNβ are the main members and have shown the strongest implications in SADs76. In 

healthy individuals IFN-I production is initiated upon bacterial or viral infection, however in 

autoimmune patients’ immune complexes coming from dying cells are able to constantly 

activate immune cells, triggering IFN-I responses and inducing IFN-stimulated genes (ISG)77. 

The main IFN-I producers are pDC, which express  the endosomal TLR TLR7 and TLR9, so they 

can rapidly produce high amount of IFN-I in response to exogenous nucleic acids78. Other 

phagocytes and immune cells are also known to produce it79. The level of pDCs in the 
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circulation in SADs patients is lower than in healthy controls, which is probably due to their 

migration to the inflamed tissues, as they were found in kidneys and salivary glands of SLE80 

and SJS81 patients, respectively, although contradictory reports have also been published82. 

The activation of TLR7 and TLR9 in pDCs leads to a signaling cascade involving MyD88 and its 

interaction with IRAK proteins, triggering the nuclear translocation of NF-B, IRF5 and IRF7, 

and the induction of IFN-I and proinflammatroy cytokines (like IL-6, TNF or IL-12)76, but also to 

their maturation by upregulation of molecules like  class I and II MHC and CD8683. IFN-I favors 

antigen presentation84 bringing the innate and adaptive immune responses and demonstrating 

its important role in autoimmunity. The mechanism of IFN-I activation in pDCs can be seen in 

Figure 2. It is worth noting that pDCs are the current target of diverse therapies in 

development for cutaneous active lupus patients. A recent clinical trial that used anti-BDCA2 

Abs (BIIB059), molecule exclusively expressed on pDCs, met its primary end points85. This drug 

was reported to inhibit the production of pro-inflammatory mediators, including type I 

interferons and to be more potent in blocking various intracellular TLR response than 

hydroxychloroquine86. 

 

Figure 2 TLR mediated induction of IFNα. 

Autoantigens typical for SADs containing nucleic acids are recognized by autoantibodies and internalized via FcR 
and recognized by intracellular TLRs residing in the endosome. The cascade via Myd88, IRAK4 and 1 and TRAF 
initiate the translocation of transcription factors like NF-κB and IRF5/7 to the nucleus and triggers transcription of 
IFNα, although other cytokines can also be produced. Adapted from Crow et al, 201987. 
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Various SADs genetic risk loci involved in either TLR signaling or IFN-I responses have been 

discovered88. These variants are associated with either increased circulating IFN-I activity89 or 

with increased ISG expression90. Human genetic variants in multiple IRFs are associated with 

SADs, like IRF591–94, IRF792,95,96 or IRF897,98. IRF5 is linked with increased circulating IFN-I, which 

strongly correlates with the presence of anti-RBP or anti-dsDNA antibodies in SLE99. Another 

important pathway affected by IRF5 is connected to B cells, since it is characterized by the 

production of autoantibodies due to hyperactivity of TLR pathways, leading to anti-immune 

complex antibody production100. Other examples of IFN-related genes are the association of 

STAT4 with SJS93, SSC95,101, RA102, SLE92,102, and that of PTPN22 with RA and SLE103.  

Although an IFN signature was found in most of the SADs, a high heterogeneity was also 

observed. For example SLE patients can be stratified into two groups based on their high or 

low levels of IFN-I, and a new genetic locus was identified with the first group of patients104. 

SSC105 and SJS106 patients with high ANA titer were also characterized by high levels of IFN-I 

compared with patients with low ANA titer. These findings suggest that although the clinical 

outcomes of SADs are different, there are subgroups of patients sharing autoantibody profiles 

and genetic associations involving in TLR and IFN-I pathways.  

Although the IFN-I involvement in SAD is well known, the data from clinical trials involving this 

cytokine are contradictory and do not fulfill the expectations. Two monoclonal Abs directed 

against IFNα were used in different phase II clinical trials with SLE patients. The rontalizumab 

(anti-human IFNα antibody)107 did not meet neither primary nor secondary end points, 

although the benefits for the patients with low level of IFN signature were observed. On the 

contrary sifalimumab (anti-human IFNα antibody)108 met the criteria and its positive outcome 

was mainly seen in patients with high interferon signature, although clinical benefits were 

modest compared to placebo group. Another clinical trial109 involved anifrolumab, a drug that 

blocks IFNAR receptor and hence has a broader mechanism of action. It showed an 

improvement in organ-specific disease activity indexes, a decrease in the flare rate and ability 

to maintain low disease activity for longer times. These benefits were especially seen in the 

patients with high IFN signature, although the low IFN signature group was underrepresented 

in this study. In the next two clinical trials TULIP1110 and TULIP2111  benefits were seen for the 

patients again, and the differences were also observed between the groups characterized by 

high and low levels IFN signature, although the primary endpoint in TUILP1 was not achieved. 

The benefits from this medication were also found in SSC patients112, and for SJS a clinical trial 

using another monoclonal antibody that temporally depletes pDCs is ongoing (NCT02780674). 
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It should be noticed that clear benefits of the anti-IFN treatment were seen only in around 40-

50% of the treated patients, which still leave a significant number of individuals without 

effective treatment. These studies also show that only particular groups of patients could 

benefit from these drugs, pointing towards the importance of a proper patient stratification 

and selection for the clinical trials.  

1.2.4 Cytokine signatures in SADs 

Besides the elevated levels of type I IFN in the serum of patients, other cytokines were also 

reported to be elevated in SADs. And many biological treatments or JAK/STAT inhibitors were 

developed to target them113,114. Among the elevated levels of cytokines in the serum and 

tissue, inflammatory cytokines like IL-6, IFNγ, IL-23/IL-17 and TNFα, as well as anti-

inflammatory cytokines (IL-10) were found to be increased and correlated with disease activity.  

TNFα is considered as a master proinflammatory cytokine that plays a critical role in 

autoimmune diseases with chronic inflammation. Besides being rapidly expressed at high 

levels at the site of inflammation, this cytokine promotes expression of other agents like IL-1, 

IL-8, IL-6 and IFNγ, enhancing the inflammatory loop115. Additionally, the induction of 

apoptosis by TNFα was also reported in various studies116,117. Thus, these findings suggest it 

has an important role in SADs development. 

High levels of TNFα were detected in RA patients118 and correlated with joint pain119. It was 

also the first SAD that was successfully treated with this agent. Multiple TNF inhibitory (TNFi) 

molecules have been developed so far, however their outcome depends on their molecular 

mechanism of action. It was shown that adalimumab, besides biding soluble TNFα, also acts as 

a TNFα agonist and increases its ability to expand T regulatory cells (Treg), however it can also 

promote T effector (Teff) expansion120. A similar effect was shown for infliximab121, another 

TNFi. On the other hand etanercept does not promote Treg expansion and its main effect was 

attributed to the reduction of Teff cells120. These phenomena can explain why significant 

proportions of patients fail to respond to TNFi treatment, showing exacerbation of the 

disease122 or induction of other autoimmune disorders like SLE123. Thus, it could be helpful to 

monitor the moment of treatment initiation, as well as the balance between immune cells like 

Teff and Treg. It can be important when deciding which anti-TNF agent should be applied. High 

levels of TNFα was reported in SJS, SLE and SSC, and it was correlated with important 

pathological factors, like the increase in the expression of autoantigens Ro/SSA and La/SSB124, 

downregulation of the expression of water channels in salivary glands125 or the correlation with 
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anti-dsDNA Abs126,127 or IFNα levels in SLE patients128. In a small study with SLE patients some 

improvements were detected upon TNFi treatment, such as a decrease in proteinuria, 

however multiple secondary effects were also reported129. Encouraging results were found in a 

small study for PAPS130 resulting in a current ongoing clinical trial (NCT03152058). So far 

benefits from TNFi treatment were reported for SSC131,132 and SJS133,134 patients.  

Unfortunately, the high level of non-responders to TNFi, the adverse effects of the treatment, 

the use of small study groups, and the responses of patients against the drugs encouraged 

researchers to look for other anti-cytokine therapies that could help to ameliorate or treat the 

symptoms.  

IL-6 is a pleiotropic cytokine which was at first characterized as a B-cell growth factor and later 

described to be involved in many biological processes including systemic inflammation and 

fibrosis. It is mainly produced by monocytes and neutrophils upon TLR challenge and has a 

predominant proinflammatory activity regulating innate and adaptive immune cells135. IL-6 

acting alone or in combination with other cytokines promotes differentiation of B cells into 

antibody producing plasma cells136,137, and additionally induces proliferation and 

differentiation of T cells into T helper 17 (Th17)138 and T follicular helper (Tfh)139 cells, which 

are known to be involved in autoimmunity. The elevated IL-6 serum levels and the association 

with disease activity was confirmed in the meta-analysis of SLE140, and also in studies of 

RA141,142 and SSC143.  

Tocilizumab is an antibody that blocks the signaling through the IL-6 receptor. This medication 

is currently used in RA, as it suppress disease activity, ameliorates joint destruction144, and is 

highly effective in early disease development. In a phase I clinical trial for SLE the disease 

activity scores improved and the level of anti-dsDNA antibody dropped significantly together 

with the frequency of circulating plasma cells145,146. It was also shown to have a positive 

influence on lung function, a secondary outcome parameter in a clinical trial for SSC147. 

However just recently it failed in the Phase II/III clinical trial for SJS as no difference was 

observed between treated and placebo148.  

IL-23/IL-17 axis is another important factor in SADs and its blockade gave positive outcomes 

and has been approved for the treatment of another autoimmune disease, namely psoriasis149. 

IL-23 is a heterodimer composed of two subunits p19 and p40 (the last one is shared with IL-

12) and is mainly produced by DC and monocytes/macrophages150. The activity of this cytokine 

is similar to IL-12, increasing IFNγ production by T cells150, but has also the unique ability to 
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induce Th17 differentiation151 and change the balance between Th17/Treg152,153. The IL-17 

family contains six members from A to F, among which IL-17A is the most studied, and 

produced mainly by Th17 cells154. It can act on neutrophils promoting NETosis155 and also on B 

cells triggering autoantibody production156. IL-17 accelerates the inflammatory response by 

inducing the production of IL-6, TNFα and T cells- and neutrophil-attracting chemokines like 

CCL2 (MCP-1) or CCL7 (MCP-3)157. Elevated levels of both cytokines were shown in circulation 

and in tissues of various SADs patients, correlating with disease activity158–164.  So far the 

blockage of the IL-17/IL-23  axis shows poor or moderate efficacy in patients with RA165, 

however some promising results were obtained with ustekinumab in a cohort of SLE patients, a 

monoclonal antibody targeting the IL-23 and IL-12 p40 subunit166. Sixty percent of the patients 

met the end-point criteria, and additionally the risk of new flares was also reduced. The follow-

up of these encouraging results is currently ongoing in another clinical trial (NCT03517722).  

1.2.5 Cellular blood and tissue abnormalities in SADs.  

The high level of cytokines, autoantibodies and the tissue inflammation are provoked by 

specific immune cells and their interaction with other cells in the tissues. Thus, not only their 

products are involved in the pathogenesis of SADs but also their particular physiological 

behavior, function and dysregulation. The high level of autoantibodies present in the 

circulation of SADs points toward the cells involved in antigen presentation like DC and 

monocytes, B cell producing the autoantibodies and T cells giving signals to induce those 

autoantibodies. The association of various gene variants in class II HLA genes including HLA-

DQA1, HLA-DQB1, and HLA-DRB1 with multiple SADs was reported and recently reviewed167, 

and supports the importance of antigen presentation. Additionally, the NETs produced by 

granulocytes are potent autoantigen sources and seem to be also important in the vicious 

cycle of autoimmunity. In general, many immune cells are involved in SADs pathogenesis and 

some will be discussed below.    

Human DC are heterogeneous populations composed by several subsets, like pDC, 

characterized by the expression of CD123 and BDCA2, two types of conventional DCs (cDC):  

CD141+ (BDCA3) cDC and CD1c+ (BDCA1) cDC, and inflammatory infDC, generated in the tissue 

upon differentiation of newly recruited monocytes168. As mentioned before, pDCs are the main 

producers of IFNα and hence play an important role in SADs pathogenesis. Their low 

circulation level was seen in multiple SADs compared to healthy controls81,169,170 and it was 
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recently confirmed in a study where 3 different SADs shared low pDC as a unique common 

feature171. The treatments against pDC described before highlight their importance in SADs.   

In the presence of danger signals (DAMPs) cDCs become activated and mature into antigen 

presenting cells (APCs), increasing the levels of Class I and Class II MHC in their cell surface, and 

that of chemokine receptors and cytokines and T lymphocyte costimulatory molecules like 

CD86 and CD80. Depending on the environment, cDCs induce the differentiation of different 

types of Th and Treg cells, but also promote antibody production by direct interaction with B 

cells or production of survival factors like B cell activating factor (BAFF) as well as the 

production of a proliferation inducing ligand (APRIL), involved in B cell differentiation and 

antibody production172. Various studies using flow cytometry (FC) reported decreased 

frequency of circulating cDCs in the blood of SADs patients, and through histological analysis, 

the increased numbers in the inflamed tissues81,173,174. The accumulation of DAMP signals in 

the inflamed tissue primes cDCs to release more inflammatory cytokines like IL-12 and IL-23, a 

phenomenon observed in RA, switching the T cell repertoire towards Th1 and Th17 pathogenic 

T cells174. Additionally, antigen-primed DCs migrate to the lymph nodes where they activate 

auto-antigen specific T cells and promote autoantibody production by B cells175. The local 

priming of memory T cells can also take place in the tissues in ectopic lymphoid structures176, 

leading to B cell activation, local production of autoantibodies177 and further tissue 

degeneration.   

Monocytes are responsible for phagocytosis and elimination of opsonized microorganisms and 

apoptotic dead cells through PRR178 like C1q. which mediates the recognition of various 

pathogen molecules and plasma proteins179. The deficiency of these proteins is correlated with 

an increased risk of developing RA180 and SLE181, owing that proper removal of bacterial and 

self-proteins can be crucial in preventing the induction of autoantibodies182.  Human 

monocytes are constituted by 3 main populations based on the expression levels of CD14 and 

CD16 markers, although more fine phenotyping was already performed using high-dimensional 

cytometry techniques183. CD14++CD16- monocytes are called classical, and they account for up 

to 90% of the monocyte compartment; intermediate CD14++ CD16+, that yield a high level of 

proinflammatory and anti-inflammatory cytokines like IL-10; and non-classical CD14+/-CD16++ 

with a more mature phenotype and with high migratory and low phagocytic properties, that 

constitute around 5-10% of the total population184. Increased blood frequency of intermediate 

monocytes was reported in RA and it was shown that these cells promoted a proinflammatory 

cytokine milieu inducing the generation and maintenance of Th17 cells185. Furthermore, it was 
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reported that a higher number of classical and intermediate monocytes can be used as a 

predictor of clinical response to methotrexate in RA186. In SJS the frequency of monocytes 

positive for the BAFF-receptor (BR) 3 is higher compared with healthy controls and its 

expression is correlated with higher expression of IL-6, ANA autoantibodies, and higher disease 

activity136. These results suggest an important role of monocytes in the pathogenesis of 

autoimmunity. In the blood of SSC patients the absolute count of  CD14+ and CD16+ monocytes 

is elevated compared to CTR and the frequency of CD16+ cells is positively correlated with 

clinical symptoms like skin severity and pulmonary fibrosis187. Additionally, CD16+ monocyte 

count is higher in diffuse cutaneous SSC (dcSSC) compared to limited cutaneous SSC (lcSSC). 

However this observation was contradicted in a recently published study where the CD16+ 

monocytes characterized patients with limited skin involvement while classical monocytes 

characterized patients with more spread fibrosis171. These discrepancies can be due to 

differences in the analytical approaches and also to the high heterogeneity across SSC patients. 

Although contradictory, these results show that the severity of tissue involvement in SSC could 

be predicted based on the frequency of cells circulating in the blood. In another study it was 

observed that the monocytes from SLE patients have increased expression of CD40L188 and 

that this molecule significantly stimulates the production of IgG in SLE but not CTR-derived B 

cells189. Thus, these cells can have a potential role in B cell hyper-reactivity. What is more, 

monocytes from SLE patients differentiate to cDCs expressing higher levels of CD86, which 

increases their ability to present autoantigens and trigger autoimmune responses190.  

B cells are multifunctional lymphocytes that contribute to the pathogenesis of SADs via 

functions like antibody production, antigen presentation, T cell help and cytokine 

production191. The dysregulation of B cells in both periphery and tissue was described in 

multiple SADs. In SJS one of the most consistent changes in peripheral blood is the reduced 

number of circulating CD27+ memory B cells192–194. It is believed that these cells migrate to or 

are retained within target organs, as increased number of memory B cells was described in 

salivary glands of patients192. A reduction in memory B cells is also observed in SSC patients; 

however their low frequency is probably caused by the overexpression of CD95 (Fas) which 

induces higher sensitivity to Fas-mediated apoptosis195. Additionally CD27+ B cells from SSC 

patients are characterized by higher expression of the costimulatory molecules CD80 and 

CD86195, which are crucial for B–T cell interaction. On the other hand increased frequency of 

memory B cells was observed in the blood of SLE patients196. It is known that memory B cells 

have reduced expression of the FcγRIIb receptor, which lowers their reactivation threshold197. 
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They have also lower proliferation rates which makes them less susceptible to the 

conventional immunosuppressive medication that depend on the cell cycle, becoming easily 

activated during disease relapse197. Additionally, these cells can be rapidly activated in an 

antigen-independent manner by the combination of TLR agonists with either APRIL, BAFF or IL-

21198. FcγIIb receptor is crucial in restricted antibody-mediated immune responses and is 

thought to prevent autoimmunity191,199. The mutation in the gene locus of FcRγIIb receptor has 

been associated with a higher risk of RA and SLE191, and therapies with an extracellular version 

of human FcγIIb that works as decoy receptor and prevents immune complex biding to other 

FcRγ have been developed200. Other memory B cells expanded in SLE are IgD-CD27- DN (double 

negative) B cells, expressing isotype-switched and mutated antibodies, thus having a memory 

B cell phenotype201. The presence of these cells was correlated with anti-dsDNA and anti-RNP 

autoantibodies. Another study found their positive correlation with proteinuria in patients with 

lupus nephritis, regardless of disease activity202. These cells were further divided in two 

populations: DN1 (CXCR5+CD19int) and DN2 (CXCR5-CD19hiCD11c+). The DN2 population is 

expanded in SLE patients and characterized as pre-plasma cells, that are hyper-responsive to 

TLR7 stimulation and are predominant in African-American patients with active disease, 

nephritis and anti RNA, Smith-autoantibodies203. These cells are also elevated in RA, and SSC 

but not in SJS patients203. Plasmablasts are increased in the circulation of SJS204,205, SLE206 and 

PAPS207 patients. Furthermore, genetic analysis revealed that plasmablasts increase in PAPS207 

and SLE patients with APS, is associated with a SNP in TLR7 receptor and with higher IFN-I 

production207. An increased number of circulating plasma cells (PC) was reported in active SLE 

patients and correlates with higher amounts of autoantibodies. These PC have a mature but 

not fully differentiated phenotype, inducing their persistence in the circulation206. In SJS the 

increase of PC infiltration was observed within the salivary glands, and the elevated number of 

plasmablasts (PB) in circulation, and PCs in tissues were correlated with serum IgG levels, 

disease activity and positivity for autoantibodies205. Additionally, these infiltrated plasma cells 

are characterized by CD38+CD27+ marker expression together with a substantial fraction of 

CD19- cells205, suggesting a long-lived plasma cell phenotype and function in maintaining the 

humoral, autoagressive response208. An increase of circulating naïve B cells was found in SSC 

patients and it is believed to compensate for continuous loss of memory B cells due to 

spontaneous apoptosis as described before209. These naïve B cells are characterized by higher 

expression of CD19, which indicates the presence of persistent B cell activation210. On the 

other hand, a diminished number of these cells was found in SLE patients. The balance of B cell 
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subpopulations in SLE patients is therefore switched into memory B cells, which, as already 

antigen experienced cells, have lower activation threshold and are primed for action211.   

The above-mentioned examples show a broad dysregulation of B cells homeostasis in SADs, 

emphasizing their importance for treatment approaches. Indeed, various B cell-depleting 

agents are used or studied to treat SADs. Rituximab, an anti-CD20 antibody is currently the 

drug most frequently used to target B cells and is approved by FDA to treat RA191. Despite of 

the early success in open trials212–215, it failed to meet the primary endpoints for SJS216,217 and 

SLE218. It was also shown that SLE treated patients experience flares after the end of the 

treatment219. The flaring patients are characterized by a quick and disproportional 

repopulation by PB and high levels of autoantibodies220. Despite this it is used as an off-label 

drug to treat SLE patients who did not respond to any other treatment221, and has also a 

beneficial outcome for a set of SJS patients222, emphasizing the need for patient stratification 

and proper assignment to the clinical trials. Rituximab targets precursors of antibody secreting 

cells and affects functions like antigen presentation. However due to the lack of CD20 

expression on PBs and PCs, it does not directly affect pathogenic antibody generation. Thus, 

other therapies are being developed. CD19 is expressed on a broader spectrum of B cells 

including some PBs and PCs (although most of mature and long lived PCs are CD19-223), and 

was also targeted in clinical trials for SLE patients, showing some benefits224 although the data 

from a phase II trial (NCT02725515) are still unpublished. BAFF is a key B cell survival cytokine 

that was observed to be elevated in SADs225–227. Humanized anti-BAFF (belimumab) is the only 

biological drug approved to treat SLE and although it is successfully being used, many patients 

do not respond to its treatment and its efficiency in patients with renal involvement is still 

under study200. As it was observed that rituximab treatment increases the production of 

BAFF228,229 the combination therapy was also tested in SLE patients. However up to now 

contradictory results were obtained200, which can be again due to different and heterogeneous 

cohort groups under study in the different trials. A small phase II clinical trial also showed a 

positive outcome in SJS with ianalumab, a monoclonal antibody that targets BAFF receptor230. 

B and T cell checkpoints are also of interest,  and antagonists disrupting the CD40-CD40L and 

ICOS-ICOSL interactions important for germinal center and T-B cell interaction were tried in 

some SADs patients231–233. Unfortunately, these trials were terminated due to severe adverse 

effects234, lack of efficacy235 or are still waiting to assess the drug efficacy200, although some 

promising results were achieved in a cohort of SjS patients with the anti-CD40 drug232.  



INTRODUCTION 

 

46 

 

T cells can be divided in two subsets: CD4+ or helper cells, that can differentiate in several T 

helper subpopulations like Th1, Th2, Th17, Tregs and Tfh; and CD8+ T cells also called cytotoxic 

T cells (CTL)236 that can be also subdivided into Tc1, Tc2, Tc9, Tc17, Tcf and Tregs237 with a 

similar cytokine repertoire as CD4+ T cells237. The involvement of both Th and CTL was reported 

in SADs.  

In general a higher proportion of CD4+ infiltrates is detected in the inflamed glandular tissue of 

SJS patients205, supporting the hypothesis that the blood lymphopenia is caused by migration 

of CD4+ cells into the tissue. A lower amount of CD4+ T cells was also found in the blood of SLE 

patients 238 and lymphopenia in SLE is associated with a high disease activity index and with 

renal disease239. Furthermore, SLE patients with high disease activity score have elevated levels 

of CD4+ CD28- T cells238, which were also found in patients with RA240,241 and SSC242. These cells 

are characterized by cytotoxic capacity, expression of natural killer (NK) cell receptors and 

resistance to apoptosis, they are not anergic but rapidly respond to the stimulation243. Because 

of this they can contribute to disease progression. For a long time it was believed that the bias 

towards Th1 response was dominant in some SADs244–246 except SSC, with the bias shifted to 

Th2 response as shown by an increase of IL-4, IL-6 and IL-13 cytokines in serum and skin247 and 

in SJS with severe B cell accumulation in glandular tissue within germinal centers248. However, 

elevated levels of Th2 cytokines were also observed in SLE patients and both Th1 and Th2 – 

cytokines were correlated with disease activity249. Thus, it is currently believed that both Th1 

and Th2 cells are involved in SADs pathogenesis. Among the CD4+ Th, Th17 cells are known to 

be involved in autoimmunity and are also increased in the circulation and in the tissue of SADS 

patients159,250–252. 

Treg are suppressor cells that inhibit the activation and proliferation of CD4+ Th cells, 

differentiation of CTL and activation of B cells. The knowledge about Treg population is 

contradictory in SADs. The main two reasons are the high heterogeneity of the patients but 

also the lack of consensus on which markers should be used to study these regulatory cells253, 

thus different markers are used across the studies and different cell populations are targeted. 

Both the reduced254, increased (correlated with disease activity255) and non-altered256 

frequency of CD4+ CD25hi FoxP3+  (or CD25+CD127loor CD25+CD4+) cells were reported in the 

peripheral blood of SLE. The non-altered and decreased expression of this phenotype was 

demonstrated in the blood of RA255,257 with affected suppressing function258. Their 

accumulation in synovial fluid and tissues was also described259,260. These cells are functional261 

although high level of TNFα inhibits their suppressor behavior121. Higher frequency in the 
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blood was shown for dcSS patients262 and in SJS patients with high expression of IFN-I263, 

although contradictory results were also reported for SSC264,265. It was demonstrated that 

responders to the treatment of anti-TNFα therapy have an increased frequency of peripheral 

blood Treg121 and the blockage of IL-6R changes the balance of Th17/Treg favoring Treg and 

correlates with improved disease activity scores257. The abnormalities in the number and 

frequency of T follicular helper cells (Tfh), other regulatory  CD4+ T lymphocytes, were also 

reported to be altered in SADs266–268  

CD8+ T cells play a key role in the recognition and removal of cells infected with intracellular 

pathogens and tumor cells. They kill target cells mainly by releasing granzyme B and perforin, 

or thorough Fas ligand (FasL), which triggers apoptosis in Fas+ target cells. They can also 

produce various cytokines affecting both the innate and adaptive immune system237. In the 

peripheral blood of SADs patients, various irregularities were reported, regarding their 

phenotype, frequency and function. In SSC an increased proportion of effector (CD8+ CD45RA+ 

and CD27-) and effector memory (CD8+ CD45RA-CD27-) cells is found compared to healthy 

controls269. In RA terminally differentiated effector memory CD45RA+CD62L-CD8+ T cells are 

significantly decreased, whereas the central memory CD45RA-CD62L+CD8+ population is 

increased. No difference for naïve and effector memory CD45RA-CD62L- CD8+ T was found270. 

Although in a recent study the frequency of effector but not central memory was elevated271. 

It should be noted that different type of markers were used in these two studies, and in the 

first study only 8 patients were recruited.  

A marked activation of CD8+ in peripheral blood of SADs was also reported. In SJS CD8+ T cells 

show increased expression of HLA-DR and are positively correlated with disease activity205. 

Additionally these cells are positively associated with the damage in the glandular tissue205. 

The increased frequency of effector cells expressing CD69, an early activation marker was also 

shown in both active and inactive RA patients272. Together these results suggest that CD8+ cells 

might be constantly stimulated by the presence of their cognate antigen272. Indeed CD8+CD28- 

cells defined as antigen-specific, oligoclonally expanded, terminally differentiated senescent T 

cells are increased in SSC273, SLE274 and in RA275. In SLE they are positively correlated with 

disease activity274 and in RA with disease duration, suggesting their important role at early 

stages of the disease275. The infiltration of CD8+ T cells was also reported in the organs affected 

by SADs, although not to the extent of CD4+ T cells. In SJS, CTLs were observed around 

apoptotic acinar epithelial cells in the lacrimal gland276. The CD8+ signature was also found in 

the skin of SSC patients and correlated with skin thickness. Immunohistochemical analysis of 
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skin lesions in dcSS at different disease stages show the predominance of CD8+ T cells in the 

early stage of the disease and CD4+ at the late stage, suggesting a role of CD8+ T cells in the 

early stage of the disease. Oligoclonally-expanded CD8+ CD69+ T cells are also found in the 

synovial fluid of RA patients. These cells are characterized by increased expression of cytotoxic 

molecules, they induce perforin-mediated histone citrullination and NET formation277.  

Double negative (DN) T cells are another subpopulation of cells that present abnormalities in 

SADs. Several studies suggest that DN T cells arise from activated, self-reactive T cells that lost 

their CD8 expression278–280, but also a CD8-independen origin was reported281. These cells are 

expanded in SLE282 and SJS283. Additionally they induce anti-DNA IgG antibodies as efficiently as 

CD4+ T cells280,284 and account for increased production of IL-17 in SLE and SJS280,283,285. These 

cells are also found in the minor salivary gland of SJS patients and are resistant to 

corticosteroid treatment in the context of IL-17 inhibition283. They also infiltrate the kidneys of 

lupus nephritis patients282, demonstrating their pathological role in SADs.  

T cells can be categorized in two groups based on the type of T cell antigen receptor (TCR) 

clonally carried by the cell. Thus αβ T cells expressing αβTCR and γδ T cell expressing γδ TCR 

can be distinguished286.  γδ T cells are a minor population that constitute around 0.5-5% and 1-

5% of T cells in the blood and secondary lymphoid organs287. However certain γδ T subsets are 

found at much higher proportion in epithelial tissues like skin epidermis, the gastrointestinal 

and reproductive tracks287. Human γδ T cells can be classified into three main groups Vδ1 

involved in maintaining epithelial tissue integrity; Vδ2 constitutes the majority of blood 

circulating cells and Vδ3, cells rare in blood but rich in the liver288. In contrast to the MHC-I and 

MHC-II restricted peptide recognition of TCRαβ T cells, γδ T cells recognize unconventional 

antigens like stress molecules and non-peptide metabolites without MHC restriction289. They 

can bridge innate and adaptive immune responses through their ability to present antigens,  

and express proinflammatory cytokines, chemokines and cytotoxic molecules290,291. A subset 

expressing FoxP3 transcription factor was also described, and they can also fulfill their 

regulatory function292. Additionally, their role in the control of the production of specific 

antibodies has been also described293. Since they can shape critical functions in innate and 

adaptive immunity the consequences of their dysregulation were studied in SADs. In SLE, 

decreased frequency of γδ T cells is found in the blood294 and is negatively correlated with the 

disease activity. These cells also produce elevated levels of IFNγ, IL-4, IL-10 and TGFβ295 and 

have an activated phenotype as measured by CD69 expression294. On the other hand, 

increased numbers were observed in the cutaneous tissue of SLE patients compared to healthy 
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controls, and their numbers are higher in active vs inactive patients. Additionally a positive 

correlation with the disease activity was found 160. SSC patients positive for anti-Scl-70 Abs and 

patients with shorter disease duration were characterized by reduced number of γδ T cells296. 

Yet in another study this reduction is only observed on the specific subset of Vδ1 cells, and 

their higher activation was measured by HLA-DR overexpression. Also elevated infiltration of 

these cells was observed in the inflamed tissue297. Both decreased298,299 and stable300 γδ T cell 

frequency was reported in the peripheral blood of RA, although an increase in synovial fluid 

infiltration of activated γδ T cells with downregulated CD16 and upregulated HLA-DR was 

observed301 and a correlation with tissue inflammation score was also reported302. A similar 

activated phenotype was also observed in the blood of SJS patients298,303, however no 

differences in the frequency of γδ T cells were observed between patients and healthy 

controls.  

Many of the therapies applied and tried in SADs are also directed to the T cell functions, like 

anti-cytokine therapies or treatments directed against CD40 or ICOS interactions. But also 

additional pathways involving immune check point receptors like CTLA-4/CD28 or PD-1/PD-L 

have been considered304. 

NK cells are innate lymphoid cells. Although they are derived from lymphoid T progenitors in 

the bone marrow they lack rearranged antigen receptor genes305. They are defined as CD3-

CD56+ mononuclear cells, and can be classified into CD56dim, predominantly found in the blood, 

and CD56bright, found mostly in the secondary lymphoid and inflamed tissues306,307. CD56dim are 

more cytotoxic due to their higher expression of inhibitory killer immunoglobulin-like receptors 

(KIRs), components of cytolytic granules (perforin and granzymes) and FCyIIIA (CD16)308, which 

together mediate antibody-dependent cell cytotoxicity (ADCC). The CD56bright cells are 

characterized by a lower cytotoxic activity309 and the production of higher quantities of 

cytokines and chemokines such as IL-10, TNFα, INFγ and GM-CSF308,309. Because of this they are 

characterized as immunoregulatory cells as they can influence innate and adaptive immunity. 

Both subtypes can also produce MIP1-β, MCP1 and RANTES310, cytokines important in the 

pathogenesis of SADs. Decreased absolute NK cell count and frequency was observed in the 

peripheral blood in multiple SADs171,311–314. Additionally in SLE this decrease was associated 

with disease activity and with severe clinical manifestations like nephritis and 

thrombocytopenia313,315. In SJS an increased ratio of CD56bright NK to CD56dim NK was observed 

and positively correlated with serum IgG levels, but not with the disease activity index 

ESSDAI311. This imbalance was also observed in SLE patients311,316, although some other studies 
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do not support this observation312,315. A reduced number of CD56bright cells were also reported 

in SSC171,314. On the other hand, RA patients are characterized by an increased frequency of NK 

cells in the blood that is inversely correlated with disease activity317. This increase is also 

observed when stratifying SSC patients into dcSSC and lcSSC. dcSSC patients were 

characterized by higher number of circulating NK cells compared to lcSSC and in both groups 

they have increased expression of activation markers compared to controls. The cytokine 

production (IL-5, IL-10, IL-6) was dysregulated in dscSSC but not in lcSSC and both groups 

presented reduced cytotoxicity compared to controls318. Increased infiltration of both NK cell 

subpopulation was reported in the kidney of patients with lupus nephritis319, and peripheral 

blood Ki67+ NK cells are significantly correlated with disease activity and nephritis, suggesting 

an important role of these cells in kidney inflammation320. Additionally peripheral CD56bright 

cells from SLE patients produce more IFNγ in both active and inactive patients, and more TNFα 

in the active group315, suggesting their pathological role in the tissue. On the other hand, 

autoantibodies directed against the KIR receptor were found in SLE, SJS and SSC patients. The 

anti-KIR+ IgG from SLE patients reduced the degranulation and cytotoxicity of NK cells. The 

presence of these antibodies was correlated with increased disease activity, nephritis and the 

presence of ANA, suggesting that the reduced and defective function of NK cells may be also a 

risk factor for developing SADs321. Decreased cytotoxicity of circulating NK cells was found in 

RA317, SLE312, and SSC318 patients, additionally lower level of IFNγ was also produced by NK cells 

from RA patients317. However, the joint infiltrating CD56bright NK cells have high expression of 

CD69322, indicating their activated state, although they are perforinlo and do not produce high 

levels of TNFα and IFNγ317. This suggests that other pro-inflammatory mediators secreted by 

these cells or another associated function can play an important role in SADs pathogenesis. For 

example it was shown that NK cells accumulated in the inflamed tissue can promote TNFα 

production by CD14+ monocytes323. These findings demonstrate an important role of NK cells 

in SADs, however also emphasize different NK cells roles in different endotypes of the disease.  

Neutrophils constitute more than 50% of circulating leucocytes in the blood and are important 

in the defense against invading microbes. Although they are phenotypically and functionally 

diverse, due to their short-life time, spontaneous activation after isolation and their terminal 

and non-proliferative differentiation state in the circulation, makes them resistant to genetic 

manipulation and difficult to study. Because of this and despite their abundance in the blood 

they are usually excluded from phenotyping studies and instead peripheral mononuclear cells 
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(PBMC) are used. This causes a significant loss of information, especially in the context of SADs 

where neutrophils are known to play an important role.  

Neutropenia is found in a great number of SLE patients324 and in a fraction of SJS325. Blood 

neutrophils in SLE show many abnormalities like impaired phagocytosis and lower activity in 

C1q-mediated apoptotic cell clearance326. Contradictory results were reported for their 

production of reactive oxygen species (ROS) as both increased and decreased production was 

found 327,328. This discrepancy is probably due to differences in the selected study cohorts and 

again emphasizes the internal heterogeneity of SADs.  

Low-density granulocytes (LDG) are a fraction of neutrophils found in the PBMC layer that is 

characterized as CD15hiCD14loCD10+CD16+329. Due to their ability to secrete TNFα, IFNγ and 

type I IFN329 they are considered to be proinflammatory, and they are elevated in patients with 

SLE330, PAPS331 and RA332. Also, their higher numbers correlates with disease severity and anti-

dsDNA antibodies in SLE333. LDG from SLE patients were also described as NETosis-prone cells 

and the kidney and skin of lupus patients are infiltrated by netting neutrophils49. As NETs 

contain citrullinated histones and ACPA antibodies are a hallmark of RA, NETosis was also 

studied in RA patients and it was shown that neutrophils from RA are characterized by high 

spontaneous NETosis. The same functional behavior was observed in PAPS50 and SLE 

patients49. In healthy individuals circulating neutrophils need to be first primed in order to 

migrate to the tissue and get activated334. However, it was observed that neutrophils form RA 

are already primed for ROS production335, are characterized by delayed apoptosis336 and show 

an activated phenotype337. They also have a high chemotactic capacity338,339 and increased 

phagocytic activity340 together with elevated ROS production335 in response to immune 

complexes (IC)341. These disrupted functions actively participate in the damage of the synovial 

membrane, mediated by activation through FcγR, causing neutrophil degranulation, release of 

ROS and cytotoxic agents directly on to the surface or articular cartilage or in synovial fluid342. 

Currently there are no therapies directed against neutrophils of SADs patients, however 

corticosteroids and non-biological DMARDS such as methotrexate promote neutrophil 

apoptosis and decrease neutrophil migration and ROS production343–345. Anti-TNFα was shown 

to be effective in down-regulating neutrophil activation by decreasing NF-κB expression and 

cytokine production342.   

All together it can be seen that various immune cells are involved in the pathogenesis of SADs. 

However, their functional dysregulation and aberrance in frequency are not disease-specific 
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and can be present only in a subset of patients and/or shared between different SADs. Figure 3 

summarizes the complexity of cells involved in the pathogenesis of SADs.   

 

 

Figure 3 Immune cell involvement in SADs. 

Impaired apoptotic cell clearance by phagocytes leads to the accumulation of autoantigens in the tissue. DCs 
present these self-antigens to autoreactive T and B cells in the presence of proinflammatory cytokines. These 
trigger the constant secretion of autoantibodies and lead to the accumulation of immune complexes that are next 
recognized by neutrophils. The neutrophils produce ROS and cytokines and eventually die by NETosis. As described 
before NETs decorated by autoantigens stimulate pDC triggering IFN-I production. IFN-I activates cDC and B cells, 
inducing antibody class switching. Peripheral monocytes travel to the tissue and differentiate into macrophages, 
releasing ROS and mediating the differentiation of pathogenic resident cell type, in this case osteoclast. Taken from 
Morell et al., 2017334 

 

1.3 Difficulties in patient diagnosis and classification  

As it could be seen in previous chapters autoimmune rheumatic diseases are characterized by 

their complex dynamic nature, at the level of clinical symptoms but also at the level of 

molecular and cellular involvement. Although different diagnostic labels classify patients as 

separate entities, it could be noticed that patients with different disease labels share many 

pathological pathways and cellular functions: patients from the same diagnosis group can have 

totally different cell composition, cellular responses or response to treatment. Although many 
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advances have been made in the context of therapies, still quite a number of patients are not 

responsive to the treatment or have strong secondary reactions. This might be due to the high 

heterogeneity in each clinical entity and the different immunopathological findings will depend 

on the number and type of patients recruited in a particular study or clinical trial. Another 

problem is that the diseases develop progressively for many years, and the auto-antibodies or 

cellular tissue infiltrates can happen long before the clinical symptoms have developed. Early 

diagnosis is complex as disease clinical manifestations become evident after the damage took 

place, and currently the autoantibodies used for diagnosis, although they can manifest early, 

are not disease-specific and can be present in healthy individuals. In general, the time from the 

disease onset to diagnosis can take many years, leading to late treatment, serious damage, 

drug irresponsiveness and poor prognosis. Although there are patients with clear clinical 

picture who are classified easily as a particular SAD, many of them share various clinical 

features. Patients diagnosed with SLE can develop joint deformities in hands or feet similar to 

those observed in RA346 and MCTD patients may present the mosaic of clinical symptoms 

characteristic for SLE, RA or SSC347,348. SLE patients can develop secondary APS or SJS but there 

are also patients with primary APS and primary SJS without symptoms of SLE349,350. 

Furthermore, some patients never fulfill current clinical criteria for a particular SAD and stays 

undiagnosed or in the so-called Undifferentiated Connective Tissue Disease (UCTD). These 

patients can stay undiagnosed for many years and even for a life time167,351.   

The current classification criteria lacks specificity and sensitivity. For example the most recent 

2010 ACR-EULAR criteria for RA allows for early diagnosis of the disease, however the risk of 

false-positive classification is high in the case of patients with osteoarthritis167. Additionally the 

presence of rheumatoid factor and ACPA that are considered for scoring are also present in 

other SADs and not all the patients are positive for them352. Up-to 2019 the world-wide 

accepted ACR criteria for SLE required at least 4 out of 11 items to be present, which means 

that patients with a completely different clinical landscape could be equally classified as SLE. In 

fact, the criteria are biased towards particular forms of disease like cutaneous lesions having 3 

items, while neurologic manifestations have only two items, which in addition are not SLE-

specific167. Recent classification criteria developed with the support of ACR and EULAR improve 

the reliability and precision. However they also introduced ANA as entry criteria, thus patients 

without ANA can be missed upon the process of diagnosis and still patients with totally 

different clinical symptoms will be classified as SLE353, inducing still a high heterogeneity. 

Although the most recent ACR-EULAR classification criteria can define SSC patients with 
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acceptable sensitivity (91%) and specificity (92%)354 they do not provide any information about 

the severity of the disease167, and thus other markers are necessary to distinguish lcSSC from 

dcSSC and could complement the clinical criteria.  

The patient heterogeneity, the lack of disease-specific biomarkers and the significant overlap 

between the diagnosis complicates, and in consequence, impedes proper assignment of 

patients to clinical trials and treatments. Due to biomolecular mismatch between patients and 

treatments many drugs do not give positive outcomes, although properly targeting 

autoimmune mechanisms. Therefore, they are discarded from further studies which 

significantly slows down the development of new therapies in SADs. 

Due to this, many researchers have attempted to stratify patients based on molecular and 

cellular criteria rather than on clinical parameters. The stratification was done looking for 

markers differentiating healthy controls from the disease, within each disease, and also some 

attempts were already taken to reclassify patients across different SADs. These attempts are 

the first steps towards personalized medicine in the field of rheumatic diseases. 

1.4 SADs stratification attempts 

Various technologies like transcriptomics, epigenomics or cytomics were used to stratify SADs 

and as biological material many studies used blood or blood-derived cells as the easiest and 

less controversial way to obtain material, but also tissues like skin or synovial fluid were used if 

a biopsy was available. Both bulk and more specific single cell approaches were also 

undertaken.   

McKiney355 used the transcriptome of blood isolated CD8+ T cells to stratify SLE patients in two 

groups that predict their prognosis defined as remission and number of flares. The prognostic 

gene set is enriched for genes involved in transduction of the IL-7R pathway, TCR signaling and 

CD8+ effector and central memory T cells. Later, using a pediatric longitudinal cohort and blood 

transcriptomics, 7 groups of patients were identified with distinct expression modules356 (set 

of genes with highly correlated expressed patterns167). These modules correspond to five 

distinct immune signatures in terms of cellular mechanism: lymphoid, plasma cells, 

neutrophil/myeloid, erythropoiesis and type I IFN. Additionally, the correlation of nephritis 

with IFN, neutrophil and plasmablast modules was described and patients within these groups 

had the most severe disease and higher levels of anti-dsDNA Abs. Data from this manuscript 

was further used for a stratification study together with an additional replication cohort of 

adult patients357. Instead of defining the stratification based on modules, individual genes were 
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selected based on their correlation with SLEDAI followed by clustering. Three clusters were 

defined: cluster 1 is a heterogeneous mixture of cluster 2 and 3; cluster 2 shows a clear 

relationship with IFN-I signature, increased neutrophil levels, low C3 plasma concentration and 

erythrocyte sedimentation rate (ESR) and negative correlation with lymphocyte levels; cluster 

3 is opposite to cluster 2, showing high and low correlation with the level of lymphocytes and 

neutrophils respectively. Additionally, clusters 1 and 2 are enriched in neutrophils and shows a 

higher risk to develop proliferative nephritis. Patients from cluster 3 show skin features and 

antiphospholipid syndrome. Although these clusters are observed in both pediatric and adult 

cohorts, the separation is less clear in adults.  In another study, a single cell approach based on 

flow cytometry was used to stratify juvenile SLE patients with low disease activity358. Four 

groups were identified, based on total CD4+ and total CD8+T cells, CD8+ effector memory and 

CD8+ naïve T cells, naïve B cells, unswitched memory B cells, total CD14+ monocytes and 

invariant NKT cells. CD8+ T cell subsets were the most important populations for the 

stratification of the patients, and the group with elevated frequency of CD8+ effector memory 

T cells has higher disease activity and increased enrichment in lupus nephritis. This study again 

emphasizes an important role of CD8+ T cells in SLE stratification. Unfortunately, in this study 

PBMCs were used, and hence no conclusion could be drawn for granulocyte populations. 

Additionally, a limited number of markers (16) split into two antibody panels was used, and 

therefore a limited number of cell populations was studied.  

In RA, 3 subgroups were identified based on transcriptomics information from synovial fluid359. 

Two groups (RA-Ia and RA-Ib) show a high expression of adaptive immunity-related genes, 

characterized by an increased expression of immunoglobulin genes compared with the 

patients in the third group (RA-II). RA-Ia and RA-Ib can be distinguished from each other based 

on the immune-related genes predominant in the first group and the higher expression of 

complement genes in the second one. Group RA-II is characterized by genes involved in tissue 

remodeling, suggestive of fibroblast de-differentiation. A recent clinical trial stratified RA 

patients using RNA sequencing, based on the presence (B cell rich) or absence (B cell poor) of 

CD20+ B cells in synovial tissue360. In this cohort, tocilizumab is more efficacious in B cell poor 

patients, whereas in patients classified as B cell rich tocilizumab and rituximab are similarly 

efficacious at modulating B cell function. The authors also demonstrated that RNA sequencing 

is superior to histology for patient classification. Using mass cytometry (MC) and functional 

assays Bader identified phosphorylated proteins involved in TNFα signaling that distinguish 

controls from RA patients, although a small number of samples was used in this study361. 
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Two research groups classified the SSC patients using their gene expression profile obtained 

from skin biopsies. In the smaller sample study, 3 major groups were characterized362. The first 

group contains exclusively dcSSC and is characterized by an increment of genes related to cell 

proliferation and a decrease in genes of the fatty acid and lipid biosynthesis pathways. The 

second group contains patients with lcSSC and shows low levels of genes related to 

inflammation and cell proliferation, while other genes with heterogeneous functions are 

upregulated. The third group is a mixture of patients with dcSSC and lcSSC that has a significant 

increase in the expression of genes related to the inflammatory response. In a DNA 

methylation study CpGs differentially methylated between healthy controls and SSC also 

revealed the differences between dcSSC and lcSS, as only 5% of the selected CpGs are 

overlapping between the two groups363. In the former study more samples were analyzed, 

allowing the identification of an additional group of patients characterized by increased 

inflammatory responses and severity364. The IFN signature in the blood was measured by the 

level of IP-10/CXCL10 and  TAC/CXCL11, and it was associated with the severity score in SSC 

patients365. However the signature depends on the clinical subgroups as demonstrated by a 

later study366. Additionally, a strong IFN signature in monocytes was able to distinguish healthy 

controls from patients with fibrotic SSC366. In a study where PBMC were analyzed using MC the 

alterations in the frequency of monocyte subpopulations allowed to classify patients into 4 

different clusters associated with different clinical phenotypes171. Additionally one of the 

identified clusters is enriched in dsSSC, associated with higher expression of chemokines 

CXCL10 and CXCXL11171, confirming the IFN signature in this endotype of SSC.  

A blood IFN signature measured by SIGLEC1 was reported to be important for SJS patient 

stratification into those with and without extra-glandular involvement. In another study 

involving PBMC and MC, 6 populations (pDCs, CD4+ T cells, memory B cells, PB, HLA-DR+ CD4+ 

and HLA-DR+ CD8+  T cells) were identified as the most important cell subsets to predict pSS 

diagnosis205. Disease activity was negatively correlated with CD4+ T cell and memory B cells 

numbers but positively associated with the frequency of activated CD4+ and CD8+ T cells. Based 

on these populations, patients are grouped into 5 clusters. Cluster 4 and 5 are characterized by 

a decreased frequency of CD4+ T and memory B cells, and the highest proportion of activated 

CD4+ and CD8+ T cells. However, they differ with respect to pDC and plasmablast 

numbers, being the highest in cluster 4 and 5, respectively. These two clusters have the 

highest disease activity score. On the other hand, clusters 1 to 3 are all associated with low 

disease activity but correspond to different subsets of patients. Cluster 3 contain only anti-
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SSA+ patients and shows the highest IgG levels and PB numbers, whereas clusters 1 and 2 

identify subsets of patients with less aggressive disease both at the cellular and biological 

levels. More interestingly, patients from clusters 4 and 5 have more severe infiltration in 

salivary glands compared to the patients form clusters 1-3. These results indicate that blood 

phenotyping allows for patient stratification into subsets with distinct disease activity and 

importantly also for differential immunologic activity within the target tissue.  

Several disease-mixed subgroups were identified when two or more diseases were considered. 

Patients with RA and SLE could be classified into three clusters with specific gene expression 

signatures in the blood with an overlapping diagnosis composition367. Later it was shown that 

patients with early RA share a gene signature similar to SLE, suggesting common features 

during the development of the diseases368. Sixty two percent of genes differentially expressed 

between healthy controls and SSC patients are also differentially expressed in SLE patients. 

These genes are involved in IFN signaling and regulation, JAK-STAT signaling and PAMP 

recognition. What is more 91% of IFN-inducible genes were shared between SLE and a subset 

of SSC patients, suggesting a similar disease mechanism. The IFN signature was also found in 

SJS and in a subset of RA patients associated with disease activity369. This highlights the 

common molecular mechanism among the patients and shows that some individuals with 

different diagnosis could benefit from the same treatments, e.g. those targeting the IFN 

pathway. In a meta-analysis study almost 400 genes were shared across SADs (RA, SLE and SJS) 

and were differentially expressed between SADs and healthy controls. These genes involve 

cytokine-mediated and IFN-I signaling pathways, inflammatory responses, mitotic cell cycle 

and apoptosis369. In a recent study the use of multiple techniques such as multiplexed cytokine 

measurements, serological tests and immunophenotyping by FC allowed to detect a 

proinflammatory group of patients across SADs (SLE, SJS, SSC, RA)370. This group is defined by 

CXCL10, IL-2, IL-6 and TNFα expression, an abnormal B cell distribution, and a CD8+ T cell 

signature, more severe clinical features and higher levels of autoantibodies. In another study T 

cells and B cells from SJS, SLE, and patients with secondary SJS associated with SLE had their 

PBMCs phenotyped using FC371. It was shown that all 3 groups of patients share similar 

immunological disturbances. However, using k-means-based clustering analysis the 

researchers identified 2 distinct groups of patients that were differentiated by specific T cell 

populations. It should be noted that in these two studies only T and B cell-specific features 

were considered, and thus it is possible that other cell-types could bring supplementary 

information and show other important endotypes. In another study using MC data generated 
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from SSC, SJS, and SLE blood samples, the authors aimed for patients’ group assignment 

according to the diagnosis labels171. However due to some overlap in differential cell 

frequencies between patients and healthy controls, they did not achieve the goals, which also 

points toward common mechanisms, at least among some groups of patients. Unfortunately, 

authors did not use unsupervised analysis to obtain patient classification independently of the 

diagnosis. Although an extensive panel of antibodies was used, only few manually gated 

populations were studied and due to the lack of control for batch effects median signal 

intensities for several markers were not included in the panel, like CD80 or CD38 and, HLA-DR. 

The measurement was limited to PBMCs thus neutrophils, were again excluded from the 

analysis.  

A study from our group recently proposed a molecular classification of SADs from data coming 

from the PRECISESADS cohort, involving an unprecedented number of individuals from 7 

different SADs (SLE, SSC, RA, SJS, MCTD, PAPS, UCTD) and the data from blood trancriptome 

and methylome351. Four different clusters were defined: 3 pathological clusters named 

inflammatory, lymphoid and interferon, and one undefined cluster where most healthy 

controls and patients with lower disease activity score were assigned. Additionally, the 

inflammatory cluster was characterized by a high neutrophil proportion; the lymphoid cluster 

by enrichment in T, B, NK and NKT cells; NK enrichment was observed in the undefined cluster 

and no cellular enrichment was observed for the interferon cluster, mainly because all cells 

expressed IFN inducible genes. This suggests that cell frequency can also give valuable 

information about patient assignment to the groups and that neutrophils are also important 

for patient reclassification. Also, cells beside T cells and B cells should be included.   

These results show that patient reclassification can be a valuable tool to find common 

molecular patterns to group patients and allows for the treatment assignment based on 

molecular disrupted pathways together with rather than, clinical observations. The above-

mentioned studies were a first step towards personalized medicine in SADs. However, some 

limitations can be also assigned to them. First, quite a lot of studies use bulk cells to obtain 

cellular information, thus loosing single cell resolution. It is known that besides patient 

heterogeneity, cellular diversity can play important role in the disease pathophysiology. Small 

subsets of cells are thought to be important in the pathogenesis of SADs, and hence studying 

the disruption of immune tolerance and dysregulated pro-inflammatory response at a single 

cell level presents a great opportunity for rheumatology research372. High-throughput single-

cell technologies are becoming common approaches in daily research. The impressive 
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progression in the number of different molecules that can be measured in a single cell 

changed the way experiments are done and analyzed. FC and MC are great examples of these 

changes. Starting from the first flow experiments that measured 2-4 markers which were 

manually gated, the multiplexing capabilities are currently increasing to 30373 and more than 

50374 parameters in FC and MC, respectively.  

The FC and MC studies presented above, although bringing valuable single cell information, 

also have some limitations. First they are done using a limited number of populations like 

PBMC, T or B cells, and thus ignore the information from granulocytes, that are known to be 

involved in SADs. Second, due to the experimental design, the comparison of median signal 

intensities (MSI) is not applicable because the batch effect introduced in every staining and 

acquisition is not controlled, and thus precious information about cell functional state is 

unexploitable. Third, most of them applied FC technology that usually requires the use of 

multiple antibody panels, therefore not all the marker combinations can be explored. In MC 

studies, although higher amounts of antibodies were included, not all of them were used when 

extracting the cell frequency information. In most of the above-mentioned studies manual 

gating was performed, hence cell diversity was limited to the knowledge of the analyst and 

high dimensional information was lost. Thus single-cell, high-dimensional and functional 

studies using flow and mass cytometry can give a new insight in the pathogenesis of SADs, 

allowing for biomarker discovery but also for patient stratification.  
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2 Mass cytometry and its application to large scale studies 

2.1 Mass cytometry and its comparison to flow cytometry 

The general concepts of both FC and MC technologies are similar; antibodies or probes labeled 

with fluorochromes (FC) or high atomic mass elements (MC) are used to target desired 

antigens or biomolecules, in order to characterize certain cell properties like cell phenotype, 

cell cycle377 or response to stimulation agents via cytokine production, protein 

phosphorylation375 or RNA expression378, among others.  

Following the staining, cells are introduced in single-cell suspensions via capillary tubes into 

the flow cytometer for FC or alternatively into a Cytometry by Time-Of-Flight (CyTOF, Helios) 

device for MC. The biological information with single cell resolution is obtained via photons or 

time-of-flight ion’s mass-to-charge ratios for FC and MC, respectively, converted into digital 

values and stored using the same file format called flow cytometry standard (.FCS). Although 

both technologies are commonly used to measure cell properties, the definition of event is 

different. In FC every event that emits light and reaches the user-defined threshold will be 

stored in the FCS file. Both light scatter: forward-scatter (FSC), correlated with cell size and 

side-scatter (SSC), correlated with cell granularity, together with fluorescence are used to 

differentiate single cells from noise379. In MC the ion clouds that last for more than 10 and less 

than 150 pushes (spectrum scans) and exceeds the lower convolution threshold are recorded 

in the FCS file as an event. MC lacks the power of light scatter, and thus cell events are defined 

using the metals associated with them380. Nucleic acid intercalators like Iridium (Ir) or rhodium 

(Ro) are used to define nucleated cells. For non-nucleated cells antigen specific markers must 

be used. In FC the light can excite some cell components like flavins, folic acid, retinol, which 

emit the so called autofluorescence, especially in the green spectrum381. This autologous signal 

is not a problem in MC, since the high atomic mass metals detected are not frequently found 

within the cells. However, tissue metal contaminations due to medical procedures or 

environmental exposures were reported382,383, and should also be considered when deciding 

which technology to be used, FC or MC.  

In both techniques, signal spillover from one channel to another is observed. In FC it is caused 

by the overlapping emission spectrum of different fluorochromes. In MC it can be due to metal 

impurities from the metal tags; metal oxidation affecting mainly light lanthanides causes signal 

spillover to the heavier spectrum of masses; or metal over-abundance when high antibody 

concentration is used inappropriately and the signal of particular masses cannot be 
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resolved384. In FC the signal cross-talk can be severe and cannot be avoided in multicolor 

experiments. In MC, maximum spillover does not exceed a small percent and proper panel 

design can minimize these issues. Inadequate panel design or lack of proper compensation 

controls, especially in FC, can create false positive events385. Additionally, it can introduce 

spreading errors, an artifact produced by errors in photon counting386, which can mask low or 

dim fluorescence positive cells. Spreading errors depend on laser configuration, dye brightness 

and quality of photomultiplier tubes (PMT). Thus, careful selection of probes and deep 

understanding of cytometer configuration and its performance are critical in FC387,388. For MC, 

it is also important to be familiar with the instrument performance, as variation in the 

sensitivity and resolution are observed between different CyTOF devices389. During the 

preparation of the Standard Operating Procedure (SOP) a pilot study including a few samples is 

strongly recommended, as it can help to fix the protocol limitations390,391. 

Due to higher number of markers that can be used, and lower contamination caused by signal 

spillover, MC seems to be a more attractive tool to perform high-content immunophenotyping 

in SADs patients. However, it should be noticed that proper experiment design and analysis 

pipeline need to be appropriately planned upfront in order to fully take advantage of high-

dimensional data, especially when a large number of samples will be analyzed, as it is the case 

for this thesis.  

The acquisition workflow for MC and the differences in the spectrum overlap between FC and 

MC can be seen in Figure 4 and the typical workflow for the preparation and analysis or muti-

parametric FC and MC data is shown in Figure 5.  
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Figure 4 Acquisition workflow for mass cytometry and differences in non-specific signals in FC and MC. 

A. A single-cell suspension is incubated with heavy metal-labelled antibodies or other probes of interest. The 
antibody incubation step can vary depending on the antigens of interest (surface, intracellular, DNA, etc). Next 
cells are washed and introduced into the CyTOF device. The suspension is nebulized into single cell droplets and 
introduced through an inductively coupled plasma (ICP). In ICP, droplets are broken down into clouds of elemental 
ions. Next, low atomic mass ions are removed in a quadrapole, a mass filter. The remaining high mass ions are 
quantified using an orthogonal time-of-flight (TOF) mass spectrometer. Ion counts are then integrated to quantify 
the amount of antibodies bound, which is proportional to the marker abundance. Data are further exported to an 
.fcs file for further analysis. B. In FC (top panel) the major source of non-specific signal is the spectral overlap, 
caused by broad emission spectra that can be detected in various detectors. In MC, (bottom panel) elemental 
isotopes conjugated to antibodies have non-overlapping narrow emission spectra and can be easily resolved by 
TOF. Minor source of overlap (usually <1%) are caused by isotopic impurities that can be detected in Mass+1 
channel and oxidation in Mass+16. Adapted from Hartmann and Bendall, 2020392. 

 

2.2 Obtaining reproducible and high-quality data in MC studies 

Preparation of a standard operating protocol (SOP) for sample collection and processing is 

highly recommended, as it significantly improves data reproducibility393–395. For MC, the 

selection of reagents and their storage is critical to avoid metal contamination events382,396. For 

both FC and MC, it is essential to consider if cells should be stained immediately upon 

collection or preserved until the recruitment is completed. If all the samples are obtained at 

once, they can be stained and acquired immediately. However, in large scale studies, or if the 

cytometer is far from the recruitment center (as it is the case for this thesis), the sample 

preservation before397 or after staining398 should be considered. The goal is to process, stain 

and acquire as many samples as possible with the same protocol, antibody cocktail, and 
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instrument settings. Each preservation protocol will affect the sample composition and antigen 

expression397,399,400; hence benefits and drawbacks should be considered in the light of the 

biological question raised, and should be carefully considered before performing the 

experiments. 

Often, hundreds of samples are included in cytometry studies and are split into multiple 

experimental groups. This can introduce “batch effects” defined as non-biological differences 

between them401. To minimize this effect, a careful experimental design should ensure the 

even distribution of biological groups and confounding factors across batches401. The antibody 

labeling and sample staining should be consistent across all the groups, as discrepancies can 

introduce technical differences in MSI values that can be hard to distinguish from biologically 

meaningful information. This is why strict control of intra- and inter-group variations should be 

introduced in the experimental design. To limit intra-batch variation, barcoding (labeling of 

individual cell samples with unique combinatorial barcodes) and sample pooling before 

antibody staining is used in MC 402–404. To minimize inter-batch variation, an aliquoted master-

mix of the staining cocktail is recommended to be stored properly and used throughout the 

project. Both lyophilized and desiccated antibody cocktails were reported390,399,405 and freezing 

of the MC cocktail aliquots was also shown to be successful406. Unfortunately, even well-

prepared SOPs minimize, but do not resolve, the problems with day-to-day reproducibility. 

Thus, measures allowing estimation and correction of batch effects are needed. The practice 

of including a reference sample in each barcoded batch is becoming a standard in MC407. The 

reference sample is an aliquot of a bigger volume obtained from one donor at a particular 

time, aliquoted, and preserved. It carries the information of the technical variability introduced 

during sample preparation, staining and acquisition, and therefore allows to measure run-to-

run variation407. 

In MC, the panel optimization is the most critical step. It requires proper assignment of dim 

and bright markers depending on the channel sensitivities and their performance in the 

context of staining index and spillover373,389,408. The success of automated methods to resolve 

cell populations depends more on well-selected markers than on the prevalence of the cells, 

and thus the probes should be selected carefully409. To identify the markers of interest, a 

recently published antibody staining database can be useful, as it contains staining patterns for 

350 antibodies used in fresh and fixed peripheral blood mononuclear cells (PBMCs)399. 

Additionally, antibody titration, done at the same conditions as the final experiment, is 

essential to ensure proper signal intensity allowing population definition. It should be stressed 
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that if a population cannot be defined by manual inspection due to sub-optimal amounts of 

added antibodies, it will not be detected by most clustering algorithms.  

Evaluation of antibody staining, titration, and signal spillover is an important but time-

consuming process, especially in high dimensional approaches. Fortunately, a recent study 

showed that clustering algorithms like SPADE (Spanning Tree Progression with Density 

Normalized Tree)410 can be used to evaluate the titration of a panel and track the spillover 

artifacts. Additionally, metrics like Average Overlap Frequency (AOF) can be applied to verify 

antibody performance by calculating staining distances between the positive and negative 

populations in bimodal markers, reducing substantially the time required for calculation and 

plotting of staining indices411. This shows that even at the moment of panel optimization, 

computational approaches can significantly accelerate benchwork and improve data quality. 

For more details about panel preparation and standardization, readers are directed to the 

following literature412–415. 

The capillary introduction system in MC suffers from cell clogging, altering the flow rate and 

signal quality over the time of acquisition. Sample clogs can be caused by specific biological 

materials starting from “easily” acquired cell lines or PBMC to whole blood or disaggregated 

tissues (the most prone to clogging). In both FC and MC, the disturbances in the acquisition 

rate affects signal quality. The higher the speed, the more coincidence events known as 

doublets are collected, and the more spread of the signal is seen386. The maximum 

recommended acquisition speed for MC is up to 1000 cell/s 416. It should be noted that the 

maximum speed depends on the type or cells that are acquired and on the experimental 

target. If rare cells that constitute 0.01% frequency are of interest flow rate should be lower 

and well optimized379. 

All these issues need to be addressed when planning large-scale experiments, but also tools 

that allows data cleaning, quality check and normalization should be included in the post-

acquisition analysis pipelines. These tools will be briefly described in the next section. 
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Figure 5 The flow and mass cytometry experimental and data analysis computational workflow. 

Adapted from Rybakowska et al., 2020417 

 

2.3 Data preprocessing and quality control of MC data 

2.3.1 Data transformation  

MC raw data are often characterized by skewed distribution with varying ranges of expression. 

In consequence it can be difficult to distinguish positive and negative populations418. As 

visualization and clustering performance depends on the scale and distribution, it is important 

to bring the expression peaks as close to a normal distribution as possible419. To do so, the 

expression values are usually transformed using an inverse hyperbolic sine (arcsinh) 

transformation with the cofactor equal to 5420. The arcsinh conversion behaves similarly to a 

log transformation at high values, but is approximately linear near zero, and a cofactor controls 

the width of the linear region. FC data can contain negative values due to the correction of 

background noise, autofluorescence, and compensation; conversely, MC data contains zero 

values when no ions are detected and few negative values are introduced due to background 

subtraction and randomization420,421. It should be noted that some of the visualization and 

clustering tools require transformation to be done upfront, while others perform it as a 

default. It is important to always check the transformation requirements, as this might affect 

the downstream analysis. 

2.3.2 Signal quality check and cleaning 

As mentioned above, the capillary tubes used for sample introduction in MC can clog, resulting 

in sudden changes in the signal of the detector. Other issues such as unstable flow rate can 

cause signal shifts and change the mean intensity422. These signal disturbances affecting 

downstream analysis should be identified and removed from the data. Currently, three 

algorithms can be used to do this: flowAI,423 that uses change point analysis and allows 
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automatic or interactive analysis; flowCut424, that creates summed density measures using 

mean, median, percentiles, variation, skewness, and removes events based on density curve 

analysis; and flowClean425, that tracks the changes in the frequency of artificially created 

populations, taking advantage of change-point analysis, flagging outliers with unusual ratios of 

cell populations. The first two methods are fully automated, while flowClean represents a 

semi-automated approach. In all methods, the signal check is performed for every channel 

along the time of acquisition. The data are divided into equally sized bins of cell events. For 

each bin, the models corresponding to each method are calculated and every bin that differs 

from the rest is flagged in flowClean or alternatively flagged and removed in flowAI and 

flowCut.  Additionally flowAI can remove outliers from the flow rate and dynamic range423.  

Due to their different implementations, the level of stringency differs across methods. Thus 

the optimal performance will depend on the data and on the parameter settings422. It should 

be noted that all of the methods mentioned above were designed for FC studies and to our 

knowledge have not been applied to MC data. Due to the differences in the FC and MC data, 

such as different time resolution (events in FC are acquired faster and at higher concentrations 

than in MC), negative values in FC versus “zero” values in MC, parameter settings can be 

different, but up to now no data exists to support this statement. This is an unexplored niche 

open for further studies.  

2.3.3 Data debarcoding and dead cells/debris removal  

In order to obtain de-barcoded data, deconvolution of the raw events needs to be performed. 

The most common way to debarcode MC data is to use a single-cell deconvolution algorithm426 

through user-friendly debarcoding programs or R-based functions that can be used. 

Doublets, debris, and dead cells introduce noise into the data, and hence should be removed 

prior to data analysis as these might affect clustering results. As mentioned before, the 

definition of event is quite different for FC and MC and hence the gating strategy will differ. 

For MC, as data are usually acquired with calibration beads427, they need to be identified using 

bead-specific channels and removed manually, or automatically using the CATALYST 

package428. The nucleated, intact cells are defined by a balanced intensity for Ir channels, 

which distinguish them from Irlow debris and Irhi doublets. In the case of red blood cells, or 

other non-nucleated particles, this needs to be defined, and the use of specific probes is 

required. Doublets are a real challenge in MC as FCS and SSC parameters cannot be used. 

Instead, users should define them based on balanced Ir staining and event length429 or 
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Gaussian parameters, such as residual, offset, center, and width430,431. It is worth noting that 

barcoding staining with 3 different isotopes per sample helps to identify and remove 

doublets426, thus increasing sample quality. 

Among other platforms FlowJo and Cytobank can be used for manual gating, or alternatively 

data can be imported in an R environment using e.g. flowWorkspace package432. If gating is 

provided for some of the files, semi-supervised gating methods like flowLearn could be used to 

reproduce the gating strategy for the remaining data433. This algorithm employs the gating 

thresholds provided as an input and transfers them to the rest of the samples using derivative-

based density alignments. Packages like flowStats434, flowDensity435 or OpenCyto (a framework 

for constructing automated gating hierarchy) can be useful to build user-defined gating 

strategies. Although manual inspection is always advised, the automated approach should be 

considered for projects generating a high number of files. 

2.3.4 Staining irregularities, data normalization and removal of batch effects 

Inspection of marker expression levels across all batches is an important step of sample quality 

control. Staining irregularities, such as loss of separation between positive and negative values 

for a given marker, or significant changes in the signal intensity, must be identified and 

removed, as they can affect event classification into specific clusters411. Recently the AOF 

algorithm, using cell frequencies to calculate the average of overlapping cells per channel, was 

applied to more than 2000 files in MC399. Based on calculated sample scores and user-defined 

thresholds, AOF identified problematic marker expression and affected files were discarded 

prior to analysis. This algorithm might be a good expansion of the quality control pipeline. 

However, it should be used with caution, since the signal changes could also be due to 

biological or technical variation. The use of barcoding and reference samples can help to 

distinguish between these two possibilities, and the introduction of normalization and batch 

effect correction can help in saving files instead of discarding them. The technical variability 

can come from day-to-day differences in experimental and instrumental performances. 

Instrument variation that cannot be controlled by the users (e.g. differences in daily 

instrument calibration) are identified and corrected by normalization. The variations in the 

experimental procedure (e.g. slight differences in staining) are identified and removed via a 

batch effect correction436. Both will be discussed below.  

The acquisition rate in MC is low, thus sample acquisition time is long. Additionally, a signal 

drop caused by progressive CyTOF decalibration is frequently observed, especially when big, 
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barcoded samples are run. Therefore, MC requires special approaches for normalizing the 

data. In order to correct for it, a bead-based normalization was introduced by Finck et al.,427 

and modified by Fluidigm. The algorithm uses commercially available calibration beads, spiked 

and acquired together with the sample. Hence, changes in the signal can be tracked through 

the acquisition time. Next, the beads are identified and the median intensities of the beads are 

calculated in defined time intervals across all files. Based on the obtained values, the global 

mean for each bead is calculated and used as a target value. To obtain the transformation 

factor, a linear model using the global means and interval-specific intensities is calculated. This 

factor is then applied to all events and interpolated to all markers in the corresponding 

intervals and files. Although run-to-run machine variation can be corrected, the technical 

differences introduced upon sample preparation will remain. Therefore, the normalization and 

batch effect correction play an important role in downstream analysis.  

FdaNorm and gaussNorm algorithms were developed to correct the files across the 

experiments437. They both perform density-based normalization per channel using ungated 

.FCS files. The algorithms assume that each marker has its characteristic number of density 

peaks called landmarks, which are shared by all samples and can be identified even with some 

changes in MSI values. During normalization these density peaks are shifted to align the 

samples. Although algorithms differ in their implementation, they perform similarly in the 

context of resolution in binary markers like CD3, CD4 or CD8. When using gaussNorm, the 

number of density peaks needs to be known upfront for each marker, while fdaNorm 

estimates peaks automatically. Some remarks and an extended version of the fdaNorm 

algorithm can be found in438. In this version the reference file provides information about 

marker distributions together with gating template, and additional normalization is performed 

during the gating. The reason for these changes is that the marker densities can differ in 

distinct populations affecting the normalization process, and the use of a reference sample 

with gating upon normalization improves the automation process. These methods perform 

well for automated gating, as the density peak alignment facilitates implementation of 

reproducible gating hierarchy. However, it requires previous knowledge of the analyzed cells. 

This can be useful in clinical studies when quantification of known populations in a relatively 

short time is needed, or for the extraction of cell frequencies identified using binary markers. 

However, as the intensity of the peaks are shifted, comparison of the MSI cannot be 

performed, and part of the biological information is lost.  
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As mentioned before the inclusion of reference samples becomes a useful tool to track batch 

effects introduced during sample preparation. Recently three methods taking advantage of the 

introduction of a reference sample became available to researchers, and will be discussed. 

Shaham et al.,439 introduced  a deep learning approach called BatchEffectRemoval. This 

approach is based on Maximum Mean Discrepancy (MMD) and Residual Nets, and corrects the 

distribution of one sample to its corresponding pair, collected at a different time point. 

Although it can be a good solution when time point experiments are performed, its 

performance in MSI-sensitive markers is still questionable. CytoNorm440 and 

CytofBatchAdjust441 are two alternatives that use reference samples aliquoted across the 

batches to obtain batch-specific transformation factors. CytoNorm starts with FlowSOM 

clustering for each reference file442. At the cluster level, quantiles for each marker are 

computed and the mean quantile distribution is calculated using values from all the reference 

files. This information is used to calculate the appropriate transformations for each batch and 

to correct for it. One of the CytoNorm assumptions is that the batch effects are small enough 

to not impact on the FlowSOM clustering results. In other words, although samples differ at 

the cluster level, the metaclustering that defines cell populations should be the same across all 

reference samples. If not, some artifacts can be introduced to the data 441, and therefore a 

careful and detailed clustering exploration should be performed before normalizing collected 

batches. On the other hand, CytofBatchAdjust performs the normalization on ungated files, 

where batches can be scaled to a user-defined percentile, mean, medium or quantile 

normalization.  

Both algorithms have the advantage of preserving the biological information contained in MSI. 

However, it is important to ensure that the reference sample is prepared using the same 

protocol as for the studied samples. Therefore, upfront assumption of sample composition 

needs to be taken into consideration. 

2.4 Data analysis and feature extraction 

Manual gating not only aims at extracting the important features, but also gives a good insight 

into data quality, variability, structure or differences between groups of individuals. However 

manual cell inspection is time-consuming and also limited by a bias towards the previous 

knowledge of the analyst about the composition of the sample443. In high-dimensional data like 

in MC, the cell abundances and their median marker expressions are typically extracted using 

clustering or dimensionality reduction. Then the statistical tests are run to associate cell 
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differential abundance (DA) and differential states (DS) with specific phenotypes and look for 

biomarkers or perform patient stratification. Both, the currently used dimensional reduction 

and clustering algorithms will be briefly discussed below.   

2.4.1 Dimensional reduction  

The goal of the dimensionality reduction methods is to preserve the structure of high-

dimensional data in a lower2- or 3-dimensional map, easier to interpret. These methods can 

be divided into linear and non-linear tools. Linear methods represented by PCA (Principal 

Component Analysis)444,445 focus on keeping the maximum variance of the points in the lower 

space, thus keeping the dissimilar points far from each other446. On the other hand the non-

linear algorithms like e.g. t-SNE (t-stochastic neighbor embedding)446 and its derivatives447–449 

keep the similar cells close to each other, therefore focusing on local relationship 

preservation446. Some of the tools like t-SNE and UMAP (Uniform Manifold Approximation and 

Projection)450 separate well known populations, giving a nice overview of existing cells. Other 

methods like ISOMAP (isometric feature mapping)451,452 or Diffusion Maps453 visualize 

differentiation trajectories, as they are able to preserve both local and global distances 

between cells. 

PCA is designed to preserve the features with the highest variability in the principal 

components (PC). It assumes that the most prominent variation will be explained by the first 

two to three PCs, making them easily interpretable. As shown by454,455, due to the linear 

assumption, PCA cannot separate well populations in the first two PCs, as immune panels are 

usually designed in the way that each marker brings new and independent information. 

Nevertheless, PCA as an easily scalable and not-stochastic technique, remains a powerful tool 

and is widely used in biological and clinical cytometry studies, as shown in456–458 . 

t-SNE is a state-of-the-art visualization method that projects high-dimensional information into 

easily interpretable 2D maps446. t-SNE calculates two similarity matrices based on the distance 

in the high- and low-dimensional space using pairwise comparison across all the points. Next, 

in a iterative way the algorithm minimizes the differences between two matrices, which results 

in the optimized position of each cell in the 2D space419. t-SNE pairwise comparison has its pros 

and cons, on one hand it is a robust and accurate algorithm, and on the other, the more cells 

are analyzed, the more pairs need to be computed and the increasing computational cost. This 

limits the use of t-SNE in FC/MC studies where thousands or even millions of events are 

acquired. To overcome this issue random downsampling (generation of a smaller subset of 
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cells), is often used, taking the risk of losing rare populations. Therefore, new implementations 

were developed, aiming at limiting the computational power required to obtain high-

resolution data. Among them Barnes-Hut (BH-SNE)459 reduces the number of pair comparisons 

by constructing a tree-like structure. This implementation is used in viSNE and published by 

Amir et al.454. HSNE (Hierarchical Stochastic Neighbor Embedding)447 is a combination of A-

tSNE (t-SNE approximation) where, instead of computing precise distances, an approximated k-

nearest neighborhood graph is computed and embedded using BH-SNE. Fit-SNE (Fast 

Interpolation-based t-SNE)448 uses Fourier interpolation to speed up the convolution step and 

opt-SNE 449 allows fine-tuning of t-SNE parameters, like the number of iterations, to obtain 

high resolution maps in a shorter time. It should be noted that t-SNE is stochastic, which 

means that every new run will give slightly different visualization. Consequently, researchers 

should perform multiple runs in order to obtain good data representation. Comparison of 

multiple maps can be only done if the samples were run simultaneously applying the same 

settings. Jensen-Shannon divergence, a statistical method that measures two probability 

distributions, can be useful to compare the projection from the same data set as shown 

before454,460. 

Recently a new visualization tool called UMAP (Uniform Manifold Approximation and 

Projection) gained attention in the cytometry field. This tool also preserves global distances 

between cell types, while t-SNE conserves only close neighborhoods450,461. For this reason 

UMAP can recapitulate human hematopoiesis, and is useful for cell continuity visualization461. 

Additionally both UMAP and Fit-SNE can analyze more cells than t-SNE in a shorter time461. 

ISOMAP (isometric mapping)451 and Diffusion maps453 also preserve global relatedness and 

continuity between cells instead of calculating the pairwise Euclidian distance. ISOMAP uses 

non-linear geodesic distances462. Diffusion map introduced by453, and adapted to single cell 

studies by463, constructs diffusion matrices based on random walk probabilities between cells 

and generate diffusion components DC (known as eigenvectors), that similarly to the PC 

correspond to the largest coefficients of the data464,465. 

Even though some improvements were made on t-SNE implementation and faster algorithms 

like UMAP were built, the scalability problem remains. Most of the embedding techniques 

were first used on transcriptomic data where, in contrast to cytometry, a relatively small 

number of cells are described by a much larger amount of markers. Although other 

dimensionality reduction and topology inference algorithms can be used, the lack of good 
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implementations that enable handling of millions of cells prevents researchers to apply them 

to big files466.  

Although non-linear dimensionality reduction methods are powerful in projecting 

phenotypically similar cells, the understanding of the marker contribution to cell segregation 

can be difficult, as it requires plotting multiple markers in individual maps. In such case, 

studying marker co-expression is even more challenging as was pointed out233,458. One-SENSE 

(one-dimensional soli-expression by non-linear stochastic embedding) answers to this 

limitation and proposes 2D assignment of the markers to categories that can be then visualized 

using a combination of t-SNE map and heatmaps233. This method was successfully applied to 

study T cell and dendritic cell heterogeneity233,467. 

2.4.2 Clustering 

Clustering-based algorithms group similar cells and use visualization tools to represent them in 

a lower dimensional space443. When choosing the best clustering method several requirements 

should be considered, such as the need for downsampling, reproducibility, rare cell detection, 

and running time. These variables were measured by Weber et al., where several of the 

currently used cytometry clustering algorithms were compared, identifying FlowSOM as a good 

trade-off between quality and time468. 

Since its publication, FlowSOM442 became a widely used clustering algorithm in the field of 

cytometry418,469,470. This algorithm uses a two-step clustering process: a self-organizing map 

(SOM), and consensus hierarchical clustering. SOM, a type of artificial neural network, contains 

a grid of nodes where each node represents a point in a multidimensional space. SOM 

reproduces the data topology by assigning the most similar cells to the same node or its 

closest neighbors. Increasing the grid size increases the possibility of finding rare populations. 

However, as shown by Weber et al., the reproducibility of the data can be compromised and 

artificial splitting of the largest populations can be seen. In the second step, node centers are 

grouped into metaclusters using a consensus hierarchical clustering, and final cluster labels are 

obtained. The data can be visualized using a minimal spanning tree, like in SPADE410, or in a 

heatmap418. Although similar results can be obtained with SPADE and FlowSOM, the two-step 

clustering in FlowSOM accelerates analysis and evades downsampling, making it a better 

choice. Unfortunately, the stochasticity problem remains, and unless the seed (starting 

analysis point) is pre-defined, the comparison between different runs cannot be done. When 

comparing clustering performance, the F1 score measure tests accuracy using precision, and 
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recall could be applied468. Alternatively the algorithm CytoCompare, which computes the 

distance between the clusters using marker distribution 471, or the Jaccard coefficient 472 can 

also be applied. 

Multiple tools and workflows implementing FlowSOM have been recently published: 

EmbedSOM improves data visualization473; diffcyt, a new computational framework for 

differential discovery analyses420; Ek’Balam, a hierarchy-based clustering in the Astrolab 

Cytometry Platform399. All these applications emphasize the broad utility of FlowSOM. 

However as noticed in474, one of the major drawbacks of this algorithm is the user-defined 

number of clusters, which limits the capture of population diversity and introduces researcher 

supervision. Other popular clustering approaches could be used instead, like Phenograph, 

which uses k-nearest-neighborhoods (KNN) to represent phenotypically similar cells as highly 

interconnected nodes475 or X-shift, that also applies KNN with density estimation476. Both tools 

ranked high in benchmark studies, especially for rare population detection468,477. They have the 

ability to predict the number of clusters in a given sample, although they perform poorly in 

scalability requiring downsampling. Additionally, the fusion of both dimensionality reduction 

methods using t-SNE and density based clustering was also reported and successfully applied 

in the immune diversity study of lymphoid compartment using ACCENSE478, and of the myeloid 

compartment using DensVM (Density-based clustering aided by Support Vector Machine), 

which combines density based algorithm with machine learning techniques452. 

2.5 MC in the context of SADs 

MC is a powerful high-dimensional technology in single-cell biology. It is becoming an 

important tool in biomarker discovery research, disease monitoring, and medical diagnostics. 

As shown in the chapter 1.4. MC can be useful to discover biomarkers, learn about SADs 

molecular mechanism or event cluster the patients into different groups based on cell 

frequency or their response to the stimulation. The rapid increase in dimensionality gives an 

opportunity to understand cell diversity in detail, narrow the research to fine cell populations, 

and by doing so, enable precision in the development of new therapies and biomarkers. Thus, 

it is a perfect tool to perform SADs stratification. 

However, dimensionality reduction and automated analysis require high-quality data, 

analytical skills, and powerful algorithms to meaningfully process the multidimensional space. 

As previously discussed, the design and execution of a good cytometry-based study is not a 

trivial process. Small details like changes in stocks, pipetting errors, shifts in machine 
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performance, and improper data preprocessing can significantly contribute to data variation. 

Controlling for batch effects, although well adopted in transcriptomic data, is still inefficient 

and not often applied in MC and FC due to different data structures. It should be noted that 

inclusion of covariates like “batch effect” in the statistical model does not eliminate the bias 

introduced upon the clustering, and therefore batch effects should be corrected before data 

analysis, and ideally prevented when preparing the SOP. Many dimensionality reduction and 

clustering methods are available and they should be combined to verify and confirm results. 

Hence, high-dimensional analysis can be available to both biologist and bioinformaticians. 

Since the single-cell high-dimensional era is just starting, it is important to take care when 

interpreting the data. Careful validation with multiple methods and standard approaches like 

traditional manual gating should be implemented in the analysis pipelines. 

 

This part of the introduction comes from manuscript published in Computational and 

Structural Biotechnology Journal as an open access with author’s copyright retained. 

 

Article: Rybakowska P, Alarcón-Riquelme ME, Marañón C. Key steps and methods in the 

experimental design and data analysis of highly multi-parametric flow and mass cytometry. 

Comput Struct Biotechnol J. 2020 Mar 31;18:874-886. 
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Hypothesis, goals and rationale 

3 Hypothesis  

In the context of the internal heterogeneity and the overlapping mechanisms of the different 

SADs, together with the difficulties in individual diagnoses, new methods based on the 

evidence and allowing patient reclassification and stratification need to be established. Precise 

knowledge on altered immune pathways will allow to reclassify the patients, grouping them 

into immunologically similar groups that could benefit from the same line of treatment.  

 

Mass cytometry is a systematic, multidimensional approach that allows to study pathological 

immune responses in patients with SADs. Potentially it can serve as a new diagnostic tool for 

precise and targeted diagnosis. 

 

4 Goals 

The main objective of this study is to develop a basic method in the area of multidimensional 

cytometry for the stratification and reclassification of patients with SADs. This main objective 

can be divided into three specific goals: 

 

1. Establish the method for whole blood preservation that allows to perform large-scale, 

multi-center and retrospective deep immunophenotyping and functional studies. 

 

2. Establish a staining protocol and analysis workflow that allows to minimize the 

technical variability, perform quality control of the collected data and track and correct 

for batch effects in large-scale studies.  

 

3. Conduct a deep phenotyping study to compare the SADs patients and perform 

reclassification using a selected set of cell lineage and functional markers.  
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5 Rationale 

Stabilization of human whole blood samples for multi-center and retrospective 

immunophenotyping studies  

The immune system is crucial for the protection against pathogens and tumors, and is involved 

in the appearance of autoimmune, inflammatory and allergic diseases. Its monitoring allows to 

track responses to environmental changes, therapies or disease outcomes. The major 

components of the immune system commonly measured are leukocyte subsets, but also their 

cytokine expression and other cell-to-cell communication mediators472. These components can 

be found in blood, the most accessible fluid to researchers and clinicians, and can be measured 

by the currently available technologies like flow cytometry (FC) and mass cytometry (MC). The 

outcome can serve as an indicator of the effectiveness of treatments473, disease 

progression453,474, or disease assignment in reclassification studies164.  

In large-scale studies, samples are difficult to obtain and stain in a single day. Frequently, they 

need to be transported from the collection site to the cytometry site, limiting recruitment 

centers to those that can guarantee shipping of the blood sample within 24h384. Additionally, 

this short timeframe prevents banking of precious biological samples and their use 

retrospectively.  

To address this issue, it is at times customary to freeze samples until the time of cytometry 

acquisition. The most common protocols involve whole blood collection followed by peripheral 

blood mononuclear cell (PBMC) isolation and cell preservation in freezing media containing 

DMSO392,475–477. If responses to stimuli are studied, commonly cells are stimulated after 

thawing392,478. However, as noticed479 PBMC manipulation and freezing requires experience, 

larger volumes of biological material, and the use of artificial culture mediums, increasing 

variation388. Additionally, PBMC are not a good representation of blood composition480. They 

are depleted of cells like granulocytes important in anti-microbial, autoimmune and allergic 

responses 481–486. Furthermore, the PBMC compartment composition and cellular responses 

can be affected by the process of PBMC isolation487,488. 

To overcome these limitations several methods were developed for fixing blood cells upon 

drawing or post-stimulation453,474,489–491. These methods require the use of stabilizing solutions 

containing preservatives such as formaldehyde or methanol. Therefore, detection of fixation-

sensitive markers like the chemokine receptors can be seriously affected394, or changes in 
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intensity can occur393. Nevertheless, main leukocyte subsets can be successfully detected and 

quantified with adequate selection of probes titrated according to the condition474,489. 

Since previous reports described a limited number of markers for FC and a short time frame in 

MC, there is a need for a systematic study approaching a broad panel of intracellular and cell 

surface markers in an easy-to-use protocol facilitating the long term preservation and analysis 

of whole blood samples. Therefore the goal was to evaluate long-term cell and marker 

preservation using two whole blood preservation protocols that were previously used to freeze 

the whole blood474,489, Phosphoflow Fix and Lyse (BD Biosciences) and Proteomic Stabilizer 

(Smart Tube). Additionally to MC, data for FC and imaging flow cytometry were also generated.  

This part of the results comes from manuscript published in Cytometry Part A and the 

agreement with the publisher (John Wiley and Sons) was made in order to use the data 

presented in this article. License number: 5050370654144.  

 

Article: Rybakowska P, Burbano C, Van Gassen S, Varela N, Aguilar-Quesada R, Saeys Y, Alarcón-

Riquelme ME, Marañón C. Stabilization of Human Whole Blood Samples for Multicenter and 

Retrospective Immunophenotyping Studies. Cytometry A. 2021 May;99(5):524-537. 

 

Data processing workflow for large-scale immune monitoring studies by mass cytometry 

As mentioned before the CyTOF success is due mainly to its multiparametric capacity, the ease 

of panel design owing to minimal spill-over issues and the facility to stain multiple samples in 

one single tube using barcoding approaches419.  

On the other hand, the maximal acquisition capacity of CyTOF devices is limited to 1000 

cells/s410, while a rate of 400 cells/s is recommended to avoid cell aggregation and doublet 

formation492,493. Because of this, it becomes problematic to acquire multiple samples per day, 

particularly if several tubes of complex tissues like blood or liquid biopsies are acquired to 

detect rare cell populations. A solution to this is to split the samples in multiple batches and 

acquire them on different days. Nevertheless, this approach requires an optimized 

experimental workflow that limits technical variation, including a single antibody cocktail and 

the inclusion of a reference sample in every batch. In addition, the analysis pipeline should 

contain tools for normalizing the data and removing experimental and day-to-day detector 

variation494.  
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Although the samples are fixed after staining, they are usually acquired in water in the case of 

the narrow bore sample injector (NB). Thus, due to the prolonged water exposure and long 

acquisition times, samples are degraded and lose their tags. To limit the exposure time, 

samples can be split and acquired in multiple aliquots495 (as also presented in this manuscript), 

but still some differences in signal intensity can occur due to variation in detector yield. 

Furthermore, clogging in the capillary introduction system in cytometry devices alters the 

flowrate and signal quality over time416. . In order to obtain high quality data, fcs files should 

be screened and cleaned from any abnormalities. Hence, extensive data preprocessing should 

be included in the analysis pipeline.   

Due to the pros and cons described above, mass cytometry experiments require a special and 

careful experimental design and an extensive analysis pipeline that allows automatic 

preprocessing of the data and perform proper quality control, especially when hundreds of 

files need to be analyzed. Although much effort was put to develop automated gating 

strategies including clustering and dimensional reduction algorithms404,442,443,447,468,496 or 

quantitative analysis497,498, less was developed in the field of data cleaning and preparation.  

Therefore, the goal was to build experimental, preprocessing and quality control workflow that 

addresses above mentioned issues.  

Here we present a semi-automated, R-based, CyTOF analysis pipeline that performs data 

preprocessing and quality control. It spots and removes potential artifacts introduced during 

sample preparation and acquisition, like clogs, changes in signal intensities upon acquisition 

and batch effects, thus improving data quality. This analysis pipeline gathers known tools used 

in both flow cytometry (FC) and MC and adapts them to large and multibatch MC studies, 

providing also solutions for data visualization. For data preprocessing, steps like bead-based 

normalization, debarcoding, file aggregation, and automated gating using Gaussian 

parameters, DNA and live/dead staining for intact and live cell selection are included. 

Furthermore, we implement additional quality control steps to remove bad quality events or to 

identify and correct batch effects using a reference sample. We provide full access to the data 

set used in this work, so the users can reproduce the data processing and analysis steps. Good 

data quality starts with a proper sample processing minimizing experimental bias and 

eliminating bad quality events. Therefore, we also provide the protocol of the experimental 

setting used to generate the data analyzed in this work and show some important tips and how 

to scale it up.  
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This workflow contains all the necessary steps to obtain high quality events in an semi-

automated way. Importantly to note, it requires knowledge of basic R language programming. 

It is especially suited for researchers performing multicenter or retrospective studies involving 

collection of hundreds of biological samples, but is equally suitable for small-scale studies. 

This part of the results comes from manuscript published in Computational and Structural 

Biotechnology Journal as an open access with author’s copyright retained.  

 

Article: Rybakowska P, Van Gassen S, Quintelier K, Saeys Y, Alarcón-Riquelme ME, Marañón C. 

Data processing workflow for large-scale immune monitoring studies by mass cytometry. 

Comput Struct Biotechnol J. 2021 May 21;19:3160-3175. 

 

Biomarker discovery and stratification of patients with SADs using mass cytometry  

SADs are autoimmune diseases diagnosed based on different clinical and laboratory criteria345. 

Due to their high heterogeneity within each clinical entity and overlapping symptoms, SADs are 

difficult to diagnose. That is why the time from disease onset to the diagnosis can take many 

years499 which leads to poorer prognosis. A fraction of the patients can be classified as MCTD 

which is still a controversial disease entity500,501 or even as UCTD, a group that holds patients 

without a clear clinical picture499.  

The high internal heterogeneity of these diseases and overlaps between them can also be 

observed at the genetic and molecular levels. The presence of anti-SSA and SSB antibodies was 

found in SLE and SJS and their genetic association with HLA class II gene DRB1*0301 was 

reported502. Many SADs patients present an IFN-I signature, but patients with low and high 

level of ISG were reported in SLE, a model for IFN-mediated disease. The cell frequency of a 

given population can be decreased or increased in different cohorts of the same disease, 

which can be due to different experimental settings, but also due to different endotypes, 

emphasizing patients’ heterogeneity. When comparing immune cell composition between 

diseases not many differentially expressed features could be found365,503, suggesting shared 

immune cell landscapes between patients with different diseases. Although in these studies 

only few groups of patients have been compared. Additionally, the current treatments 

although effective, show high variability in the responses observed and groups of non-
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responders are still an issue, suggesting improper molecular fit between the tested drugs and 

the actual pathogenesis. 

In response to these problems molecular-based studies were undertaken to classify the 

patients based on the biological mechanisms undergoing in their tissues. A recent large-scale 

study included all 7 SADs discussed in this thesis showed that distinct blood immune signatures 

across SADs are important for patient reclassification and suggested that the newly identified 

groups of patients could benefit from a common line of treatment, regardless of their clinical 

diagnosis345.  

The immune cell landscape using FC or MC was studied within selected SADs7 and across 

different diseases364,365,503. Biomarkers associated with disease activity or tissue infiltration 

were identified using these techniques184,504. Until now 2 (SJS, SLE)365 and 3 diseases (SSC, SLE, 

SJS)503 were compared together in one study cohort, showing similar molecular mechanism 

between them, however no further reclassification attempts were undertaken. Additionally, in 

both experimental groups only PBMCs were considered and no functional markers were 

measured. In the study of Simon et al., few diseases were compared, but only at the level of B 

cells and T cells, limiting again the scope of the findings364.  

Keeping in mind the importance of immune cell signatures in previous biomarker discovery or 

reclassification studies our third goal is to apply MC to perform whole blood deep-phenotyping 

measuring both cell frequency and the level of functional markers. The goal is to compare 

patients from multiple SADs, but also reclassify them based on their immunological landscape. 

We believe that a deeper look into immune composition and immune responses of different 

SADs can give a better understanding of ongoing mechanisms in each patient and get us closer 

to the precision medicine in rheumatic diseases.  
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Material and methods, results and discussion 

6 Stabilization of human whole blood samples for multi-center and retrospective 

immunophenotyping studies  

6.1 Material and methods 

6.1.1 Study participants  

Whole blood from healthy donors participating in the PRECISESADS study164 was collected in 

EDTA vacutainer tubes (BD, Franklin Lakes NJ) and processed within 3 hours after bleeding. All 

donors signed an informed consent according to the ethical protocol of the Andalusian 

Biobank and the PRECISESADS project. Samples were recruited at the Andalusian Health 

System Biobank in Granada node. The protocol of the project was approved by the Ethical 

Committee of the Hospital “Virgen de la Macarena” according to the Helsinki declaration of 

1975, as revised in 2013. 

6.1.2 Whole blood processing for FC 

Figure 6A shows the sample processing workflow.  

Blood samples for FC were split in aliquots. One aliquot of 50 l (named FRESH condition) was 

immediately stained using the lyse-wash PRECISESADS protocol as in384 and acquired within the 

same day. Aliquots of 450 l were fixed using Phosphoflow Fix and Lyse buffer (BD Biosciences, 

referred as BD) or Proteomic Stabilizer buffer (Smart Tube Inc. referred as PROT). For BD, 20 

volumes of BD buffer were mixed with blood and incubated for 10 minutes at 37°C. Next cells 

were pelleted, washed with CST (Cell Staining Buffer, Fluidigm) and the pellets were frozen at -

80°C for 1 to 6 months (FROZEN) or stained immediately (FIXED). The pellet was thawed at 

37°C (if required), resuspended in 1ml of CST, filtered through 100 μm MACS SmartStrainers 

(Miltenyi Biotec), pelleted and resuspended in 225 μl of CST. For PROT, 1.4 volume of PROT 

buffer was mixed with blood and incubated for 10 minutes at RT. Next, blood was directly 

frozen at -80°C or processed without fixation. After thawing at 4°C on a roller (if required), the 

sample was diluted 1:1 with Thaw-Lyse buffer (Smart Tube Inc.), filtered and lysed with 

additional 10 volumes of Thaw-lyse buffer 1X for 10 minutes at RT. Next, cells were pelleted 

and leukocytes were washed with CST and resuspended in 225 μl of CST. For both buffers an 

equivalent volume to the FRESH samples was stained. In all 3 protocols cells were incubated 

with antibodies for 20 minutes at RT using Panel 1 Duraclone tubes (Beckman Coulter, see 

Table 1) and were acquired on a FACSVerse cytometer (BD Biosciences) previously calibrated 
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with Rainbow 8-peak beads, as described384. Around 50,000 leukocytes per sample were 

acquired. The results were analyzed using FlowJo 10.0.7 following the gating strategy shown in 

Figure 7. 

Samples for image cytometry were processed as before but were stained with single-color 

Duraclone tubes for 1 hour at 4°C and 20 M Hoechst33342 (Merck Life Sciences) for 3 

minutes at RT. After washing cells were resuspended in 2% formaldehyde. At least 10,000 

nucleated cells were acquired on an ImageStream Mark II imaging flow cytometer (Amnis) 

using a 60x magnification and low speed. Data analysis was carried out using IDEAS6.2 

software (Amnis). 

Flow cytometry data were deposited in flowrepository.org505 using the accession number FR-

FCM-Z2NK. 

 

Table 1. Antibody panel used for FC 

Antigen Clone Fluorochrome Source Staining 

CD16 3G8 FITC Beckman Coulter Surface 

CD15 80H5 PE Beckman Coulter Surface 

CD56 N901 PC5.5 Beckman Coulter Surface 

CD14 RMO52 PC7 Beckman Coulter Surface 

CD19 J4.119 APC Beckman Coulter Surface 

CD3 UCHT1 APC-AF750 Beckman Coulter Surface 

CD4 13B8.2 PB Beckman Coulter Surface 

CD8 B9.11 KO Beckman Coulter Surface 

FITC, fluorescein isothiocyanate; PE, phycoerythrin; PC5.5, Phycoerythrin–Cyanin 5.5; 

PC7, Phycoerythrin–Cyanin 7;  APC, Allophycocyanin; APC-AF750,  Allophycocyanin-Alexa Fluor 750; PB, Pacific Blue; KO, 
Krome Orange. 

 

6.1.3 Whole blood processing for MC 

Figure 6B shows the MC sample processing workflow.  

500 l blood aliquots were incubated for 6h at 37°C at 7% CO2 with 500 μl of the TLR7/8 ligand 

resiquimod (R848, Invivogen), 2.5 μg/ml in RPMI (Gibco), in the presence of Protein Transport 

Inhibitor Cocktail 1X (Thermo Fisher Scientific). The samples were stained immediately 

(FRESH), or fixed using BD or PROT protocols.  

FRESH samples were lysed using BulkLysis buffer (Cytognos), dead cells were stained with 5 

M of cis-diamineplatinum(II) dichloride (Pt, Sigma) for 5 minutes at RT and quenched with 

CST buffer. Surface staining was performed for 30 minutes at 4°C using an antibody cocktail 



MATERIALS AND METHODS, RESULTS AND DISCUSSION  

87 

diluted in CST followed by fixation step, 30 min RT in Maxpar Fix I buffer (Fluidigm). Next, 

intracellular cytokine staining for 30 minutes at 4°C in Perm-S buffer (Fluidigm), was 

performed. The panel of antibodies used can be found in Table 2, Panel A. Next, cells were 

stained with 5 M Cell-ID Intercalator-Ir (Iridium, Ir, Fluidigm) in Fix and Perm buffer (Fluidigm) 

for 20 min at RT, washed with CST, and stored overnight in freshly prepared 2% formaldehyde 

(Thermo Scientific) until acquisition the following day.  

For BD and PROT conditions, after stimulation the samples were stained with 5 M Pt 5 min at 

RT, fixed using BD or PROT buffers for the time indicated in each experiment as described 

above, and frozen. BD and PROT samples were thawed as before and stained after 1 week (n = 

7), 1 month (n=9) or 6 months (n=9) as described before. Antibody cocktail was titrated 

according to the condition (fresh or fixed) and freshly prepared for each experiment. The 

reference blood sample was stimulated in a big volume and fixed using the PROT protocol. A 

batch cocktail of titrated antibodies was aliquoted and stored at -80°C as shown400. The panel 

is shown in Table 2, Panel B. Samples were stained as described above. In both panels A and B 

the probes were obtained in the metal-conjugated format from Fluidigm or were self-

conjugated using Maxpar X8 antibody labeling kits (Fluidigm). Around 300,000 cells were 

acquired on a mass cytometer (HELIOS, Fluidigm) at an event rate of 300-350 cells/second 

together with EQ Four Element Calibration Beads (Fluidigm). Raw data were normalized using 

either CyTOF software 6.7 (Fluidigm) for Panel A or normCytof function from CATALYST421 

package for Panel B. FlowJo software v10.0 was used to analyze normalized MC data by 

manual gating. Viable cells were gated as negative for the viability marker Pt and cell 

percentages were calculated. After noticing some signal instability in the data, we decided to 

run two selected functions from the flowAI416 package (flow_rate_bin, flow_rate_check) to 

remove regions with unstable flowrates. To make this function applicable to MC data, we 

adapted the TIMESTEP to 1 bin per 10 seconds. flowCut 506 algorithm was used to remove 

signal instability with 1000 segments and MaxPercCut to 0.5.  

To verify cell yield upon sample fixation and preservation, cell counting was performed using 

Neubauer chambers for Panel A and Panel B (experiment CYT1 to CYT10) or in a TC20 

Automated Cell Counter (Bio-Rad) for Panel B (experiment CYT11 to CYT45). 

Mass cytometry data were deposited in flowrepository.org505 using the accession number FR-

FCM-Z2NX for panel A and FR-FCM-Z2NR for panel B. 
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Table 2. Antibody panel and cell-ID labeling reagents used for MC 

Antigen Clone Metal Panel A Panel B Source Staining 

CD3 UCHT1 115In  X ThermoFisher Surface 

CD45 HI30 141Pr  X Fluidigm Surface 

CD19 HIB19 142Nd X X Fluidigm Surface 

CD123 6H6 143Nd X X Fluidigm Surface 

CD4 RPA-T4 145Nd X X Fluidigm Surface 

IgD IA6-2 146Nd X X Fluidigm Surface 

CD20 2H7 147Sm  X Fluidigm Surface 

CD66a/c/e ASL-32 149Sm X X Fluidigm Surface 

CD14 M5E2 151Eu X X Fluidigm Surface 

CD7 CD7-6B7 153Eu X X Fluidigm Surface 

CD3 UCHT1 154Sm X  Fluidigm Surface 

CD1c L161 154Sm  X Biolegend Surface 

CD45RA HI100 155Gd X X Fluidigm Surface 

CD27 L128 158Gd X X Fluidigm Surface 

CD11c Bu15 159Tb X X Fluidigm Surface 

CD38 HIT2 167Er X X Fluidigm Surface 

CD8 SK1 168Er X X Fluidigm Surface 

CD24 ML5 169Tm  X Fluidigm Surface 

CD141 1A4 173Yb  X Fluidigm Surface 

HLA-DR L243 174Yb X X Fluidigm Surface 

CD56 N901 176Yb X X Fluidigm Surface 

CD16 3G8 209Bi X X Fluidigm Surface 

CD45 HI30 89Y X  Fluidigm Surface 

CD41 HIP8 89Y  X Fluidigm Surface 

IL-2 MQ1-17H12 144Nd  X Fluidigm Intracellular 

MIP1B D21-1351 150Nd X X Fluidigm Intracellular 

TNFα Mab11 152Sm X X Fluidigm Intracellular 

IL-6 MQ2-13AS 156Gd X X Fluidigm Intracellular 

IFNα LT27:295 160Gd X X Miltenyi Intracellular 

IL-23p19 23dcdp 161Dy X X Fluidigm Intracellular 

TGFβ TW4-6H10 163Dy  X Fluidigm Intracellular 

IFNy B27 165Ho X X Fluidigm Intracellular 

IL-10 JES3-9D7 166Er X X Fluidigm Intracellular 

IL-12p70 REA123 170Gd X X Miltenyi Intracellular 

GranzymeB GB11 171Yb X X Fluidigm Intracellular 

MCP1 5D3-F7 175Lu  X BD Biosciences Intracellular 

Cisplatin  195Pt   Sigma Viability 

Iridium  191Ir/193Ir   Fluidigm DNA 
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6.1.4 Data analysis  

Statistics and plots were performed using GraphPad Prism 6 or R version 3.6.1 (R Foundation 

for Statistical Computing, AUT). To compare fixed samples with the fresh condition the 

Spearman’s correlation test was performed using the cell frequencies from fresh and 6 month-

frozen samples using the R stats package. Bias was calculated using the BlandAltmanLeh 

package. To verify the similarity between fresh and frozen samples the Euclidean distance 

matrix was calculated using cell frequencies from all fresh and 6 month-frozen samples. Next, 

the agglomerative hierarchical clustering with average linkage was performed, and the 

dendrogram was plotted using the stats and dendextend package. To check sample stability 

over time, a coefficient of variation (CV) between fixed and frozen samples for FC or all frozen 

time points for MC were calculated per population using the goeveg package and plotted using 

boxplots with the ggplot2 package. In the case of the reference sample the CV was plotted 

using a heatmap from the pheatmap package. The frequencies of dead or nonspecific antibody 

staining (NAS) comparing the FRESH, BD, and PROT protocols were tested using the Wilcoxon 

paired test or Mann Whitney U test respectively. For unsupervised analysis dimensional 

reduction was performed on scaled data using UMAP443 and uwot package with default 

settings. The Jensen-Shannon divergence (JSD) was used to calculate the similarity between 

pairs of UMAP plots for each individual, as described447.   

6.2 Results  

6.2.1 Flow cytometry immunophenotyping after whole blood preservation  

In order to assess the quality of whole blood staining in samples preserved for FC, fresh or 

fixed blood from healthy donors was stained using panel 1 Duraclone tubes (Table 1) designed 

for the PRECISESADS study384. Figure 6A shows the sample processing workflow and Figure 7 

gating strategy for the quantification of the main circulating populations for fresh and frozen 

samples.  
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Figure 6 FC and MC study design.  

Fresh blood was collected from healthy individuals and processed immediately (FRESH) or alternatively preserved 

with BD or PROT as detailed in Materials and Methods section. (A) Sample processing for flow cytometry. (B) 

Sample processing for mass cytometry. 
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After inspection of the results, overall good quality of the staining allowing for the 

identification of most circulating populations was observed in frozen samples compared to 

fresh condition (Figure 7).  

 

Figure 7 FC gating strategy.  

Representative gating strategy for FRESH and 6 month frozen samples stabilized with BD or PROT and stained 

using the Panel 1 cocktail.  

 

However, some problematic markers were revealed. Although CD56-PC5.5 staining was still 

detectable, its intensity in positive cells was lower, making the discrimination of positive events 

difficult (Figure 7 and Figure 8A).  
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Figure 8 Staining artifacts induced by blood fixation. 

(A) Representative staining for NK and NKT cells is shown across FRESH and 3 time points in BD and PROT. (B) 

Staining for monocyte subpopulations using CD16 and CD14 markers is shown across 3 individuals p8, p7, p4. 

C. Left panel, representative staining of NAS gate with antibodies included in Panel 1. Light color, unstained 

sample; dark color, stained samples. Right panel, frequency of the NAS events in the parental gate in the 3 

conditions. Boxes show median and interquartile range, whiskers depict minimum and maximum CVs. Dots 

represent all collected time points, for 9 individuals. Statistic is calculated using Mann-Whitney test, *0.05, 

**0.01, ***p < 0.001. 
 

 

The monocyte subset could not be accurately quantified in fixed cells (BD and PROT) due to 

lowering of the CD16-PC7 signal in some particular donors (Figure 8B). In addition, eosinophils 

could not be detected in fixed cells using CD15hi, CD16low, SSC-Ahi gating strategy (Figure 7). 

CD15hi SSChi events were positive for multiple markers in both BD and PROT conditions (Figure 

8C, left panel) and therefore referred to as nonspecific antibody staining (NAS) (Figure 7), in 

agreement with previous reports 507. These cells were not observed in FRESH samples and had 

similar frequencies in both BD and PROT buffers (Figure 8C). Fixation introduced significant 

changes in the SSC and FSC parameters compared to the FRESH condition, especially in 

granulocytes and monocytes (Figure 7, Leukocyte gate). Monocytes became lower in FSC, and 

higher in SSC, while granulocytes became higher in FSC and lower in SSC in agreement 

with490,508. The changes in both monocytes and granulocytes made these two populations 
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indistinguishable in FSC/SSC plots, although they can still be separated using the fluorescent 

markers CD14 (Figure 9A) or CD15 (Figure 7). These changes were more marked in PROT than 

in BD buffer and were independent of the freezing time (data not shown).  

 

Figure 9 SSC and FCS parameter stability and antibody background in FC after blood preservation. 

(A) SSC/FSC and CD14+ monocyte visualization after 1 and 6 months of storage in BD (left) and PROT (right). (B) 

Representative dot plots of 4 markers (CD56, CD4, CD3, CD19) showing higher antibody background in FIXED 

compared to FRESH samples in different populations. Leukocytes gate is shown.  

 

Additionally, careful observation of the staining patterns showed higher nonspecific staining in 

fixed samples for some markers for granulocytes, particularly in the case of CD3-APC-AF750 

(Figure 9B). Cell morphology was well preserved as revealed by imaging cytometry, although 

some membrane permeability could be observed, mainly in lymphoid cells (Figure 10).  
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Figure 10 Assessment of preservation of cell morphology by imaging cytometry.  

Whole blood samples were stained with single color panel 1 antibodies in FRESH conditions, or alternatively 

frozen for 1 week in BD or PROT, and analyzed in an image flow cytometer. 

 

In order to assess the reliability of the cell frequency assessment upon sample preservation, 

the correlation between the proportion of leukocyte populations obtained using FRESH 

samples and BD or PROT fixed samples frozen for 6 months was studied using the gating 

strategy shown in Figure 7. Highly correlated (R ≥ 0.8) results for both buffers were obtained 

(Figure 11A). Both preservation protocols showed a low bias (Figure 11B). Furthermore, the 

frequency-based hierarchical clustering analysis grouped samples from the same donor 

processed with different protocols in 7 out of 9 cases, as shown in Figure 11C.  
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Figure 11 Comparison of cell frequencies of FRESH blood and samples stabilized using BD or PROT in FC.  

(A) Spearman’s correlation test for leukocyte populations quantified in blood preserved using BD (left panel) and PROT 

(right panel) buffers against the FRESH condition. Linear regression line is shown in black. For neutrophils, frequencies 

were estimated using Leukocyte as a parental gate. For the remaining populations, the PBMC parental gate was used, (n 

= 9). (B)  Evaluation of the agreement degree by Bland-Altman test for BD and PROT in the lower and upper panels, 

respectively. Results are expressed as the difference between fresh and fixed samples with a 95% confidence interval 

(dotted black lines). Bias is shown with a red solid line. Colored circles indicate cell populations as in A. (C) Agglomerative 

hierarchical clustering with average linkage of FRESH samples with BD and PROT 6 month frozen samples based on cell 

frequencies as in A. (D) CVs were estimated for each cell population, within each individual participant using 3 time 

points (fixed, frozen 1 month, frozen 6 months). Boxes show median and interquartile range, whiskers depict minimum 

and maximum CVs, and dots represent each individual (blue for BD and green for PROT), n = 9. The orange dotted line 

represents the 20% CV threshold. The population name is colored in orange whenever more than two samples exceed 

20% threshold for at least one buffer. 
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Overall, the two fixed conditions were slightly more similar to each other compared to the 

fresh sample (7 out of 9 cases). Additionally, we observed high correlation and low bias in most 

individual cell populations, although low correlation (R < 0.5) values were observed for CD4+ 

monocytes in BD and neutrophils (Table 3). In neutrophils, low correlation was caused by cell 

death in 2 out of 9 FRESH samples during the staining, but not in unstained or fixed samples as 

shown in Figure 12A, upper panel. For this reason sample p2 did not cluster correctly in Figure 

11C, as exclusion of the neutrophil population in the analysis caused correct sample 

assignment (data not shown). 

To check the over-time variability of the fixed samples, CVs were estimated for the same 

populations in each preservation protocol, using three time points: fixed/non-frozen, 1 month 

and 6 months frozen (Figure 11D). We considered CVs below 20% as good stability, according 

to the previously published work509. Only in the case of NKT cells using PROT CVs were above 

the 20% limit (population marked in orange), suggesting that both protocols can be used for 

long-term storage of blood samples for flow cytometry purposes. The NKT cell changes were 

time-dependent for 3 out of 9 individuals and were significant for fixed and 6 month frozen 

samples, Figure 12B. 

 

 

Figure 12 Leukocyte populations affected by blood processing for FC 

(A) Dot plot in Leukocytes gate for two representative individuals and 4 conditions. Sample p5 shows correct 

granulocyte preservation in all conditions, while sample p2 shows granulocyte death in FRESH stained sample but 

nor in unstained neither in stained fixed samples. (B) The frequency of NKT cells in the PBMC gate measured at 

three time points, n=9. Statistic is calculated using Wilcoxon paired test, ***p < 0.001. 
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Table 3 Comparison of leukocyte population frequency estimates from fresh and 6-months-frozen samples in 
FC 

Populations Buffer Mean ± SD (fresh) Mean ± SD (frozen) R P value Bias (95% CI) 

B cells BD 
9.27 ± 3.51 

9.27 ± 3.8 0.98*** 4.96E-05 0 (-1.77 to 1.77) 

B cells PROT 9.51 ± 3.78 0.98*** 4.96E-05 -0.24 (-1.35 to 0.88) 

Monocytes CD14
hi

 BD 
14.22 ± 2.95 

13.86 ± 3.24 0.83** 8.27E-03 0.36 (-3.63 to 4.35) 

Monocytes CD14
hi

 PROT 13.24 ± 3.41 0.8* 1.38E-02 0.99 (-3.08 to 5.05) 

Monocytes CD4
+
 BD 

16.87 ± 3.69 
16.31 ± 3.62 0.58 1.08E-01 0.56 (-4.36 to 5.48) 

Monocytes CD4
+
 PROT 16.68 ± 3.74 0.82* 1.08E-02 0.19 (-4.59 to 4.97) 

Neutrophils BD 
50.12 ± 7.25 

60.57 ± 5.41 0.57 2.00E-01 -10.45 (-23.34 to 2.44) 

Neutrophils PROT 58.09 ± 4.41 0.89* 1.23E-02 -7.97 (-15.58 to -0.37) 

NK cells BD 
8.57 ± 1.93 

8.69 ± 1.94 0.88** 3.08E-03 -0.12 (-1.93 to 1.69) 

NK cells PROT 8.97 ± 2.41 0.88** 3.08E-03 -0.41 (-2.35 to 1.54) 

NKT T cells BD 
5.19 ± 2.56 

4.74 ± 2.78 0.93*** 7.50E-04 0.45 (-0.84 to 1.73) 

NKT T cells PROT 5.16 ± 1.79 0.88** 3.08E-03 0.03 (-2.28 to 2.33) 

T cells BD 
55.62 ± 6.71 

57.14 ± 7.69 0.85** 6.07E-03 -1.52 (-6.05 to 3.01) 

T cells PROT 56.07 ± 8.34 0.78* 1.72E-02 -0.45 (-9.1 to 8.2) 

T cells CD4
+
 BD 

34.19 ± 6.46 
35.12 ± 5.96 0.98*** 4.96E-05 -0.93 (-3.38 to 1.52) 

T cells CD4
+
 PROT 34.09 ± 6.36 0.9** 2.03E-03 0.1 (-4.15 to 4.34) 

T cells CD8
+
 BD 

18.02 ± 4.77 
18.54 ± 5.62 0.98*** 4.96E-05 -0.52 (-2.8 to 1.76) 

T cells CD8
+
 PROT 18.28 ± 5.51 0.95*** 3.53E-04 -0.26 (-4.22 to 3.69) 

Leucocyte frequencies are shown as average ± standard deviation (SD). The frequencies are relative to live cells for 

granulocytes and to PBMC for the rest of the populations. Bias is presented as group differences (95% confidence 

interval) in Bland-Altman tests. Asterisks besides R estimates indicate significance of the Spearman’s correlation test.  

*** p < 0.001; **p < 0.01; *p < 0.05 in Spearman’s tests 

 

6.2.2 Mass cytometry immunophenotyping after whole blood preservation 

The sample processing workflow is shown in Figure 6B Samples were stained using the 26-plex 

Panel A (Table 2), together with Ir and Pt for DNA content and viability, respectively. Figure 13 

shows the gating strategy used for the analysis of the surface markers for all three protocols.  
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Figure 13 MC gating strategy using surface markers.  

Gating strategy for FRESH, and 6 month frozen samples preserved with BD or PROT after staining with Panel A. 

Beads were excluded and singlet live cells were selected. 
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In general, both preservation protocols yielded surface staining equivalent to FRESH condition 

(Figure 13), and a significantly decreased frequency of Pt+ dead cells in BD and PROT samples 

was observed, as shown in Figure 14A.  

 

This was probably due to viability staining before RBC lysis in these protocols. Additionally, a 

comparable cell yields were obtained in FRESH and frozen samples, Figure 14B. MC data does 

not contain SSC and FSC information, and therefore NAS in SSChi events similar to those seen in 

FC could not be verified in preserved blood. Instead, highly positive cells for multiple markers 

 

Figure 14 Viability, cell counts, NAS and granulocytes nonspecific staining in preserved blood by MC.  

(A) Dead cell frequency (Pt+ cells) using three protocols (FRESH, BD and PROT, 6 MO) n=9. Results are represented 

as in Figure 8C. (B) Cell counts after sample preparation for BD and PROT protocols compared with FRESH samples 

(n=4).( C) Left panel, frequency of cells in the NAS gate. Dots represent all collected time points for 9 individuals. 

Right Panel, arcsine-transformed marker median intensities of cells in the NAS gate, using all collected time points 

for BD protocol. (D) Antibody background comparison of the 3 protocols: FRESH, BD and PROT (6 months frozen 

samples). Representative dot plots of live cells gate are shown. CD3, CD14, CD4 and CD38 are used at the same 

concentrations in all the conditions. Statistics are calculated using Wilcoxon paired test for panel A and Mann-

Whitney test for left panel, C, *0.05, **0.01, ***p < 0.001. 
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were identified and gated as double positive CD14+ CD3+ events (NAS gate, see Figure 13). 

Similarly to FC, this population was positive for most of the markers, and was present in almost 

all BD samples, but neither in FRESH nor in PROT samples (Figure 14C). Contrary to FC data, 

higher staining background for the probes used at the same concentration as in FRESH 

condition was not observed in granulocytes (Figure 14D).  

The frequencies of cell populations calculated by manual gating were compared between 

FRESH and BD or PROT samples following 6 months of freezing. An overall high correlation for 

both BD and PROT was observed (Figure 15A). This occurred over a broad range of populations 

and was not dependent on cell abundance (Table 4), except for some populations (see Figure 

16). High correlation values for T cell subsets, granulocytes, dendritic cells and basophils (Table 

4) were observed when analyzing a total of 27 separated populations. NK and NKT cells were 

detected with precision in both BD and PROT conditions (Figure 13 and Table 4). Monocyte 

subsets were quantified with high correlation for BD and moderate for PROT. B lymphocytes 

showed high correlation across almost all subsets for the two buffers, with the exception of 

plasmablasts, which were highly correlated for PROT but not for BD (Table 4). This was due to 

the loss of many CD38hi cells in the BD samples, although the CD38 signal was not affected 

(Figure 13), suggesting that plasmablasts are sensitive to the BD preservation protocol, rather 

than the CD38 antigen itself. The low bias across all leukocyte populations induced by blood 

preservation indicates that cell estimation was very similar to that of the FRESH condition 

(Figure 15B and Table 4). Additionally, the frequency-based hierarchical clustering analysis 

grouped samples from the same donor processed with different protocols, as shown in Figure 

15C, with the exception of sample P8 FRESH. As with FC, higher similarity can be seen when 

comparing fixed conditions and fresh samples, however correct assignment of samples is 

obtained. To assess the effect of the time of storage, CVs were calculated using three time 

points: 1 week (7 samples), 1 month and 6 months frozen (9 samples each) for each 

population. We considered CV above 20% as high variation. Most of the leukocyte frequencies 

were well preserved along time using both buffers.  
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Figure 15 Comparison of cell frequencies of FRESH blood and samples stabilized using BD and PROT buffer in 
MC.  

Granulocyte (neutrophils + eosinophils) frequencies were estimated using Life cells as a parental gate and for the 

rest of leukocytes PBMC gate was used as a parental gate (n = 9). (A) Spearman’s correlation for all leukocyte 

populations gated as in Figure 13 for BD (left panel) and PROT (right panel) against FRESH condition, with linear 
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regression (black line). (B) Evaluation of agreement by Bland-Altman test for BD and PROT in upper panel and 

lower panel, respectively as before. (C) Agglomerative hierarchical clustering with average linkage of FRESH 

samples with BD and PROT 6 month frozen based on cell frequencies calculated as in A. (D) CVs estimated for 

each cell population, within each individual donor using 3 frozen time points: 1 week (n=7), 1 month (n=9) and 6 

months (n=9). Results are represented as in Figure 11D. One outlier sample from individual p5 in PROT was 

detected and removed from the analysis. 

 

The only populations that exceeded 20% CV were plasmablasts in BD buffer caused by CD38 

expression loss as discussed above, DN B cells and CD4+ TEMRA for both conditions, Figure 

15D. These higher CVs were not due to time dependent changes but rather due to known, 

higher variability in the detection of rare cell populations as shown in Figure 16.  

 

Additionally Jensen-Shannon divergence (JSD) used to quantify similarity between UMAP plots 

showed high intra-sample similarity, using a threshold of JSD < 0.2 as described before 510 and 

shown in Figure 17A. Higher JSD was detected for BD in 4 samples when comparing to FRESH 

or PROT, however these values were still low, and did not exceed JSD>0.29 (Figure 17A). These 

results suggest that long-term storage is possible and convenient, and gives consistent results 

for most of the leukocyte populations especially in PROT samples. The representative UMAP 

plots are shown in Figure 17B 

 

Figure 16 Cell frequency stability across the time for BD and PROT in MC.  

A. The frequency of cell populations showing CV>20% was plotted across three time points (1 week, 1 month and 6 

months frozen) n=7 for 1 WK, n=9  for 1 MO and 6 MO.. 
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Table 4 Comparison of leukocyte population frequency estimates  fresh and 6-months-frozen samples in MC 

Populations Buffer Mean ± SD 
(fresh) 

Mean ± SD 
(frozen) 

R P value Bias (95% CI) 

B cells CD19+ BD 
8.36 ± 2.8 

10.12 ± 2.47 0.72* 3.69E-02 -1.77 (-5.6 to 2.06) 

B cells CD19+ PROT 10.6 ± 2.62 0.57 1.21E-01 -2.24 (-5.64 to 1.16) 

B cells DN BD 
0.47 ± 0.15 

0.42 ± 0.17 0.93*** 7.50E-04 0.05 (-0.07 to 0.17) 

B cells DN PROT 0.38 ± 0.17 0.88** 3.08E-03 0.08 (-0.11 to 0.27) 

B cells Naive BD 
6.07 ± 2.22 

7.2 ± 2.2 0.7* 4.33E-02 -1.13 (-4.4 to 2.14) 

B cells Naive PROT 7.58 ± 2.3 0.73* 3.11E-02 -1.51 (-4.52 to 1.5) 

B cells NSM BD 
0.71 ± 0.3 

1.06 ± 0.29 0.9** 2.03E-03 -0.35 (-0.76 to 0.06) 

B cells NSM PROT 1.11 ± 0.35 0.83** 8.27E-03 -0.4 (-0.86 to 0.07) 

B cells Plasmablasts BD 
0.07 ± 0.04 

0.03 ± 0.02 0.38 3.12E-01 0.03 (-0.06 to 0.12) 

B cells Plasmablasts PROT 0.08 ± 0.05 0.93*** 7.50E-04 -0.02 (-0.04 to 0.01) 

B cells SWME BD 
1.11 ± 0.42 

1.45 ± 0.42 0.82* 1.08E-02 -0.34 (-0.69 to 0.01) 

B cells SWME PROT 1.53 ± 0.47 0.95*** 3.53E-04 -0.42 (-0.72 to -0.12) 

Basophils BD 
2.24 ± 0.61 

1.98 ± 0.65 0.95*** 3.53E-04 0.26 (-0.29 to 0.81) 

Basophils PROT 2.02 ± 0.7 0.85** 6.07E-03 0.22 (-0.45 to 0.88) 

cDCs BD 
0.61 ± 0.16 

0.6 ± 0.18 0.87** 4.51E-03 0.02 (-0.18 to 0.22) 

cDCs PROT 0.63 ± 0.25 0.77* 2.14E-02 -0.02 (-0.35 to 0.3) 

Monocytes Classical BD 
9.16 ± 4.76 

13.23 ± 3.54 0.8* 1.38E-02 -4.07 (-8.92 to 0.78) 

Monocytes Classical PROT 12.33 ± 4.52 0.62 8.57E-02 -3.17 (-9.2 to 2.86) 

Monocytes 
Intermediate 

BD 

0.78 ± 0.37 

1.19 ± 0.47 0.9** 2.03E-03 -0.41 (-0.87 to 0.05) 

Monocytes 
Intermediate 

PROT 0.97 ± 0.41 0.65 6.66E-02 -0.19 (-0.74 to 0.35) 

Monocytes Non 
Classical 

BD 

0.76 ± 0.45 

1.03 ± 0.54 0.93*** 7.50E-04 -0.27 (-0.61 to 0.06) 

Monocytes Non 
Classical 

PROT 0.92 ± 0.46 0.97*** 1.65E-04 -0.17 (-0.55 to 0.21) 

Neu + Eos BD 
53.91 ± 7.74 

53.37 ± 8.91 0.83** 8.27E-03 0.53 (-6.54 to 7.61) 

Neu + Eos PROT 55.31 ± 8.62 0.83** 8.27E-03 -1.41 (-11.28 to 8.46) 

NK cells CD56hi BD 
0.43 ± 0.31 

0.43 ± 0.29 0.92** 1.31E-03 0 (-0.13 to 0.13) 

NK cells CD56hi PROT 0.42 ± 0.28 0.9** 2.03E-03 0.01 (-0.13 to 0.16) 

NK cells CD56low BD 
10.98 ± 4.78 

10.15 ± 4.69 0.95*** 3.53E-04 0.84 (-1.08 to 2.75) 

NK cells CD56low PROT 9.29 ± 4.29 0.93*** 7.50E-04 1.69 (-0.9 to 4.28) 

NKT cells BD 
4.17 ± 2.67 

3.73 ± 1.65 0.83** 8.27E-03 0.44 (-2.03 to 2.92) 

NKT cells PROT 4.04 ± 2.04 0.82* 1.08E-02 0.13 (-1.97 to 2.23) 

pDCs BD 
0.52 ± 0.18 

0.56 ± 0.24 0.92** 1.31E-03 -0.03 (-0.22 to 0.16) 

pDCs PROT 0.59 ± 0.27 0.9** 2.03E-03 -0.07 (-0.29 to 0.16) 

T cell CD4+ BD 
43.06 ± 8.45 

38.6 ± 8.22 0.98*** 4.96E-05 4.46 (1.33 to 7.59) 

T cell CD4+ PROT 39.8 ± 8.96 0.95*** 3.53E-04 3.26 (-1.39 to 7.92) 
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T cell CD4+ CM BD 
15.89 ± 4 

15.09 ± 3.45 0.93*** 7.50E-04 0.8 (-2.13 to 3.74) 

T cell CD4+ CM PROT 15.07 ± 3.77 0.88** 3.08E-03 0.83 (-2.56 to 4.21) 

T cell CD4+ EM BD 
2.9 ± 2.78 

2.56 ± 2.7 1*** 5.51E-06 0.34 (0.06 to 0.62) 

T cell CD4+ EM PROT 2.52 ± 2.67 1*** 5.51E-06 0.38 (0.07 to 0.69) 

T cell CD4+ Naive BD 
23.93 ± 7.64 

20.72 ± 7.07 0.95*** 3.53E-04 3.2 (0.69 to 5.72) 

T cell CD4+ Naive PROT 21.93 ± 7.3 0.95*** 3.53E-04 2 (-0.9 to 4.91) 

T cell CD4+ TEMRA BD 
0.34 ± 0.62 

0.23 ± 0.45 0.75* 2.55E-02 0.11 (-0.25 to 0.47) 

T cell CD4+ TEMRA PROT 0.28 ± 0.59 0.85** 6.07E-03 0.05 (-0.07 to 0.17) 

T cells CD3+ BD 
64.72 ± 8.84 

59.14 ± 9.03 0.98*** 4.96E-05 5.58 (1.78 to 9.37) 

T cells CD3+ PROT 59.94 ± 9.83 0.97*** 1.65E-04 4.78 (-0.88 to 10.45) 

T cells CD8+ BD 
17.63 ± 3.84 

15.91 ± 3.21 0.87** 4.51E-03 1.72 (0.14 to 3.31) 

T cells CD8+ PROT 16.1 ± 3.28 0.73* 3.11E-02 1.53 (-0.73 to 3.8) 

T cells CD8+ CM BD 
5.79 ± 2.35 

5.36 ± 2.15 0.98*** 4.96E-05 0.43 (-0.27 to 1.12) 

T cells CD8+ CM PROT 5.31 ± 2.22 0.93*** 7.50E-04 0.47 (-0.39 to 1.34) 

T cells CD8+ EM BD 
1.27 ± 1.16 

1.22 ± 1.13 1*** 5.51E-06 0.04 (-0.38 to 0.47) 

T cells CD8+ EM PROT 1.06 ± 0.84 0.98*** 4.96E-05 0.21 (-0.62 to 1.03) 

T cells CD8+ Naive BD 
9.29 ± 3.54 

8.32 ± 2.99 0.98*** 4.96E-05 0.97 (-0.28 to 2.22) 

T cells CD8+ Naive PROT 8.7 ± 3.2 0.98*** 4.96E-05 0.59 (-0.74 to 1.92) 

T cells CD8+ TEMRA BD 
1.29 ± 2.28 

1.01 ± 1.74 0.95*** 3.53E-04 0.28 (-0.86 to 1.42) 

T cells CD8+ TEMRA PROT 1.03 ± 1.6 0.93*** 7.50E-04 0.26 (-1.1 to 1.63) 

Leucocytes frequencies are shown as average ± standard deviation (SD). The frequencies are relatives to life 

cells for Granulocytes and to PBMCs for the rest of the populations. Bias is presented as group differences 

(95% confidence interval) in Bland-Altman tests. Asterisks besides R estimates indicate significance of the 

Spearman’s correlation test.  *** p < 0.001; **p < 0.01; *p < 0.05 in Spearman’s tests 
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Figure 17 Sample similarity of different time points and protocols.  

(A) The similarity of pairs of UMAP plots for each individual using Jensen-Shannon divergence (JSD). Higher JSD 
values indicate higher dissimilarity between pairwise UMAP plots. (B) Top panel, Representative UMAP analysis 
(20,000 cell per sample) on Live cells population. Bottom panel, manual cell labels. 

 

 

 



MATERIALS AND METHODS, RESULTS AND DISCUSSION  

106 

 

6.2.3 Intracellular cytokine detection by MC 

To test intracellular cytokine detection after blood fixation, we manually gated multiple 

cytokines across different leukocyte populations in the R848-stimulated blood samples and 

estimated the frequencies of cytokine-positive cells. All the cytokines that were detected in the 

fresh samples were also detected in the BD and PROT. Some examples of cytokine detection 

can be seen in Figure 18.  

 

 

Figure 18 Gating strategy using cytokine markers from Panel A.  

The gating strategy is shown for 3 different protocols FRESH, BD and PROT, 6 months frozen. The expression of 9 

cytokines is shown across 4 different cell populations expressing them at high levels. Gate boundaries were first 

setup for FRESH condition for each population, based on the density distribution. Next the same threshold was 

applied to the corresponding individual and population. 

 

To compare percentages between fresh samples and those with BD or PROT, 6 months frozen, 

correlation analyses were done. Globally there was good correlation for both buffers (Figure 

19A). However, most cytokines were detected with higher frequency in FRESH condition than 

in fixed and frozen samples as shown in Figure 19B. The correlation and bias analyses for 

individual populations and cytokines are shown in Table 5.  

To see if there are changes in cytokine detection with the time of storage, CVs were estimated 

using three time points: 1 week, 1 month and 6 month frozen, for each population and 

cytokine where expression could be detected (Figure 19C). As before, CV above 20% was 

considered as high variation. Although most of the cytokine frequencies were stable with time 

(median CV below 20%) using both buffers, we noticed higher variability than in the surface 
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markers, mostly in the case of BD buffer. Besides IL-23p19 in pDCs we did not observe any 

time-specific change (Figure 20). 

 

Table 5 Comparison of cytokine-positive frequency estimates derived from fresh and 6-months-frozen samples 
in MC 

Populations Buffer Mean ± SD 
(fresh) 

Mean ± SD 
(frozen) 

R P value Bias (95% CI) 

B cells IL10+ BD 
12.3 ± 3.57 

8.26 ± 1.17 0.47 2.13E-01 4.04 (-2 to 10.08) 

B cells IL10+ PROT 8.86 ± 1.15 0.07 8.80E-01 3.44 (-3.53 to 10.42) 

B cells IL6+ BD 
23.85 ± 6.72 

12.76 ± 2.3 -0.05 9.12E-01 11.1 (-3.44 to 25.64) 

B cells IL6+ PROT 16.97 ± 3.53 -0.2 6.13E-01 6.89 (-9.14 to 22.92) 

B cells MIP1β+ BD 
21.29 ± 4.95 

24.7 ± 6.91 0.03 9.48E-01 -3.41 (-18.62 to 11.81) 

B cells MIP1β+ PROT 16.31 ± 4.8 0.1 8.10E-01 4.98 (-7.73 to 17.69) 

B cells TNFα+ BD 
6.18 ± 2.33 

4.79 ± 0.91 -0.3 4.37E-01 1.4 (-4.2 to 7) 

B cells TNFα+ PROT 5.05 ± 0.84 -0.33 3.85E-01 1.13 (-4.19 to 6.45) 

T cells CD4+ GzmB+ BD 
22.89 ± 7.23 

17.28 ± 7.51 0.77* 2.14E-02 5.61 (-3.21 to 14.42) 

T cells CD4+ GzmB+ PROT 60.42 ± 15.64 0 1.00E+00 -37.53 (-70.46 to -4.61) 

T cells CD4+ IL6+ BD 
15.52 ± 4.13 

23.65 ± 4.46 0.35 3.59E-01 -8.13 (-19.57 to 3.31) 

T cells CD4+ IL6+ PROT 23.53 ± 4.48 0.32 4.10E-01 -8.01 (-19.07 to 3.06) 

NK CD56low GzmB+ BD 
94.73 ± 2.52 

97.63 ± 1.2 0.75* 2.55E-02 -2.9 (-6.64 to 0.84) 

NK CD56low GzmB+ PROT 98.57 ± 0.7 0.2 6.13E-01 -3.84 (-8.51 to 0.84) 

NK CD56low IFNy+ BD 
52.59 ± 7.63 

57.22 ± 11.55 0.3 6.83E-01 -4.63 (-22.13 to 12.87) 

NK CD56low IFNy+ PROT 23.2 ± 3.33 -0.3 6.83E-01 29.39 (12.23 to 46.55) 

NK CD56low TNFα+ BD 
6.14 ± 2.01 

7.57 ± 1.32 0.13 7.44E-01 -1.42 (-5.65 to 2.8) 

NK CD56low TNFα+ PROT 7.57 ± 1.26 0.57 1.21E-01 -1.42 (-4.93 to 2.08) 

T cells CD8+ GzmB+ BD 
45.74 ± 11.68 

36.66 ± 14.93 0.63 7.60E-02 9.08 (-6.92 to 25.08) 

T cells CD8+ GzmB+ PROT 69.23 ± 14.57 0.3 4.37E-01 -23.49 (-51.64 to 4.66) 

cDC IL10+ BD 
54.56 ± 10.75 

29.71 ± 3.78 0.63 7.60E-02 24.85 (9.05 to 40.65) 

cDC IL10+ PROT 29.95 ± 4.69 -0.08 8.43E-01 24.61 (3.55 to 45.67) 

cDC IL12p70+ BD 
25.53 ± 7.48 

22.88 ± 3.88 -0.15 7.08E-01 2.64 (-15.19 to 20.47) 

cDC IL12p70+ PROT 28.43 ± 7.22 -0.42 2.70E-01 -2.91 (-25.87 to 20.06) 

cDC IL23p19+ BD 
59.77 ± 9.47 

48.15 ± 6.32 -0.13 7.44E-01 11.61 (-11.35 to 34.58) 

cDC IL23p19+ PROT 43.04 ± 6.22 0.18 6.44E-01 16.72 (-5.86 to 39.31) 

cDC IL6+ BD 
71.35 ± 11.73 

68.15 ± 6.6 0.63 7.60E-02 3.2 (-13.9 to 20.29) 

cDC IL6+ PROT 79.87 ± 5 0.2 6.13E-01 -8.51 (-30.33 to 13.3) 

cDC MIP1β+ BD 
95.5 ± 4.63 

95.47 ± 2 -0.13 7.44E-01 0.03 (-11.1 to 11.16) 

cDC MIP1β+ PROT 93.45 ± 2.89 -0.23 5.52E-01 2.05 (-10.08 to 14.18) 

cDC TNFα+ BD 
80.11 ± 7.11 

80.94 ± 2.58 0.33 3.85E-01 -0.83 (-14.57 to 12.9) 

cDC TNFα+ PROT 81.14 ± 4.71 0.6 9.68E-02 -1.03 (-16.16 to 14.09) 

Mono CD14hi IL10+ BD 
77.96 ± 7.13 

60.41 ± 6.66 0.62 8.57E-02 17.54 (3.48 to 31.6) 

Mono CD14hi IL10+ PROT 59.56 ± 6.88 -0.03 9.48E-01 18.39 (0.18 to 36.6) 

Mono CD14hi BD 15.43 ± 7.34 10.64 ± 2.82 0.72* 3.69E-02 4.79 (-6.69 to 16.27) 



MATERIALS AND METHODS, RESULTS AND DISCUSSION  

108 

 

IL12p70+ 

Mono CD14hi 
IL12p70+ 

PROT 12.04 ± 2.67 0.28 4.63E-01 3.39 (-10.15 to 16.93) 

Mono CD14hi IL6+ BD 
80.45 ± 12.5 

80.71 ± 7.21 0.95*** 3.53E-04 -0.26 (-14.28 to 13.77) 

Mono CD14hi IL6+ PROT 83.77 ± 7.49 0.33 3.85E-01 -3.32 (-24.21 to 17.57) 

Mono CD14hi MIP1β+ BD 
98.66 ± 3.48 

99.64 ± 0.31 -0.12 7.76E-01 -0.98 (-8.04 to 6.09) 

Mono CD14hi MIP1β+ PROT 99.02 ± 1.38 -0.08 8.43E-01 -0.36 (-8.26 to 7.54) 

Mono CD14hi TNFα+ BD 
64.89 ± 15.81 

65.06 ± 14.14 0.78* 1.72E-02 -0.18 (-11.31 to 10.95) 

Mono CD14hi TNFα+ PROT 62.55 ± 13.36 0.9** 2.03E-03 2.33 (-11.21 to 15.87) 

Granulocytes MIP1β+ BD 
98.78 ± 0.79 

91.02 ± 7.58 0.35 3.59E-01 7.76 (-6.95 to 22.47) 

Granulocytes MIP1β+ PROT 85.99 ± 10.82 0.33 3.85E-01 12.79 (-8.29 to 33.87) 

NKT cells GzmB+ BD 
55.65 ± 23.86 

56.51 ± 21.1 1*** 5.51E-06 -0.86 (-13.45 to 11.73) 

NKT cells GzmB+ PROT 78.03 ± 16.23 0.82* 1.08E-02 -22.38 (-48.53 to 3.77) 

NKT cells IFNy+ BD 
25.76 ± 6.01 

27.2 ± 8.67 0.1 9.50E-01 -1.43 (-16.24 to 13.37) 

NKT cells IFNy+ PROT 18.59 ± 2.59 0.6 3.50E-01 7.17 (-2.75 to 17.1) 

NKT cells MIP1β+ BD 
38.35 ± 10.28 

54.17 ± 9.2 0.47 2.13E-01 -15.82 (-36.55 to 4.91) 

NKT cells MIP1β+ PROT 38.83 ± 8.64 0.32 4.10E-01 -0.48 (-21.64 to 20.68) 

NKT cells TNFα+ BD 

17.57 ± 3.99 

36.95 ± 6.07 0.52 1.62E-01 -19.39 (-29.55 to -9.23) 

NKT cells TNFα+ PROT 37.23 ± 5.48 0.42 2.70E-01 -19.67 (-28.86 to -
10.47) 

pDC GzmB+ BD 
86.73 ± 8.33 

93.75 ± 3.11 0.5 1.78E-01 -7.02 (-21.86 to 7.82) 

pDC GzmB+ PROT 97.54 ± 3.62 0.17 6.78E-01 -10.81 (-29.1 to 7.48) 

pDC IFNα+ BD 
80.8 ± 10.66 

78.94 ± 6.93 0.8* 1.38E-02 1.86 (-11.04 to 14.75) 

pDC IFNα+ PROT 76.21 ± 8.61 0.97*** 1.65E-04 4.59 (-3.06 to 12.23) 

pDC IL23p19+ BD 
52.45 ± 14.56 

41.93 ± 3.37 -0.43 2.50E-01 10.53 (-21.36 to 42.41) 

pDC IL23p19+ PROT 37.96 ± 4.71 -0.68 5.03E-02 14.49 (-20.77 to 49.75) 

pDC TNFα+ BD 
89.69 ± 5.58 

93.76 ± 4.4 0.72* 3.69E-02 -4.07 (-10.61 to 2.48) 

pDC TNFα+ PROT 93.4 ± 5.6 0.82* 1.08E-02 -3.7 (-9.44 to 2.04) 

Leukocytes producing cytokines frequencies are shown as average ± standard deviation (SD). The frequencies are 

relative to populations shown in the first column. Bias is presented as group differences (95% confidence interval) in 

Bland-Altman tests. Asterisks besides R estimates indicate significance of the Spearman’s correlation test.  *** p < 

0.001; **p < 0.01; *p < 0.05 in Spearman’s tests 
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Figure 19 Comparison of cytokine-producing cell frequencies of FRESH blood and samples stabilized using BD 
and PROT buffers in MC.  

Cytokine-positive cell frequencies were quantified using their parental gates. (A) Spearman’s correlation test for 



MATERIALS AND METHODS, RESULTS AND DISCUSSION  

110 

 

cytokine-positive leukocyte populations using BD (left panel) and PROT (right panel) 6 month frozen samples 

compared to the FRESH condition. Colors indicate populations, and shapes indicate cytokines. Parental gates are 

the populations, data for 9 individuals are presented. (B) Evaluation of the agreement by Bland-Altman test for BD 

(left) and PROT (right). The results are expressed as before, (C) CVs were estimated for 

each cytokine and cell populations, within each individual donor as in Fig 4. Data are represented as before. 

 

 

Figure 20 Cytokine-producing cell frequencies along the time for BD and PROT in MC.  

The frequency of cytokine-positive cell populations with CV>20% was plotted for three time points as before (1 
week, 1 month and 6 months frozen). n=7 for 1 WK, n=9 for 1 MO and 6 MO, n=5 for IFNγ+ cells 
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6.2.4 Long-term stability and inter-assay variability for preserved cells 

For MC, both buffers performed comparably well. However, the lack of NAS, the ability to 

detect cells like plasmablasts, better structure preservation in UMAP, and the ease of sample 

manipulation, led us to choose PROT for further analysis. Therefore, to verify longer times of 

storage, 45 aliquots of a single donor were fixed and frozen using PROT protocol, and single 

aliquots were stained regularly using a 34-plex panel that expands both surface and cytokine 

detection (Table 2, panel B), in combination with Ir and Pt as before. Across the manually gated 

populations shown in Figure 21 and Figure 22 in the 45 experiments, CVs were estimated 

together with deviations from the mean values for circulating populations and cytokines 

(Figure 23, A and B receptively). For most of the populations CV values were below 20%, 

including low frequent cells such as CD1c+ cDC, pDC and transitional B cells, indicating a 

remarkably high stability in the long term. The only subsets above 20% CV threshold were CD4+ 

TEMRA, NKT, plasmablasts and CD141+ cDC (Figure 23A). NKT cell proportions increased with 

time, and CD4+ TEMRA, plasmablast and CD141+ cDC showed inconsistent values. For cytokines 

higher than 20% CV was observed for granzyme B production in CD4+ T cells and NKT cells 

Figure 23B. 
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Figure 21 Long-term sample stabilization using PROT in MC and surface markers.  

(A) Gating strategy for EXP1 using antibody Panel B (Table 2). (B) Gating strategy for EXP45 (last experiment after 

13 months). 
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Figure 22 Cytokine detection after long-term sample stabilization using PROT in MC. 

(A) Cell counting after thawing and lysis step in 45 consecutive experiments. Dotted orange line represents the 
mean count for all experiments. Samples from CYT1 to CYT10 were counted manually using a Neubauer chamber, 
while for the rest a TC20 automated cell counter was used. (B) Gating strategy for EXP1, using antibody Panel B 
(Table S2). C. Gating strategy for EXP45 (last experiment after 13 months). 
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Figure 23 Long-term stabilization of whole blood using PROT buffer assessed by MC.  

Forty five experiments (EXP1 – EXP45) were performed periodically for 13 months, using an aliquoted, stimulated 

blood sample from a single individual, stained with panel B (Table S2). (A) Cell frequencies relative to Live cells for 

granulocytes and PBMC for the rest of leukocytes were quantified using the gating strategy shown in Figure 21 and 

plotted as the mean ratio of the frequencies. Values equal to 1 refer to no difference from the mean; 2, double or 

more positive difference; 0.5, double or more negative difference. CVs were estimated across each row, plotted in 

green rows and were ordered by decreasing values of the CVs. (B) Cytokine positive cell frequencies were 

extracted using the gating strategy as shown in Figure 22 and plotted and ordered as in A. 
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6.3 Discussion 

Immune phenotyping and stimulatory immune responses are important parameters in the 

immune monitoring and biomarker discovery fields. However, due to time-dependent changes 

in cell composition, blood analysis requires good coordination between recruitment and 

cytometry centers, where the samples are usually processed. It is even more important when 

the access to flow or mass cytometry instruments is limited to few research centers or when 

retrospective studies are performed. The use of whole blood allows a reduction in the volume 

of sample, a simpler sample manipulation, less variability compared to PBMC isolation and 

deeper look into immune system, such as granulocytes480,487,488. Here we compare the changes 

and similarities introduced upon whole blood fixation and long-term storage compared to the 

fresh samples in both FC and MC using an extensive panel of antibodies. 

Good correlation, small bias, and correct clustering between fresh and frozen manually gated 

cell frequencies in both FC and MC indicate correct preservation of sample composition in 

both protocols tested herein. Additionally, the unsupervised analysis by UMAP and JSD 

confirmed sample similarity along different time points and conditions in MC. However better 

results were obtained in PROT indicating that this buffer should be a better choice for deep cell 

phenotyping studies.  

Using both buffers and techniques CVs below 20% were obtained when analyzing all 3 time 

points for most cell populations, showing good sample stability and low inter-assay variability. 

However problems in the detection of few particular markers, were observed suggesting 

antigen sensitivity to fixation, as also reported394. Some markers and populations were more 

affected in one or the other fixation method, and the effect was more marked in FC than in 

MC. This can be explained by the different composition of the buffers and higher antibody 

background with fluorescence-based techniques in fixed cells, which limit the proper detection 

of continually expressed markers. It is possible that sensitive antigens could be still detected 

through a change in the coupled fluorochrome/metal to the most sensitive channels or by 

titration of antibodies adapted to sample fixation as it was done in the MC setup. In the case of 

epitopes that are completely lost during fixation sensitivity, they could be stained before 

sample fixation, as suggested507.  

An increase in antibody background upon fixation was shown in different studies in both MC 

and FC studies394,490 and is also confirmed here. The background was higher in FC than in MC, 

and was mostly affecting granulocytes. Thus, care needs to be taken when analyzing marker 

expression in this population. Besides the background, NAS in a minor set of cells was observed 
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in FC for both buffers and MC for BD buffer. This suggests that fluorescence-tagged antibodies 

are more prone to nonspecific binding, especially when using BD buffer. It has been reported 

that heparin can help to reduce the nonspecific binding, especially in eosinophils507.  

Although the correlation between fresh and frozen samples was high, more differences in 

cytokine detection than in surface staining were observed. Most cytokines were better 

detected in fresh samples, as shown by the positive bias in Bland-Altman plots, but the extent 

of this effect was different in every cytokine. These discrepancies can be explained by 

differences in the staining protocols (Figure 6B). In the fresh condition, the cells are fixed after 

washing the reversible inhibitors of exocytosis, surface staining and red blood lysis, these steps 

represent around one hour before fixation. Thus, percentages in cytokine-positive cells do not 

fit perfectly between fresh and fixed samples, probably due to longer exposure times to the 

stimulus of the fresh samples and the different sensitivity of particular cytokines to brefeldin 

and monensin511. Anyhow, the CV was below 20% for almost all cytokine staining, showing long 

stability and low inter-assay variability in as small blood volume as 500ul.  

The use of a reference sample in MC studies becomes necessary when multiple barcoded 

batches are run. This reference sample can then be used with confidence to normalize data 

across multiple runs as shown before434,512. Our study provides the way to preserve a 

reference sample up to 13 months, showing remarkable sample stability in both phenotyping 

and cytokine studies. Even low abundant cells like CD1c+ cDC, transitional B cells and pDCs, as 

well as their cytokine responses could be quantified with high confidence in as small volume of 

blood as 500 ul. The three less abundant cell populations had CVs higher than 20%: NKTs, 

which increased with time, (suggesting increased nonspecific binding), plasmablasts; and 

CD141+ cDCs. It is noteworthy that the remarkable stability of the staining was also due to the 

use of stable and unique batches of antibody cocktails: Duraclone tubes for FC and frozen 

cocktail aliquots for MC reference samples. CV values are not solely an indication of stating 

quality, but also represent the variation of antibody cocktail batches. Hence the more effort is 

put to control of the experimental variables, a better reproducibility of the results will be 

obtained, as also shown in this manuscript. Additionally, the results demonstrate the need for 

proper selection of the preservation protocol, depending on the studied markers. In our 

experience results from different fixation protocols should not be analyzed together, especially 

when targeting cytokines. Thus, proper experiment design is a key to obtain good 

reproducibility. In our setting a remarkable sample stability was obtained for over a year, but it 

is worth mentioning that longer stability up to 3 years was reported491, suggesting that once 
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preserved, samples can be stable for a longer time. In this study we used EDTA-tubes, however 

the protocols should be verified when using different types of anticoagulants, as they can 

differently affect marker and cell preservation513–515. As previous studies using BD489 and 

PROT394 were done using heparinized blood, it is possible that the time of preservation will not 

be affected by this anti-coagulant.  

In summary, we demonstrated that immunophenotyping and cytokine response studies can be 

successfully performed with small amounts of fixed/frozen blood. Immediate whole blood 

sample fixation will benefit from shorter manipulation, hence preventing cell death specially in 

the neutrophil compartment. However, careful selection of suitable buffers and compatible 

antibodies are absolutely required. Antibody provider websites and databases like393 can be 

helpful when building the antibody panels. The samples can be comparable only if they were 

prepared with the same standardized protocol. The setting presented here allows to perform 

retrospective studies and is a good solution when Palladium-based sample barcoding is 

required419 in combination with a reference sample. Therefore, it brings another important 

contribution to experimental reproducibility and run-to-run comparability, both in research 

and clinical studies for phenotyping or cell response monitoring.  
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7 Data processing workflow for large-scale immune monitoring studies by mass 

cytometry 

7.1 Material and methods 

7.1.1  Study participants and whole blood processing 

Two human healthy donors were enrolled under a protocol approved by the Ethical 

Committee of Centro Granada (CEI-Granada) according to the Helsinki declaration of 1975, as 

revised in 2013. All donors signed an informed consent according to the ethical protocol of the 

Andalusian Biobank and the PRECISESADS project. The Granada node of the Andalusian Health 

System Biobank collected whole blood samples in EDTA-K3 vacutainer tubes. Samples were 

processed following the protocol described492. Briefly, 10 ml of blood from two healthy donors 

was collected using EDTA-K3 vacutainer tubes, and 1.5 ml was diluted 1:1 with RPMI (Gibco) 

and stimulated with four different Toll-like receptor agonists: R848 (resiquimod, RSQ, 1.25 

μg/ml, Invivogen), R837 (imiquimod, IMQ, 2.5 μg/ml, Invivogen), lipopolysaccharide (LPS, 0.05 

μg/ml, Invivogen), ODN2006 (CpG, 2 μM, Invivogen) and medium alone (UNS). The 

stimulations were performed for 6h in the presence of Protein Transport Inhibitor Cocktail 1X 

(Thermo Fisher Scientific) to prevent intracellular cytokine exocytosis. After stimulation, 

live/dead staining was performed using cisplatin (CisPt, 5 μM), for 5 min at RT. Blood cells were 

fixed with 4.2 ml of Proteomic Stabilizer (Smart Tube Inc) and 3 aliquots of 2.4 ml of each 

stimulation were frozen and kept at -80°C until staining.  

The reference sample consisted in 2 ml of whole blood of donor 2 stimulated with RSQ and 

processed as described above. Four aliquots of 2.4 ml were frozen. The RSQ agonist was 

chosen as reference stimulation since it induced the expression of all the studied cytokines 

across multiple cell populations of interest in previous analysis (laboratory data).  

7.1.2 Cell staining and sample acquisition on CyTOF/Helios instrument 

Fixed blood samples were thawed at 3 different days in batches including all the simulations 

for both individuals together with an aliquot of the reference sample (see Table 6). In total 11 

samples were stained and acquired in each staining batch, and the experiment was repeated 

for a total of 3 times (Figure 24).  
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Table 6 Sample metadata 

Barcode ID Stimulation Batch 

2 

p1 

RSQ 

day1 

 

3 UNS 

4 IMQ 

5 CpG 

6 LPS 

9 

p2 

 

RSQ 

10 UNS 

11 IMQ 

12 CpG 

13 LPS 

15 REF RSQ 

6 

p1 

 

RSQ 

day2 

7 UNS 

8 IMQ 

9 CpG 

10 LPS 

12 

p2 

 

RSQ 

13 UNS 

14 IMQ 

15 CpG 

16 LPS 

17 REF RSQ 

8 

p1 

 

RSQ 

day3 

 

9 UNS 

10 IMQ 

11 CpG 

12 LPS 

14 

p2 

 

RSQ 

15 UNS 

16 IMQ 

17 CpG 

18 LPS 

19 REF RSQ 
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Figure 24 Experimental set up.  

(Step 1) Blood from two donors (p1 – shade of blues and p2 – shade of reds) was stimulated with 4 different 

stimulations agents or left unstimulated. Reference (yellow) sample was stimulated with RSQ. (Step 2) Samples 

were assigned to three different acquisition batches (day 1, day 2, day 3, marked by different border colors) 

representing all biological groups, fixed, aliquoted, and stored at -80°C until the time of acquisition. (Step 3) On 

the 3 consecutive experimental days samples for each batch were thawed (here represented by day1), and 

barcoded. (Step 4) next were pooled and stained using frozen cocktail of antibody. (Step 5) Barcoded samples 

were aliquoted (represented by white separation line) and acquired on CyTOF, generating Aliquots.fcs files (Step 

6). The staining procedure and acquisition was repeated for two other batches, named day 2 and day 3 on 

different days.  
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To minimize experimental variation two frozen antibody cocktails were prepared (for surface 

and cytokine staining, respectively), aliquoted and stored at -80°C until the day of the staining, 

as described in400,492. Antibody cocktails are shown in Table 7. Most of the antibodies were 

obtained in a labeled form from Fluidigm. Alternatively, purified antibodies were conjugated 

using MaxPar Metal-labeling kits (Fluidigm), following the vendor protocol. 

Blood samples were thawed as described in 492 and 1.5*10 cells per sample were barcoded. 

The barcoding was performed using Palladium-based barcoding (Fluidigm, see Table 6) as 

follows: cells were washed with Barcoding Perm Buffer and stained with the barcode in 500 μl 

of the same buffer for 20 min at RT, followed by a total of 3 washes with Cell Staining Buffer 

(CSB, Fluidigm). Samples were then pooled and surface antigens were stained with the surface 

panel (phenotyping markers, Table 7) in CSB for 30 min at 4°C at a density of 5*107 cells/ml. 

Afterwards, cells were washed with Perm-S buffer (Fluidigm) and labeled for intracellular 

cytokines (functional markers, Table 7), for 30 min at 4°C. Next, cells were washed with CSB 

and stained with Iridium (Ir, 5 μM) for 20 min in Fix and Perm Buffer (Fluidigm), washed with 

CSB and left overnight (O/N) in 2.75 ml of freshly prepared 2% formaldehyde (PFA) (Thermo 

Fisher Scientific).  

The following day, CyTOF acquisition was performed in aliquots. Briefly, aliquots of 250 μl were 

washed with CSB, followed by a wash with MiliQ water. The aliquots were resuspended at 

8*105/ml in water together with EQ Four Element Calibration Beads (Fluidigm) and acquired in 

a CyTOF2/Helios device using a NB sample injector. The flow rate was set below 400 events/s 

and each aliquot was acquired for no longer than 2h. Around 11 aliquots per barcoded batch 

were acquired. 
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Table 7 Antibody panel, marker and probe types used in staining and analysis 

Antigen Clone Metal 
Phenotyping 

markers 
Functional 

markers 
Source Staining 

CD3 UCHT1 115In X  ThermoFisher Surface 

CD45 HI30 141Pr X  Fluidigm Surface 

CD19 HIB19 142Nd X  Fluidigm Surface 

CD123 6H6 143Nd X  Fluidigm Surface 

CD4 RPA-T4 145Nd X  Fluidigm Surface 

IgD IA6-2 146Nd X  Fluidigm Surface 

CD20 2H7 147Sm X  Fluidigm Surface 

CD66a/c/e ASL-32 149Sm X  Fluidigm Surface 

CD14 M5E2 151Eu X  Fluidigm Surface 

CD7 CD7-6B7 153Eu X  Fluidigm Surface 

CD3 UCHT1 154Sm X  Fluidigm Surface 

CD1c L161 154Sm X  Biolegend Surface 

CD45RA HI100 155Gd X  Fluidigm Surface 

CD27 L128 158Gd X  Fluidigm Surface 

CD11C Bu15 159Tb X  Fluidigm Surface 

CD38 HIT2 167Er X  Fluidigm Surface 

CD8 SK1 168Er X  Fluidigm Surface 

CD24 ML5 169Tm X  Fluidigm Surface 

CD141 1A4 173Yb X  Fluidigm Surface 

HLA-DR L243 174Yb X  Fluidigm Surface 

CD56 N901 176Yb X  Fluidigm Surface 

CD16 3G8 209Bi X  Fluidigm Surface 

CD41 HIP8 89Y X  Fluidigm Surface 

IL-2 MQ1-17H12 144Nd  X Fluidigm Intracellular 

IL-17 BL168 148Nd  X Fluidigm Intracellular 

MIP1β D21-1351 150Nd  X Fluidigm Intracellular 

TNFα Mab11 152Sm  X Fluidigm Intracellular 

IL-6 MQ2-13AS 156Gd  X Fluidigm Intracellular 

IFNα LT27:295 160Gd  X Miltenyi Intracellular 

IL-23p19 23dcdp 161Dy  X Fluidigm Intracellular 

TGFβ TW4-6H10 163Dy  X Fluidigm Intracellular 

IL-10 JES3-9D7 166Er  X Fluidigm Intracellular 

IL-12p70 REA123 170Gd  X Miltenyi Intracellular 

GranzymeB GB11 171Yb  X Fluidigm Intracellular 

MCP1 5D3-F7 175Lu  X BD Biosciences Intracellular 

CisPt - 195Pt Live/dead cells Sigma Intracellular 

DNA1 - 191Ir Nucleated cells Fluidigm Intracellular 

DNA2 - 193Ir Nucleated cells Fluidigm Intracellular 

Bead - 140Ce Beads Fluidigm - 

 

7.1.3 Data analysis  

The fcs files were pre-processed using an in-house R script pipeline built through the assembly 

of several algorithms. The R script, functions and packages necessary for its installation can be 

found in github CyTOF_analysis_pipeline 

(https://github.com/prybakowska/CyTOF_analysis_Pipeline1), and the example fcs files are 

deposed on flowrepository505 with the accession id FR-FCM-Z3YR. Additionally, metadata 

(meta_data.csv) and FlowJo gating workspace (gating_strategy.wsp) can be found in the 
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Attachments section in flowrepository experiment, and can be downloaded to reproduce the 

results.  

Fcs fileswere first normalized using the bead_normalized()function, which uses 

normCytof()function from the CATALYST package516. Firstly, a baseline file was generated 

by the aggregation of 25,000 cells per file using the in-house function baseline_file(). 

This file was further used to compute baseline beads values to which all the files were 

normalized. The following settings for normCytof() were used: dvs beads, that were set to 

be removed post-normalization, norm_to was set to the baseline flow frame generated above, 

transformation was set to FALSE and plot to TRUE. Plots for marker visualization across all 

normalized files were generated using the plot_marker_quantiles() function, which 

takes advantage of ggplot2 package517.  

Flow rate examination and signal cleaning were done using clean_flow_rate() and 

clean_signal() functions, respectively. For flowrate cleaning we used functions from 

flowAI416 package with the TIMESTEP adaptation to 1 bin per 10 seconds and alpha set to 0.01. 

For signal cleaning the flowcut package (https://github.com/jmeskas/flowCut) was used with 

1000 segments MaxPercCut set to 0.5. The parameters UseOnlyWorstChannels, AlwaysClean 

and AllowFlaggedRerun were set to TRUE.  

The outlier detection was done using the wrapper function file_quality_check(). This 

function calls the FlowSOM clustering496, which serves as an input for the Average Overlap 

Frequency (AOF) algorithm405. The FlowSOM was built using a 10x10 grid and 10 metaclusters. 

We calculated AOF scores per aliquot and batch using greedyCytometryAof() function, 

with the default parameters from the cytutils package (https://github.com/ismms-

himc/cytutils), and Scaled and Quality AOF using the formula presented in393. Next, we 

estimated the mean of Quality AOF scores taking into consideration the scores calculated for 

all the fcs files. We considered as outliers those files with Quality AOF scores > mean + 3 

standard deviations (SD). Heatmaps were generated using the pheatmap package.  

For file debarcoding we applied the debarcode_files() function, which uses CATALYST 

debarcoding functions (assignPrelim(), estCutoffs(), and plotYields()), 

although we introduced the possibility to include minimal separation thresholds.  

File aggregation was done using an in-house function called aggregate_files() and 

gating for Gaussian parameters and event length were performed using CyTOFClean package 

(https://github.com/JimboMahoney/cytofclean). Additionally, intact and viable cells were 
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gated using gate_intact_cells() and gate_live_cells() functions which use 

flowDensity package with deGate() function428. The parameters depend on the marker to 

be gated and are discussed below. 

CytoNorm package512 was used to normalize files using a reference sample, and data were 

normalized without FlowSOM clustering using 5 and 95 percentile and limit parameter set to 0 

and 8.   

The batch effects were visualized using plot_batch() function, which performs UMAP 

dimensional reduction443, from uwot package and ggplot2. Prior to dimensional reduction, files 

were aggregated using 1000 cells per file to reduce data size and speed up the analysis time. 

The umap() function was applied with default settings. Additionally 

plot_marker_quantiles() function was used to visualize the differences before and 

after normalization. Cell population frequencies and MSI of phenotyping and functional 

markers were extracted using FlowSOM algorithm496 and used to track batch effects, as well. 

Briefly, 50,000 cells per file were randomly selected, aggregated and arcsine transformed. 

FlowSOM was built using default parameters for grid and 35 metaclusters. Phenotyping 

channels (see Table 7) were used to build the model. Next, cell frequencies and MSI for 

phenotyping and functional markers were extracted for clusters and metaclusters. Zero-

imputation was used for MSI values of clusters without cells as shown before463. Only the MSI 

values with SD > 0.2 per marker and cluster/metacluster were used. The data were further 

analyzed with UMAP and visualized with ggplot2 package.   

UMAP was also used for data exploration with 5000 cells aggregated per file. To map cell labels 

on UMAP, the aggregated file was manually gated using FlowJo software (10.0.7). FlowJo 

workspace was next read in R using CytoML518, flowWorkspace425 and OpenCyto519 packages. 

The figures can be reproduced using the data uploaded to FlowRepository and the code is 

deposited in github, however we noticed some differences when running the script on Linux or 

Windows operating systems. This was due to the difference in the floating numbers generated 

after the 14th decimal. The R session information with package versions can be found in Figure 

25. 
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Figure 25 R session information 

The figure represents packages used in the workflow. 

 

7.2 Results and discussion  

7.2.1 Analysis workflow 

The analysis pipeline presented herein includes all the major steps necessary to process and 

clean collected data. However, it should be noted that although the presented tools 

significantly improve data quality, they cannot fully fix the improper design of the experiments, 

according to the rule garbage-in, garbage-out. We emphasize the importance of well-designed 

experiments and therefore we also present the experimental workflow (Figure 24) and 

protocol (Table 8), used to generate the fcs files for this manuscript.  
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Table 8 Protocol for high quality data preparation 

Before starting the protocol Staining and acquisition protocol 

 

1. Calculate the number of samples that will be 
analyzed and the number of batches that will be 
acquired on CyTOF 

Comment: Estimate the number of samples required to 
prove or reject the hypothesis 

 

2. Prepare all the reagent needed for the whole 
protocol using a limited number of lots. Aliquot 
those reagent requiring freezing. 

Comment: As the reagent expiration date might be a 
problem, check batch-to batch equivalence. 

 

3. Design the antibody panel, conjugate antibodies 
if necessary, check cellular epitopes resistance 
to fixation if necessary, titrate each probe using 
the same experimental conditions

520
  

Comment: Titrate the antibody using a fixed number of 
cells, this way it will be easily scalable to experiments 
involving barcoding  

 

4. Prepare a single big batch of antibody cocktails, 
stimulation agents and reference sample, 
aliquot and freeze at -80°C, as described 

400,492
 

Comment: at least one extra aliquot should always be 
prepared. In the case of multicenter studies we 
recommend preparing all reagents in one central 
laboratory and ship them on dry ice to the rest of the 
centers 

 

5. To limit experimental variability use barcoding 
when multiple samples are run in one batch  

Comments: Different barcoded approaches can be used 
396,398,419,521,522

. Titrate barcoding reagent according to the 
number of cells used for staining  

 

6. Design each acquisition batch ensuring even 
distribution of biological groups 

Comments: If multiple patient groups or culturing 
conditions are studied, each batch should contain a 
representation of each group, including healthy controls 

 

1. Thaw selected blood samples assigned to the 
staining batch as described

492
 

a. Count cells  
b. Aliquot equal number of cells for each 

sample, in this protocol 1.5*10
6
 

cells/sample 
2. Barcode samples, in this protocol with palladium 

based barcoding  
a. Wash with Barcoding Perm buffer (BPB) 
b. Stain with barcoding reagent 

resuspended in 500 μl of BPB, 20 min 
RT 

c. Wash with CSB 
d. Pool all the samples in a single tube 

3. Stain surface antigens with previously thawed 
surface antibody cocktail 

a. Resuspend cells at 5*10
7
 cells/ml with 

surface cocktail  
b. Incubate for 30 min 4°C 

4. Stain intracellular antigens with previously 
thawed functional antibody cocktail 

a. Wash with Perm-S buffer  
b. Resuspend cells at 5*10

7
 cells/ml with 

the intracellular cocktail 
c. Incubate for 30 min 4°C 

5. Stain DNA with Iridium solution  
a. Wash with CSB 
b. Incubate 20 min RT with 5 μM Ir in Fix 

and Perm buffer 
6. Store in 2% PFA O/N 

a. Wash with CSB  
b. Resuspend in freshly prepared 2% PFA 

at 6*10
6 

cells/ml 
7. Acquire on CyTOF2/Helios instrument in aliquots 

(if cells are acquired in water,or if reduction of 
data size is of interest) 

a. Take an aliquot of 250 μl  
b. Wash with CSB 
c. Wash with acquisition solution (AS) 
d. Resuspend at 8*10

5
/ml in AS  

e. Acquire in CyTOF2/Helios. Adjust the 
flow rate to the AS and the type of cells  

 

The example data set used in this work contains whole blood samples collected from two 

individuals (p1 and p2). EDTA-K3 blood from each donor was stimulated with 4 different 

stimuli (RSQ, IMQ, LPS, CpG) or left unstimulated, as described in methods section. In total 10 

samples (5 per donor) were aliquoted in triplicates, fixed and frozen to generate 3 staining 

batches. Every batch included 10 stimulated samples plus the reference sample, and was 

barcoded, resulting in 11 samples per staining and acquisition (Figure 24). After pooling the 

barcoded samples, they were stained with a cocktail of antibodies recognizing surface markers, 
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permeabilized and stained with an cocktail of antibodies recognizing intracellular cytokines 

(see Table 7). The samples were acquired the following day, as described above. Therefore, in 

total 3 acquisition batches were analyzed (day 1 to day 3). This experimental workflow can be 

scaled up for multibarcoded, multibatch and multicenter studies (Figure 26). Each barcoded 

experiment was acquired in aliquots, and 11-12 fcs files were generated each day using an NB 

sample injector.  

For data curation we built an R-based pipeline. Although R studio and basic programming skills 

are required, we will point out which steps can be performed with standalone or user-friendly 

programs. The data analysis workflow can be seen in Figure 27.The pipeline starts with the 

aliquots collected for each acquisition batch. In total, this example data set contains 35 

aliquots obtained in 3 acquisition batches (12 aliquots for day1, 12 aliquots for day2, 11 

aliquots for day3). These aliquots are not aggregated until step 5 (Figure 27), as one-by-one file 

processing is more beneficial in the context of algorithms and computer capacity. However, if 

data are acquired in one big aliquot using a wide bore injector (WB), or in the case of FC or 

spectral cytometry (SC) experiments, and the computer resources are limited, the data can be 

split upfront into aliquots to generate a set of smaller files. The function to do this is provided 

and is called split_big_flowFrames. Alternatively they can be analyzed as a single big 

fcs file.  
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Figure 26 Experimental workflow proposed for big-scale multicenter, retrospective studies 

(Step 1) Collection of samples at different centers (represented by different colors), fixation and freezing. 

Preparation of N reference sample aliquots equal to the number of batches to be acquired. (Step 2) Sample 

assignation to the staining batches ensuring even distribution of biological groups, here represented by patient 

and controls from each center, together with an aliquot of the reference sample. (Step 3) Experimental and data 

analysis workflow should be followed as a next step (Step 5, Figure 1). 
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As a first step, a bead-based normalization is performed, followed by flow rate and signal 

cleaning. Next, the bad quality aliquots are detected and removed from the data set. Cleaned 

files are then debarcoded, resulting in generation of 11 (# barcodes) x 35 files and at this point 

files from the same barcode and experimental day are aggregated. The gating of the fcs files is 

performed to remove doublets and dead cells and afterwards batch effect detection and 

normalization using the reference sample is performed. The data are further explored using 

dimensional reduction methods. To build this pipeline we gather already published algorithms 

and put them in the sequential order, that we believe is optimal for CyTOF data curation. We 

have also modified some steps to adjust these tools for CyTOF data or to improve their 

performance. These modifications will be highlighted along the workflow and some of them 

will be illustrated in the figures. We also provide wrapper functions for an easier use of the 

code. The workflow steps are prepared for CyTOF data, however as it is built in blocks, some of 

them can be skipped or adapted to FC or SC data. This will be also highlighted along the 

manuscript.  
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Figure 27 Computational pipeline. 

Each barcoded batch was acquired in aliquots resulting in multiple .fcs files obtained from each experiment. 

Therefore, in this figure fcs files are called “Aliquot.fcs”. We represent aliquots as 1…N for clarity. The colored 

rectangles indicate the aliquots together with their origin and are numbered with barcodes (B) from B1-B11 (as 

shown in Figure 24). The blue shade comes from p1 sample, red shades from p2 and yellow rectangle represents 

the reference sample. The purple border of each rectangle denotes Day 1 of the experiment. Each aliquot is 

processed individually until the aggregation step. The steps from 1 – 8 represent the blocks used in the R pipeline. 

First, bead normalization (Step 1), followed by flow rate and signal cleaning (Step 2) are performed. Next, the 

aliquot outliers are detected by calculating the Quality score and files with high score are discarded from further 

analysis (Step 3). Files are then debarcoded (Step 4) and aggregated (Step 5). Gating of Gaussian parameters and 

intact, live cells is performed (Step 6) and files are normalized using the reference samples collected in each batch 

(Step 7). In the data exploration (Step 8) cell populations are visualized using UMAP dimensionality reduction.  
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7.2.2 Bead-based normalization  

The first step of data preprocessing is the bead-based normalization, performed for all 

collected aliquots. This step uses the signal of the EQ four element calibration beads acquired 

together with the sample 523 and the CATALYST package516.  

In the CATALYST package the function normCytof allows for the selection of the parameter 

norm_to, that requires an fcs file as an input. This file will be used as a baseline hence the rest 

of the files will be normalized according to its values. The selection of baseline file is important 

for proper data normalization and can be difficult when hundreds of files needs to be 

normalized to the same intensities. Therefore, in this pipeline we propose to aggregate all the 

collected fcs files in order to obtain the mean bead intensities across experimental aliquots 

and batches, as shown in Figure 28A. To avoid the generation of a big object, we used 

baseline_file function that first aggregated 25,000 randomly selected events per aliquot 

to obtain at least 200 beads per fcs file (the number of aggregated cells is user-defined). Next, 

using this aggregated file we created a baseline file for which bead mean intensities were 

calculated and used for aliquot normalization. In this way all the files were normalized to the 

global mean of the aggregated file, Figure 28A.   

As an outcome, normalized files with suffix beadNorm.fcs were generated in a new subfolder 

called BeadNorm. The diagnostic plots for one aliquot were plotted in Figure 28B,C. Beads 

were gated as negative for Ir and highly positive for the bead channels 140Ce, 151Eu, 153Eu, 

165Ho, 175Lu (Figure 28B). These events were further used for the estimation of the beads-

derived normalization factor that will be applied to the channels selected by the users. The 

bead gate area can be adjusted by changing parameter trim, however for our samples the 

default parameter was good enough, as it properly gated all the necessary events. As shown in 

Figure 28C, normalized bead intensities became higher and more stable along the acquisition 

time.  

Another important and novel step that we introduced is the verification of the behavior of the 

cell markers after bead-based normalization. This possibility is provided using the 

plot_marker_quantiles() function, giving a good insight of the homogeneity of the 

aliquots and the batch effects present in the data. Thus, to have an insight into normalization 

quality and its artifacts we recommend to plot all the markers that were chosen to be 

normalized and verify their expression before and after normalization as shown in Figure 28D 

for CD45RA. For this marker a slight signal decrease with the time of acquisition was observed, 

which was corrected by bead-based normalization. No significant differences were observed 
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between different acquisition days for this particular marker. This part of the code does not 

include a user-friendly interface, although data could be also normalized using the premessa 

package (https://github.com/ParkerICI/premessa/). It should be noted that this option is not 

automatic, and hence the user will need to define bead gates manually.   

In FC, the data are not usually acquired with spike-in beads, and thus this step is not useful for 

FC users. However, the advantage of using Rainbow 8-peak beads (acquired just before 

samples acquisition) was recently published524 in the context of day-to-day instrument 

variation correction for PRECISESADS164 project. Therefore, this step could be introduced here 

and be beneficial for FC data quality. Alternatively the package flowBeads could be also 

used525,526. 
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Figure 28 Bead-based normalization 

(A) Randomly selected cells from each aliquot and each experimental day are aggregated to generate baseline 

files. Files are then normalized to the mean intensities of baseline file. (B) Dot plots generated using CATALYST 

package for one representative aliquot with arcsine transformed DNA channel (191Ir) on y-axis versus all bead 

channels (x-axis). The beads in the gated blue region are used for normalization. (C) Smoothed bead intensities in 

their positive channels along the time of acquisition for one representative aliquot. “Before” (left) and “After” 

(right) normalization data are plotted. (D) All aliquots are plotted for each acquisition day for CD45RA-155RA. The 

lines represent percentiles, circles represent median values, while thicker lines represent 25 and 75 percentiles. 

The thinner lines represent the 1 and 99 percentiles. Grey lines represent the percentiles before normalization, 

and colored lines after normalization.  
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7.2.3 Flow rate and signal cleaning  

Sample acquisition using CyTOF instruments can suffer from clogs or sudden changes in the 

flow rate, which affects the quality of the data. Therefore, it is important to detect and clean 

these abnormalities. To do this we used two algorithms: flowAI416 to spot flow rate 

irregularities and flowCut417 to track signal instability. Since these two packages were initially 

created to clean FC data, this step can be also applied to fluorescence data with their default 

parameters.   

The functions from these packages were adapted to the nature of the MC data and were 

written to wrapper functions clean_flow_rate()and clean_signal() for flowAI 

and flowCut respectively, although the user can still modify the original parameters.  

The time resolution is different for FC/SC and MC data, thus, we modified the TIMESTEP 

parameter of flowAI to 1 bin per 10 seconds. As the acquired files contained high number of 

events per file (around 700,000) we also increased the Segment parameter (the number of 

events per bin) from 500 to 1,000 in flowCut setting. In this way we could spot bigger changes 

in the mean but still analyze sufficient number of segments to obtain a good statistic. The 

settings of these parameters are sensitive to the file size (number of events collected), and 

should be adjusted according to the user needs. If less cells were acquired per file, less events 

should be analyzed per segment. The same is applied for the removal of small or big changes in 

the mean signal, the bigger the segment the bigger mean changes can be removed. Thus, this 

parameter is data-specific and should be carefully adjusted in the case of barcoded or big fcs 

files. We also increased the MaxPercCut (the maximum percentage of cells to be removed) 

from 0.3 to 0.5 in order to ensure that most of the bad quality events will be removed. This 

parameter setting depends on the quality of the data but also on the number of events that 

users can tolerate to loose, and therefore it should be adjusted carefully. We set the 

parameter UseOnlyWorstChannel, and AllowFlaggedRerun to TRUE. This is because in the 

multiparametric MC data bad quality events in some channels can be missed when taking into 

consideration the statistic across all the channels (as it is the case in flowCut). To be stricter in 

the cleaning, we enabled this parameter. As it can occur that some other channel will have 

signals severely affected and won’t get cleaned when a predefined channel is selected, we 

allow the algorithm to re-run the cleaning after the first bad quality events are removed. The 

setting of these parameters will depend on the data quality and the number of markers used. 

We also forced the algorithm to always clean the data, by setting AlwaysClean parameter to 

TRUE, as we did not observe any excessive cleaning in high-quality files; instead some small 
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signal disturbances were efficiently cleaned. We did not observe any benefits in changing 

other parameters, and therefore the rest of them were set as default. These tools were firstly 

created for FC studies, thus same reasoning about the parameter setting can also be applied to 

high-dimensional FC data. If FC or SC data are run the data_type parameter should be changed 

to “FC”. This will automatically switch algorithms parameters to the original FC-optimal setting. 

This step generated a new folder called Cleaned, containing clean files with suffix cleaned.fcs. 

Additionally, two subfolders were created called FlowRateCleaning and SignalCleaning having 

1 plot per file for both flow rate and signal cleaning, as shown in Figure 29. These plots are 

convenient to check the quality of the signal across the markers and flow rate, and also the 

level of the cleaning achieved. Therefore, we recommend verifying if all the low-quality events 

are removed from the data, and to re-adjust the parameters when required. Example plots for 

flow rate and signal cleaning in one sample aliquot are shown in Figure 29A and 3B. It can be 

observed that the anomalies occurred just at the beginning of the acquisition, when probably 

the flowrate was still unstable, and also at the end of the acquisition when more fluctuation 

typically occurs. This can be a sign of some cell clogging, sample degradation or the tube 

getting empty. As can be seen in Figure 29B, overall a good quality signal was observed even in 

the worst channel (CD66ace). The indices removed at the end of the signal correspond with 

the flow rate abnormalities, confirming some problems at the end of the aliquot acquisition.  

flowAI can be run in a user-friendly mode, and therefore no programming skills are required. 

On the other hand, flowCut can only be used through R language. Alternatively, flowAI can be 

used as a signal cleaning tool, however in our experience it is too stringent for MC data 

because it removes too many acceptable events (data not shown).  

It can be argued that some events can be removed from the data due to their original 

properties. However, cells acquired either in MC or in FC/SC are homogenously distributed in 

the sample and thus across the “Time” parameter during acquisition. As those algorithms 

divide data into bins, and each bin represent the mixture of all cells, it is highly unlikely that 

some specific type of cells will be removed from the file.  

 



MATERIALS AND METHODS, RESULTS AND DISCUSSION  

136 

 

 

Figure 29 Flow rate and signal cleaning 

(A) Flow rate of one representative aliquot using flowAI. The x-axis represents the time of acquisition in seconds 

and the y-axis the number of events acquired per 1/100 second. The green circles indicate the outliers that were 

detected by the flowAI algorithm and removed from further analysis. (B) Signal cleaning for the aliquot shown in A 

using flowCut. The first two dot plots on the x-axis represents the time of acquisition in milliseconds (ms) and the 

y-axis the arcsine transformed intensity for cleaned CD16-209Bi and CD66ace-149Sm detected as the worst 

channel. For CD16 plots, the arrows indicate the indices removed from the analysis, and the numbers above the 

plots the mean change before and after cleaning and the maximum mean change for this aliquot. On the right 

panel, histogram representing the summed measures of mean, median, several percentiles, skewness, and 

variation of the flow signal, parameters used by the flowCut algorithm. The vertical line represents the threshold 

for event removal. 

 

7.2.4 Aliquot outlier detection  

As mentioned before, in order to obtain a sufficient number of high-quality events during long 

acquisitions, barcoded data are acquired in aliquots. For this reason, sudden changes in 

detector sensitivity or problems with instruments like unexpected shut-down can happen, 

requiring additional tuning. Thus, it is advisable to verify the quality and channel intensities of 

the different aliquots acquired in each acquisition batch. To do this, we took advantage of AOF 

algorithms405 that detect potential staining problems393.  
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It is recommended to use AOF algorithm on gated or clustered events as input. In order to 

allow for automated quality check, we used FlowSOM496 algorithm (Figure 30) to cluster the 

cells.  

 

 

Figure 30  FlowSOM clustering 

FlowSOM tree is represented by star charts. In each chart the mean expression of selected phenotyping markers is 

shown, the height of each part indicates the intensity of the marker. 10 metaclusters are denoted by background 

colors as shown in the legend on the right.  

 

Upon clustering (using the phenotyping markers shown in Table 7), the AOF scores were 

calculated for each marker and scaled to obtain Scaled AOF scores as illustrated in Figure 31A 

and described in393. These scores were summed for each aliquot, and the Quality AOF score 

was obtained for each fcs file as shown in Figure 31B. To detect outlier aliquots the mean for 

all the Quality AOF scores was calculated per all files. The files with Quality AOF score > mean + 

3SD were considered as outliers and removed from further analysis.  

If the data were acquired as single big barcoded samples we recommend to divide this file into 

segments and calculate the AOF and Quality score for each segment in order to spot signal 

decrease issues. If the user decides not to split the data, we advise to carefully inspect the files 

with high quality scores and markers with high AOF score across time. It can happen that upon 
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the long acquisition only a portion of the data is affected, thus some good quality part of the 

data can be used for further analysis, as shown before 393. 

In this setting we use AOF to detect abnormalities in the aliquots. All the aliquot files have 

exactly the same cell distribution, and thus removing one outlier aliquot from the data does 

not remove any specific cell subpopulation. However, this algorithm can also be used to spot 

staining discrepancies (missing antibodies, lower staining index) across samples from different 

individuals or acquisition batches405, and in this case the results should be carefully checked to 

make sure that the observed low quality scores are due to technical problems and not to 

sample-specific or cell-specific phenotypes. We also focused on phenotyping markers and not 

functional, cytokine markers, as the performance of this algorithm is optimal when using 

bimodal markers. By doing so we assumed that if some phenotyping markers are affected and 

sample was scored high, most of the markers will have poor resolution and will be difficult to 

analyze. For FlowSOM we used a small number of metaclusters (N=10) in order to detect and 

validate the marker expression in the main leucocyte populations, across homogenous 

aliquots. We reasoned that the less metaclusters, the less aliquot-specific clustering will occur, 

thus all the cells will be assigned to the same metacluster and the AOF calculation will be 

performed exactly for the same group of cells. FlowSOM parameters can be adjusted 

according to the sample diversity and user needs. To verify the quality of clustering, it can be 

useful to plot the FlowSOM tree, as shown in Figure 30. The range of the SD in the definition of 

the threshold can also be adjusted by the users, if necessary. We choose FlowSOM as a 

clustering method as it is the fastest and most accurate algorithm461, however users are free to 

choose their own clustering algorithm to partition the data using the 

greedyCytometryAOF() function from cytutils package and next calculating scores with 

functions scaled_aof_scores() and file_outlier_detecion() from our 

pipeline.   

This pipeline block is only available as R code. FC/SC data can also be analyzed, however, the 

arcsine transformation should be changed to a cofactor of 150 in the function fsom_aof and 

aof_scoring.  
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Figure 31 Oulieres detection  

(A) Heatmap representation of Scaled AOF scores for each surface marker across all the aliquots collected on day 

2. (B) Outliers detection. On the x-axis the file names marked as an outlier (aliquot 11 from day 2) and on the y-

axis Quality AOF scores. The green dotted line represents the threshold for outlier definition. Dots represent 

scores for each aliquot, red dot is a file above the threshold.  

7.2.5 File debarcoding  

The samples included in this data set were barcoded with eleven different palladium-based 

barcodes. Therefore, in order to recover the individual sample information, we performed a 

data debarcoding step, using debarcoding functions from CATALYST package with the 

automated separation threshold identification setting. The generated files were stored in a 
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new subfolder called Debarcoded with the suffix debarcoded.fcs. Additionally, we introduced a 

minimal separation cutoff of 0.18, which ensured a safe separation threshold for files with 

unclear barcode distribution. File names with detected threshold values lower than 0.18 can 

be stored in an RDS file called files_with_lower_debarcoding_threshold.RDS if the parameter 

less_than_th is set to TRUE. The minimal separation threshold can be modified if necessary. 

To verify the quality of debarcoding two plots were generated for every debarcoded sample 

using CATALYST package, as shown in Figure 32. The visualization of the separation between 

events positive or negative for the different Pd isotopes (see Figure 32A) is key to assess the 

correct sample assignation during debarcoding. The second plot allows the monitoring of the 

yield and cell count obtained with the chosen minimal separation cutoff (Figure 32B). We 

recommend reviewing all the plots generated upon debarcoding especially if the file names are 

stored in the .RDS file due to the assignation of separation threshold below to the minimum 

established.  

In this protocol we used a 6-choose-3 scheme, resulting in maximum of 20 barcodes, and for 

the purpose of this work presentation we used 11 barcodes. However other approaches could 

also be taken, like 7-choose-3 (35 barcodes), CD45-based cadmium barcoding scheme recently 

offered by Fluidigm or the combination of commercial barcoding with monocisplatin isotopes 

(60 or even more barcodes)521. The parameter bc_key that defines the barcoding scheme 

would need to be re-designed by the users and adjusted to new isotopes. It should be noted 

that Zunder-based algorithm used in CATALYST package will correctly deconvolute the data if 

positive and negative populations are present, thus barcoding with serial dilution of amine 

reactive fluorescence dyes commonly used in FC multiplexing won’t work in this case. For the 

FC/SC users we recommend to deconvolute the data by manual gating or using flowClust 

algorithm as previously described527.  

 In our experience when using the barcoded approach presented here some barcode intensity 

problems can be noticed when dead cells and debris were present in excess (data not shown), 

a fact also observed before396. As reported528, small polymer-palladium conjugates have high 

affinity to dead cells. Furthermore, a high amount of debris capture barcoding reagents and 

reduce the amount of complexes able to stain the cells of interest419. It is noteworthy that 

labeling with this barcoding reagent is sensitive to the number of cells, thus titration with the 

exact cell number is required. Accordingly, if a large amount of debris is present in the sample 

a reduction of the total amount of cells is recommended419, alternatively if a lot of cells are 

available samples can be cleaned by a dead cell removal kit before barcoding. Additionally, the 
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use of saponin-based reagents requires sample fixation, which could be problematic when live 

cells are studied using fixation-sensitive markers. Alternatively, palladium barcoding using 

surface markers can also be considered396,398,522. In case of low separation between barcoded 

samples, manual gating could also be performed, alternatively clustering with cluster number 

equal to barcode number could also be tested393.  

A user-friendly application for debarcoding is provided by Fluidigm as a part of CyTOF 

software. However, it should be noted that this software estimates the separation threshold 

for all the files after aggregation, in contrast to the method proposed in this workflow. This 

global threshold is not always correct for all the samples and can lead to precious event loss. 

Additionally, it is only dedicated to palladium as barcoding channels cannot be manually 

defined. Instead the premessa package (https://github.com/ParkerICI/premessa/) could be 

used which allows the definition of barcodes in a user-friendly interface.  

 

 

Figure 32 Debarcoding quality plots. 

(A) All cell events assigned to barcode B5 (100011) are shown, with each cell event represented as a dot. The 

intensities for each palladium isotype are displayed on the y-axis with different colors. Each event is plotted on 

the x-axis. (B) Distribution of the events by separation distance (grey histogram) and the cell yield (red line) are 

displayed as a function of the separation threshold. The vertical, blue dotted line represents the cutoff for the 

separation threshold. The data for one representative aliquot is shown.  

 

7.2.6 File aggregation   

We performed file aggregation of the debarcoded aliquot files using an in-house function 

called aggregate_files(). To do this, the names of the files containing metadata 

(barcoding identity and staining batch) need to be provided as shown in the Table 6. The 

resulting aggregated files were stored in a folder called Aggregated and they contained the 
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sample-specific names provided in the metadata. If files were barcoded and acquired as one 

big aliquot (for example while using the WB injector or in FC or SC) and the computer power 

resources are limited we recommend to split them into smaller fcs files, preprocess, and then 

aggregate after the debarcoding step, as shown in this workflow. If the data do not require 

aggregation this part of the code can be skipped.  

7.2.7 Cell gating  

The aggregated files contained a mixture of events including dead cells, debris and doublets, 

which should be removed from further analysis. To do this we took advantage of CyTOFClean 

package (https://github.com/JimboMahoney/cytofclean) and flowDensity428.  

CyTOFClean is a user friendly R package that excludes doublets using event length and 4 

Gaussian parameters: Center, Offset, Residual and Width (see Figure 33A), as described in529. 

Using the flowDensity package, the gating of intact cells is also provided with 

gate_intact_cells() function, and is based on the expression of DNA1 and DNA2 

marker. Additionally the live/dead cells gating was applied by calling the 

gate_live_cells() function. Both gating strategies are shown in Figure 33B. In this 

example CisPt and 195Pt channels were used to detect dead cells, but users can change these 

parameters accordingly to the live/dead marker chosen. This part of the code does not have 

graphical user interface (GUI) implementation, however the fcs files can be analyzed using 

standard softwares as FlowJo, and the resulting files could be exported to R. Alternatively, the 

packages flowWorkspace, CytoML and openCyto can be used to import the gating settings into 

R425. As an output CC_gated.fcs files and control plots were generated for each file in the 

Gated folder.  

It is important to know that CyTOFClean is a closed GUI app and therefore no parameter can 

be adjusted without changing the application code. Inversely, all the parameters can be 

adjusted for flowDensity-based gating. The parameters that we modified for the analysis of this 

example dataset were upper and use.upper that defines which lower or upper inflection points 

of the density curve are analyzed and also alpha and tinypeak.removal, that specifies the 

significance of the change in the slope being detected and the inclusion/removal of tiny peaks 

in the density distribution respectively. The change in alpha parameter will affect the tightness 

of the gate, thus can be useful if less strict gate for the Ir channels is necessary.  

In this workflow we introduced the common gating strategy used for nucleated cells stained 

with Ir. However, the gating strategy could change depending on the type of cells acquired and 
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the antibody panel configuration. This statement especially applies to the parameter “Event 

length” and “Ir” channels. The event length of each cell depends on the amount of metal that 

the cell is loaded with, thus the non-nucleated cells with only one probe have lower event 

length than nucleated cells with high number of probes directed to them. CyTOFClean package 

uses a density function to apply the cutoff for both event length and Gaussian parameters, 

thus it will gate on the cells where the majority of events are located as recommended for 

these gates422 and rather undergate than overgate. Therefore it is suitable for NB and WB 

injectors despite the known differences in the event length530. Additionally, it introduces the 

thresholds 10 and 50 to exclude events below and upon these values respectively, if bad 

quality files are provided. Most of the cells are typically located in between these values, 

unless some contamination or low metal content cells are present, so the users should verify 

the event length of the cells of interest before the gating. In the case of non-nucleated cell 

analysis, the gating strategy for intact and live/dead cells should be changed and re-designed 

to fit the users’ needs. The gating presented here is especially useful for human leukocytes 

stained with Ir, however could also be applied to other type of cells like mouse splenocytes.  

The gating using “Event length” and Gaussian parameters will remove the doublets caused by 

fusion of ion clouds. However, the true cell aggregates will still remain in the fcs files. 

Barcoding with more than 2 probes per sample improves the quality of the data and helps to 

remove cellular aggregates when cells are coming from different barcoded samples. 

Unfortunately, aggregates within the same sample won’t be cleaned, neither will be debris. 

Thus, to deal with this we use “Intact cell” gate to remove Irlow events (debris) and Irhi events 

(aggregates). Cells late in the S, G2 and M phases of the cycle can fall in the region of Irhi cells, 

due to their higher DNA content 531 and thus this algorithm can result in undesired cycling 

single cell removal. To avoid it we use a less strict gate at the upper part of Ir intensity. The use 

of markers specific to cell cycle in the antibody cocktail and automated clustering could also be 

helpful531. When using a less strict gate, care needs to be taken when analyzing the data, as 

some cell aggregates can still persist in the data and could be spotted upon gating or 

clustering, together with marker expression analysis. This gating is specific for MC data, and 

thus FC/SC users would need to apply their own gating strategy at this point. A good example 

of how to do it using R is published532. As mentioned before, as an alternative manual gating 

can be done using programs like FlowJo or FCS Express and then the population of interest can 

be imported into R. However, this can be time–consuming, especially when hundreds of files 

are processed. It is also known that manual analysis can be biased533, and hence it is faster and 
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more robust to use automated approaches. Nevertheless, we recommend to always revise the 

quality of the obtained gating and optimize the parameters if necessary and possible.  

 

 

Figure 33 Cell gating. One representative file is shown. 

(A) Doublet exclusion with CleanCyTOF package. “Event length” and Gaussian parameters (“Center”, “Offset”, 

“Residual”, “Width”) are represented on the y-axis against “Time” on the x-axis. Events that fall outside of the red 

gate are discarded form further analysis. (B) Gating for intact cells and live/dead cells using DNA and CisPt 

parameters and flowDensity package. The black events are removed from further analysis. 

 

7.2.8 Batch normalization using the reference samples  

Although bead-based normalization helps to normalize different acquisition batches, it uses 

the information of a limited set of channels. The correction factor is calculated using 5 bead 

channels and then extrapolated to the rest of the markers, hence there is a risk that some 

markers and cell specific changes are not precisely corrected. Even more, normalization using 

beads does not consider the experimental variation introduced during sample staining or 

manipulation (batch effects). Therefore, normalization with a reference sample that is present 

upon sample preparation and spans the whole spectrum of the channels used, is advisable. 

Because of this, as a last step in the preprocessing and quality control pipeline, we performed 

batch normalization using the CytoNorm package512.  

In contrast to CytoNorm default setting, instead of using quantile normalization (parameter 

quantileValues = 101) we computed 5% and 95% percentiles across the reference samples for 
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each marker and obtained the marker-specific goal distributions using the function 

QuantileNorm.train(). This was because quantiles normalization introduced artifacts 

(data not shown), as previously reported434. In our experience this setting was good enough for 

the correction needed, although in some particular cases the distribution of the signal won’t 

be modelled sufficiently if only two quantiles are used. In this case the users can change 

quantileValues parameter accordingly. Additionally, the normalization was performed on 

unclustered data, as clustering can be biased by the variation potentially introduced in the raw 

data. If a big batch effect is observed upfront in the markers used for clustering, improper 

cluster assignation can also introduce artifacts. We set the parameter limit to 0-8, as 

recommended by the authors, to avoid the introduction of extreme values, like negative values 

that are normally absent in MC data. We normalized our data to the “mean” marker quantiles 

of reference sample, using goal parameter. However, this can be changed by the users and 

data can be normalized to one of the batch values or to specific quantile values. The goal 

distributions obtained in the first step were then used for marker-specific batch normalization 

using the function QuantileNorm.normalize()The scheme of the normalization 

process can be seen in Figure 27, step 7 and Figure 34A.  

As output, fcs files with the new prefix Norm were generated together with several diagnostic 

plots. These files were stored in the new subfolder CytofNormed. An example of generated 

plots are shown in Figure 34 for the marker CD4 for the three days of acquisition. A shift in the 

95% peak position can be seen especially on day 1. The mean for each intensity peak was 

estimated using data from the 3 days. This mean is called a goal distribution and was used to 

obtain normalized data distribution as shown Figure 34A. Furthermore, we provide a plot 

showing the expression of CD4 across samples by day of acquisition (Figure 34B). A downshift 

of the 95% percentile colored line can be seen for day 1 when compared to the 95% grey line 

(normalized). In contrast, a slight upshift can be noticed for day 2 and 3, giving comparable 

median intensities after normalization when looking for all 3 days. These correspond with the 

shifts seen for the density peaks. In the same way the plots for IL-6 are shown in Figure 35A, as 

an example for a functional marker normalization.  
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Figure 34 Normalization based on reference samples. 

(A) Distribution of the CD4 marker for the reference sample on each staining day. Left panel, the 5% and 95% 

percentiles are represented by the blue vertical lines and the computed means for 3 experimental days are represented 

below in dark blue lines (goal distribution). Right panel, the linear function that transforms the result is represented with 

a red line and the grey line represents the identity function. If the red line is below the grey one, the values in the batch 

are decreased, and vice versa. (B) CD4 expression in the individual samples acquired in the three staining days is 

represented as in Figure 28D, 99% and 75% percentile lines can be seen. The rest of the quantiles have 0 values and 

thus are located at point 0 on the y-axis. 

 

Batch effects are commonly monitored using dimensionality reduction methods, which allow 

the visualization of the cell distribution in each file in a single plot. In our pipeline we also 

provide the possibility to run UMAP dimensional reduction443 as shown in Figure 35B. It can be 

appreciated that the cells from day1 were unevenly distributed before normalization, however 

the homogeneity of the cell distribution was improved after normalization and cells become 

uniformly mixed between acquisition days. The same can be observed when cell frequencies 

for clusters or metaclusters were extracted using FlowSOM algorithm, followed by dimensional 

reduction analysis, see Figure 35C and D respectively. It can be noticed that the batch effect is 

stronger at the cluster than at the metacluster levels, thus if researchers want to perform 

sample comparison in more detail, special care needs to be taken for batch effect adjustment.  
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Figure 35 Batch effect representation. 

(A) IL-6 expression in the individual samples acquired in the three staining days is represented as in Figure 34B, 

99% and 75% percentile lines are shown. The rest of the quantiles have 0 values and thus are located at point 0 

on the y-axis. (B) Scatter dot plots representing two dimensions from UMAP analysis. UMAP was built on 

aggregated files (1,000 cells from each fcs file) using default parameters and phenotyping markers (Table 7). Data 

are shown before (Raw) and after normalization (Normalized) with the reference sample. Cells are colored 

according to the staining day. (C, D) Dimensional reduction analysis with UMAP using cell frequencies extracted 

from FlowSOM analysis for clusters (C) or metacluster (D). (E) UMAP analysis using MSI of all markers extracted 

per FlowSOM cluster. (C,D,E) data were represented using scatter dot plot where x and y-axis represents 1st and 

2nd dimension of UMAP and are colored as in B. 
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In general, no strong batch effect was observed in UMAP or cell frequency analysis where only 

phenotyping markers were used. To take a deeper look into functional markers and features 

more sensitive to batch effect, like marker intensities, we extracted median marker intensities 

(MSI) per cluster and metacluster and visualized sample distribution by dimensional reduction, 

Figure 36A (all the markers), B (functional markers) and Figure 35E. In Figure 36A it can be 

appreciated that the day 1 samples were differentiated from the rest, including the reference 

sample, but upon normalization they got intermixed with the corresponding donor samples. 

The references also got into close proximity. In this experiment, the blood was treated with 5 

different conditions, hence sample grouping in accordance to the stimulation and not only to 

donor is expected. In panel B, grouping according to the donor and to the stimulation was 

observed after the normalization, but not before. These results showed that MSI is more 

sensitive to the experimental variation and it can be tracked and corrected when reference 

samples are included.  

These results underscore that batch effect correction is a necessary step when multiple 

batches are acquired, even in well-controlled experiments, and especially when fine 

phenotyping and MSI values are of interest. In this example we used a reference sample that 

was always barcoded and stained along with other samples, but spike-in cells could also be 

used401. However, it should be noted that spike-in cells should be treated with the same 

experimental protocol and should be stained with one specific channel or antibody to allow for 

their identification, thus the sacrifice of one channel should be taken into consideration. If this 

solution is considered, additional gating step would need to be performed to identify and split 

the reference file. The reference sample is not commonly used in FC or SC, however this 

normalization could be also applied to fluorescence data and should improve the quality of the 

data in high-scale and longitudinal studies. The transformation cofactor should be changed in 

the transformList parameter and the limit should be set to default settings or adjusted to 

FC/SC data.  
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The CytoNorm function can be used as a plugin in FlowJo, as well as UMAP. Alternatively 

tSNE439 can also be used for data exploration and detection of batch effects using platforms 

like Cytosplore 534. The values for quantiles can be adjusted if necessary and FlowSOM 

clustering could also be introduced when no strong batch effect on phenotyping markers is 

observed. The extraction of cell population frequencies and MSI is a good way to track the 

differences between acquisition batches. In this example we used FlowSOM clustering, but any 

other tool or manual gating can be used. FlowSOM clustering can be used in FlowJo as a 

plugin.  

 

Figure 36 Batch effect visualization using MSI values. 

Data were clustered using FlowSOM and MSI for each phenotyping and functional markers were extracted across 

all metaclusters. Next, dimensional reduction using UMAP was performed to verify sample distribution and data 

were represented as in Figure 35. (A) MSI for all the markers, (B, C) MSI for functional markers colored either by 

the day of acquisition or by the stimulation, respectively. Samples are colored by staining batch (A) and (B) or by 

stimulation (C). Donors are represented with shapes.  
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7.2.9 Data exploration  

Finally, we explored the cleaned and normalized data using a dimensional reduction method. 

In this example we choose UMAP due to its good performance and ability to handle a large 

number of events in a relatively short time454. To speed up the analysis we aggregated 5000 

cells per fcs file and performed a dimensional reduction using the phenotyping markers as 

input (see Table 7). In total 165,000 cells were used for the analysis. This allowed us to track 

marker expression across the studied individuals as shown in Figure 37A and to map them to 

the manually-gated populations as shown in Figure 37B.  
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Figure 37 Data exploration by dimensional reduction using UMAP. 

(A) UMAP was built on aggregated files (1000 cells from each file) using default parameters and phenotyping 

markers (Table 7). For the visualization purpose marker expression was 0-1 normalized. The expression of the 

phenotyping markers is shown in each plot for two individuals stimulated with RSQ on day 1. (B) UMAP colored by 

manual labels obtained upon gating as shown in Figure 38.  
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The manual gating strategy used can be found in Figure 38. Due to this approach we could 

explore the differences in sample frequencies (Figure 39A) and MSI expression of cytokine 

markers (B, C). In panel A the density of the different populations can be visualized, suggesting 

differences in the frequency of different populations between p1 and p2. Additionally, 

differences in the cytokine expression could be detected. For instance, after RSQ stimulation 

MIP1β was more expressed in p2, and the expression was restricted to monocytes and pDC 

and moderately to CD16+CD66ace+ granulocytes (Figure 39A). TNFα was expressed in pDC and 

some subsets of the monocyte compartment, and the intensity of TNFα was higher in pDC 

than in monocytes for p1, while this ratio was inversed in p2 (Figure 39B).  

 

 

Figure 38 Gating strategy to obtain manual labels for UMAP analysis.  

The manual labels were obtained using the aggregated file used for UMAP analysis. SWME – switched memory B 

cells, PC – Plasma cells, PB – Plasmablast, DP – double positive, DN – double negative, TR – Transitional B cells, 

TEMRA – Terminally differentiated T cells, CM – Central memory, EM – Effector memory, Mono – monocytes. 
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Figure 39 Data exploration by dimensional reduction using UMAP. 

One thousand cells per file were aggregated. The UMAP was built with default parameters using phenotyping 

markers and scale set to TRUE. Samples stimulated with RSQ are visualized for 2 donors on day 1. (A) Equal 

number of cells are visualized by density plot for donors p1 and p2. (B, C) Dot plot showing 0-1 normalized, arcsine 

transformed expression of the cytokines MIP1β (B) and TNFα (C) for p1 and p2. 

 

This basic data exploration can already give an insight into the internal diversity of the samples 

and give a first idea of the individual differences, although further analysis should be 

performed to verify the hypothesis generated before the experiments and upon data 

exploration. Data analysis and interpretation is dependent on the biological question raised, as 

was already discussed in different publications497,534.   

7.2.10 Preconditions, limitations and conclusions 

Here we report an R-based data curation workflow that cleans collected data and correct the 

experimental variation introduced during the sample preparation and staining. This pipeline is 

semi-automated and optimized for large studies involving human blood phenotyping together 

with functional markers. To our knowledge this is the first data preprocessing pipeline that 
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gathers and optimizes all the tools necessary for the processing of MC data. It is especially 

useful for multibatch studies and can be also applied to multicenter settings. Since our 

experimental setting uses fixed and frozen whole blood samples, this pipeline is useful for 

retrospective multicenter studies, as discussed in492. The example data set and the code are 

provided to the users, thus each step can be reproduced. Although the data set provided here 

is limited in size, it is big enough to show the advantage and usefulness of each tool.  

The analysis is performed in R environment without a user-friendly interface (except for part of 

the gating), thus basic programming skills are necessary and knowledge of R environment is 

mandatory. Although the workflow is presented as a script, we gathered all the tools into easy-

to-use functions with detailed descriptions, thus we believe that inexperienced R users will be 

able to follow the steps and analyze their own data.  

The function parameters are optimized for cellular studies, especially whole blood immune 

phenotyping studies  by MC, but different samples such as bone marrow aspirates, PBMC or 

mouse splenocytes, can also be analyzed. This might require parameter adjustment that can 

be performed by the users. As in our gating strategy we are using the Ir parameter to detect 

genomic DNA, only nucleated cells are analyzed. For the batch correction it is mandatory to 

use the same reference sample stained and acquired on each experimental batch together 

with the samples. Otherwise the normalization proposed in this manuscript cannot be 

achieved and precious information contained in MSI should not be analyzed. This pipeline is 

specifically dedicated to mass cytometry data, however, some steps can also be used for FC 

and SC experiments with the adjustment suggested along this script. Some tools can be 

sensitive to the size of the fcs files processed, therefore we recommend to acquire data in 

aliquots, especially when the acquisition is performed in low ionic environments like water, or 

split them just before the preprocessing. This pipeline gives some insight about data 

exploration, but does not fully cover deep data analysis. The final interpretation of the data will 

depend on the question raised in every individual project. 
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8 Biomarker discovery and stratification of patients with SADs using mass 

cytometry  

8.1 Material and methods  

8.1.1 Study participants 

Eligible patients were aged 18 or older and diagnosed as having one of the following SADs: SLE, 

SJS, SSC, RA, MCTD, PAPS, UCTD and CTR. Individuals were recruited in four recruitment 

centers (Reumatología and Enfermedades Sistémicas Services at the Hospital Universitario San 

Cecilio, Granada; Andalusian Health System Biobank, Granada; Reumatología Service at 

Hospital Universitario Reina Sofia, Córdoba). Each patient was diagnosed according to the 

prevailing international classification or diagnosis criteria established for each of the SADs12–17. 

As criteria for UCTD we considered patients with clinical features of SADs, but not fulfilling any 

of the diseases clinical criteria for RA, SSC, SJS, SLE, PAPS or MCTD, as previously described18, 

or having any other SADs criteria for at least 2 years, with presence of antinuclear antibodies 

(ANA) ≥ 1:160 with or without other specific autoantibodies. Patients fulfilling 3 out of 11 SLE 

classification criteria and patients with early systemic sclerosis19 were not classified as UCTD.  

The main exclusion criteria were with high doses of immuno-suppressants 3 months prior to 

recruitment, cyclophosphamide or belimumab in the past 6 months or pregnancy. Eligible 

CTRs were matched on the projected and expected profile of patients in terms of age. All 

donors signed an informed consent according to the ethical protocol of the Andalusian 

Biobank and the PRECISESADS project. Exclusion and inclusion criteria are detailed in Table 9. 

Diagnosis distribution across centers, demographic information and prescriptions are given in 

Table 10. 
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Table 9 Main inclusion and exclusion criteria  

Inclusion criteria Exclusion criteria 

For all patients For all patients 

 Male or female, aged ≥ 18 years with no upper 
limit 

 Diagnosed according the prevailing criteria for 
one of the following autoimmune diseases 

• Rheumatoid arthritis (RA) 

• Scleroderma or systemic sclerosis (SSC) 

• Primary Sjögren’s syndrome (SJS)  

• Systemic lupus erythematosus (SLE) 

• Primary antiphospholipid syndrome (PAPS) 

• Mixed connective tissue disease (MCTD) 

• Patients with undifferentiated connective 
tissue disease (UCTD) for over 1 year and that 
do not fulfill the diagnosis of any of the above 
diseases. 

 Informed consent signed 

 Neonatal lupus 

 Drug-induced lupus 

 Severe nephrotic syndrome with proteinuria ≥ 
3,5 g/day 

 Patients with stable doses of steroids >15 mg/day 
for the last 3 months or with IV corticosteroids in 
the last 3 months 

 Patients under immunosuppressant treatment in 
the last 3 months prior to recruitment and 
patients with combined therapy using two or 
more immunosuppressants  

 Methotrexate ≥25mg/week 
 Azathioprine ≥2.5mg/kg/day 
 Cyclosporine A > 3mg/kg/day 
 Mycophenolate Mofetil > 

2gr/day 
 Treatment with cyclophosphamide (any dose or 

route of administration) or belimumab in the 
past 6 months 

 Patients under depletative therapy such as 
rituximab in the last year 

 Chronic HBV or HCV infection 

 Patients who fulfil more than one clinical 
diagnostic criteria 

For controls 

 Individuals under chronic medication 

 Individuals suffering from any inflammatory 
autoimmune, allergic or infectious condition, and 
with a history of autoimmune disease, 
particularly thyroid disease or other diseases that 
may modify cellular profiles in blood. 
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Table 10 Cohort Demography, treatment and sample processing center distribution  

 

CTR 
(N = 22) 

MCTD 
(N = 6) 

PAPS 
(N = 4) 

RA 
(N =15) 

SJS 
(N = 23) 

SLE 
(N = 24) 

SSC 
(N = 19) 

UCTD 
(N = 13) 

Age (years) 46±7 45±12 40±17 63±10 56±10 44±16 59±15 59±16 

Female, n (%) 22 (100) 5 (83) 2 (50) 10 (67) 20 (87) 18 (75) 18 (95) 12 (92) 

SAD duration (years) 
 

8.4±7.1 9.4±8.8 4.4±4.4 7.7±6.8 6.7±6.4 9.1±10.4 2.9±1.9 

Treatments, n (%) 
 Antimalarials, n (%)   2 (33) 1 (25) 8 (53) 9 (39) 18 (75) 2 (11) 6 (46) 

Immunosuppressants, n (%)  3 (50) 0 (0) 10 (67) 3 (13) 1 (4) 3 (16) 0 (0) 

Steroids, n (%)  3 (50) 0 (0) 11 (73) 6 (26) 10 (42) 5 (26) 4 (31) 

Antibiotics, n (%)  0 (0) 0 (0) 0 (0) 0 (0) 1 (4) 3 (16) 0 (0) 

Center:  
COR 
GRA 

0 
22 

3 
3 

0 
4 

13 
2 

8 
15 

12 
 12 

13 
6 

11 
2 

 

8.1.2 Sample processing for MC 

Samples were processed in two research centers in Granada (GENYO, GRA) and Córdoba 

(IMIBIC, COR), following the SOP prepared for the PRECISESADS project and described 

before20. Briefly, 10 ml of blood from healthy donors and patients was collected using EDTA-K3 

vacutainer tubes. For MC deep-phenotyping study 500 μl of blood was stained with live/dead 

reagent (CisPt, 5μM) for 5 min, RT. Blood cells were fixed for 10 min with 700μl of proteomic 

stabilizer (PROT, SmartTube) and frozen at -80°C until staining. For cytokine/chemokine 

detection, 250μl of blood was diluted 1:1 with RPMI (Gibco) and stimulated with four different 

TLR receptor agonists as described in section 7.1.1: Resiquimod (RSQ), (1.25 μg/ml, Invivogen), 

Imiquimod (IMQ) (2.5 μg/ml, Invivogen), LPS (0.05 μg/ml, Invivogen), CpG (2 μM, Invivogen) 

and medium alone (UNS) for 24h. Next, samples were spun 800g for 5 min, 4°C and the 

supernatants (diluted plasma) were collected and stored frozen at -80°C. Sample processing 

workflow can be found in Figure 40. Frozen samples from Córdoba were transported on dry ice 

to GENYO for further processing and MC acquisition.  

The reference sample for MC consisted in 6 ml of whole blood from a single donor and 

processed as before: blood was stained with CisPt and fixed with 7.2 ml of PROT. Aliquots of 

1.2 ml were stored at -80°C until the time of staining.  
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Figure 40 Whole blood processing workflow for MC and Luminex study 

 

8.1.3 Sampling, staining, acquisition in MC  

Samples were assigned to 9 experimental batches with even distribution of biological groups. 

Each batch consisted of 15 samples + 1 reference sample. To minimize experimental variation 

a frozen antibody cocktail was prepared (see Table 11), aliquoted and stored at -80°C until the 

moment of staining, as described21. Most of the antibodies were obtained in a labeled form 

from Fluidigm. Alternatively, purified antibodies were conjugated using MaxPar Metal-labeling 

kits (Fluidigm), following the vendor protocol. 

Blood samples were thawed as described in section 6.1.2 and processed as described in 

section 6.1.3 and Table 8. Briefly, 1.5*106 cells/sample were used for the barcoding step. The 

barcoding was performed using the  Cell-ID 20-Plex Pd Barcoding Kit (Fluidigm) as follows: cells 

were washed with Barcoding Perm Buffer and stained with the barcode in 500 μl of the same 
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buffer for 20 min at RT, followed by a total of 3 washes with Cell Staining Buffer (CSB, 

Fluidigm). Samples were then pooled and surface antigens were stained with the antibody 

cocktail in CSB, for 30 min at 4°C, and at a density of 5*107 cells/ml. Afterwards, cells were 

washed with CSB and the cells were stained with Iridium (Ir, 5 μM) for 20 min in Fix and Perm 

Buffer (Fluidigm), washed with CSB and left overnight (O/N) in 4 ml of freshly prepared 2% 

formaldehyde (PFA) (Thermo Fisher Scientific).  

The following day the CyTOF acquisition was performed in aliquots to avoid prolonged cell 

exposure to water. Briefly, aliquots of 250 μl were washed with CSB, followed by a wash with 

MiliQ water. The aliquots were resuspended at 8*105/ml in MiliQ water together with EQ Four 

Element Calibration Beads (Fluidigm) and acquired in a CyTOF2/Helios device using a NB 

sample injector. The flow rate was set below 400 events/s and each aliquot was acquired for 

no longer than 2h.  
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Table 11 Antibody cocktail for high-content immunophenotyping 

Antigen Clone Metal Source Staining 

CD41 HIP8 89Y Fluidigm Clustering 

CD3 UCHT1 115In ThermoFisher Clustering 

CD45 HI30 141Pr Fluidigm Clustering 

CD19 HIB19 142Nd Fluidigm Clustering 

CD123 6H6 143Nd Fluidigm Clustering 

CD15 W6D3 144Nd Fluidigm Clustering 

CD4 RPA-T4 145Nd Fluidigm Clustering 

IgD IA6-2 146Nd Fluidigm Clustering 

CD20 2H7 147Sm Fluidigm Clustering 

PD-L1 29E.2A3 148Nd Fluidigm Functional 

CD127 A019D5 149Sm Fluidigm Clustering 

CD43 84-3c1 150Nd Fluidigm Clustering 

CD14 M5E2 151Eu Fluidigm Clustering 

TCRγδ 11F2 152Sm Fluidigm Clustering 

CD7 CD7-6B7 153Eu Fluidigm Clustering 

CD1c L161 154Sm Biolegend Clustering 

BAFF-R 11C1 155Gd Fluidigm Functional 

CD86 IT2.2 156Gd Fluidigm Clustering / Functional 

CD27 L128 158Gd Fluidigm Clustering 

CD11c Bu15 159Tb Fluidigm Clustering 

CD28 CD28.2 160Gd Fluidigm Clustering / Functional 

CTLA-4 14D3 161Dy Fluidigm Functional 

CD69 FN50 162Dy Fluidigm Functional 

CD95 DX2 164Dy Fluidigm Clustering / Functional 

CD40 5C3 165Ho Fluidigm Functional 

CD24 ML5 166Er Fluidigm Clustering 

CD38 HIT2 167Er Fluidigm Clustering / Functional 

CD8 SK1 168Er Fluidigm Clustering 

CD25 2A3 169Tm Fluidigm Clustering / Functional 

CD45RA HI100 170Gd Fluidigm Clustering 

CD57 HCD57 172Yb Fluidigm Clustering 

CD141 1A4 173Yb Fluidigm Clustering 

HLA-DR L243 174Yb Fluidigm 
Clustering / 
Functional 

PD-1 EH12.2H7 175Lu Fluidigm Clustering / Functional 

CD56 N901 176Yb Fluidigm Clustering 

CD16 3G8 209Bi Fluidigm Clustering 

CisPt Live/dead cells 195Pt Sigma Intracellular 

DNA1 Nucleated cells 191Ir Fluidigm Intracellular 

DNA2 Nucleated cells 193Ir Fluidigm Intracellular 

Bead Beads 140Ce Fluidigm - 

 

8.1.4 Mass cytometry data preprocessing and quality control 

Data were preprocessed and cleaned as described in chapter 7 and Figure 24. As neutrophils 

constitute around 50% of blood we decided to split granulocytes and PBMCs and perform 

feature extraction and differential analysis, independently. The separation was done using the 

ratio computed for the markers CD15 and CD45. Cells with CD15/CD45 ratio < 1 were 

considered as PBMC and cells with ratio ≥ 1 as granulocytes. Representative gating is shown in 

Figure 41. It should be noted that although basophils are granulocytes, due to their low CD15 
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expression, they are analyzed in the PBMC compartment. Batch effect detection was 

performed as described in section 7.2.8 and feature extraction was done as described in 

section 8.1.5 for both granulocytes and PBMC.  

8.1.5 Cell population identification and feature extraction 

As mentioned above we split PBMC and granulocytes and performed automated gating for 

PBMC and granulocyte populations separately.  

FlowSOM22, one of the best performing automated gating techniques, was used to identify 

PBMC populations. In order to capture all populations of interest, including rare cell subtypes 

of dendritic cells, a grid of 20 x 20 was used to obtain 400 clusters23, which where next 

grouped into 45 metaclusters, using hierarchical consensus clustering. The number of 

metaclusters was selected based on visual inspection. The markers used for the clustering can 

be found in Table 12. To construct the FlowSOM tree, an aggregated file was created by 

randomly subsetting 25,000 cells from each fcs file, generating a file with 3,375*106 cells in 

total. To check the quality of the clustering, the aggregated file was manually gated using 

FlowJo 10.0.7 and the F1-measure and weighted purity scores were calculated as described24. 

The manual labels for each metacluster were assigned using the cell population representing 

the majority of the cells included in a particular metacluster. Each individual file was then 

mapped to the aggregated FlowSOM and cell frequencies and median signal intensities (MSI) 

for functional markers (see Table 11) were calculated for each metacluster. Total PBMC were 

used as a reference population to calculate cell population frequencies. The metaclusters with 

less than 50 cells in all the fcs files were removed from further analysis. Similarly, MSI with low 

variability (SD < 0.2) and/or low expression (arcsine transformed MSI < 1) were also removed. 

Additionally, CD28, CD69 and PD-L1 markers were excluded from the MSI analysis, since they 

generated a strong batch effect on PBMC despite file normalization. FlowSOM clustering was 

performed using an R-based implementation and was visualized using the aggregated file. 

Heatmaps showing MSI calculated for each metacluster, FlowSOM trees colored by mean 

intensity of clustering markers or by manual labels were used for clustering visualization. 

Additionally a UMAP analysis25 was performed using a random subset of 5,000 cells per file, 

and MSI or metacluster frequencies, were represented on two-dimensional maps using 

ggplot2 package. For UMAP and heatmap analysis uwot and pheatmap packages were used, 

respectively.  
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To identify cell subsets in the granulocyte compartment, PhenoGraph26, another well 

performing clustering algorithm27, was used. The data were first aggregated taking 2,500 cells 

per fcs file, building an fcs file with 337,500 cells in total. Next, clustering was run on the 

aggregated file with the parameter k (defining the number of the nearest neighbors), set to 

100 as described before28. The markers used for the clustering can be found in Table 12. Only 

markers with high variability, selected by visual inspection were selected for clustering 

analysis. Cell frequencies and MSI for functional markers (see Table 11) were extracted per 

cluster and file. Total number of granulocytes was used as the reference population to quantify 

cluster frequencies. MSI imputation and removal was performed as described above, with the 

exception for CD28, CD69 and PD-L1 markers, as we did not observe strong batch effect for 

these markers in granulocytes. Data was visualized using heatmaps and two-dimensional (2D) 

maps from UMAP analysis, as described before.  

 

Table 12 Clustering markers  

 Clustering markers 

PBMC 
CD3, CD4, CD43, CD7, CD127, CD27, CD28, CD45RA, CD11c, CD38, HLA-DR, CD8, CD57, 

CD24, IgD, CD19, CD20, TCRyd, CD14, PD-1, CD1c, CD141, CD56, CD123, CD25 

Granulocytes CD41, PD-1, PD-L1, CD86, CD11c, CD95, CD24 

 

8.1.6 Multiplexed cytokine and chemokine quantification  

Cytokines and chemokines were analyzed in the supernatants of stimulated blood samples. 

Forty five analytes were measured using Human XL Cytokine Discovery Premixed Kit (R&D 

System) and a Luminex 200 device. Samples were thawed on the day of the experiment and 

diluted 1:2 with calibration diluent. The assay was performed following the steps 

recommended by the manufacturer but half volume of the reagents was used and diluted 

supernatant was incubated with the beads O/N at 4°C. At least 50 beads were acquired for 

each analyte. The concentration of each protein was calculated using the corresponding 

standard curves and Bio-Plex Manager v6.0 software. The standard curves were created using 

4 or 5-parametere logistic curve fit and were expressed as pg/ml. For visualization purposes 

the expression was log2-transformed. The beads with less than 25 counts were removed from 

the analysis of this sample. Cytokines for which no expression was detected in 90% of the 

samples were removed from further analysis (IL-17A, IL-3, IL-7, IL-4, IL-5). The imputation for 



MATERIALS AND METHODS, RESULTS AND DISCUSSION  

163 

out-of-range values (OOR) was performed as follows: for high detection range the maximum 

value for each stimulation was calculated and 50% of the signal was added; for data in the low 

detection range the minimum value for each stimulation was calculated and 50% of the signal 

was subtracted. In this thesis, only data from UNS condition were used for further analysis.  

8.1.7 Statistical analysis 

The differences in cell frequencies were first explored by UMAP analysis and 2D density plots 

using ggplot2 package. Equal number of cells per disease were randomly selected from 

aggregated file and plotted. For the MSI analysis 10,000 cells were plotted per diagnosis. The 

outliers were identified in every group using Grubbs’ test and were removed from further 

analysis. Next, a differential analysis across all diseases and controls was performed using 

Kruskal-Wallis (K-W) statistical test followed by Dunn analysis. To account for multiple 

comparisons Dunn test was corrected using the FDR method. For the visualization, only the 

significant features for K-W were represented by heatmap or violin plots. For heatmap, 

visualization median expression for each selected feature was calculated and represented as a 

z-score scaled data. Agglomerative hierarchical clustering was performed using ward.D2 

linkage and pheatmap package.  

To select features for patient clustering, Mann-Whitney (M-W) test was performed comparing 

controls (CTR) and all autoimmune disease (AD) patients, using both frequency and MSI 

features from PBMC and granulocytes data. The features with p-values ≤ 0.05 were selected 

for further analysis. To verify the association of the features with medication, M-W test was 

performed between treated (T), non-treated (NT) and healthy control (CTR), correction for 

multiple testing was applied as described before. For reclassification study, K-means clustering 

was performed using stats package from R with 4 centers and 1000 iterations. Spearman 

correlation parameters were calculated to check the relation of the selected features. The 

cluster differences in cytokine production were calculated by K-W test, followed by Dunn test, 

as described above, CTRs were excluded from this analysis. 

K-W and M-W analysis were performed using rstatix package, correlation analysis was run 

using the R stats package and Grubb’s test for outlier detection was done using outliers 

package. Plotting was done using pheatmap and ggplot2 packages. All analyses were 

performed in R.  

 



MATERIALS AND METHODS, RESULTS AND DISCUSSION  

164 

 

8.2 Results 

8.2.1 Granulocytes, PBMC separation and batch effect  

First, the granulocyte fraction, consisting in neutrophils and eosinophils, was separated from 

PBMCs using the CD15/CD45 ratio, as described in methods (Figure 41)..  

 

 

Figure 41 Gating strategy for PBMC and granulocytes (neutrophils + eosinophils separation). 

Granulocytes and PBMC were separated using the ratio calculated for CD15/CD45 expression. PBMC are presented 
in red and granulocytes in black. 

 

We next investigated the batch effect introduced in the data before and after the 

normalization with the reference sample. As data were acquired in 9 staining/acquisition 

batches, we tracked the batch effect across these batches called RUN. Additionally, as blood 

was processed in two different centers, sample distribution across centers (COR, GRA) was also 

visualized. Additionally we checked the batch- and center- specific effects at both, cell 

frequency level and MSI of the functional markers, across clusters and metaclusters in 

granulocytes and PBMC.   
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We saw strong batch effects introduced specially in PBMC, which was caused by RUN1 and 

RUN2 experiments, at the frequency and MSI levels, Figure 42. This effect was stronger at the 

cluster than metacluster level, Figure 42A. At the cluster level all light and dark blue circles 

(representing the individuals from RUN1 and 2 respectively), as well as squares (representing 

reference samples) were grouped together and were clearly separated from the rest of RUNs. 

This effect decreased after normalization, although still some slight separation between 

reference sample could be observed for the clusters. At the metacluster level nice distribution 

of all the colors and closer grouping of reference samples was observed after the 

normalization. Similar situation was seen when MSI of functional markers (Table 11) were 

analyzed, (Figure 42B). The batch effect level was not center-dependent, as it can be seen in 

the Figure 42 (right panel), even distribution of samples across the centers was observed. In 

general, a significant improvement was observed after data normalization, leading to removal 

of the batch effect, specially at the metacluster for both, frequency and MSI.  
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Figure 42 Batch effect before and after the normalization for PBMC.  

Data were clustered using FlowSOM and cell frequency (A) and MSI for functional markers (B) were extracted for 
clusters and metaclusters. Next UMAP dimensional reduction was performed to verify sample distribution. Data 
are represented before the normalization (Raw) or after the normalization using reference sample (Normalized). 
Samples from all the individuals are presented by circles and reference samples are represented by squares. 
Additionally, samples are colored by RUNs (left panels) or by centers (right panels) and reference sample.  
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On the other hand, in granulocytes a strong batch effect was observed for RUN 1, 7, and 8 at 

the cluster level (Figure 43A) and additionally for RUN5 in MSI of functional markers (Figure 

43B). This effect was significantly improved after data normalization. Reference samples 

grouped together and samples from the same RUN spread around other samples. There was 

no center-specific batch effect observed.  

 

Figure 43 Batch effect before and after normalization for granulocytes.  

Data were clustered using PhenoGraph and cell frequency (A) and functional marker MSIs (B) were extracted for 
clusters. Next UMAP dimensional reduction was performed to verify sample distribution. Data are represented 
before and after the normalization. Data are represented as in Figure 42.  

 

8.2.2 PBMC landscape in SADs 

As mentioned before, PBMCs and granulocytes were separated from each other. In this section 

we will focus on the PBMC compartment and mostly, the metacluster analysis will be 

presented. We clustered the data using FlowSOM as described in the methods, the results of 

the clustering can be found in Figure 44. 
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Figure 44 FlowSOM Clustering for PBMC data.  

(A) FlowSOM tree was built on an aggregated file using 400 clusters, represented by the tree nodes. In each node 
the mean expression of a set of the clustering markers is represented using star charts, the height of each part 
indicates the intensity, the color assigned to each marker is represented in the legend. For the clarity of the figure, 
only a selected set of clustering markers is shown. The clustering markers are fully represented in C. 45 
metaclusters are denoted by the background colors, shown below the tree. (B) Manual labels overlaid on FlowSOM 
tree. Pie charts indicate the percentage of the cells represented by the node falling in the manual gates. A different 
color is assigned to each label and the manual annotation can be found in C. (C) Heatmap representing median 
intensities for clustering markers across the 45 FlowSOM metaclusters shown in A. The color intensity in the 
heatmap represents the median of the arcsinh, 0-1 transformed marker expression of the cells included in the 
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metacluster in the aggregated file. The colors assigned to the metaclusters correspond to the manual labels 
assigned by manual gating and are the same through all the figures corresponding to PBMC analysis. The relative 
size of each metacluster is indicated in the row names of the heatmap. The dendrograms represent the 
hierarchical clustering using Euclidian distance and average linkage. 

 

To facilitate metacluster interpretation, we performed the manual gating shown in Figure 45, 

and obtained manual labels for each metacluster. As described in the methods, the manual 

label for each metacluster was selected based on the majority of cells represented in this 

particular metacluster, although some mixture of cells could still be observed, as presented in 

Figure 44B. 

 

 

Figure 45 Manual gating of aggregated file.  

The aggregated file was manually gated to obtain cluster and metacluster labels for FlowSom tree.   
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To verify the quality of the clustering we calculated weighted purity and F1 scores for clusters 

or metaclusters compared with the manual labels as shown previously24. Overall the purity 

scores were 0.9 and 0.83 for clusters and metaclusters, respectively with the F1 score measure 

between manual gating and FlowSOM metaclusters being equal to 0.79 (0.88 for precision and 

0.80 for recall)  

These results show a good correspondence between metaclusters identified by FlowSOM and 

the gold standard manual gating of known populations, and are confirmed in the Figure 44C, 

where the MSI of each metacluster is represented together with the manual label. It can be 

clearly seen that the canonical marker expressions in metaclusters correspond well with 

manually-defined cell populations. It is worth mentioning that some Unknown metaclusters 

were also identified, which are mostly low frequency events not assigned during the manual 

gating process. We also visualized the data using UMAP analysis and 2D maps and confirmed a 

good correspondence between the automated methods and manual gating, as shown in Figure 

46A and B. The FlowSOM and gating annotation was consisted with expression of canonical 

markers (Figure 46A) and UMAP visualization (Figure 46B). All together this result indicates a 

good clustering performance and proper identification of well-known cell populations using an 

automated approach, FlowSOM.  
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Figure 46 UMAP visualization.  

For each individual, 5,000 cells were randomly selected to build an aggregated file. UMAP was built using the 
aggregated file and arcsine-transformed expression of clustering markers in the PBMC compartment. (A) Cells are 
colored according to the expression level of the clustering markers, the expression is 0 – 1 transformed. 50,000 
randomly selected cells are used for the visualization. (B) The same UMAP representation as in A showing the 
metaclusters obtained from FlowSOM clustering colored by manual labels as in the legend. 
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8.2.3 Differential analysis in PBMC 

As a first approach, we explored the differences in the relative frequency and expression of 

functional markers of the different PBMC metaclusters in relation with the diagnosis. The 

exploratory analysis using UMAP and density plots showed evident differences in the cell 

distribution across different diagnoses (Figure 47A). Differences in the MSI of several 

functional markers were also observed, and some of them are represented in Figure 47B.  

To get a deeper look into the alterations between patient groups we performed K-W analysis 

followed by a Dunn post-hoc test for both metacluster frequencies, Figure 48 and MSI 

features, Figure 49. For the cell frequency in the PBMC compartment, we have detected 14 

differentially expressed cell populations in different cell compartments, of which 12 have 

significant results in the post-hoc analysis (Figure 48). Only 8 populations were characterized as 

statistically different between SADs, among them 5 differed between SADs but could not 

differentiate SADs from CTR, suggesting that they could be of use after initial classification of 

an individual as an autoimmune patient. Three metaclusters were statistically different 

between the CTR and patients and also differentiated some diseases. Cells expressed at 

different level only between SADs were represented by MC8 (TR B cells), MC20 (PC), MC44 

(CD4lowCD8low T cells), MC45 (CD8+ naïve T cells) and MC28 (CD4+ EM T cells) and contained 

different subpopulations of T and B cells. These MCs were mostly decreased in RA compared 

to either SJS, SLE and SSC. Additionally, they have usually lower frequency compared to the 

CTR group, although no statistical differences were detected. This may suggest that the T and 

B cell compartments are more informative when comparing different SADs, although it is not 

enough to separate sick individuals from healthy population and RA patients from diseases 

such as UCTD and MCTD. It should be noticed that 3 populations were downregulated in RA 

compared to SLE (MC8, MC44, MC45) and 2 when compared to SJS (MC8, MC45). These 

populations were overlapping between SLE and SJS, indicating their higher discriminative 

power when diagnostic doubts concerns RA and SJS or SLE diseases. Cells that showed 

differences between CTR but also separated some SADs belonged to the myeloid (MC3, cDC1) 

and lymphoid compartments (MC37, MC12, CD8+ Naïve T cells, SWME B cells respectively) and 

in principle were characterized by their higher frequency in CTR than in SJS. An interesting 

metacluster MC37, represented by CD8+ Naïve T cells, showed decreased level for multiple 

SADs (RA, SJS, UCTD) when compared to CTR and SLE, but no difference was observed 

between SLE and healthy population nor SSC, PAPS, thus these cells could not be treated as an 

SLE biomarker. In the SADs/CTR comparison 4 populations were different and did not show 
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further alterations between the diseases. These populations were mostly decreased in SADs: 

MC11, (CD56mid NK cells), MC15 (pDCs) and MC42 (γδT cells) and one population MC1 (CD14hi) 

was increased in SLE, although having lower HLA-DR expression when compared to either CTR 

or SSC and UCTD patients. 
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Figure 47 Cell frequency and MSI exploration in PBMC.  

UMAP was generated as described above and represented across different groups of patients using density plots 
(A) or dot plots (B). For the density plot, equal number of randomly selected cells (10,000 per diagnosis) from each 
disease are represented, and for the dot plots 50,000 cells are drawn. (A) Differences in the cell population 
distribution are observed across different group of patients. The redder the color the denser the region is. (B) The 
diagnosis labels are represented as in A. Cells are colored according to the expression level of the functional 
makers CD38, HLA-DR and CD25. For plotting purposes, the expression is 0 – 1 transformed. 
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Figure 48 Differential analysis based on PBMC metacluster frequencies.  

Cell frequencies were quantified for each metacluster as described in methods. Differential analysis was performed 
using K-W followed by a Dunn test. The K-W p-values can be found above each plot and the Dunn test statistical 
intervals are shown on the plots. p-values for the Dunn test were adjusted using the false discovery rate (FDR) 
method to account for multiple comparisons. Only metaclusters with p-value ≤ 0.05 for K-W are shown. Each plot 
is colored by the manual label of the metacluster and each dot in the plot represents an individual, colored by 
diagnosis. *p < 0.05, **p < 0.01, ***p < 0.001 in Dunn test. 

 

Next, we verified the differences in the MSI of the functional markers shown in Table 11 in 

different metaclusters between the different disease labels. We identified 5 different markers 

being statistically different between groups in several metaclusters (Figure 49). For instance, 

CTLA-4 was differentially expressed in MC45 (CD8+ Naïve T cell compartment). UCTD and SJS 

were characterized by higher expression of this marker when compared to CTR. Additionally 

UCTD had higher expression when compared to MCTD, RA and SLE patients but not to SJS, and 

SJS had higher expression than MCTD. For CD95 marker although K-W analysis shows 
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differences in MC16 and MC32, the only significance for Dunn test was obtained for MC32 

(CD4+ EM T cells) and SLE showed higher expression than UCTD patients. 

Multiple differences were observed in the expression of the CD38 marker across various cell 

populations. In MC5, MC11 and MC13 (NK T cell compartment) the lowest expression was 

observed in RA, and this reached significance compared to multiple diseases: MCTD, SJS, SLE 

and SSC. Also differences between MCTD and CTR were observed in MC13, showing higher 

CD38 expression in MCTD. In MC7 (naïve B cells) again the lower expression was observed for 

RA and UCTD, reaching the statistical significance when compared to CTR, MCTD, SJS, SLE and 

SSC. No differences were observed comparing groups with higher CD38 expression. MCTD had 

the highest expression of CD38 in MC3 (cDC1) and MC15 (pDC), reaching statistical significance 

for comparison with RA for MC3 and RA, CTR and UCTD for MC15. Additionally, UCTD and RA 

had lower CD38 expression in MC15 compared to SJS patients. Differential CD38 expression 

was also found in MC34, MC39 (CD4+ T cells) and in MC41, MC43, MC45 (CD8+ T cells). 

Although all the patient groups (besides PAPS) had high expression of CD38 in MC34 (CD4+ CM 

T cells) compared to CTR, only comparison for SSC reached statistical significance. In MC41 

(CD8+ EM T cell) the biggest change in CD38 expression was observed for SJS and RA in MC43 

(CD8+ CM T cells) for SJS when compared to RA and CTR. Significant differences could also be 

seen for MCTD and SLE compared to RA, with RA patients having lower CD38 expression. 

Higher expression of CD25 in MC26 (basophils) was found in RA and SJS when compared to 

CTR. Differential expression for HLA-DR was found mostly in MC1 (CD14hi monocytes), MC2, 

MC3 (cDC1 and cDC2 respectively) and also in MC34 (CD4+ CM T cells). The lowest expression 

was observed for SLE when compared to CTR, SSC and UCTD in MC1 or to RA for MC2. 

Aditionally, SLE was characterized by lower HLA-DR expression in MC34 (CD4+ CM T cells) when 

compared to RA, SSC and CTR, as well as for SJS when compared to CTR.  
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Figure 49 Differential analysis based on PBMC metacluster MSI. 

MSI of functional markers were quantified for each metacluster and the data are represented as in Figure 48. 

 

 



MATERIALS AND METHODS, RESULTS AND DISCUSSION  

178 

 

In total 35 features were identified as statistically significant by K-W and summarized in Figure 

50 using median expression per group of diagnosis and hierarchical clustering analysis. Three 

main groups were found. Group 1 gathered together MCTD, SJS and SLE patients. Within this 

group SJS and SLE patients were more related to each other as already described7 than to 

MCTD. This group was characterized by general higher CD38 expression, being the strongest in 

MCTD, and lower HLA-DR expression compared to other two clusters. The second group was 

composed by CTR and PAPS and the third one contained RA, SSC and UCTD, showing more 

similarity between SSC and UCTD than RA. The features of group 2 and 3 were almost 

completely opposite to Group 1, as they were characterized by low expression of CD38, being 

the lowest in RA, and higher expression of HLA-DR. They could be distinguished from each 

other based on the monocyte (MC1) frequency and expression of CD25 and CD38 in MC26 

(basophils) and MC34 (CD4+ CM T cells),  respectively.  
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Figure 50 Hierarchical clustering of diseases using K-W selected features.  

Features with significant values in the K-W test (shown in Figure 48 and Figure 49) were selected for clustering 

analysis. The median for each feature was calculated for each disease label. Color scale represents the z-score. 
Hierarchical clustering with Euclidian distance and ward.2D linkage was performed, and three groups of diseases 
and four groups of features were identified.  

 

8.2.4 Granulocyte landscape in SADs 

We clustered the data using PhenoGraph as described in the methods section, and the results 

of the clustering can be found in Figure 51. Panel B and C showed markers selected for the 

clustering analysis. In contrast to PBMC these markers are not canonical neither for 

neutrophils nor eosinophils, and thus we did not perform manual gating. Although CD15 is a 

canonical marker for granulocytes, because we used it to separate granulocytes from PBMC 

we did not include it in granulocytes clustering. 

PhenoGraph identified 17 different clusters (CL), that can be seen in Figure 51A and B. Based 

on the median marker expression of functional markers 3 main groups could be distinguished 
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mainly based on PD-1 and CD11c (Figure 51B). The first group represented CL that were PD-

1low and CD11clow. Within these cells four different subsets were identified and differed mainly 

in CD24 and CD95 expression. CL3 and CL11 were CD95hi and CD24hi, but they differed in CD86 

and CD11c expression. And CL6 and 10 were low for CD95 and CD24 expression and could be 

separated using expression level of PD-L1 marker. Next, the PD-1hi group contained three 

clusters with CD11chi and two with CD11clow cells. CD11chi clusters could be distinguished 

based on CD95, CD86, PD-L1 and PD-1 expression (CL15, CL8 and CL14), while CD11clow  

clusters based on the difference in PD-1 expression (CL5 and CL7). The last group contained 

mostly PD-1low cells, besides CL16 that still had higher expression of PD-1. CL17 and CL4 were 

high in PD-L1, CD86 and CD11c, and could be distinguished based on differences in CD95 

levels. On the other hand, CL9 and CL2 were low in PD-L1 and CD86, and also could be 

distinguished based on CD95 and PD-1 levels. CL1 and C13 had medium level of PD-L1 and 

CD86 markers and were lower in CD11c expression. They could be discriminated based on PD-

1 expression. In this group, cells characterized by the high expression of CD41, a canonical 

marker for platelets, were also found and grouped in CL12. These cells were separated from 

the rest of granulocytes as show with UMAP analysis, Figure 51A, B, and are considered as 

platelet-contamination29, therefore they were removed from further analysis. In our setting we 

observed loss of CD16 marker (as shown in section 6.2.1), thus we could not separate the 

eosinophils from neutrophils. Eosinophils are CD11c- thus they could be included in the CL5, 

CL6, CL7 and CL11, however up to know we were not sure if they were preserved upon 

fixation.  
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Figure 51 PhenoGraph clustering for the granulocyte compartment 

(A) PhenoGraph was built on aggregated file and identified 17 clusters that are represented by UMAP and colored 
according to the cluster names. UMAP was built using the aggregated file and clustering markers. (B) Heatmap 
representing median intensities for clustering markers across the 17 PhenoGraph clusters, shown in A. The color 
intensity in the heatmap represents the median of the arcsinh, 0-1 transformed marker expression of the cells 
included in the cluster using the aggregated file. The colors assigned to the clusters correspond to the cluster 
colors shown in panel A, and are the same through all the figures corresponding to granulocyte analysis. The 
dendrogram represents the hierarchical clustering using Euclidian distance and average linkage. (C) Cells are 
represented as in A but colored according to the expression level of the clustering markers, the expression is 0 – 1 
normalized. 50,000 randomly selected cells are used for the visualization 

 

8.2.5 Differential analysis based on granulocytes 

Same as for PBMC (sections 8.2.3), in a first approach we explored the differences in the 

relative frequency and expression of functional markers of the different granulocyte clusters in 

relation to the diagnosis. The exploratory analysis using UMAP and density plots showed 

evident differences in the cell distribution across different diseases (Figure 52A). Differences in 
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the MSI of several functional markers were also observed, and some of them are represented 

in Figure 52B. 

 

 

Figure 52 Cell frequency and MSI exploration in granulocytes.  

UMAP was generated as described above and represented across different groups of patients using density plots 
(A) or dot plots (B). For the density plot equal number of randomly selected cells (1,000 per diagnosis) from each 
disease are represented and for the dot plot 50,000 cells are drawn. (A) Data are represented as in Figure 47A. (B) 
The diagnosis labels are represented as in A. Cells are colored according to the expression level of the functional 
makers PD-1 or CD86, and represented as in Figure 47B. 

 

To get a deeper look into the differences between patient groups we performed a K-W analysis 

followed by a Dunn post-hoc test for both cluster frequencies (Figure 53) and MSI features, 

(Figure 54). 

In total, 9 clusters were differentially expressed between some pairs of groups of patients, and 

7 showed statistically significant differences in the post-hoc analysis. In CL2, SJS patients had 

higher cell frequencies compared to controls, the same was observed for CL3 and CL15, and, 

additionally, SJS patients had higher cell frequency in CL3 and lower in CL15 when compared to 

SSC and UCTD. Lower CL8 frequency compared to CTR was observed for SJS, SLE and SSC, and 

for SSC and UCTD for CL10. Higher frequency of CL16 was observed for SSC and UCTD patients 

when compared to SJS, although no statistical significance was detected between patients and 

CTR.  
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Figure 53 Differential analysis based on granulocyte cluster frequencies.  

Cell frequencies were quantified for each cluster as described in methods. Differential analysis was performed 
using K-W followed by Dunn test. Data are represented as in Figure 48. Each plot is colored by cluster and each dot 
in the plot represents an individual, colored by the diagnosis. *p < 0.05, **p < 0.01, ***p < 0.001 in Dunn test. 

 

The expression of three markers (CD86, CD95 and CD38) in specific clusters was statistically 

different between the groups. Among them a decrease in CD86 expression was observed for 

UCTD, SSC, SLE and SJS patients compared to CTR. Additionally UCTD patients had lower CD86 

expression compared to PAPS. The UCTD group had also lower CD86 expression in CL7 

compared to CTR. CD95 increased expression in patients was observed in CL3, CL5, CL7 and 

CL15 compared to CTR, however no difference was observed between any group of patients. 

The expression of CD38 was decreased in RA, SLE and UCTD when compared to MCTD, 

additionally MCTD has higher CD38 level than CTR.  
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Figure 54 Differential analysis based on MSI of functional markers for granulocytes. 

MSI of functional markers were quantified for each cluster and the data are represented as in Figure 48 

 

The hierarchical clustering analysis showed 3 main groups of diseases using differentially 

expressed features detected by K-W test (Figure 55). Group 1 contained highly similar SSC and 

UCTD patients as observed in the PBMC compartment, and additionally these two groups were 

grouped together with MCTD patients. This group was characterized by high frequency of 

CL16, CL7, CL14 and CL15 but low frequency of CL2 and CL3 cells. They were also characterized 

by increased CD95 expression. Group 2 contained SJS and SLE patients, which were also 

grouped together in PBMC analysis. This group was characterized by high CD95 expression as 

Group 1, but was opposite in clusters representing cell frequency. In Group 2 although CTR and 
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PAPS were grouped together as in the PBMC analysis, higher similarity of PAPS to RA patients 

than to CTR was observed. This group had lower CD95 and CD38 expression than Group 1 and 

2, but higher expression of CD86 marker and frequency of CL8, CL4 and CL10 cells.  

 

 

Figure 55 Hierarchical clustering of SADs based on K-W selected granulocyte features.  

Features with significant differential values in K-W analysis (shown in Figure 53 and Figure 54) were selected for 

clustering analysis. The median for each feature and disease category was calculated. Data are represented as in 
Figure 50. 

 

8.2.6 Feature selection for reclassification analysis 

As mentioned in the introduction, although SADs have different diagnostic labels and 

clinical manifestations, they can be characterized by similar molecular and cellular 

mechanisms that could be used for their reclassification.  

In order to verify if patient clusters can be obtained based on this deep-phenotyping study, 

we first selected features that were SADs-specific, that is, that differentiated the patients 
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form the healthy controls. To do this, we joined all metaclusters and clusters from PBMC 

and granulocyte respectively, together with MSI of functional markers, and we performed 

the M-W analysis as described in the methods section.  

The volcano plot represents the cell features that differ between SADs and CTR (Figure 56). 

Thirty two differentially expressed features were selected. Among them cluster and 

metacluster frequencies were mostly at lower level in SADs compared to CTR, and markers 

of cell activation and ability for induced-cell death, represented by CD38 and CD95 

markers, respectively, were at higher levels in SADs as compared to CTR.  

 

 

Figure 56 Feature selection for SADs reclassification study.  

Volcano plot represents features being differentially expressed between SADs (autoimmune disease, n = 104) and 
CTR (control individuals, n = 22). The M-W test was used. On the y-axis are the –log10 transformed p-values, and 
on the x-axis the log2 fold change (FC) between SADs and CTR. The blue and orange points represent features with 
lower or higher values in SADs than in CTR respectively, which are statistically significant (p-value ≤ 0.05). The grey 
points represent features that are not-differentially expressed. Features labeled only with MC or CL number 
represent frequency features, and those with MC or CL number and marker represents MSI.  

 

We next verified how these features were affected by the three most abundant 

treatments used in our cohort: antimalarials, immunosuppressants and steroids. We 

compared treated (Tx) and non-treated (NTx) groups, but also tracked the changes when 

compared to the CTR group  (Table 13).  

Some changes were observed associated with antimalarials and steroids when compared Tx 

with NTx groups, and mostly affected the PBMC compartment. In antimalarial treated patients, 

the frequency of MC1 (CD14hi Monocytes) was affected, and patients receiving treatment had 
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increased levels of these cells were compared to the NTx and CTR groups. On the other hand, a 

decrease in MC15 (pDCs) frequency was observed when comparing treated patients to both 

NTx and CTR groups. The expression of HLA-DR in MC34 (CD4+ CM T cells, Tregs) was also 

affected by treatment, and Tx patients had lower HLA-DR expression when compared to NTx 

and CTR groups. The frequency of granulocytes in CL10 was also affected by the drug, but this 

time treated patients had higher and lower cell frequencies when compared to NTx and CTR, 

respectively.  

Steroid treatment affected the frequency of MC1 (CD14hi monocytes), and treated patients 

had higher number of these cells compared to NTx group. In MC11 (CD56mid NK cells), MC15 

and MC42 (γδ T cells) a decrease was observed in patients receiving the drug as compared to 

NTx and CTR. An increased expression of CD25 and CD38 markers in MC26 (basophils) was 

observed when compared Tx vs NTx and this effect was stronger for the CD38 marker. No 

differences between Tx and NTx groups were observed for immunosuppressant treatment.  

 

Table 13 Treatment influence on cell frequencies and MSI 

CL/MC 
Median [IQR] Mann-Whitney (FDR) 

CTR Tx NTx CTR-NTx CTR-Tx NTx-Tx 

Antimalarial CTR (N = 22); Tx (N = 20), NTx (N = 84) 

CL10 7.61 [4.72 - 9.51] 5.54 [2.83 - 7.96] 3.8 [2.04 - 5.43] *** * * 

CL11 CD95 1.71 [1.6 - 1.88] 1.89 [1.73 - 2.08] 1.88 [1.7 - 1.97] * * ns 

CL14 CD95 1.91 [1.75 - 1.98] 2.01 [1.88 - 2.13] 1.95 [1.82 - 2.09] ns ns ns 

CL15 CD95 1.85 [1.7 - 1.95] 2 [1.87 - 2.28] 1.98 [1.79 - 2.21] * ** ns 

CL16 CD95 2.09 [1.95 - 2.24] 2.3 [2.18 - 2.47] 2.23 [2.08 - 2.42] ns ** ns 

CL17 CD38 1.45 [1.37 - 1.52] 1.51 [1.34 - 1.62] 1.56 [1.43 - 1.65] * ns ns 

CL17 CD95 2.18 [2.09 - 2.29] 2.33 [2.25 - 2.5] 2.31 [2.17 - 2.41] * ** ns 

CL2 3.48 [2.16 - 5.95] 7.86 [3.5 - 14.77] 6.93 [2.93 - 9.7] ns ** ns 

CL2 CD38 1.28 [1.11 - 1.35] 1.32 [1.19 - 1.43] 1.36 [1.26 - 1.48] ns ns ns 

CL3 1.06 [0.47 - 1.97] 2.19 [0.84 - 4.19] 1.68 [0.76 - 3.14] ns ns ns 

CL3 CD86 2.12 [1.96 - 2.34] 1.83 [1.67 - 2.07] 1.94 [1.75 - 2.11] *** *** ns 

CL3 CD95 1.51 [1.44 - 1.64] 1.73 [1.57 - 1.88] 1.66 [1.55 - 1.75] ** ** ns 

CL4 6.36 [3.8 - 7.93] 4.42 [1.55 - 5.62] 3.59 [1.68 - 6.65] * * ns 

CL5 CD95 1.69 [1.59 - 1.79] 1.85 [1.75 - 2.07] 1.82 [1.73 - 1.96] ** *** ns 

CL6 PD-L1 1.59 [1.46 - 1.75] 1.35 [1.15 - 1.64] 1.41 [1.2 - 1.63] ns * ns 

CL7 CD86 3.23 [3.12 - 3.36] 3.05 [2.93 - 3.22] 3.11 [3.01 - 3.24] * * ns 

CL7 CD95 1.73 [1.44 - 1.83] 1.99 [1.71 - 2.37] 1.93 [1.7 - 2.1] ** ** ns 

CL8 9.65 [7.21 - 11.5] 3.22 [1.75 - 6.79] 4.49 [2.23 - 6.96] *** *** ns 

MC1 16.76 [12.88 - 19.18] 20.49 [16.48 - 24.4] 17.25 [13.68 - 19.73] ns ** ** 

MC11 3.71 [2.51 - 4.2] 2.64 [1.49 - 3.22] 2.09 [1.35 - 2.85] *** * ns 

MC12 2.92 [2.24 - 3.97] 2.12 [1.42 - 2.96] 2.48 [1.69 - 3.26] ns * ns 

MC15 0.33 [0.25 - 0.5] 0.2 [0.15 - 0.3] 0.27 [0.2 - 0.35] * *** * 

MC22 CD95 1.55 [1.39 - 1.72] 1.78 [1.45 - 1.99] 1.71 [1.43 - 1.92] ns ns ns 

MC23 0.07 [0.05 - 0.08] 0.06 [0.04 - 0.09] 0.04 [0.03 - 0.07] * ns ns 

MC26 CD25 1.16 [0.92 - 1.48] 1.75 [1.47 - 2.12] 1.5 [1.15 - 2] * *** ns 

MC26 CD38 3.62 [3.45 - 3.69] 3.84 [3.53 - 3.99] 3.76 [3.52 - 3.89] * * ns 

MC3 0.04 [0.03 - 0.05] 0.03 [0.02 - 0.05] 0.03 [0.02 - 0.04] ns ns ns 
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MC34 CD38 0.93 [0.63 - 1.46] 1.88 [1.44 - 2.16] 1.68 [0.81 - 2.17] * *** ns 

MC34 HLA-DR 4.23 [4.13 - 4.33] 4.03 [3.84 - 4.18] 4.15 [4.08 - 4.4] ns *** *** 

MC37 4.94 [4.04 - 6.47] 3.16 [1.51 - 5.48] 3.22 [1.98 - 4.74] * * ns 

MC42 1.59 [1.19 - 2.28] 1.06 [0.66 - 1.68] 0.83 [0.46 - 1.61] ** * ns 

MC43 CD38 1.21 [0.83 - 1.99] 2.11 [0.86 - 2.76] 1.66 [1.13 - 2.36] ns ns ns 

Immunosuppressant CTR (N = 22); Tx (N = 46), NTx (N = 58) 

CL10 7.61 [4.72 - 9.51] 5.31 [2.59 - 6.07] 4.27 [2.19 - 6.56] ** * ns 

CL11 CD95 1.71 [1.6 - 1.88] 1.87 [1.68 - 1.99] 1.89 [1.73 - 2.03] * ns ns 

CL14 CD95 1.91 [1.75 - 1.98] 1.9 [1.74 - 2.05] 2 [1.89 - 2.11] ns ns ns 

CL15 CD95 1.85 [1.7 - 1.95] 2.04 [1.76 - 2.26] 1.99 [1.84 - 2.22] * ns ns 

CL16 CD95 2.09 [1.95 - 2.24] 2.26 [2.07 - 2.43] 2.25 [2.14 - 2.45] * ns ns 

CL17 CD38 1.45 [1.37 - 1.52] 1.61 [1.43 - 1.72] 1.53 [1.36 - 1.63] ns * ns 

CL17 CD95 2.18 [2.09 - 2.29] 2.28 [2.18 - 2.4] 2.32 [2.2 - 2.46] ** ns ns 

CL2 3.48 [2.16 - 5.95] 8.75 [4.25 - 17.83] 6.66 [3.03 - 10.47] * * ns 

CL2 CD38 1.28 [1.11 - 1.35] 1.35 [1.27 - 1.56] 1.34 [1.24 - 1.44] ns ns ns 

CL3 1.06 [0.47 - 1.97] 1.92 [0.84 - 3.22] 1.91 [0.74 - 3.57] ns ns ns 

CL3 CD86 2.12 [1.96 - 2.34] 1.94 [1.8 - 2.22] 1.9 [1.68 - 2.06] *** ns ns 

CL3 CD95 1.51 [1.44 - 1.64] 1.58 [1.5 - 1.75] 1.7 [1.59 - 1.82] *** ns ns 

CL4 6.36 [3.8 - 7.93] 5 [2.17 - 8.05] 3.92 [1.42 - 5.69] * ns ns 

CL5 CD95 1.69 [1.59 - 1.79] 1.85 [1.75 - 2.01] 1.83 [1.73 - 2.01] ** ** ns 

CL6 PD-L1 1.59 [1.46 - 1.75] 1.34 [1.18 - 1.59] 1.42 [1.16 - 1.63] ns ns ns 

CL7 CD86 3.23 [3.12 - 3.36] 3.13 [3.05 - 3.26] 3.07 [2.95 - 3.22] * ns ns 

CL7 CD95 1.73 [1.44 - 1.83] 1.92 [1.66 - 2.14] 1.97 [1.71 - 2.27] ** ns ns 

CL8 9.65 [7.21 - 11.5] 4.35 [2.01 - 7.23] 3.68 [1.91 - 6.78] *** ** ns 

MC1 16.76 [12.88 - 19.18] 18.68 [16.2 - 22.32] 18.63 [14.32 - 21.62] ns ns ns 

MC11 3.71 [2.51 - 4.2] 1.88 [1.29 - 2.48] 2.51 [1.48 - 3.17] ** ** ns 

MC12 2.92 [2.24 - 3.97] 1.94 [1.38 - 2.33] 2.47 [1.66 - 3.23] ns * ns 

MC15 0.33 [0.25 - 0.5] 0.2 [0.15 - 0.25] 0.27 [0.18 - 0.34] ** *** ns 

MC22 CD95 1.55 [1.39 - 1.72] 1.89 [1.55 - 2.03] 1.73 [1.43 - 1.93] ns ns ns 

MC23 0.07 [0.05 - 0.08] 0.04 [0.03 - 0.07] 0.05 [0.03 - 0.08] ns ns ns 

MC26 CD25 1.16 [0.92 - 1.48] 1.71 [1.18 - 1.98] 1.62 [1.27 - 2.06] ** * ns 

MC26 CD38 3.62 [3.45 - 3.69] 3.63 [3.45 - 3.81] 3.8 [3.56 - 3.96] * ns ns 

MC3 0.04 [0.03 - 0.05] 0.03 [0.02 - 0.05] 0.03 [0.02 - 0.04] * ns ns 

MC34 CD38 0.93 [0.63 - 1.46] 1.68 [1.02 - 2.15] 1.73 [1.15 - 2.16] ** * ns 

MC34 HLA-DR 4.23 [4.13 - 4.33] 4.17 [4.05 - 4.36] 4.1 [3.95 - 4.25] * ns ns 

MC37 4.94 [4.04 - 6.47] 2.6 [1.92 - 3.81] 3.22 [1.95 - 5.2] * ** ns 

MC42 1.59 [1.19 - 2.28] 0.89 [0.44 - 1.36] 0.96 [0.56 - 1.69] ** ** ns 

MC43 CD38 1.21 [0.83 - 1.99] 1.47 [0.69 - 2.51] 1.98 [1.16 - 2.6] ns ns ns 

Steroids CTR (N = 22); Tx (N = 39), NTx (N = 65) 

CL10 7.61 [4.72 - 9.51] 4.3 [2.54 - 6.69] 4.5 [2.28 - 6.33] ** ** ns 

CL11 CD95 1.71 [1.6 - 1.88] 1.89 [1.71 - 2.12] 1.89 [1.72 - 1.97] * * ns 

CL14 CD95 1.91 [1.75 - 1.98] 1.97 [1.84 - 2.12] 2 [1.89 - 2.09] ns ns ns 

CL15 CD95 1.85 [1.7 - 1.95] 1.99 [1.83 - 2.26] 1.99 [1.82 - 2.23] * * ns 

CL16 CD95 2.09 [1.95 - 2.24] 2.33 [2.16 - 2.46] 2.24 [2.1 - 2.42] * * ns 

CL17 CD38 1.45 [1.37 - 1.52] 1.57 [1.37 - 1.76] 1.53 [1.38 - 1.64] ns ns ns 

CL17 CD95 2.18 [2.09 - 2.29] 2.34 [2.21 - 2.51] 2.31 [2.18 - 2.4] * ** ns 

CL2 3.48 [2.16 - 5.95] 8.4 [2.92 - 15.45] 6.14 [3.16 - 9.76] * * ns 

CL2 CD38 1.28 [1.11 - 1.35] 1.35 [1.25 - 1.48] 1.32 [1.24 - 1.44] ns ns ns 

CL3 1.06 [0.47 - 1.97] 2.41 [1.01 - 3.62] 1.67 [0.74 - 3.2] ns ns ns 

CL3 CD86 2.12 [1.96 - 2.34] 1.85 [1.72 - 2.1] 1.93 [1.7 - 2.09] *** *** ns 

CL3 CD95 1.51 [1.44 - 1.64] 1.7 [1.57 - 1.83] 1.68 [1.55 - 1.79] ** ** ns 

CL4 6.36 [3.8 - 7.93] 3.91 [1.16 - 5.61] 4.08 [1.68 - 6.31] * * ns 

CL5 CD95 1.69 [1.59 - 1.79] 1.87 [1.72 - 2.05] 1.83 [1.74 - 1.96] ** ** ns 

CL6 PD-L1 1.59 [1.46 - 1.75] 1.33 [1.17 - 1.57] 1.43 [1.19 - 1.66] ns ns ns 

CL7 CD86 3.23 [3.12 - 3.36] 3.12 [2.9 - 3.24] 3.08 [3 - 3.2] * * ns 

CL7 CD95 1.73 [1.44 - 1.83] 2 [1.66 - 2.26] 1.97 [1.72 - 2.18] ** ** ns 

CL8 9.65 [7.21 - 11.5] 3.5 [1.59 - 6.72] 3.79 [1.99 - 7.17] *** **** ns 

MC1 16.76 [12.88 - 19.18] 20.14 [17.27 - 25.57] 16.79 [13.68 - 20.02] ns ** ** 
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MC11 3.71 [2.51 - 4.2] 1.92 [1.15 - 2.78] 2.62 [1.68 - 3.28] ** ** * 

MC12 2.92 [2.24 - 3.97] 2.41 [1.9 - 3.04] 2.13 [1.46 - 3.11] ns ns ns 

MC15 0.33 [0.25 - 0.5] 0.22 [0.15 - 0.28] 0.28 [0.18 - 0.36] * **** * 

MC22 CD95 1.55 [1.39 - 1.72] 1.81 [1.54 - 1.97] 1.68 [1.39 - 1.91] ns * ns 

MC23 0.07 [0.05 - 0.08] 0.04 [0.03 - 0.07] 0.06 [0.04 - 0.08] ns * ns 

MC26 CD25 1.16 [0.92 - 1.48] 1.82 [1.39 - 2.2] 1.54 [1.18 - 1.98] * *** * 

MC26 CD38 3.62 [3.45 - 3.69] 3.91 [3.76 - 4.11] 3.67 [3.49 - 3.87] ns *** *** 

MC3 0.04 [0.03 - 0.05] 0.03 [0.02 - 0.04] 0.03 [0.02 - 0.05] ns * ns 

MC34 CD38 0.93 [0.63 - 1.46] 1.55 [1.09 - 2.13] 1.89 [1.14 - 2.17] ** * ns 

MC34 HLA-DR 4.23 [4.13 - 4.33] 4.15 [3.97 - 4.33] 4.1 [3.96 - 4.23] * ns ns 

MC37 4.94 [4.04 - 6.47] 3.22 [1.51 - 5.06] 3.21 [1.99 - 5.11] * * ns 

MC42 1.59 [1.19 - 2.28] 0.7 [0.43 - 1.15] 1.03 [0.63 - 2.04] * **** * 

MC43 CD38 1.21 [0.83 - 1.99] 1.65 [0.93 - 2.46] 1.89 [1.11 - 2.65] ns ns ns 

ns p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001 

CTR – healthy control, Tx – treated, NTx – non-treated  
 

 

8.2.7 Patient reclassification 

K-means clustering, performed as described in the methods section, identified 4 main clusters, 

annotated as C1, C2, C3 and C4, as shown in Figure 57A. These clusters grouped the patients 

independently of their diagnosis, as mixtures of different diseases can be observed in different 

clusters (Figure 57A and C). Additionally 4 groups of features could be also identified. One 

group contained mostly frequencies extracted from the PBMC compartment, a second group 

contained the MSI signals from CD38, CD25 and HLA-DR also from PBMC metaclusters, and 

two groups from granulocyte-derived features had the frequency of CL and features expressing 

CD86, PD-L1 and CD95 in CL3, in addition to MSI features containing both CD95 and CD38 

expressing CLs.  

C1 contained 24 samples exclusively coming from patients, as shown by pink color in the 

column annotation, named “Diagnosis_SAD_CTR” (Figure 57A). This cluster was mostly 

characterized by high CD95 and CD38 expression in multiple granulocyte features, besides low 

CD95 expression in CL3. The low expression of CD86 and PD-L1 in CL and low frequencies of 

some granulocyte-derived features was also observed. On the other hand, higher frequency of 

metaclusters derived from the PBMC compartment was noticed, and markers like CD38 and 

CD95 were elevated in MC22 (unknown) and MC26 (basophils), respectively. On the other 

hand, lower expression of activation markers like CD38 in MC34 (CD4+ CM T cells) and MC43 

(CD8+ CM T cells), CD25 together with HLA-DR in MC25 (CD8+ TEMRA T cells) and MC26 

(basophils), was observed. C2 contained 32 individuals, of which 14 samples (44%) were CTRs 

(Figure 57A). The C2 cluster was exactly opposite to C1, hence it was characterized by lower 

CD95 expression and CD38 expression in the granulocyte compartment, besides high CD95 
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expression in CL3. C3 included 43 individuals which were mostly patients, as only 3 CTRs could 

be found (7%). This cluster was unclassifiable, as a mixture of different feature levels could be 

found. C4 with 27 individuals, including 5 CTRs (19%) was an intermediate cluster between C1 

and C2. The patients in this group were characterized by moderate levels of CD95 and CD38 in 

granulocyte populations, although the expression of CD95 in CL3 and CD86 is more related to 

C2 than to C1. On the other hand, the levels of CD95 and CD38 in MC22 and MC26 were 

similar to C1. It should be noted that a Spearman’s correlation of the features used for 

clustering showed some blocks of highly (rs ≥ 0.8) and moderately (rs < 0.8 and ≥ 0.5) 

correlated (positively and negatively) features. CD95 expression showed high and moderate 

positive correlations with other CL in various granulocyte subsets, and showed moderate 

inverse correlation with CD86 expression in granulocyte compartments. An inverse correlation 

was also observed for CL4 and CL8 frequencies. Low positive correlation was noticed between 

clusters with CD95 expression and activation marker expression (CD38, CD25, HLA-DR) in the 

PBMC compartment. Low correlations were detected for features derived from the PBMC 

compartment.  

When exploring disease composition of the clusters, excluding CTRs (Figure 57C), it can be 

appreciated that the different diseases were distributed across the clusters. However, 

diagnosis-specific increments could also be observed: SLE patients were evenly distributed 

across the clusters, however the majority of RA patients could be found in C2 and SSC were 

mostly located in C3 and C4.  SJS patients were enriched in C1 and C3. MCTD could not be 

found in the C3 group. In relation to the treatment, it could be observed that patients with 

immunosuppressive treatment were equally distributed across the clusters. However some 

enrichment of antimalarial and steroid drugs could be observed in C1. The age of the patients 

did not show any differences and some differences in the disease duration could be seen 

across the clusters, although post-hoc Dunn analysis did not detect significant changes.  

We next measured the level of cytokines/chemokines expressed in each cluster, Figure 58. To 

do this we tested 45 proteins (as described in methods insert) and detected 5 differentially 

expressed cytokines across 4 clusters. GROα was highly expressed in clusters C1, C2, C3 but not 

C4, and CTR had moderate expression of this cytokine. IL-10 and TNFα expression was high in 

C1 and C4 and there was a statistical difference between these clusters and C2. The highest 

expression of IP-10 was observed in C1. Furthermore, there was a statistical significance 

compared to C2 and C3. On the other hand, the level of TGFα was the lowest in C1 and the 

highest in C2 and C3. It was interesting to notice that the CTR group used here as a reference 
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had similar cytokine levels compared to C2 except for GROα, for which C2 had higher 

expression than observed in CTRs. Besides TNFα, cytokine production was not affected by the 

treatment, Table 14. However, some differences could be observed for the cell frequency and 

MSI in antimalarial and steroid treatment (see Table 13), thus this could affect the patients 

clustering especially in C1. Nevertheless, it should be pointed out that while the treated group 

differed from non-treated patients, there were still important differences from CTRs, 

suggesting that the C1 group enriched in treated patients was associated with higher severity 

than the rest of the individuals. It is to be noted that the treatment presented here had a 

larger impact on the PBMC compartment and almost none on granulocytes, despite its clear 

dysregulation in some groups of patients.  
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Figure 57 Patient reclassification.  

(A) The heatmap represents scaled values (z-scores) for each selected feature across all individuals. In rows, 
features selected as in Figure 56 are shown together with the annotation on the left. The annotation colors show 
the manual label of each PBMC metacluster, and whether or not they represent frequency or MSI feature from 
PBMC or granulocytes (see legend in panel B for details). In the columns, each individual is plotted together with 
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color-coded clinical and experimental information shown at the top of the heatmap and in the legend on the right. 
Four clusters were identified (C1 – green, C2 – orange, C3 – pink, C4 - purple) by k-means clustering. (B) Heatmap 
representing Spearman’s correlation coefficients, positive (red) and negative (blue) for the features selected as 
described above. Color intensity is proportional to the strength of the correlation. The column annotation is 
represented as row annotation in A and the significance is indicated by asterisks. (C) Distribution of different 
clinical parameters in the clusters identified in A and represented on the x-axis. The y-axis represents the total 
number of patients for each cluster or for the boxplots on the right, for age and disease duration. Colors are 
represented as in legend from A and B, besides age and disease duration that have cluster-specific colors, as 
shown in panel A . *p < 0.05, **p < 0.01, ***p < 0.001 in Spearman test 

  

 

Figure 58 Cytokine expression between clusters.  

Cytokines were quantified in the diluted plasma of UNS blood samples as described in the methods section, and 
their levels were measured across identified clusters. Data are represented by the boxplot where the x-axis shows 
cluster labels together with CTR group and the y-axis represents log transformed values for cytokine expression. 
Each dot represents one individual and is colored by the cluster colors as in Figure 57. Differential analysis was 
performed using K-W followed by the Dunn test. The K-W p-values can be found above each plot and for the Dunn 
test statistical intervals are shown on the plots. The p-values for the Dunn test were adjusted using false discovery 
rate (FDR) method to account for multiple comparisons. CTR were not included in the statistical tests, and are 
shown for reference purposes. Only cytokines with p-values ≤ 0.05 for K-W are shown. *p < 0.05, **p < 0.01, ***p 
< 0.001 in Dunn test. 

 

Table 14 Treatment influence on cytokine production 

Cytokines 
Median [IQR] Mann-Whitney (FDR) 

CTR Tx NTx CTR-NTx CTR-Tx NTx-Tx 

Immunosuppressant (N = 19); T (N = 19), NT (N = 75) 

GROα 0.24 [0.24 - 0.54] 0.87 [0.24 - 1.07] 0.24 [0.24 - 1.09] ns ns ns 

IL-10 0.01 [0.01 - 0.02] 0.15 [0.01 - 0.71] 0.05 [0.01 - 0.79] * * ns 

IP-10 1.2 [1.13 - 1.26] 1.38 [1.27 - 1.69] 1.45 [1.24 - 1.66] *** *** ns 

TGFα 0.53 [0.36 - 0.61] 0.51 [0.42 - 0.58] 0.49 [0.35 - 0.59] ns ns ns 

TNFα 0.38 [0.35 - 0.4] 0.5 [0.38 - 0.64] 0.46 [0.38 - 0.59] * * ns 

Antimalarial (N = 19); Tx (N = 43), NTx (N = 51) 

GROα 0.24 [0.24 - 0.54] 0.78 [0.24 - 1.23] 0.24 [0.24 - 0.94] ns ns ns 

IL-10 0.01 [0.01 - 0.02] 0.28 [0.01 - 0.87] 0.01 [0.01 - 0.61] ns ** ns 

IP-10 1.2 [1.13 - 1.26] 1.42 [1.22 - 1.67] 1.44 [1.28 - 1.66] *** ** ns 

TGFα 0.53 [0.36 - 0.61] 0.49 [0.36 - 0.59] 0.51 [0.43 - 0.59] ns ns ns 

TNFα 0.38 [0.35 - 0.4] 0.51 [0.39 - 0.71] 0.45 [0.38 - 0.53] * ** * 

Steroids CTR (N = 19); Tx (N = 37), NTx (N = 57) 

GROα 0.24 [0.24 - 0.54] 0.39 [0.24 - 1.07] 0.24 [0.24 - 1.1] ns ns ns 
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IL-10 0.01 [0.01 - 0.02] 0.02 [0.01 - 0.82] 0.05 [0.01 - 0.71] * * ns 

IP-10 1.2 [1.13 - 1.26] 1.51 [1.32 - 1.7] 1.39 [1.22 - 1.56] ** **** ns 

TGFα 0.53 [0.36 - 0.61] 0.53 [0.4 - 0.65] 0.49 [0.36 - 0.56] ns ns ns 

TNFα 0.38 [0.35 - 0.4] 0.46 [0.38 - 0.62] 0.47 [0.38 - 0.57] * * ns 

ns p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001 
CTR – healthy control, Tx – treated, NTx – non-treated  

 

8.3 Disscusion 

Here we performed a deep-phenotyping study using mass cytometry to compare and reclassify 

the SADs. Using cell frequencies and levels of expression of functional markers we noticed 

poor feature discrimination capacity between the different diseases when using a differential 

analysis approach. Hence no disease-specific biomarker could be identified. However, the 

analysis of autoimmune-specific features together with unsupervised clustering analysis 

identified 4 clusters of the diseases that differed in the cell frequencies and their activation 

status. Importantly these clusters grouped different diagnoses showing high patient 

heterogeneity within the clinical labels. Our data thus supports the hypothesis that SADs are 

heterogeneous and have overlapping cellular phenotypes across different diagnoses. These 

overlapping patterns can be captured by high content fine immune phenotyping using mass 

cytometry  

In this study we used FlowSOM and PhenoGraph to extract features from PBMC and 

granulocytes, respectively. In PBMC analysis we used canonical markers to identify known cell 

populations and we observed that FlowSOM was a good tool to do this, based on high scores 

for purity and F-measure. The number of metaclusters was established by the visual inspection 

of the known cells and took into consideration the metacluster purities, and thus is biased 

towards known cell populations. As a future direction, unsupervised analysis using all the 

clusters could be explored, giving the possibility to compare rare or undescribed cell 

populations between SADs. Nevertheless, in this study a higher combination of markers could 

be analyzed in a single tube, in contrast to some flow cytometry studies where multiple panels 

were used9. Therefore, our setting  provides a greater number of different populations in a 

single tube, and the possibility to discover novel cell phenotypes and their cellular state.  

PBMCs comprise a heterogeneous and well-studied group of cells. Cell types can be usually 

distinguished based on bimodal distribution of known markers. On the other hand, 

granulocytes are usually depleted from the samples after ficoll isolation of PBMC, have a low 

activation threshold, and important cell death upon preservation. For this reason they are less 
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studied and therefore markers defining clear-cut subgroups are not well defined. Because of 

this, to extract granulocyte-related features we used PhenoGraph, an unsupervised clustering 

algorithm, as described before28. This method identified 17 different clusters using 7 markers 

that showed a different expression gradient across cells. For instance, we found cells that 

differ in CD11c and CD24 expression. These markers can distinguish neutrophils freshly 

released from the bone marrow (CD11clow CD24low) from aged neutrophils (CD11chi CD24hi)30,31, 

although these markers are not canonical. As described before, the aged neutrophils were 

more activated and had altered pathways for migration and cell death31. This is in agreement 

with the higher CD86 (activation marker) and CD95 expression (Fas, cell death marker) 

observed in our study. We also found a substantial number of neutrophils expressing the PD-L1 

receptor, an immunoregulatory molecule that delivers inhibitory signals to target cells like 

activated B or T cells. This expression was already described and was associated with the 

development of diseases like sepsis32 and tuberculosis33. More interestingly it was shown that 

neutrophils form active tuberculosis patients not only have higher PD-L1 expression33 but also 

display a type I IFN signature, which can further upregulate its expression34. Moreover, we 

identified PD-1+ neutrophils, whose high expression was reported to be associated with 

extreme phenotypes in sepsis35. Because CD16 expression cannot be relied due to the fixation 

of the blood samples, we did not separate the neutrophils from eosinophils, thus these cells 

are analyzed together. Therefore, the interpretation of CD11c- clusters .that could potentially 

contain eosinophils should be taken carefully.  

In total we detected 62 distinct cell populations (45 metaclusters in PBCM and 17 clusters in 

granulocytes). Additionally, due to our experimental setting that took special care of 

experimental variability (e.g. frozen antibody cocktail, barcoding), batch effect tracking, and 

correction (reference sample), we could also analyze the MSI for functional markers. These 

gave us another layer of information that was missing in previous studies6,8,9,36. The markers 

CD28, CD69, and PD-L1 could not be analyzed in PBMC due to inefficient correction at 

normalization, but could be included in the analysis of the granulocyte compartment. The cell-

type specific batch effect was previously described37.  

The knowledge about dysregulated immune cell populations in SADs usually comes from 

differential studies where patients with one concrete disease is compared to CTRs. From these 

reports we know that SJS patients had lower level of SWME B cells and pDCs in the blood 

compared to controls8,38 or RA had lower level of γδ T cells39, as confirmed in this study. 

However, it is not known if the same populations are downregulated in other SADs or if they 
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are disease-specific. In the literature there is also a bias towards studies regarding RA and SLE 

treated as a model of SADs. However, less is known about MCTD, SSC or UCTD or PAPS. That is 

why we first performed differential analysis for PBMC and granulocytes comparing 7 different 

SADs and controls. Although some differences were detected in both frequency and MSI 

markers we could not report any disease-specific biomarker that could differentiate between 

patients and controls, thus suggesting their poor diagnostic value. This conclusion was also 

drawn from other MC study where 3 different SADs (SJS, SLE, SSC) were studied6. 

Nevertheless, the clustering analysis using median expression of either cell frequencies and 

MSI calculated for each disease showed common patterns between some SADs. Three blocks 

of related diseases could be observed in the clustering analysis using both PBMC and 

granulocyte-related features.  

Using the data derived from PBMC analysis, SJS and SLE patients grouped together showing 

their high similarity. Their resemblance was mainly due to CD38 up-regulation in various 

immune cells and low expression of HLA-DR marker in the myeloid compartment. Thus it 

seems that SLE and SJS patients could benefit from the same lines of treatment involving CD38 

and/or HLA-DR molecules. The activation marker CD38 is dysregulated in various immune cell 

populations like CD4+ and CD8+ T cells, NK CD56mid cells, DCs and B cells40,41 in SLE patients. 

Although here we did not observe any significant differences between SLE and CTR we saw an 

increased expression of this molecule mostly in MCTD, SLE and SJS patients, moderate level in 

CTR, SSC and UCTD and a clear down regulation in RA and PAPS that reached statistically 

significant differences between RA and SLE, MCTD and SJS in multiple populations. It was 

shown that CD38 expression can be upregulated by TNFα42, IFNγ43 or IFNα44, and its 

upregulation in T cells was correlated with TNFα and IFNγ production41. All these cytokines are 

known to be involved in SADs pathogenesis and participate in the acceleration of the 

inflammatory response. It was also reported that virus-activated pDCs producing IFNα are 

sufficient for CD38 upregulation in both CD4+ and CD8+ T cells45, suggesting that patients with 

a high molecular IFN signature can also have elevated CD38 expression. Thus, the CD38 

molecule seems to be a good candidate for the treatment of some SADs patients. Interestingly, 

TNFα and type I IFNs synergistically regulate CD38 expression in human airway smooth muscle 

cells, making these cells refractory to the anti-inflammatory action of steroids46. 

Daratumumab, an anti-CD38 drug, was successfully used to treat refractory SLE in a case 

report study47. Based on our results, it seems that it could be also applied to other SADs like 

MCTD and SJS, having a broad spectrum of action on the immune system. However, according 
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to our results, CD38 expression seems to well differentiate some group of SADs like MCTD-SLE-

SJS from RA, but it does not differentiate patients from the healthy controls. Thus, this marker 

could be used for further substratification of patients who are already classified as having a 

systemic autoimmune disease.  

In contrast to CD38 expression HLA-DR was reduced in several populations, mostly in SLE 

patients when compared to CTR and RA or SSC patients. This suggests less activation of CD14hi 

monocytes, CD1c+ cDC and CD4+ CM T cells, especially in SLE patients but also in SJS in the case 

of T cells. The down-regulation of HLA-DR on classical monocytes was shown to convert them 

into immunosuppressive cells48. However, as reported in psoriatic patients, these cells induce 

Treg with decreased suppressive functionality compared to cells from healthy controls49. The 

reduced expression of HLA-DR on DC was already reported for SLE50 and was attributed to the 

higher infection rate observed in these patients51. Closer analysis of MC34  represented by 

CD4+ CM T cells shows their low and high expression of CD127 and CD25 respectively, 

suggesting their regulatory phenotype. The HLA-DR expression was shown to be present in 

mature regulatory T cells52, and these cells were reported to have higher suppressive 

function53. Additionally high levels of HLA-DR were positively correlated with Treg suppressive 

activity, and their low expression of HLA-DR was shown to contribute to transplant rejection54. 

This may suggest that the lower expression of HLA-DR detected in SLE and SJS could indicate 

their lower capacity to suppress other cell functions compared to controls and to RA and SSC.  

CTLA-4 is an inhibitory molecule that competes with CD86 and CD80 for interaction with the 

CD28 activation marker, hence blocking T cell activation55. It is interesting to note that its 

surface expression is upregulated in MC45 (CD8+ naïve T cells) in UCTD and SJS patients 

compared to CTR, MCTD and RA and SLE (only for UCTD). Abatacept is a fusion protein that 

consists Fc region of the IgG1 immunoglobulin fused to extracellular domain of human CTLA-4. 

The extracellular domain is pharmacologically active, binds to CD80/CD86 on antigen-

presenting cells and thereby prevents CD28 interaction56. Therefore, patients with lower 

expression of CD28 could be eligible for the abatacept treatment. Some RA patients were 

already treated with this drug57 and it seems that due to their lower level of CTLA-4 expression, 

they are good candidates for this treatment. Additionally, from our data, patients with MCTD 

and SSC could also be considered for this line of therapy. In this context it would be also 

interesting to compare the CD28 expression, but due to batch effect issue we could not 

perform the analysis of this marker on PBMC, as commented before.  
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In the granulocyte compartment, 7 clusters were identified in post hoc analysis and 6 of them 

were able to discriminate SADs from CTRs. Four of these clusters (CL2, CL4, CL8, and CL15) 

were characterized by CD11chi expression, suggesting more mature and activated state of 

these cells and 3 of them were significantly decreased in blood of SSC (CL4, CL8,); SJS (CL8, 

CL15); SLE (CL8) compared to CTR. On the other hand, CL2 was elevated in all SADs and 

significantly different between SJS and CTR, although being also high in RA and SLE patients. 

The difference between CL2 and CL4, CL8 and CL10 lies in CD95 expression, CL2 opposite to 

the rest of the CLs has higher Fas expression. It was described that aged CD95+ neutrophils 

have higher migratory capacity to the tissue under inflammatory condition58. Thus, it can be 

that the lower frequency of these cells in the circulation of some SADs is due to their migration 

to the inflamed tissue. On the other hand, aged neutrophils expressing high level of CD95 are 

elevated in SADs, and could be more prone to cell death, in agreement with the increased 

frequency of apoptotic neutrophils already reported in the circulation of SADs patients59,60. 

Alternatively, CD95-CD95L interaction can promote neutrophil migration to the inflamed 

tissue61,62. Surprisingly the highest frequencies of CD95hi neutrophils were observed in SJS, 

suggesting that more research should be performed for neutrophil pathogenesis in SJS, as so 

far not much is known. Very recently, elevated levels of aged neutrophils were reported in 

patients with psoriasis both in circulation and skin63. Their pathological function was attributed 

to the NETs formation and T cell activation functions. It is therefore unclear whether the lower 

level of these cells observed here could have some protective role, or if their diminished 

presence is a reflection of their migration to the tissue. This question should be addressed in 

future studies. It should be noticed that in both studies different markers were used to 

distinguish immature from aged neutrophils. Here we used CD11c and CD24 expression, 

however markers like CD62L31 and CD1064 should also be introduced to better characterize the 

maturation state of neutrophils. Most of the knowledge regarding neutrophils comes from 

mouse studies, hence a better characterization of these cells in patients, is also needed. CL3 

and CL10 were characterized by lower expression of CD11c and CD24, thus could be 

considered as less mature. CL3 was characterized by high CD95 and low PD-L1 expression in 

contrast to CL10. The frequency of this cluster was again higher in SJS compared to CTR but 

also compared to SSC and UCTD. The level of the activation marker CD86 on this cluster was 

significantly decreased comparing SJS and other SADs to CTR, suggesting an even less mature 

phenotype of these cells in SADs. Additionally, patients had higher expression of CD95 

compared to CTR showing that these less mature cells were also more prone to apoptosis. The 
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elevated expression of CD95 in SADs compared to CTR was confirmed for multiple clusters, 

mostly in cells characterized by low CD11c expression. Thus, it can support the hypothesis that 

aged neutrophils migrate to the tissue and are constantly replaced by fresh neutrophils, which 

are less activated and more prone to death. On the other hand, the CL10 frequency was low in 

SSC and UCTD. An immunosuppressive neutrophil subpopulation was described and its 

interaction with T cells through PD-L1 receptors was demonstrated65. It was shown that 

neutrophils could reduce CD4+ T cell proliferation and IFNγ production and this inhibition was 

mediated by PD-L166. Thus, it is possible that this immunosuppressive function is reduced in 

SSC and UCTD patients.   

SJS and SLE patients were grouped together in the analysis of the granulocyte compartment as 

well. They were characterized by higher CD95 expression in both mature and immature 

clusters of granulocytes, suggesting increased apoptosis or migration to the tissue together 

with lower activation of CD11clow neutrophils measured by CD86, suggesting their even less 

mature state. Similarity between SLE and SJS immune phenotypes was already reported for 

PBMC compartment36 and their combined enrichment in reclassification studies was also 

shown67. 

Interestingly, in the PBMC compartment MCTD grouped with SLE and SJS patients mostly due 

to the high CD38 expression, although some discrepancies were seen for HLA-DR. 

Nevertheless, these patients did not align together using granulocyte-derived features, event 

though they had similar levels of CD95. Due to differences in cell frequencies they were 

grouped together with SSC and UCTD patients instead. UCTD and SSC patients clustered 

together in both the PBMC and granulocyte compartments, however their PBMC compartment 

was more similar to RA than to MCTD. The term Undifferentiated Connective Tissue Disease at 

risk for Systemic Sclerosis (UCTD-risk-SSc) was created for the undiagnosed patients that are 

characterized by Raynaud’s phenomena, representing 30-50% of UCTD as initial manifestation, 

and are more prone to develop full symptoms of SSC68. Therefore, it can be that the UCTD 

patients are similar to SSC at the immune cell level as well. PAPS and CTR were grouped 

together in both the PBMC and granulocyte analysis, suggesting a more physiological 

phenotype in these patients. Nevertheless, care needs to be taken regarding PAPS conclusions 

as only 4 patients were recruited and thus the study was severely underpowered.  

Our results showed that we could compare and group patients based on the similar cellular 

phenotypes using differential analysis, but no disease-specific biomarkers could be selected, 

underlining the common mechanisms shared by different SADs. Additionally, the comparison 
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of medians is limited, as it does not fully explore individuals on the extremes of the 

distribution, thus omitting an important information that could be used when studying disease 

mechanisms. Hence, it seems that patient reclassification involving unsupervised clustering can 

give another layer of information and find relevant groups of patients as in Barturen et al 2021.  

For the reclassification analysis we chose features that were differentially expressed in SADS 

patients compared with CTR, regardless of their clinical diagnosis, hence they were SADs-

specific. Features from both granulocytes and PBMC were selected, showing their important 

role in patient discrimination and grouped patients into four clusters. Cluster C1 was 

characterized by increased levels of circulating cells specifically from PBMC compartment, and 

in general lower activation in the T cell compartment including T regulatory cells and CD8+ T 

cells, but also in basophils. It presented lower frequency in multiple granulocyte populations 

and the highest expression of CD95 and CD38 molecule in some granulocyte subsets, 

especially in CD11chi cells. Clusters C1 and C2 were exactly opposite to each other, cluster C4 

was characterized by intermediate features between C1 and C2 and cluster C4 could be 

considered as undifferentiated, mixed group. The different diagnoses are distributed across 

the clusters, however higher percentages of SJS and SLE patients were found in C1, 

emphasizing the similarity between these two groups of patients. The lack of controls and the 

high association with antimalarial and steroid treatments in this cluster suggest that these 

patients could be the most active. Although no disease scores are available at this point we 

observed higher levels of TNFα, IL-10 and IP-10 in the supernatant of unstimulated blood from 

C1 compared to C2. These cytokines were shown to be increased in RA69,70, SLE71–73 and SJS74 

patients and correlated with the symptoms of severity in SLE8,73,75–78, RA79–81, SJS72,82. Elevated 

levels of TNFα and IP-10 were also found in the reclassification study performed by Barturen 

et, al 202083, and was associated with the interferon cluster, characterized by higher disease 

activity in SLE and SJS patients. The finding of more than 40% of CTR in C2 suggests that it is 

the most physiological cluster and patients with less severe symptoms are probably placed 

here. A cluster with high enrichment in CTR was also observed in Barturen et al, 2020 and was 

clearly correlated with lower severity scores83. In our study this is confirmed by lower levels of 

TNFα, IL-10 and IP-10. More interestingly these cytokines reached the levels of the CTR group, 

emphasizing their physiological level. The difference in the production of GROα (neutrophil 

chemoattractant) in C2 and CTR marked the difference between SADS patients and healthy 

individuals. It is interesting to notice that higher production of TGFα is observed in C2 

compared to C1. TGFα has not been well studied in the context of SADs. It is a member of 
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epidermal growth factor (EGF) family and is a ligand for EGF receptor (R)84, which acts through 

the mammalian target of rapamycin (mTOR) signaling pathway85. The involvement in the 

pathogenesis and beneficial blockade of the mTOR signaling pathway was reported in SLE86 

and RA87, the patients that are mostly represented in this cluster. Thus, this study opens a new 

possible role for TGFα and also shows that some group of patients could benefit from the 

treatment involving mTOR inhibition, as suggested in88.  

It is worth to mention that the cytokine levels were not related with the treatment, besides 

TNFα and antimalarial treatment. However, some differences could be observed for the cell 

frequency and MSI in patients treated with antimalarials and steroids, thus this could affect the 

patient clustering especially in C1. Nevertheless, it should be pointed out that while the 

treated group differed from non-treated patients, they were still highly different from the 

CTRs, suggesting again that the C1 group is enriched in treated patients, who could have a 

more severe disease than the rest of the individuals. It is calling the attention that the 

treatments presented here had a larger impact on PBMC, and almost none on granulocytes 

despite clear neutrophil dysregulation in some groups of patients. Thus, this suggests that 

granulocyte-focused treatments should also be considered in the future. Not only neutrophil 

activation, but also basophils participated in the patients clustering. Basophil involvement in 

the  pathogenesis of MCTD was recently described89 and they are also known to be involved in 

SLE90,91.  

Here we showed that using mass cytometry we cannot only compare the SADs patients at 

multiple cellular levels, but also find groups of patients that share similar immune landscapes, 

and thus could benefit from the same line of treatment. Mass cytometry is not used in the 

clinic nowadays, hence the translation of our results to the patients’ treatment and diagnosis is 

not straight forward. FC is currently being used in the clinical practice. Therefore, due to their 

similar nature, these techniques should be used interchangeably. For this we should reduce 

our panel to the most relevant markers allowing the extraction of informative features and 

verify their utility using FC techniques. The high correlation observed within some of the 

features suggests the possibility of decreasing the number of cellular markers. This step will be 

undertaken as a future direction for this project. Due to limitations in sample number per 

diagnosis we could not replicate our results, hence as another future direction we see data 

replication as a necessary step. Although for the first time we have analyzed both common and 

rare SADs using MC, we are aware that the groups with the limited number of samples 

(especially PAPS and MCTD) should be interpreted with caution and the number of patients 
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should be increased in a replication cohort. Additionally, we emphasize the importance of 

studying whole blood samples, as multiple cellular compartments seem to play a role in 

differentiating patients. Both cellular frequency and the levels of functional marker expression 

are important sources of information and in our opinion, should be used when this type of 

study is performed. Cytokines play an important role in SADs and multiple lines of treatment 

include them as targets. Thus, we believe that the analysis of cytokines that so far was omitted 

in this thesis will give another layer of information in patient reclassification. This step is an 

undergoing future direction of this project.   
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Conclusiones 

1. Hemos demostrado que los estudios de inmunofenotipado de superficie y de medida 

de citoquinas intracelulares se pueden realizar con éxito utilizando pequeñas 

cantidades de sangre fijada / congelada. Hemos observado un mejor rendimiento 

usando Proteomic Stabilizer siendo, por tanto, la elección para nuestro estudio. 

2. Las muestras de sangre fijadas y congeladas se pueden almacenar durante más de un 

año, por lo que son elegibles para estudios retrospectivos, multicéntricos y a gran 

escala. 

3. Hemos establecido un protocolo de preparación y tinción de muestras de sangre total 

que permite realizar estudios de inmunofenotipado a gran escala usando CyTOF. El 

protocolo incluye estabilización de la sangre, lotes congelados de cócteles de 

anticuerpos, uso de códigos de barras, uso de una muestra de referencia y adquisición 

de múltiples lotes. 

4. Hemos creado un flujo de análisis de datos basado en R que permite realizar el 

preprocesamiento y control de calidad de los datos adquiridos. Lo más importante, 

permite alinear múltiples lotes de adquisición, lo que permite el análisis tanto de 

frecuencias como de MSI en marcadores funcionales a partir de estudios de múltiples 

lotes y a gran escala. 

5. Hemos realizado un estudio de fenotipado profundo mediante citometría de masas 

utilizando 39 sondas en un solo tubo, involucrando a 126 pacientes con EAS, 

recolectados en dos centros diferentes. La comparación de EAS reveló poblaciones de 

células expresadas diferencialmente y MSI específica de células, sin embargo, ninguno 

de ellos permitió distinguir entre EAS. 

6. Seleccionamos características específicas de EAS, incluyendo frecuencias celulares y 

MSI de marcadores funcionales, tanto en PBMC como en granulocitos. El estudio de 

reclasificación utilizando estas características identificó 4 grupos de pacientes 

compuestos por individuos con diferentes etiquetas de diagnóstico, mostrando sus 

similitudes inmunopatológicas internas a pesar de su diagnóstico heterogéneo. 
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Conclusions 

1. We demonstrated that surface immunophenotyping and intracellular cytokine 

response studies can be successfully performed with small amounts of fixed/frozen 

blood. We reported better performance of the Proteomic Stabilizer buffer, being 

therefore, the choice of our study. 

2. The fixed and frozen blood samples can be stored for more than one year, thus, they 

are eligible for retrospective, multicenter, and large-scale studies.  

3. We have established a whole blood sample preparation and staining protocol that 

allows to perform large-scale immunophenotyping studies. This involves blood 

stabilization, frozen batches of antibody cocktails, barcoding, use of a reference sample 

and multi-batch acquisition on CyTOF.  

4. We created an R-based data analysis pipeline that allows to perform preprocessing and 

quality control of the acquired data. Most importantly, it allows to align multiple 

acquisition batches, thus enabling the analysis of both frequencies and MSI of 

functional markers from multi-batch and large-scale studies.  

5. We performed a deep-phenotyping, mass cytometry study using 39 probes in one 

single tube, involving 126 SADs patients, collected in two different centers. The SADs 

comparison revealed differentially expressed cell populations and cell-specific MSI, 

however none of them allowed to distinguish between SADs.  

6. We selected SADs-specific features, that contained cell frequencies and MSI of 

functional markers from both PBMC and granulocyte compartments. The 

reclassification study using these features identified 4 clusters composed of patients 

with different diagnostic labels, showing their internal immunopathological similarities 

despite their different diagnosis.  
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