

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Strongly zero product determined Banach algebras $\stackrel{\bigstar}{\approx}$

LINEAR

lications

J. Alaminos, J. Extremera, M.L.C. Godoy, A.R. Villena*

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

A R T I C L E I N F O

Article history: Received 5 July 2021 Accepted 2 September 2021 Available online 6 September 2021 Submitted by P. Semrl

MSC: primary 47H60, 42A20, 47L10

Keywords: Zero product determined Banach algebra Group algebra Algebra of approximable operators

ABSTRACT

 C^* -algebras, group algebras, and the algebra $\mathcal{A}(X)$ of approximable operators on a Banach space X having the bounded approximation property are known to be zero product determined. In this paper we give a quantitative estimate of this property by showing that, for the Banach algebra A, there exists a constant α with the property that for every continuous bilinear functional $\varphi: A \times A \to \mathbb{C}$ there exists a continuous linear functional ξ on A such that

$$\sup_{\|a\|=\|b\|=1} |\varphi(a,b) - \xi(ab)| \le \alpha \sup_{\substack{\|a\|=\|b\| \\ ab=0}} |\varphi(a,b)|$$

in each of the following cases: (i) A is a C^* -algebra, in which case $\alpha = 8$; (ii) $A = L^1(G)$ for a locally compact group G, in which case $\alpha = 60\sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2\sin \frac{\pi}{10}}$; (iii) $A = \mathcal{A}(X)$ for a Banach space X having property (A) (which is a rather strong approximation property for X), in which case $\alpha =$

* Corresponding author.

E-mail addresses: alaminos@ugr.es (J. Alaminos), jlizana@ugr.es (J. Extremera), mgodoy@ugr.es (M.L.C. Godoy), avillena@ugr.es (A.R. Villena).

https://doi.org/10.1016/j.laa.2021.09.002

0024-3795/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

 $^{^{\}star}$ The authors were supported by MCIU/AEI/FEDER Grant PGC2018-093794-B-I00, Junta de Andalucía grant FQM-185. The first, second and fourth authors were supported by Proyectos I+D+i del programa operativo FEDER-Andalucía Grant A-FQM-484-UGR18. The third named author was also supported by MIU PhD scholarship Grant FPU18/00419. Funding for open access charge: Universidad de Granada / CBUA.

 $60\sqrt{27} \frac{1+\sin \frac{\pi}{10}}{1-2\sin \frac{\pi}{10}}C^2$, where C is a constant associated with the property (A) that we require for X. © 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let A be a Banach algebra. Then $\pi: A \times A \to A$ denotes the product map, we write A^* for the dual of A, and $\mathcal{B}^2(A, \mathbb{C})$ for the space of continuous bilinear functionals on A.

The Banach algebra A is said to be zero product determined if every $\varphi \in \mathcal{B}^2(A, \mathbb{C})$ with the property

$$a, b \in A, \ ab = 0 \ \Rightarrow \ \varphi(a, b) = 0$$
 (1)

belongs to the space

$$\mathcal{B}^2_{\pi}(A,\mathbb{C}) = \{\xi \circ \pi : \xi \in A^*\}.$$

This concept implicitly appeared in [1] as an additional outcome of the so-called property \mathbb{B} which was introduced in that paper, and was the basis of subsequent Jordan and Lie versions (see [2–4]). For a comprehensive survey of the theory of the zero product determined Banach algebras we refer the reader to [10]. The algebra A is said to have property \mathbb{B} if every $\varphi \in \mathcal{B}^2(A, \mathbb{C})$ satisfying (1) belongs to the closed subspace $\mathcal{B}_b^2(A, \mathbb{C})$ of $\mathcal{B}^2(A, \mathbb{C})$ defined by

$$\mathcal{B}_b^2(A,\mathbb{C}) = \big\{ \psi \in \mathcal{B}^2(A,\mathbb{C}) : \psi(ab,c) = \psi(a,bc) \; \forall a,b,c \in A \big\}.$$

In [1] it was shown that this class of Banach algebras is wide enough to include a number of examples of interest: C^* -algebras, the group algebra $L^1(G)$ of any locally compact group G, and the algebra $\mathcal{A}(X)$ of approximable operators on any Banach space X.

Throughout, we confine ourselves to Banach algebras having a bounded left approximate identity. Then $\mathcal{B}^2_{\pi}(A, \mathbb{C}) = \mathcal{B}^2_b(A, \mathbb{C})$ (Proposition 2.1), and hence A is a zero product determined Banach algebra if and only if A has property \mathbb{B} . For example, this applies to C^* -algebras, group algebras and the algebra $\mathcal{A}(X)$ on any Banach space X having the bounded approximation property, so that all of them are zero product determined Banach algebras.

For each $\varphi \in \mathcal{B}^2(A, \mathbb{C})$, the distance from φ to $\mathcal{B}^2_{\pi}(A, \mathbb{C})$ is

dist
$$(\varphi, \mathcal{B}^2_{\pi}(A, \mathbb{C})) = \inf \{ \|\varphi - \psi\| : \psi \in \mathcal{B}^2_{\pi}(A, \mathbb{C}) \},\$$

which can be easily estimated through the constant

$$|\varphi|_b = \sup \left\{ |\varphi(ab,c) - \varphi(a,bc)| : a,b,c \in A, \ \|a\| = \|b\| = \|c\| = 1 \right\}$$

(Proposition 2.1 below). Our purpose is to estimate dist $(\varphi, \mathcal{B}^2_{\pi}(A, \mathbb{C}))$ through the constant

$$|\varphi|_{zp} = \sup \{ |\varphi(a, b)| : a, b \in A, \|a\| = \|b\| = 1, ab = 0 \}.$$

Note that A is zero product determined precisely when

$$\varphi \in \mathcal{B}^2(A, \mathbb{C}), \ |\varphi|_{zp} = 0 \ \Rightarrow \ \varphi \in \mathcal{B}^2_{\pi}(A, \mathbb{C}).$$
⁽²⁾

We call the Banach algebra A strongly zero product determined if condition (2) is strengthened by requiring that there is a distance estimate

$$\operatorname{dist}(\varphi, \mathcal{B}^{2}_{\pi}(A, \mathbb{C})) \leq \alpha |\varphi|_{zp} \quad \forall \varphi \in \mathcal{B}^{2}(A, \mathbb{C})$$
(3)

for some constant α ; in this case, the optimal constant α for which (3) holds will be denoted by α_A . The inequality $|\varphi|_{zp} \leq \text{dist}(\varphi, \mathcal{B}^2_{\pi}(A, \mathbb{C}))$ is always true (Proposition 2.1 below). We also note that A has property \mathbb{B} exactly in the case when

$$\varphi \in \mathcal{B}^2(A, \mathbb{C}), \ |\varphi|_{zp} = 0 \ \Rightarrow \ |\varphi|_b = 0,$$

and the algebra A is said to have the strong property \mathbb{B} if there is an estimate

$$|\varphi|_{b} \leq \beta \, |\varphi|_{zp} \quad \forall \varphi \in \mathcal{B}^{2}(A, \mathbb{C}) \tag{4}$$

for some constant β ; in this case, the optimal constant β for which (4) holds will be denoted by β_A . The inequality $|\varphi|_{zp} \leq M |\varphi|_b$ is always true for some constant M(Proposition 2.1 below). The spirit of this concept first appeared in [6], and was subsequently formulated in [14] and refined in [15]. This property has proven to be useful to study the hyperreflexivity of the spaces of continuous derivations and, more generally, continuous cocycles on A (see [7,8,13–15]).

From [5, Corollary 1.3], we obtain the following result.

Theorem 1.1. Let A be a C^{*}-algebra. Then A is strongly zero product determined, has the strong property \mathbb{B} , and $\alpha_A, \beta_A \leq 8$.

It is shown in [15] that each group algebra has the strong property \mathbb{B} and so (by Corollary 2.2 below) it is also strongly zero product determined. In Theorem 3.3 we prove that, for each group G,

$$\alpha_{L^1(G)} \le \beta_{L^1(G)} \le 60\sqrt{27} \, \frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}}.$$

This gives a sharper estimate for the constant of the strong property \mathbb{B} of $L^1(G)$ to the one given in [15, Theorem 3.4]. The estimates given in Theorems 1.1 and 3.3 can be used to sharp the upper bound given in [15, Theorem 4.4] for the hyperreflexivity constant of $\mathcal{Z}^n(A, X)$, the space of continuous *n*-cocycles from *A* into *X*, where *A* is a *C*^{*}-algebra or the group algebra of a group with an open subgroup of polynomial growth and *X* is a Banach *A*-bimodule for which the *n*th Hochschild cohomology group $\mathcal{H}^{n+1}(A, X)$ is a Banach space.

Finally, in Theorem 4.1 we prove that the algebra $\mathcal{A}(X)$ is strongly zero product determined for each Banach space X having property (A) (which is a rather strong approximation property for the space X). Further, we will use this result to show that the space $\mathcal{Z}^n(\mathcal{A}(X), Y^*)$ is hyperreflexive for each Banach $\mathcal{A}(X)$ -bimodule Y.

There is no reason for an arbitrary zero product Banach algebra to be strongly zero product determined. However, as yet, we do not know an example of a zero product determined Banach algebra which is not strongly zero product determined.

Throughout, our reference for Banach algebras, and particularly for group algebras, is the monograph [11].

2. Elementary estimates

In the following result we gather together some estimates that relate the seminorms dist $(\cdot, \mathcal{B}^2_{\pi}(A, \mathbb{C}))$, $|\cdot|_b$, and $|\cdot|_{zp}$ on $\mathcal{B}^2_{\pi}(A, \mathbb{C})$ to each other.

Proposition 2.1. Let A be a Banach algebra with a left approximate identity of bound M. Then $\mathcal{B}^2_{\pi}(A, \mathbb{C}) = \mathcal{B}^2_b(A, \mathbb{C})$ and, for each $\varphi \in \mathcal{B}^2(A, \mathbb{C})$, the following properties hold:

(i) The distance dist $(\varphi, \mathcal{B}^2_{\pi}(A, \mathbb{C}))$ is attained; (ii) $\frac{1}{2} |\varphi|_b \leq \text{dist} (\varphi, \mathcal{B}^2_{\pi}(A, \mathbb{C})) \leq M |\varphi|_b$; (iii) $|\varphi|_{zp} \leq \text{dist} (\varphi, \mathcal{B}^2_{\pi}(A, \mathbb{C}))$.

Proof. Let $(e_{\lambda})_{\lambda \in \Lambda}$ be a left approximate identity of bound M.

(i) Let (ξ_n) be a sequence in A^* such that

dist
$$(\varphi, \mathcal{B}^2_{\pi}(A, \mathbb{C})) = \lim_{n \to \infty} \|\varphi - \xi_n \circ \pi\|.$$

For each $n \in \mathbb{N}$ and $a \in A$, we have

$$|\xi_n(e_{\lambda}a)| = |(\xi_n \circ \pi)(e_{\lambda}, a)| \le M \, \|\xi_n \circ \pi\| \, \|a\| \quad \forall \lambda \in \Lambda$$

and hence, taking limit in the above inequality and using that $\lim_{\lambda \in \Lambda} e_{\lambda}a = a$, we see that $|\xi_n(a)| \leq M ||\xi_n \circ \pi|| ||a||$, which shows that $||\xi_n|| \leq M ||\xi_n \circ \pi||$. Further, since

$$\|\xi_n \circ \pi\| \le \|\varphi - \xi_n \circ \pi\| + \|\varphi\| \quad \forall n \in \mathbb{N},$$

it follows that the sequence $(||\xi_n||)$ is bounded. By the Banach–Alaoglu theorem, the sequence (ξ_n) has a weak^{*}-accumulation point, say ξ , in A^* . Let $(\xi_{\nu})_{\nu \in N}$ be a subnet of (ξ_n) such that w^{*}-lim_{$\nu \in N$} $\xi_{\nu} = \xi$. The task is now to show that

$$\|\varphi - \xi \circ \pi\| = \operatorname{dist} (\varphi, \mathcal{B}^2_{\pi}(A, \mathbb{C})).$$

For each $a, b \in A$ with ||a|| = ||b|| = 1, we have

$$|\varphi(a,b) - \xi_{\nu}(ab)| \le \|\varphi - \xi_{\nu} \circ \pi\| \quad \forall \nu \in N,$$

and so, taking limits on both sides of the above inequality and using that

$$\lim_{\nu \in N} \xi_{\nu}(ab) = \xi(ab)$$

and that $(\|\varphi - \xi_{\nu} \circ \pi\|)_{\nu \in N}$ is a subnet of the convergent sequence $(\|\varphi - \xi_n \circ \pi\|)$, we obtain

$$|\varphi(a,b) - \xi(ab)| \le \operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right).$$

This implies that $\|\varphi - \xi \circ \pi\| \leq \operatorname{dist}(\varphi, \mathcal{B}^2_{\pi}(A, \mathbb{C}))$, and the converse inequality $\operatorname{dist}(\varphi, \mathcal{B}^2_{\pi}(A, \mathbb{C})) \leq \|\varphi - \xi \circ \pi\|$ trivially holds.

(ii) For each $\lambda \in \Lambda$ define $\xi_{\lambda} \in A^*$ by

$$\xi_{\lambda}(a) = \varphi(e_{\lambda}, a) \quad \forall a \in A.$$

Then $\|\xi_{\lambda}\| \leq M \|\varphi\|$ for each $\lambda \in \Lambda$, so that $(\xi_{\lambda})_{\lambda \in \Lambda}$ is a bounded net in A^* and hence the Banach–Alaoglu theorem shows that it has a weak^{*}-accumulation point, say ξ , in A^* . Let $(\xi_{\nu})_{\nu \in N}$ be a subnet of $(\xi_{\lambda})_{\lambda \in \Lambda}$ such that w^{*}-lim_{$\nu \in N$} $\xi_{\nu} = \xi$. For each $a, b \in A$ with $\|a\| = \|b\| = 1$, we have

$$|\varphi(e_{\nu}a,b) - \varphi(e_{\nu},ab)| \le M |\varphi|_{b} \quad \forall \nu \in N$$

and hence, taking limit and using that $(e_{\nu}a)_{\nu\in N}$ is a subnet of the convergent net $(e_{\lambda}a)_{\lambda\in\Lambda}$ and that $\lim_{\nu\in N}\varphi(e_{\lambda},ab)=\xi(ab)$, we see that

$$|\varphi(a,b) - \xi(ab)| \le M \, |\varphi|_b \, .$$

This gives $\|\varphi - \xi \circ \pi\| \leq M |\varphi|_b$, whence

dist
$$(\varphi, \mathcal{B}^2_{\pi}(A, \mathbb{C})) \leq M |\varphi|_b$$

Set $\xi \in A^*$. For each $a, b, c \in A$ with ||a|| = ||b|| = ||c|| = 1, we have

$$\begin{aligned} |\varphi(ab,c) - \varphi(a,bc)| &= |\varphi(ab,c) - (\xi \circ \pi)(ab,c) + (\xi \circ \pi)(a,bc) - \varphi(a,bc)| \\ &\leq |\varphi(ab,c) - (\xi \circ \pi)(ab,c)| + |(\xi \circ \pi)(a,bc) - \varphi(a,bc)| \\ &\leq \|\varphi - \xi \circ \pi\| \|ab\| \|c\| + \|\varphi - \xi \circ \pi\| \|a\| \|bc\| \\ &\leq 2 \|\varphi - \xi \circ \pi\| \end{aligned}$$

and therefore $|\varphi|_b \leq 2 \|\varphi - \xi \circ \pi\|$. Since this inequality holds for each $\xi \in A^*$, it follows that

$$|\varphi|_{b} \leq 2 \operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(A, \mathbb{C})\right)$$

(iii) Let $a, b \in A$ with ||a|| = ||b|| = 1 and ab = 0. For each $\xi \in A^*$, we see that

$$|\varphi(a,b)| = |\varphi(a,b) - (\xi \circ \pi)(a,b)| \le \|\varphi - \xi \circ \pi\|,$$

and consequently $|\varphi|_{zp} \leq ||\varphi - \xi \circ \pi||$. Since the above inequality holds for each $\xi \in A^*$, we conclude that

$$|\varphi|_{zp} \leq \operatorname{dist}\left(\varphi, \mathcal{B}^2_{\pi}(A, \mathbb{C})\right).$$

Finally, it is clear that $\mathcal{B}^2_{\pi}(A,\mathbb{C}) \subset \mathcal{B}^2_b(A,\mathbb{C})$. To prove the reverse inclusion take $\varphi \in \mathcal{B}^2_b(A,\mathbb{C})$. Then $|\varphi|_b = 0$, hence (ii) shows that dist $(\varphi, \mathcal{B}^2_{\pi}(A,\mathbb{C})) = 0$, and (i) gives $\psi \in \mathcal{B}^2_{\pi}(A,\mathbb{C})$ such that $\|\varphi - \psi\| = 0$, which implies that $\varphi = \psi \in \mathcal{B}^2_{\pi}(A,\mathbb{C})$. \Box

The following result is an immediate consequence of assertion (ii) in Proposition 2.1.

Corollary 2.2. Let A be a Banach algebra with a left approximate identity of bound M. Then A is a strongly zero product determined Banach algebra if and only if has the strong property \mathbb{B} , in which case

$$\frac{1}{2}\beta_A \le \alpha_A \le M\beta_A.$$

Let X and Y be Banach spaces, and let $n \in \mathbb{N}$. We write $\mathcal{B}^n(X,Y)$ for the Banach space of all continuous *n*-linear maps from $X \times \stackrel{n}{\cdots} \times X$ to Y. As usual, we abbreviate $\mathcal{B}^1(X,Y)$ to $\mathcal{B}(X,Y)$, $\mathcal{B}(X,X)$ to $\mathcal{B}(X)$, and $\mathcal{B}(X,\mathbb{C})$ to X^* . The identity operator on X is denoted by I_X . Further, we write $\langle \cdot, \cdot \rangle$ for the duality between X and X^* . For each subspace E of X, E^{\perp} denotes the annihilator of E in X^* .

For a Banach algebra A and a Banach space X, and for each $\varphi \in \mathcal{B}^2(A, X)$, we continue to use the notations

$$\begin{split} |\varphi|_b &= \sup \left\{ |\varphi(ab,c) - \varphi(a,bc)| : a, b, c \in A, \ \|a\| = \|b\| = \|c\| = 1 \right\}, \\ |\varphi|_{zp} &= \sup \left\{ |\varphi(a,b)| : a, b \in A, \ \|a\| = \|b\| = 1, \ ab = 0 \right\}. \end{split}$$

Proposition 2.3. Let A be a Banach algebra with a left approximate identity of bound M and having the strong property \mathbb{B} . Let X be a Banach space, and let $\varphi \in \mathcal{B}^2(A, X)$. Then the following properties hold:

- (i) $|\varphi|_b \leq \beta_A |\varphi|_{zp}$;
- (ii) If X is a dual Banach space, then there exists $\Phi \in \mathcal{B}(A, X)$ such that $\|\varphi \Phi \circ \pi\| \le M\beta_A$.

Proof. (i) For each $\xi \in X^*$, we have

$$\left| \xi \circ \varphi \right|_{b} \leq \beta_{A} \left| \xi \circ \varphi \right|_{zp}.$$

It follows from the Hahn-Banach theorem that

$$\begin{split} |\varphi|_b &= \sup \left\{ |\xi \circ \varphi|_b : \xi \in X^*, \ \|\xi\| = 1 \right\}, \\ |\varphi|_{zp} &= \sup \left\{ |\xi \circ \varphi|_{zp} : \xi \in X^*, \ \|\xi\| = 1 \right\}. \end{split}$$

In this way we obtain (i).

(ii) Suppose that X is the dual of a Banach space X_* . Let $(e_\lambda)_{\lambda \in \Lambda}$ be a left approximate identity for A of bound M, and define a net $(\Phi_\lambda)_{\lambda \in \Lambda}$ in $\mathcal{B}(A, X)$ by setting

$$\Phi_{\lambda}(a) = \varphi(e_{\lambda}, a) \quad \forall a \in A, \ \forall \lambda \in \Lambda.$$

Since each bounded subset of $\mathcal{B}(A, X)$ is relatively compact with respect to the weak^{*} operator topology on $\mathcal{B}(A, X)$ and the net $(\Phi_{\lambda})_{\lambda \in \Lambda}$ is bounded, it follows that there exist $\Phi \in \mathcal{B}(A, X)$ and a subnet $(\Phi_{\nu})_{\nu \in N}$ of $(\Phi_{\lambda})_{\lambda \in \Lambda}$ such that wo^{*}-lim_{$\nu \in N$} $\Phi_{\nu} = \Phi$. For each $a, b \in A$ with ||a|| = ||b|| = 1, and $x_* \in X_*$ with $||x_*|| = 1$, we have

$$\left| \langle x_*, \varphi(e_{\nu}a, b) \rangle - \langle x_*, \varphi(e_{\nu}, ab) \rangle \right| \le \left\| \varphi(e_{\nu}a, b) - \varphi(e_{\nu}, ab) \right\| \le M \beta_A \quad \forall \nu \in N$$

and hence, taking limit and using that $(e_{\nu}a)_{\nu\in N}$ is a subnet of the net $(e_{\lambda}a)_{\lambda\in\Lambda}$ (which converges to a with respect to the norm topology) and that $\lim_{\nu\in N} \langle x_*, \varphi(e_{\nu}, ab) \rangle = \langle x_*, \Phi(ab) \rangle$ (by definition of Φ), we see that

$$|\langle x_*, \varphi(a, b) - \Phi(ab) \rangle| = M \beta_A.$$

This gives $\|\varphi - \Phi \circ \pi\| \leq M\beta_A$. \Box

3. Group algebras

In this section we prove that the group algebra $L^1(G)$ of each locally compact group G is a strongly zero product determined Banach algebra and we provide an estimate of the constants $\alpha_{L^1(G)}$ and $\beta_{L^1(G)}$. Our estimate of $\beta_{L^1(G)}$ improves the one given in [15].

For the basic properties of this important class of Banach algebras we refer the reader to [11, Section 3.3].

Throughout this section, \mathbb{T} denotes the circle group, and we consider the normalized Haar measure on \mathbb{T} . We write $A(\mathbb{T})$ and $A(\mathbb{T}^2)$ for the Fourier algebras of \mathbb{T} and \mathbb{T}^2 , respectively. For each $f \in A(\mathbb{T})$, $F \in A(\mathbb{T}^2)$, and $j, k \in \mathbb{Z}$, we write $\widehat{f}(j)$ and $\widehat{F}(j, k)$ for the Fourier coefficients of f and F, respectively. Let $\mathbf{1}, \zeta \in A(\mathbb{T})$ denote the functions defined by

$$\mathbf{1}(z) = 1, \quad \zeta(z) = z \quad \forall z \in \mathbb{T}.$$

Let $\Delta \colon A(\mathbb{T}^2) \to A(\mathbb{T})$ be the bounded linear map defined by

$$\Delta(F)(z) = F(z, z) \quad \forall z \in \mathbb{T}, \ \forall F \in A(\mathbb{T}^2).$$

For $f, g \in A(\mathbb{T})$, let $f \otimes g \colon \mathbb{T}^2 \to \mathbb{C}$ denote the function defined by

$$(f \otimes g)(z, w) = f(z)g(w) \quad \forall z, w \in \mathbb{T},$$

which is an element of $A(\mathbb{T}^2)$ with $||f \otimes g|| = ||f|| ||g||$.

Lemma 3.1. Let $\Phi: A(\mathbb{T}^2) \to \mathbb{C}$ be a continuous linear functional, and let the constant $\varepsilon \geq 0$ be such that

$$f,g \in A(\mathbb{T}), \ fg = 0 \ \Rightarrow \ |\Phi(f \otimes g)| \le \varepsilon ||f|| ||g||.$$

Then

$$\left|\Phi(\zeta \otimes \mathbf{1} - \mathbf{1} \otimes \zeta)\right| \le \left\|\Phi\right\|_{\ker \Delta} \left\|2\sin\frac{\pi}{10} + 60\sqrt{27}\left(1 + \sin\frac{\pi}{10}\right)\varepsilon.$$

Proof. Set

$$E = \left\{ e^{\theta i} : -\frac{1}{5}\pi \le \theta \le \frac{1}{5}\pi \right\},\$$

$$W = \left\{ (z, w) \in \mathbb{T}^2 : zw^{-1} \in E \right\},\$$

and let $F \in A(\mathbb{T}^2)$ be such that

$$F(z,w) = 0 \quad \forall (z,w) \in W.$$
(5)

Our objective is to prove that

$$|\Phi(F)| \le 30\sqrt{27} \, \|F\| \, \varepsilon. \tag{6}$$

For this purpose, we take

$$\begin{split} a &= e^{\frac{1}{15}\pi i}, \\ A &= \left\{ e^{\theta i} : 0 < \theta \le \frac{1}{15}\pi \right\}, \\ B &= \left\{ e^{\theta i} : \frac{2}{15}\pi < \theta \le \frac{29}{15}\pi \right\}, \\ U &= \left\{ e^{\theta i} : -\frac{1}{30}\pi < \theta < \frac{1}{30}\pi \right\}, \end{split}$$

and we define functions $\omega, \upsilon \in A(\mathbb{T})$ by

$$\omega = 30 \,\chi_A * \chi_U, \quad \upsilon = 30 \,\chi_B * \chi_U.$$

We note that

$$\begin{split} \{z \in \mathbb{T} \, : \, \omega(z) \neq 0\} &= AU = \left\{ e^{\theta i} : -\frac{1}{30}\pi < \theta < \frac{1}{10}\pi \right\}, \\ \{z \in \mathbb{T} \, : \, \upsilon(z) \neq 0\} &= BU = \left\{ e^{\theta i} : \frac{1}{10}\pi < \theta < \frac{59}{30}\pi \right\}, \end{split}$$

and, with $\left\|\cdot\right\|_2$ denoting the norm of $L^2(\mathbb{T}),$

$$\begin{aligned} \|\omega\| &\leq 30 \, \|\chi_A\|_2 \, \|\chi_U\|_2 = 30 \, \frac{1}{\sqrt{30}} \, \frac{1}{\sqrt{30}} = 1, \\ \|\upsilon\| &\leq 30 \, \|\chi_B\|_2 \, \|\chi_U\|_2 = 30 \, \frac{\sqrt{27}}{\sqrt{30}} \, \frac{1}{\sqrt{30}} = \sqrt{27}. \end{aligned}$$

Since

$$\bigcup_{k=0}^{29} a^k A = \mathbb{T}, \quad \bigcup_{k=2}^{28} a^k A = B,$$

it follows that

$$\sum_{k=0}^{29} \delta_{a^k} * \chi_A = \sum_{k=0}^{29} \chi_{a^k A} = \mathbf{1}, \quad \sum_{k=2}^{28} \delta_{a^k} * \chi_A = \sum_{k=2}^{28} \chi_{a^k A} = \chi_B,$$

and thus, for each $j \in \mathbb{Z}$, we have

$$\sum_{k=j}^{j+29} \delta_{a^k} * \omega = 30\delta_{a^j} * \sum_{k=0}^{29} \delta_{a^k} * \chi_A * \chi_U = 30\delta_{a^j} * \mathbf{1} * \chi_U = \mathbf{1},$$
(7)

$$\sum_{k=j+2}^{j+28} \delta_{a^k} * \omega = 30\delta_{a^j} * \sum_{k=2}^{28} \delta_{a^k} * \chi_A * \chi_U = 30\delta_{a^j} * \chi_B * \chi_U = \delta_{a^j} * \upsilon.$$
(8)

If $j \in \mathbb{Z}$, $k \in \{j - 1, j, j + 1\}$, and $z, w \in \mathbb{T}$ are such that $(\delta_{a^j} * \omega)(z)(\delta_{a^k} * \omega)(w) \neq 0$, then

$$zw^{-1} \in a^j AU(a^k AU)^{-1} \subset a^{j-k} \left\{ e^{\theta i} : -\frac{2}{15}\pi < \theta < \frac{2}{15}\pi \right\} \subset E,$$

whence $\{(z,w) \in \mathbb{T}^2 : (\delta_{a^j} * \omega) \otimes (\delta_{a^k} * \omega)(z,w) \neq 0\} \subset W$ and (5) gives

$$F(\delta_{a^j} * \omega) \otimes (\delta_{a^k} * \omega) = 0.$$
(9)

Since $AU \cap BU = \emptyset$, it follows that $\omega v = 0$, and therefore

$$(\delta_{a^k} * \omega)(\delta_{a^k} * \upsilon) = 0 \quad \forall k \in \mathbb{Z}.$$
(10)

From (7), (8), and (9) we deduce that

$$F = F \sum_{j=0}^{29} \sum_{k=j-1}^{j+28} (\delta_{a^j} * \omega) \otimes (\delta_{a^k} * \omega)$$

$$= \sum_{j=0}^{29} \sum_{k=j-1}^{j+1} F(\delta_{a^j} * \omega) \otimes (\delta_{a^k} * \omega) + \sum_{j=0}^{29} \sum_{k=j+2}^{j+28} F(\delta_{a^j} * \omega) \otimes (\delta_{a^k} * \omega)$$

$$= \sum_{j=0}^{29} \sum_{k=j+2}^{j+28} F(\delta_{a^j} * \omega) \otimes (\delta_{a^k} * \omega) = \sum_{j=0}^{29} F(\delta_{a^j} * \omega) \otimes (\delta_{a^j} * \upsilon).$$

As

$$F = \sum_{j,k=-\infty}^{\infty} \widehat{F}(j,k)\zeta^j \otimes \zeta^k$$

we have

$$F = \sum_{j,k=-\infty}^{\infty} \sum_{l=0}^{29} \widehat{F}(j,k) \big(\zeta^j(\delta_{a^l} * \omega) \big) \otimes \big(\zeta^k(\delta_{a^l} * \upsilon) \big),$$

so that

$$\Phi(F) = \sum_{j,k=-\infty}^{\infty} \sum_{l=0}^{29} \widehat{F}(j,k) \Phi\Big(\Big(\zeta^j(\delta_{a^l} * \omega)\Big) \otimes \big(\zeta^k(\delta_{a^l} * \upsilon)\big)\Big).$$

By (10), for each $j, k, l \in \mathbb{Z}$,

$$\left(\zeta^{j}(\delta_{a^{l}}\ast\omega)\right)\left(\zeta^{k}(\delta_{a^{l}}\ast\upsilon)\right)=0$$

and therefore

$$\begin{aligned} \left| \Phi \left(\left(\zeta^j(\delta_{a^l} * \omega) \right) \otimes \left(\zeta^k(\delta_{a^l} * v) \right) \right) \right| &\leq \varepsilon \left\| \zeta^j(\delta_{a^l} * \omega) \right\| \left\| \zeta^k(\delta_{a^l} * v) \right\| \\ &= \varepsilon \left\| \omega \right\| \left\| v \right\| \leq \sqrt{27} \varepsilon. \end{aligned}$$

We thus get

$$\begin{split} |\Phi(F)| &= \sum_{j,k=-\infty}^{\infty} \sum_{l=0}^{29} \left| \widehat{F}(j,k) \right| \left| \Phi\left(\left(\zeta^{j}(\delta_{a^{l}} \ast \omega) \right) \otimes \left(\zeta^{k}(\delta_{a^{l}} \ast v) \right) \right) \right| \\ &\leq \sum_{j,k=-\infty}^{\infty} \sum_{l=0}^{29} \left| \widehat{F}(j,k) \right| \sqrt{27} \varepsilon = 30\sqrt{27} \, \|F\| \, \varepsilon, \end{split}$$

and (6) is proved.

Let $f \in A(\mathbb{T})$ be such that f(z) = 0 for each $z \in E$, and define the function $F \colon \mathbb{T}^2 \to \mathbb{C}$ by

$$F(z,w) = f(zw^{-1})w = \sum_{k=-\infty}^{\infty} \widehat{f}(k)z^k w^{-k+1} \quad \forall z, w \in \mathbb{T}.$$

Then $F \in A(\mathbb{T}^2)$, ||F|| = ||f||, $\zeta \otimes \mathbf{1} - \mathbf{1} \otimes \zeta - F \in \ker \Delta$, and

$$\left(\zeta \otimes \mathbf{1} - \mathbf{1} \otimes \zeta - F\right)(z, w) = \left(1 - \widehat{f}(1)\right)z + \left(-1 - \widehat{f}(0)\right)w - \sum_{k \neq 0, 1} \widehat{f}(k)z^k w^{-k+1},$$

which certainly implies that

$$\|\zeta \otimes \mathbf{1} - \mathbf{1} \otimes \zeta - F\| = \left|1 - \hat{f}(1)\right| + \left|-1 - \hat{f}(0)\right| + \sum_{k \neq 0, 1} \left|\hat{f}(k)\right| = \|\zeta - \mathbf{1} - f\|$$

According to (6), we have

$$\begin{split} |\Phi(\zeta \otimes \mathbf{1} - \mathbf{1} \otimes \zeta)| &\leq |\Phi(\zeta \otimes \mathbf{1} - \mathbf{1} \otimes \zeta - F)| + |\Phi(F)| \\ &\leq \|\Phi\|_{\ker \Delta} \| \|\zeta \otimes \mathbf{1} - \mathbf{1} \otimes \zeta - F\| + 30\sqrt{27} \|F\| \varepsilon \\ &= \|\Phi\|_{\ker \Delta} \| \|\zeta - \mathbf{1} - f\| + 30\sqrt{27} \|f\| \varepsilon \\ &\leq \|\Phi\|_{\ker \Delta} \| \|\zeta - \mathbf{1} - f\| + 30\sqrt{27} (\|\zeta - \mathbf{1} - f\| + 2)\varepsilon \end{split}$$

(as $||f|| \leq ||\zeta - \mathbf{1} - f|| + ||\zeta - \mathbf{1}||$). Further, this inequality holds for each function from the set \mathcal{I} consisting of all functions $f \in A(\mathbb{T})$ such that f(z) = 0 for each $z \in E$. Consequently,

$$|\Phi(\zeta \otimes \mathbf{1} - \mathbf{1} \otimes \zeta)| \le \|\Phi\|_{\ker \Delta} \|\operatorname{dist}(\zeta - \mathbf{1}, \mathcal{I}) + 30\sqrt{27} (\operatorname{dist}(\zeta - \mathbf{1}, \mathcal{I}) + 2) \varepsilon.$$

On the other hand, it is shown at the beginning of the proof of [9, Corollary 3.3] that

$$\operatorname{dist}(\zeta - \mathbf{1}, \mathcal{I}) \leq 2 \sin \frac{\pi}{10},$$

and we thus get

$$\left|\Phi(\zeta \otimes \mathbf{1} - \mathbf{1} \otimes \zeta)\right| \le \left\|\Phi\right\|_{\ker \Delta} \left\|2\sin\frac{\pi}{10} + 30\sqrt{27}\left(2\sin\frac{\pi}{10} + 2\right)\varepsilon,\right.$$

which completes the proof. \Box

Lemma 3.2. Let $\Phi: A(\mathbb{T}^2) \to \mathbb{C}$ be a continuous linear functional, and let the constant $\varepsilon \geq 0$ be such that

$$f,g \in A(\mathbb{T}), fg = 0 \Rightarrow |\Phi(f \otimes g)| \le \varepsilon ||f|| ||g||.$$

Then

$$\left|\Phi\left(F-\mathbf{1}\otimes\Delta F\right)\right| \le 60\sqrt{27}\,\frac{1+\sin\frac{\pi}{10}}{1-2\sin\frac{\pi}{10}}\,\varepsilon\,\|F|$$

for each $F \in A(\mathbb{T}^2)$.

Proof. Fix $j, k \in \mathbb{Z}$. We claim that

$$\left|\Phi(\zeta^{j}\otimes\zeta^{k}-\mathbf{1}\otimes\zeta^{j+k})\right| \leq \left\|\Phi\right\|_{\ker\Delta} \left\|2\sin\frac{\pi}{10}+60\sqrt{27}\left(1+\sin\frac{\pi}{10}\right)\varepsilon.$$
 (11)

Of course, we are reduced to proving (11) for $j \neq 0$. We define $d_j \colon A(\mathbb{T}) \to A(\mathbb{T})$, and $D_j, L_k \colon A(\mathbb{T}^2) \to A(\mathbb{T}^2)$ by

$$d_j f(z) = f(z^j) \quad \forall f \in A(\mathbb{T}), \ \forall z \in \mathbb{T}$$

and

$$D_j F(z,w) = F(z^j,w^j), \quad L_k F(z,w) = F(z,w)w^k \quad \forall F \in A(\mathbb{T}^2), \ \forall z,w \in \mathbb{T},$$

respectively. Further, we consider the continuous linear functional $\Phi \circ L_k \circ D_j$. If $f, g \in A(\mathbb{T})$ are such that fg = 0, then $(d_j f)(\zeta^k d_j g) = \zeta^k d_j (fg) = 0$, and so, by hypothesis,

$$|\Phi \circ L_k \circ D_j(f \otimes g)| = \left|\Phi(d_j f \otimes \zeta^k d_j g)\right| \le \varepsilon \left\|d_j f\right\| \left\|\zeta^k d_j g\right\| = \varepsilon \left\|f\right\| \left\|g\right\|$$

By applying Lemma 3.1, we obtain

$$\begin{aligned} \left| \Phi(\zeta^{j} \otimes \zeta^{k} - \mathbf{1} \otimes \zeta^{j+k}) \right| &= \left| \Phi \circ L_{k} \circ D_{j}(\zeta \otimes \mathbf{1} - \mathbf{1} \otimes \zeta) \right| \\ &\leq \left\| \Phi \circ L_{k} \circ D_{j} \right\|_{\ker \Delta} \left\| 2 \sin \frac{\pi}{10} + 60\sqrt{27} \left(1 + \sin \frac{\pi}{10} \right) \varepsilon. \end{aligned}$$

We check at once that $(L_k \circ D_j)(\ker \Delta) \subset \ker \Delta$, which gives

$$\left\| \Phi \circ L_k \circ D_j \right\|_{\ker \Delta} \le \left\| \Phi \right\|_{\ker \Delta}$$

and therefore (11) is proved.

Take $F \in A(\mathbb{T}^2)$. Then

$$F = \sum_{j,k=-\infty}^{\infty} \widehat{F}(j,k)\zeta^j \otimes \zeta^k$$

and

$$\Delta F = \sum_{j,k=-\infty}^{\infty} \widehat{F}(j,k) \zeta^{j+k}$$

Consequently,

$$\Phi(F - \mathbf{1} \otimes \Delta F) = \sum_{j,k=-\infty}^{\infty} \widehat{F}(j,k) \Phi(\zeta^j \otimes \zeta^k - \mathbf{1} \otimes \zeta^{j+k}),$$

and (11) gives

$$\begin{aligned} |\Phi(F - \mathbf{1} \otimes \Delta F)| &\leq \sum_{j,k=-\infty}^{\infty} \left| \widehat{F}(j,k) \right| \left| \Phi(\zeta^{j} \otimes \zeta^{k} - \mathbf{1} \otimes \zeta^{j+k}) \right| \\ &\leq \sum_{j,k=-\infty}^{\infty} \left| \widehat{F}(j,k) \right| \left[\left\| \Phi \right\|_{\ker \Delta} \left\| 2 \sin \frac{\pi}{10} + 60\sqrt{27} \left(1 + \sin \frac{\pi}{10} \right) \varepsilon \right] \end{aligned} \tag{12}$$
$$&= \|F\| \left[\left\| \Phi \right\|_{\ker \Delta} \left\| 2 \sin \frac{\pi}{10} + 60\sqrt{27} \left(1 + \sin \frac{\pi}{10} \right) \varepsilon \right]. \end{aligned}$$

In particular, for each $F \in \ker \Delta$, we have

$$\|\Phi(F)\| \le \|F\| \left[\|\Phi\|_{\ker \Delta} \|2\sin \frac{\pi}{10} + 60\sqrt{27} \left(1 + \sin \frac{\pi}{10}\right)\varepsilon \right].$$

Thus

$$\|\Phi\|_{\ker\Delta}\| \le \|\Phi\|_{\ker\Delta}\| 2\sin\frac{\pi}{10} + 60\sqrt{27} \left(1 + \sin\frac{\pi}{10}\right)\varepsilon,$$

so that

$$\|\Phi\|_{\ker\Delta}\| \le 60\sqrt{27} \, \frac{1+\sin\frac{\pi}{10}}{1-2\sin\frac{\pi}{10}} \, \varepsilon.$$

Using this estimate in (12), we obtain

$$\begin{aligned} |\Phi(F - \mathbf{1} \otimes \Delta F)| &\leq ||F|| \left[60\sqrt{27} \, \frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}} \, \varepsilon 2 \sin\frac{\pi}{10} + 60\sqrt{27} \left(1 + \sin\frac{\pi}{10} \right) \varepsilon \right] \\ &= ||F|| \, 60\sqrt{27} \, \frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}} \, \varepsilon \end{aligned}$$

for each $F \in A(\mathbb{T}^2)$, which completes the proof. \Box

Theorem 3.3. Let G be a locally compact group. Then the Banach algebra $L^1(G)$ is strongly zero product determined and

$$\alpha_{L^1(G)} \le \beta_{L^1(G)} \le 60\sqrt{27} \, \frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}}$$

Proof. On account of Corollary 2.2, it suffices to prove that $L^1(G)$ has the strong property $\mathbb B$ with

$$\beta_{L^1(G)} \le 60\sqrt{27} \, \frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}},\tag{13}$$

because $L^1(G)$ has an approximate identity of bound 1. For this purpose set $\varphi \in \mathcal{B}^2(L^1(G), \mathbb{C})$.

Let $t \in G$, and let δ_t be the point mass measure at t on G. We define a contractive homomorphism $T: A(\mathbb{T}) \to M(G)$ by

$$T(u) = \sum_{k=-\infty}^{\infty} \widehat{u}(k) \delta_{t^k} \quad \forall u \in A(\mathbb{T}).$$

Take $f, h \in L^1(G)$ with ||f|| = ||h|| = 1, and define a continuous linear functional $\Phi: A(\mathbb{T}^2) \to \mathbb{C}$ by

$$\Phi(F) = \sum_{(j,k)\in\mathbb{Z}^2} \widehat{F}(j,k)\varphi(f*\delta_{t^j},\delta_{t^k}*h) \quad \forall F \in A(\mathbb{T}^2).$$

Further, if $u, v \in A(\mathbb{T})$, then

$$\Phi(u \otimes v) = \sum_{(j,k) \in \mathbb{Z}^2} \widehat{u}(j) \widehat{v}(k) \varphi(f * \delta_{t^j}, \delta_{t^k} * h) = \varphi(f * T(u), T(v) * h);$$

in particular, if uv = 0, then (f * T(u)) * (T(v) * h) = f * T(uv) * h = 0, and so

$$\begin{split} |\Phi(u \otimes v)| &= |\varphi(f * T(u), T(v) * h)| \le |\varphi|_{zp} \, \|f * T(u)\| \, \|T(v) * h\| \\ &\le |\varphi|_{zp} \, \|u\| \, \|v\| \, . \end{split}$$

By applying Lemma 3.2 with $F = \zeta \otimes \mathbf{1}$, we see that

$$|\varphi(f * \delta_t, h) - \varphi(f, \delta_t * h)| = |\Phi(\zeta \otimes \mathbf{1} - \mathbf{1} \otimes \zeta)| \le 60\sqrt{27} \, \frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}} \, |\varphi|_{zp} \, dz$$

We now take $g \in L^1(G)$ with ||g|| = 1. By multiplying the above inequality by |g(t)|, we arrive at

$$|\varphi(g(t)f * \delta_t, h) - \varphi(f, g(t)\delta_t * h)| \le 60\sqrt{27} \frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}} |\varphi|_{zp} |g(t)|.$$
(14)

Since the convolutions f * g and g * h can be expressed as

$$f * g = \int_{G} g(t)f * \delta_t dt,$$
$$g * h = \int_{G} g(t)\delta_t * h dt,$$

where the expressions on the right-hand side are considered as Bochner integrals of $L^1(G)$ -valued functions of t, it follows that

$$\varphi(f * g, h) - \varphi(f, g * h) = \int_{G} \left[\varphi(g(t)f * \delta_t, h) - \varphi(f, g(t)\delta_t * h)\right] dt.$$

From (14) we now deduce that

$$\begin{aligned} |\varphi(f*g,h) - \varphi(f,g*h)| &\leq \int_{G} |\varphi(g(t)f*\delta_{t},h) - \varphi(f,g(t)\delta_{t}*h)| \ dt \\ &\leq 60\sqrt{27} \, \frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}} \, |\varphi|_{zp} \int_{G} |g(t)| \ dt \\ &= 60\sqrt{27} \, \frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}} \, |\varphi|_{zp} \,. \end{aligned}$$

We thus get

$$|\varphi|_b \le 60\sqrt{27} \, \frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}} \, |\varphi|_{zp} \, ,$$

and (13) is proved. \Box

4. Algebras of approximable operators

Let X be a Banach space. Then we write $\mathcal{F}(X)$ for the two-sided ideal of $\mathcal{B}(X)$ consisting of finite-rank operators, and $\mathcal{A}(X)$ for the closure of $\mathcal{F}(X)$ in $\mathcal{B}(X)$ with respect to the operator norm. For each $x \in X$ and $\phi \in X^*$, we define $x \otimes \phi \in \mathcal{F}(X)$ by $(x \otimes \phi)(y) = \langle y, \phi \rangle x$ for each $y \in X$. A *finite, biorthogonal system* for X is a set

$$\{(x_j, \phi_k) : j, k = 1, \dots, n\}$$

with $x_1, \ldots, x_n \in X$ and $\phi_1, \ldots, \phi_n \in X^*$ such that

$$\langle x_j, \phi_k \rangle = \delta_{j,k} \quad \forall j,k \in \{1,\ldots,n\}.$$

Each such system defines an algebra homomorphism

$$\theta \colon \mathbb{M}_n \to \mathcal{F}(X), \quad (a_{j,k}) \mapsto \sum_{j,k=1}^n a_{j,k} x_j \otimes \phi_k,$$

where \mathbb{M}_n is the full matrix algebra of order n over \mathbb{C} . The identity matrix is denoted by I_n .

The Banach space X is said to have property (A) if there is a directed set Λ such that, for each $\lambda \in \Lambda$, there exists a finite, biorthogonal system

$$\left\{ (x_j^{\lambda}, \phi_k^{\lambda}) : j, k = 1, \dots, n_{\lambda} \right\}$$

for X with corresponding algebra homomorphism $\theta_{\lambda} \colon \mathbb{M}_{n_{\lambda}} \to \mathcal{F}(X)$ such that:

- (i) $\lim_{\lambda \in \Lambda} \theta_{\lambda}(I_{n_{\lambda}}) = I_X$ uniformly on the compact subsets of X;
- (ii) $\lim_{\lambda \in \Lambda} \theta_{\lambda}(I_{n_{\lambda}})^* = I_{X^*}$ uniformly on the compact subsets of X^* ;
- (iii) for each index $\lambda \in \Lambda$, there is a finite subgroup G_{λ} of the group of all invertible $n_{\lambda} \times n_{\lambda}$ matrices over \mathbb{C} whose linear span is all of $\mathbb{M}_{n_{\lambda}}$, such that

$$\sup_{\lambda \in \Lambda} \sup_{t \in G_{\lambda}} \|\theta_{\lambda}(t)\| < \infty.$$
(15)

Property (A) forces the Banach algebra $\mathcal{A}(X)$ to be amenable. For an exhaustive treatment of this topic (including a variety of interesting examples of spaces with property (A)) we refer to [12, Section 3.3].

The notation of the above definition will be standard for the remainder of this section. Furthermore, our basic reference for this section is the monograph [12].

Theorem 4.1. Let X be a Banach space with property (A). Then the Banach algebra $\mathcal{A}(X)$ is strongly zero product determined. Specifically, if C denotes the supremum in (15), then

$$\frac{1}{2}\beta_{\mathcal{A}(X)} \le \alpha_{\mathcal{A}(X)} \le 60\sqrt{27} \, \frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}} \, C^2.$$

Proof. For each $\lambda \in \Lambda$ we define $\Phi_{\lambda} \colon \ell^1(G_{\lambda}) \to \mathcal{F}(X)$ by

$$\Phi_{\lambda}(f) = \sum_{t \in G_{\lambda}} f(t) \theta_{\lambda}(t) \quad \forall f \in \ell^{1}(G_{\lambda}).$$

We claim that Φ_{λ} is an algebra homomorphism. It is clear the Φ_{λ} is a linear map and, for each $f, g \in \ell^1(G_{\lambda})$, we have

$$\begin{split} \Phi_{\lambda}(f*g) &= \sum_{t \in G_{\lambda}} (f*g)(t)\theta_{\lambda}(t) = \sum_{t \in G_{\lambda}} \sum_{s \in G_{\lambda}} f(s)g(s^{-1}t)\theta_{\lambda}(t) \\ &= \theta_{\lambda} \left(\sum_{t \in G_{\lambda}} \sum_{s \in G_{\lambda}} f(s)g(s^{-1}t)t \right) = \theta_{\lambda} \left(\sum_{s \in G_{\lambda}} f(s)s \sum_{t \in G_{\lambda}} g(s^{-1}t)s^{-1}t \right) \\ &= \theta_{\lambda} \left(\sum_{s \in G_{\lambda}} f(s)s \sum_{r \in G_{\lambda}} g(r)r \right) = \theta_{\lambda} \left(\sum_{s \in G_{\lambda}} f(s)s \right) \theta_{\lambda} \left(\sum_{r \in G_{\lambda}} g(r)r \right) \\ &= \Phi_{\lambda}(f)\Phi_{\lambda}(g). \end{split}$$

Of course, Φ_{λ} is continuous because $\ell^1(G_{\lambda})$ is finite-dimensional, and, further, for each $f \in \ell^1(G_{\lambda})$, we have

$$\left\|\Phi_{\lambda}(f)\right\| \leq \sum_{t \in G_{\lambda}} \left|f(t)\right| \left\|\theta_{\lambda}(t)\right\| \leq \sum_{t \in G_{\lambda}} \left|f(t)\right| C = C \left\|f\right\|_{1}.$$

Hence $\|\Phi_{\lambda}\| \leq C$.

Let $\varphi \in \mathcal{B}^2(\mathcal{A}(X), \mathbb{C})$. Let us prove that

$$\left|\varphi(S\theta_{\lambda}(t),\theta_{\lambda}(t^{-1})T) - \varphi(S\theta_{\lambda}(I_{n_{\lambda}}),\theta_{\lambda}(I_{n_{\lambda}})T)\right| \leq \beta_{\ell^{1}(G_{\lambda})}C^{2} \left\|S\right\| \left\|T\right\| \left|\varphi\right|_{zp}$$
(16)

for all $\lambda \in \Lambda$, $S, T \in \mathcal{A}(X)$, and $t \in G_{\lambda}$. For this purpose, take $\lambda \in \Lambda$ and $S, T \in \mathcal{A}(X)$, and define $\varphi_{\lambda} \colon \ell^{1}(G_{\lambda}) \times \ell^{1}(G_{\lambda}) \to \mathbb{C}$ by

$$\varphi_{\lambda}(f,g) = \varphi(S\Phi_{\lambda}(f), \Phi_{\lambda}(g)T) \quad \forall f, g \in \ell^{1}(G_{\lambda}).$$

Then φ_{λ} is continuous and, for each $f, g \in \ell^1(G_{\lambda})$ such that f * g = 0, we have $(S\Phi_{\lambda}(f))(\Phi_{\lambda}(g)T) = S(\Phi_{\lambda}(f * g))T = 0$ and therefore

$$|\varphi_{\lambda}(f,g)| \le |\varphi|_{zp} \|S\Phi_{\lambda}(f)\| \|\Phi_{\lambda}(g)T\| \le |\varphi|_{zp} C^{2} \|S\| \|T\| \|f\|_{1} \|g\|_{1},$$

whence

$$\left|\varphi_{\lambda}\right|_{zp} \leq C^2 \left\|S\right\| \left\|T\right\| \left|\varphi\right|_{zp}.$$

For each $t \in G_{\lambda}$, we have

$$\begin{split} \left| \varphi_{\lambda}(\delta_{t}, \delta_{t^{-1}}) - \varphi_{\lambda}(\delta_{I_{n_{\lambda}}}, \delta_{I_{n_{\lambda}}}) \right| &= \left| \varphi_{\lambda}(\delta_{I_{n_{\lambda}}} \ast \delta_{t}, \delta_{t^{-1}}) - \varphi_{\lambda}(\delta_{I_{n_{\lambda}}}, \delta_{t} \ast \delta_{t^{-1}}) \right| \leq \\ \left| \varphi_{\lambda} \right|_{b} \leq \beta_{\ell^{1}(G_{\lambda})} \left| \varphi_{\lambda} \right|_{zp} \leq \beta_{\ell^{1}(G_{\lambda})} C^{2} \left\| S \right\| \left\| T \right\| \left| \varphi \right|_{zp}, \end{split}$$

which gives (16).

The projective tensor product $\mathcal{A}(X)\widehat{\otimes}\mathcal{A}(X)$ becomes a Banach $\mathcal{A}(X)$ -bimodule for the products defined by

$$R \cdot (S \otimes T) = (RS) \otimes T, \quad (S \otimes T) \cdot R = S \otimes (TR) \quad \forall R, S, T \in \mathcal{A}(X).$$

We define a continuous linear functional $\widehat{\varphi} \in (\mathcal{A}(X)\widehat{\otimes}\mathcal{A}(X))^*$ through

$$\langle S \otimes T, \widehat{\varphi} \rangle = \varphi(S, T) \quad \forall S, T \in \mathcal{A}(X).$$

For each $\lambda \in \Lambda$, set $P_{\lambda} = \theta_{\lambda}(I_{n_{\lambda}})$ and

$$D_{\lambda} = \frac{1}{|G_{\lambda}|} \sum_{t \in G_{\lambda}} \theta_{\lambda}(t) \otimes \theta_{\lambda}(t^{-1}).$$

Then $(P_{\lambda})_{\lambda \in \Lambda}$ is a bounded approximate identity for $\mathcal{A}(X)$ and $(D_{\lambda})_{\lambda \in \Lambda}$ is an approximate diagonal for $\mathcal{A}(X)$ (see [12, Theorem 3.3.9]), so that $(||S \cdot D_{\lambda} - D_{\lambda} \cdot S||)_{\lambda \in \Lambda} \to 0$ for each $S \in \mathcal{A}(X)$.

For each $\lambda \in \Lambda$ and $S, T \in \mathcal{A}(X)$, (16) shows that

$$\left| \langle S \cdot D_{\lambda} \cdot T, \widehat{\varphi} \rangle - \varphi(SP_{\lambda}, P_{\lambda}T) \right|$$

= $\left| \frac{1}{|G_{\lambda}|} \sum_{t \in G_{\lambda}} \left[\varphi(S\theta_{\lambda}(t), \theta_{\lambda}(t^{-1})T) - \varphi(S\theta_{\lambda}(I_{n_{\lambda}}), \theta_{\lambda}(I_{n_{\lambda}})T) \right] \right|$
 $\leq \beta_{\ell^{1}(G_{\lambda})} C^{2} ||S|| ||T|| |\varphi|_{zp}$

and Theorem 3.3 then gives

$$\left|\left\langle S \cdot D_{\lambda} \cdot T, \widehat{\varphi}\right\rangle - \varphi(SP_{\lambda}, P_{\lambda}T)\right| \le 60\sqrt{27} \frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}} C^2 \left\|S\right\| \left\|T\right\| \left|\varphi\right|_{zp}.$$
 (17)

For each $\lambda \in \Lambda$, define $\xi_{\lambda} \in \mathcal{A}(X)^*$ by

$$\langle T, \xi_{\lambda} \rangle = \langle D_{\lambda} \cdot T, \widehat{\varphi} \rangle \quad \forall T \in \mathcal{A}(X).$$

Note that

$$\|\xi_{\lambda}\| \le \|\widehat{\varphi}\| \|D_{\lambda}\| \le \|\varphi\| C^2 \quad \forall \lambda \in \Lambda$$

and therefore $(\xi_{\lambda})_{\lambda \in \Lambda}$ is a bounded net in $\mathcal{A}(X)^*$. By the Banach–Alaoglu theorem the net $(\xi_{\lambda})_{\lambda \in \Lambda}$ has a weak*-accumulation point, say ξ , in $\mathcal{A}(X)^*$. Take a subnet $(\xi_{\nu})_{\nu \in N}$ of $(\xi_{\lambda})_{\lambda \in \Lambda}$ such that w*-lim_{$\nu \in N$} $\xi_{\nu} = \xi$. Take $S, T \in \mathcal{A}(X)$. For each $\nu \in N$, we have

$$\varphi(SP_{\nu}, P_{\nu}T) - \xi_{\lambda}(ST) =$$
$$\varphi(SP_{\nu}, P_{\nu}T) - \langle S \cdot D_{\nu} \cdot T, \widehat{\varphi} \rangle + \langle (S \cdot D_{\nu} - D_{\nu} \cdot S) \cdot T, \widehat{\varphi} \rangle$$

so that (17) gives

$$\begin{split} |\varphi(SP_{\nu},P_{\nu}T) - \langle ST,\xi_{\lambda}\rangle| \leq \\ 60\sqrt{27} \, \frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}} \, C^2 \, \|S\| \, \|T\| \, |\varphi|_{zp} + \|\varphi\| \, \|S \cdot D_{\nu} - D_{\nu} \cdot S\| \, \|T\| \, . \end{split}$$

Taking limits on both sides of the above inequality, and using that $(SP_{\nu})_{\nu \in N} \to S$, $(P_{\nu}T)_{\nu \in N} \to T$, and $(||S \cdot D_{\nu} - D_{\nu} \cdot S||)_{\nu \in N} \to 0$, we see that

$$|\varphi(S,T) - \langle ST,\xi\rangle| \le 60\sqrt{27} \,\frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}} \,C^2 \,\|S\| \,\|T\| \,|\varphi|_{zp} \,.$$

We thus get

$$\operatorname{dist}\left(\varphi, \mathcal{B}_{\pi}^{2}(\mathcal{A}(X), \mathbb{C})\right) \leq 60\sqrt{27} \, \frac{1 + \sin \frac{\pi}{10}}{1 - 2\sin \frac{\pi}{10}} \, C^{2} \, |\varphi|_{zp} \,,$$

which proves the theorem. \Box

The hyperreflexivity of the space $\mathcal{Z}^n(A, X)$ of continuous *n*-cocycles from A into X, where A is a C^* -algebra or a group algebra and X is a Banach A-bimodule has been already studied in [15, Theorem 4.4]. We conclude this section with a look at the hyperreflexivity of the space $\mathcal{Z}^n(\mathcal{A}(X), Y^*)$. For this purpose we introduce some terminology.

Let A be a Banach algebra, and let X be a Banach A-bimodule. Set

$$L_X = \sup\{\|a \cdot x\| : x \in X, \ a \in A, \ \|x\| = \|a\| = 1\}$$

and

$$R_X = \sup\{\|x \cdot a\| : x \in X, \ a \in A, \ \|x\| = \|a\| = 1\}.$$

For each $n \in \mathbb{N}$, let $\delta^n \colon \mathcal{B}^n(A, X) \to \mathcal{B}^{n+1}(A, X)$ be the *n*-coboundary operator defined by

$$(\delta^{n}T)(a_{1},\ldots,a_{n+1}) = a_{1} \cdot T(a_{2},\ldots,a_{n+1}) + \sum_{k=1}^{n} (-1)^{k}T(a_{1},\ldots,a_{k}a_{k+1},\ldots,a_{n+1}) + (-1)^{n+1}T(a_{1},\ldots,a_{n}) \cdot a_{n+1}$$

for all $T \in \mathcal{B}^n(A, X)$ and $a_1, \ldots, a_{n+1} \in A$. Further, $\delta^0 \colon X \to \mathcal{B}(A, X)$ is defined by

$$(\delta^0 x)(a) = a \cdot x - x \cdot a \quad \forall x \in X, \ \forall a \in A.$$

The space of continuous *n*-cocycles, $\mathcal{Z}^n(A, X)$, is defined as ker δ^n . The space of continuous *n*-coboundaries, $\mathcal{N}^n(A, X)$, is the range of δ^{n-1} . Then $\mathcal{N}^n(A, X) \subset \mathcal{Z}^n(A, X)$, and

the quotient $\mathcal{H}^n(A, X) = \mathcal{Z}^n(A, X) / \mathcal{N}^n(A, X)$ is the n^{th} Hochschild cohomology group. For each $T \in \mathcal{B}^n(A, X)$, the constant

$$\operatorname{dist}_{r}(T, \mathcal{Z}^{n}(A, X)) := \\ \sup_{\|a_{1}\| = \dots = \|a_{n}\| = 1} \inf \left\{ \|T(a_{1}, \dots, a_{n}) - S(a_{1}, \dots, a_{n})\| : S \in \mathcal{Z}^{n}(A, X) \right\}$$

is intended to estimate the usual distance from T to $\mathcal{Z}^n(A, X)$, and, in accordance with [14,15], the space $\mathcal{Z}^n(A, X)$ is called hyperreflexive if there exists a constant Ksuch that

$$\operatorname{dist}(T, \mathcal{Z}^n(A, X)) \leq K \operatorname{dist}_r(T, \mathcal{Z}^n(A, X)) \quad \forall T \in \mathcal{B}^n(A, X).$$

The inequality dist_r $(T, \mathcal{Z}^n(A, X)) \leq dist(T, \mathcal{Z}^n(A, X))$ is always true.

Proposition 4.2. Let A be a C-amenable Banach algebra, and let X be a Banach Abimodule. Then there exist projections $P, Q \in \mathcal{B}(X^*)$ onto $(X \cdot A)^{\perp}$ and $(A \cdot X)^{\perp}$, respectively, with $\|P\| \leq 1 + R_X C$, $\|Q\| \leq 1 + L_X C$, and such that

$$dist(T, \mathcal{Z}^{1}(A, X^{*})) \leq C(R_{X} + L_{X} ||P|| + ||P|| ||Q||) ||\delta^{1}T||$$

for all $T \in \mathcal{B}(A, X^*)$. In particular, if the module X is essential, then

$$\operatorname{dist}(T, \mathcal{Z}^1(A, X^*)) \le R_X C \|\delta^1 T\|$$

for all $T \in \mathcal{B}(A, X^*)$.

Proof. The Banach algebra A has a virtual diagonal D with $||D|| \leq C$. This is an element $D \in (A \widehat{\otimes} A)^{**}$ such that, for each $a \in A$, we have

$$a \cdot \mathbf{D} = \mathbf{D} \cdot a \quad \text{and} \quad a \cdot \hat{\pi}^{**}(\mathbf{D}) = a.$$
 (18)

Here, the Banach space $A \widehat{\otimes} A$ turns into a contractive Banach A-bimodule with respect to the operations defined through

$$(a \otimes b)c = a \otimes bc, \ c(a \otimes b) = ca \otimes b \quad \forall a, b, c \in A,$$

and both $(A \widehat{\otimes} A)^{**}$ and A^{**} are considered as dual A-bimodules in the usual way. The map $\widehat{\pi} : A \widehat{\otimes} A \to A$ is the projective induced product map defined through

$$\widehat{\pi}(a \otimes b) = ab \quad \forall a, b \in A.$$

For each $\varphi \in \mathcal{B}^2(A, \mathbb{C})$ there exists a unique element $\widehat{\varphi} \in (A \widehat{\otimes} A)^*$ such that

$$\widehat{\varphi}(a \otimes b) = \varphi(a, b) \quad \forall a, b \in A,$$

and we use the formal notation

$$\int_{A \times A} \varphi(u, v) \, d\mathbf{D}(u, v) := \langle \widehat{\varphi}, \mathbf{D} \rangle.$$

Using this notation, the properties (18) can be written as

$$\int_{A \times A} \varphi(au, v) \, d\mathbf{D}(u, v) = \int_{A \times A} \varphi(u, va) \, d\mathbf{D}(u, v) \tag{19}$$

and

$$\int_{A \times A} \langle auv, \xi \rangle \, d\mathbf{D}(u, v) = \langle a, \xi \rangle \tag{20}$$

for all $\varphi \in \mathcal{B}^2(A, \mathbb{C})$, $a \in A$, and $\xi \in A^*$; further, it will be helpful noting that

$$\left| \int_{A \times A} \varphi(u, v) \, d\mathbf{D}(u, v) \right| \le \|\mathbf{D}\| \|\widehat{\varphi}\| \le C \|\varphi\|.$$
(21)

We proceed to define the projections P and Q. For this purpose we first define $P_0, Q_0 \in \mathcal{B}(X^*)$ by

$$\langle x, P_0 \xi \rangle = \int_{A \times A} \langle x \cdot (uv), \xi \rangle \, d\mathbf{D}(u, v),$$

$$\langle x, Q_0 \xi \rangle = \int_{A \times A} \langle (uv) \cdot x, \xi \rangle \, d\mathbf{D}(u, v)$$

for all $x \in X$ and $\xi \in X^*$, and set

$$P = I_{X^*} - P_0, \quad Q = I_{X^*} - Q_0.$$

From (21) we obtain $||P_0|| \leq R_X C$ and $||Q_0|| \leq L_X C$, so that $||P|| \leq 1 + R_X C$ and $||Q|| \leq 1 + L_X C$.

We claim that

$$a \cdot P_0 \xi = P_0(a \cdot \xi) = a \cdot \xi, \tag{22}$$

$$P_0\xi \cdot a = P_0(\xi \cdot a) \tag{23}$$

for all $a \in A$ and $\xi \in X^*$. Indeed, for $a \in A$, $\xi \in X^*$, and each $x \in X$, (19) and (20) gives

$$\begin{split} \langle x, a \cdot P_0 \xi \rangle &= \langle x \cdot a, P_0 \xi \rangle = \int_{A \times A} \langle x \cdot (auv), \xi \rangle \, d\mathbf{D}(u, v) \\ &= \langle x \cdot a, \xi \rangle = \langle x, a \cdot \xi \rangle, \\ \langle x, P_0(a \cdot \xi) \rangle &= \int_{A \times A} \langle x \cdot (uv), a \cdot \xi \rangle \, d\mathbf{D}(u, v) \\ &= \int_{A \times A} \langle x \cdot (uva), \xi \rangle \, d\mathbf{D}(u, v) \\ &= \int_{A \times A} \langle x \cdot (auv), \xi \rangle \, d\mathbf{D}(u, v) = \langle x, a \cdot \xi \rangle, \end{split}$$

and

$$\begin{split} \langle x, P_0 \xi \cdot a \rangle &= \langle a \cdot x, P_0 \xi \rangle = \int\limits_{A \times A} \langle (a \cdot x) \cdot (uv), \xi \rangle \, d\mathbf{D}(u, v) \\ &= \int\limits_{A \times A} \langle x \cdot (uv), \xi \cdot a \rangle \, d\mathbf{D}(u, v) = \langle x, P_0(\xi \cdot a) \rangle, \end{split}$$

which proves (22) and (23). From (22) we deduce that

$$\langle x \cdot a, P\xi \rangle = \langle x, a \cdot \xi - a \cdot P_0 \xi \rangle = 0,$$

and so $P\xi \in (X \cdot A)^{\perp}$. Further, if $\xi \in (X \cdot A)^{\perp}$, then

$$\langle x, P_0 \xi \rangle = \int_{A \times A} \langle \underbrace{x \cdot (uv)}_{\in X \cdot A}, \xi \rangle d\mathbf{D}(u, v) = 0,$$

and so $P\xi = \xi$. The operator P is a projection onto $(X \cdot A)^{\perp}$. From (22) we deduce immediately that

$$P(A \cdot X^*) = \{0\}.$$
 (24)

The operator Q can be handled in much the same way as P, and we obtain

$$Q_0 \xi \cdot a = Q_0(\xi \cdot a) = \xi \cdot a,$$
$$a \cdot Q_0 \xi = Q_0(a \cdot \xi)$$

for all $a \in A$ and $\xi \in X^*$, the operator Q is a projection onto $(A \cdot X)^{\perp}$, and

$$Q(X^* \cdot A) = \{0\}.$$
 (25)

Set $T \in \mathcal{B}(A, X^*)$, and define $\phi \in X^*$ by

$$\langle x, \phi \rangle = \int_{A \times A} \langle x, u \cdot T(v) \rangle \, d\mathbf{D}(u, v) \quad \forall x \in X.$$

For each $x \in X$ and $a \in A$ we have

$$\langle x, P_0 T(a) \rangle = \int_{A \times A} \langle x \cdot (uv), T(a) \rangle \, d\mathbf{D}(u, v) = \int_{A \times A} \langle x, (uv) \cdot T(a) \rangle \, d\mathbf{D}(u, v)$$

and

$$\begin{split} \langle x, (\delta^0 \phi)(a) \rangle &= \langle x, a \cdot \phi - \phi \cdot a \rangle = \langle x \cdot a - a \cdot x, \phi \rangle \\ &= \int\limits_{A \times A} \langle x \cdot a - a \cdot x, u \cdot T(v) \rangle \, d\mathbf{D}(u, v) \\ &= \int\limits_{A \times A} \langle x, (au) \cdot T(v) - u \cdot T(v) \cdot a \rangle \, d\mathbf{D}(u, v) \\ &= \int\limits_{A \times A} \langle x, u \cdot T(va) - u \cdot T(v) \cdot a \rangle \, d\mathbf{D}(u, v), \end{split}$$

so that

$$\begin{aligned} \langle x, (P_0T - \delta^0 \phi)(a) \rangle &= \int\limits_{A \times A} \langle x, u \cdot (\delta^1 T)(v, a) \rangle \, d\mathbf{D}(u, v) \\ &= \int\limits_{A \times A} \langle x \cdot u, (\delta^1 T)(v, a) \rangle \, d\mathbf{D}(u, v). \end{aligned}$$

From the latter identity and (21) we conclude that

$$|\langle x, (P_0T - \delta^0 \phi)(a) \rangle| \le CR_X \|\delta^1 T\| \|a\| \|x\|,$$

whence

$$\|P_0T - \delta^0\phi\| \le CR_X \|\delta^1 T\|.$$
(26)

Write S = PT. From (22) and (23) it follows that $\delta^1 S(a, b) = P \delta^1 T(a, b)$, and so

$$\|\delta^1 S\| \le \|P\| \|\delta^1 T\|.$$
(27)

We now define $\psi \in X^*$ by

$$\langle x,\psi\rangle = \int_{A\times A} \langle x,S(u)\cdot v\rangle \, d\mathcal{D}(u,v) \quad \forall x\in X.$$

For each $x \in X$ and $a \in A$ we have

$$\langle x, Q_0 S(a) \rangle = \int_{A \times A} \langle (uv) \cdot x, S(a) \rangle \, d\mathbf{D}(u, v) = \int_{A \times A} \langle x, S(a) \cdot (uv) \rangle \, d\mathbf{D}(u, v)$$

and

$$\begin{split} \langle x, (\delta^0 \psi)(a) \rangle &= \langle x, a \cdot \psi - \psi \cdot a \rangle = \langle x \cdot a - a \cdot x, \psi \rangle \\ &= \int_{A \times A} \langle x \cdot a - a \cdot x, S(u) \cdot v \rangle \, d\mathbf{D}(u, v) \\ &= \int_{A \times A} \langle x, a \cdot S(u) \cdot v - S(u) \cdot (va) \rangle \, d\mathbf{D}(u, v) \\ &= \int_{A \times A} \langle x, a \cdot S(u) \cdot v - S(au) \cdot v \rangle \, d\mathbf{D}(u, v), \end{split}$$

and hence

$$\begin{split} \langle x, (Q_0 S + \delta^0 \psi)(a) \rangle &= \int\limits_{A \times A} \langle x, (\delta^1 S)(a, u) \cdot v \rangle \, d\mathbf{D}(u, v) \\ &= \int\limits_{A \times A} \langle v \cdot x, (\delta^1 S)(a, u) \rangle \, d\mathbf{D}(u, v). \end{split}$$

From the latter identity and (21) we conclude that

 $|\langle x, (Q_0S + \delta^0\psi)(a)\rangle| \le CL_X \|\delta^1S\|\|a\|\|x\|.$

Thus $||Q_0S + \delta^0\psi|| \le CL_X ||\delta^1S||$ and (27) then gives

$$||Q_0 S + \delta^0 \psi|| \le C L_X ||P|| ||\delta^1 T||.$$
(28)

Our next goal is to estimate $\|QPT\|$. For each $u, v, a \in A$, we have

$$\delta^1 T(a, uv) = a \cdot T(uv) - T(auv) + T(a) \cdot (uv),$$

(23) and (24) gives

$$P(\delta^{1}T(a,uv)) = \underbrace{P(a \cdot T(uv))}_{=0} - PT(auv) + PT(a) \cdot (uv),$$

and finally (25) yields

$$QP(\delta^{1}T(a,uv)) = -QPT(auv) + \underbrace{Q(PT(a) \cdot (uv))}_{=0} = -QPT(auv).$$

We thus get

$$\begin{split} \langle x, QPT(a) \rangle &= \int\limits_{A \times A} \langle x, QPT(auv) \rangle \, d\mathbf{D}(u, v) \\ &= \int\limits_{A \times A} \langle x, -QP(\delta^1 T)(a, uv) \rangle \, d\mathbf{D}(u, v) \end{split}$$

and (21) implies

 $|\langle x, QPT(a)\rangle| \leq C \|QP(\delta^1 T)\| \|x\| \|a\| \leq C \|Q\| \|P\| \|\delta^1 T\| \|x\| \|a\|.$

Hence

$$\|QPT\| \le C \|Q\| \|P\| \|\delta^1 T\|.$$
(29)

Finally, since

$$T - \delta^0 \phi + \delta^0 \psi = QPT + (P_0T - \delta^0 \phi) + (Q_0PT + \delta^0 \psi),$$

(26), (28), and (29) show that

$$\begin{aligned} \|T - \delta^0 \phi + \delta^0 \psi\| &\leq \|P_0 T - \delta^0 \phi\| + \|Q_0 P T + \delta^0 \psi\| + \|Q P T\| \\ &\leq C R_X \|\delta^1 T\| + C L_X \|P\| \|\delta^1 T\| + C \|Q\| \|P\| \|\delta^1 T\|. \end{aligned}$$

Since $-\delta^0 \phi + \delta^0 \psi \in \mathcal{Z}^1(A, X^*)$, it follows that

$$dist(T, \mathcal{Z}^{1}(A, X^{*})) \leq CR_{X} \|\delta^{1}T\| + CL_{X} \|P\| \|\delta^{1}T\| + C\|Q\| \|P\| \|\delta^{1}T\|$$

as required. \Box

Corollary 4.3. Let A be a C-amenable Banach algebra, let X be a Banach A-bimodule, and let $n \in \mathbb{N}$. Then

$$\operatorname{dist}(T, \mathcal{Z}^n(A, X^*)) \le 2(n + L_X)(1 + R_X)C^3 \|\delta^n T\|$$

for each $T \in \mathcal{B}^n(A, X^*)$.

Proof. Of course, we need only consider the case where A is a non-zero Banach algebra, which implies that $C \ge 1$.

Suppose that n = 1, and $T \in \mathcal{B}(A, X^*)$. By Proposition 4.2,

$$dist(T, \mathcal{Z}^{1}(A, X^{*})) \leq C(R_{X} + L_{X}(1 + R_{X}C) + (1 + L_{X}C)(1 + R_{X}C)) \|\delta^{1}T\|$$

$$\leq 2(1 + L_{X})(1 + R_{X})C^{3}\|\delta^{1}T\|,$$

as $C \geq 1$.

The Banach space $\mathcal{B}^n(A, X^*)$ is a Banach A-bimodule with respect to the operations

$$(a \cdot T)(a_1, \ldots, a_n) = a \cdot T(a_1, \ldots, a_n)$$

and

$$(T \cdot a)(a_1, \dots, a_n) = T(aa_1, \dots, a_n) + \sum_{k=1}^{n-1} (-1)^k T(a, a_1, \dots, a_k a_{k+1}, \dots, a_n) + (-1)^n T(a, a_1, \dots, a_{n-1}) \cdot a_n$$

for all $T \in \mathcal{B}^n(A, X^*)$, and $a, a_1, \ldots, a_n \in A$. Let

$$\Delta^1 \colon \mathcal{B}(A, \mathcal{B}^n(A, X^*)) \to \mathcal{B}^2(A, \mathcal{B}^n(A, X^*))$$

be the 1-coboundary operator. We also consider the maps

$$\begin{aligned} \tau_1^n \colon \mathcal{B}^{1+n}(A, X^*) &\to \mathcal{B}(A, \mathcal{B}^n(A, X^*)), \\ \tau_2^n \colon \mathcal{B}^{2+n}(A, X^*) \to \mathcal{B}^2(A, \mathcal{B}^n(A, X^*)) \end{aligned}$$

defined by

$$(\tau_1^n T)(a)(a_1, \dots, a_n) = T(a, a_1, \dots, a_n),$$

$$(\tau_2^n T)(a, b)(a_1, \dots, a_n) = T(a, b, a_1, \dots, a_n).$$

Then:

- τ_1^n and τ_2^n are isometric isomorphisms; $\Delta^1 \circ \tau_1^n = \tau_2^n \circ \delta^{n+1}$; $\tau_1^n \mathcal{Z}^{n+1}(A, X^*) = \mathcal{Z}^1(A, \mathcal{B}^n(A, X^*))$.

For each $T \in \mathcal{B}^{1+n}(A, X^*)$ we have

$$\operatorname{dist}(T, \mathcal{Z}^{n+1}(A, X^*)) = \operatorname{dist}(\tau_1^n T, \tau_1^n \mathcal{Z}^{n+1}(A, X^*))$$
$$= \operatorname{dist}(\tau_1^n T, \mathcal{Z}^1(A, \mathcal{B}^n(A, X^*))).$$
(30)

Our next objective is to apply Proposition 4.2 to estimate the distance of the last term in (30). To this end, we realize that $\mathcal{B}^n(A, X^*)$ is a dual Banach A-bimodule by setting

$$Y = \underbrace{A\widehat{\otimes}\cdots\widehat{\otimes}A}_{n\text{-times}}\widehat{\otimes}X.$$

Then:

• Y is a Banach A-bimodule with respect to the operations

$$(a_1 \otimes \cdots \otimes a_n \otimes x) \cdot a = a_1 \otimes \cdots \otimes a_n \otimes (x \cdot a)$$

and

$$a \cdot (a_1 \otimes \cdots \otimes a_n \otimes x) = (aa_1) \otimes \cdots \otimes a_n \otimes x$$

+
$$\sum_{k=1}^{n-1} (-1)^k a \otimes a_1 \otimes \cdots \otimes (a_k a_{k+1}) \otimes \cdots \otimes a_n \otimes x$$

+
$$(-1)^n a \otimes a_1 \otimes \cdots \otimes a_{n-1} \otimes (a_n \cdot x)$$

for all $a, a_1, \ldots, a_n \in A$, and $x \in X$;

• we have the estimates

$$L_Y \le n + L_X, \quad R_Y \le R_X;$$

• the Banach A-bimodule $\mathcal{B}^n(A, X^*)$ is isometrically isomorphic to the Banach A-bimodule Y^* through the duality

$$\langle a_1 \otimes \cdots \otimes a_n \otimes x, T \rangle = \langle x, T(a_1, \dots, a_n) \rangle$$

for all $T \in \mathcal{B}^n(A, X^*)$, $a_1, \ldots, a_n \in A$, and $x \in X$.

Proposition 4.2 now leads to

$$dist(\tau_1^n T, \mathcal{Z}^1(A, \mathcal{B}^n(A, X^*))) = dist(\tau_1^n T, \mathcal{Z}^1(A, Y^*))$$

$$\leq 2(1 + L_Y)(1 + R_Y)C^3 \|\Delta^1 \tau_1^n T\|$$

$$\leq 2(1 + n + L_X)(1 + R_X)C^3 \|\Delta^1 \tau_1^n T\|$$

$$= 2(1 + n + L_X)(1 + R_X)C^3 \|\tau_2^n \delta^{n+1} T\|$$

$$= 2(1 + n + L_X)(1 + R_X)C^3 \|\delta^{n+1} T\|.$$

Combining (30) with the inequality above, we obtain precisely the estimate of the corollary. $\hfill\square$

Theorem 4.4. Let X be a Banach space with property (\mathbb{A}) , let Y be a Banach $\mathcal{A}(X)$ bimodule, and let $n \in \mathbb{N}$. Then the space $\mathcal{Z}^n(\mathcal{A}(X), Y^*)$ is hyperreflexive. Specifically, if C denotes the supremum in (15), then

$$\operatorname{dist}(T, \mathcal{Z}^{n}(\mathcal{A}(X), Y^{*})) \leq (n + L_{Y})(1 + R_{Y})C^{6}2^{n} (C^{2}\beta_{\mathcal{A}(X)} + (C + 1)^{2})^{n+1} \operatorname{dist}_{r}(T, \mathcal{Z}^{n}(\mathcal{A}(X), Y^{*}))$$

for each $T \in \mathcal{B}^n(\mathcal{A}(X), Y^*)$, where

$$\beta_{\mathcal{A}(X)} \le 120\sqrt{27} \, \frac{1 + \sin\frac{\pi}{10}}{1 - 2\sin\frac{\pi}{10}} \, C^2.$$

Proof. From Theorem 4.1 we see that $\mathcal{A}(X)$ has the strong property \mathbb{B} and the estimate for $\beta_{\mathcal{A}(X)}$ holds.

The Banach algebra $\mathcal{A}(X)$ has an approximate identity of bound C. Further, for each $T \in \mathcal{F}(X)$ there exists $S \in \mathcal{F}(X)$ such that ST = TS = T, and [14, Proposition 5.4] then shows that $\mathcal{A}(X)$ has bounded local units.

By [12, Theorem 3.3.9], $\mathcal{A}(X)$ is C^2 -amenable, and Corollary 4.3 now gives

$$\operatorname{dist}(T, \mathcal{Z}^n(\mathcal{A}(X), Y^*)) \le 2(n + L_Y)(1 + R_Y)C^6 \|\delta^n T\|$$

for each $T \in \mathcal{B}^n(\mathcal{A}(X), Y^*)$. This estimate shows that the map

$$\mathcal{B}^{n}(\mathcal{A}(X), Y^{*})/\mathcal{Z}^{n}(\mathcal{A}(X), Y^{*}) \to \mathcal{N}^{n+1}(\mathcal{A}(X), Y^{*})$$
$$T + \mathcal{Z}^{n}(\mathcal{A}(X), Y^{*}) \mapsto \delta^{n}T$$

is an isomorphism, hence $\mathcal{N}^{n+1}(\mathcal{A}(X), Y^*)$ is closed in $\mathcal{B}^{n+1}(\mathcal{A}(X), Y^*)$ and this implies that the *n*th Hochschild cohomology group $\mathcal{H}^{n+1}(\mathcal{A}(X), Y^*)$ is a Banach space. By applying [15, Theorem 4.3] we obtain the hyperreflexivity of the space $\mathcal{Z}^n(\mathcal{A}(X), Y^*)$ as well as the statement about the estimate of dist $(T, \mathcal{Z}^n(\mathcal{A}(X), Y^*))$. \Box

Declaration of competing interest

There is no competing interest.

References

- J. Alaminos, M. Brešar, J. Extremera, A.R. Villena, Maps preserving zero products, Stud. Math. 193 (2009) 131–159.
- [2] J. Alaminos, M. Brešar, J. Extremera, A.R. Villena, Zero Lie product determined Banach algebras, Stud. Math. 239 (2017) 189–199.
- [3] J. Alaminos, M. Brešar, J. Extremera, A.R. Villena, Zero Lie product determined Banach algebras, II, J. Math. Anal. Appl. 474 (2) (2019) 1498–1511.
- [4] J. Alaminos, M. Brešar, J. Extremera, A.R. Villena, Zero Jordan product determined Banach algebras, J. Aust. Math. Soc. (2020) 1–14, https://doi.org/10.1017/S1446788719000478.

- [5] J. Alaminos, J. Extremera, M.L.C. Godoy, A.R. Villena, Hyperreflexivity of the space of module homomorphisms between non-commutative L^p-spaces, J. Math. Anal. Appl. 498 (2) (2021) 124964.
- [6] J. Alaminos, J. Extremera, A.R. Villena, Approximately zero product preserving maps, Isr. J. Math. 178 (2010) 1–28.
- [7] J. Alaminos, J. Extremera, A.R. Villena, Hyperreflexivity of the derivation space of some group algebras, Math. Z. 266 (2010) 571–582.
- [8] J. Alaminos, J. Extremera, A.R. Villena, Hyperreflexivity of the derivation space of some group algebras, II, Bull. Lond. Math. Soc. 44 (2012) 323–335.
- [9] G.R. Allan, T.J. Ransford, Power-dominated elements in a Banach algebra, Stud. Math. 94 (1) (1989) 63–79.
- [10] M. Brešar, Zero Product Determined Algebras, Frontiers in Mathematics, Birkhäuser, Basel, 2021.
- [11] H.G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series, vol. 24, Oxford Science Publications, the Clarendon Press, Oxford University Press, New York, 2000.
- [12] V. Runde, Amenable Banach algebras. A Panorama, Springer Monographs in Mathematics, Springer-Verlag, New York, 2020.
- [13] E. Samei, Reflexivity and hyperreflexivity of bounded n-cocycles from group algebras, Proc. Am. Math. Soc. 139 (2011) 163–176.
- [14] E. Samei, J. Soltani Farsani, Hyperreflexivity of the bounded n-cocycle spaces of Banach algebras, Monatshefte Math. 175 (2014) 429–455.
- [15] E. Samei, J. Soltani Farsani, Hyperreflexivity constants of the bounded n-cocycle spaces of group algebras and C*-algebras, J. Aust. Math. Soc. 109 (2020) 112–130.