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C∗-algebras, group algebras, and the algebra A(X) of approx-
imable operators on a Banach space X having the bounded 
approximation property are known to be zero product 
determined. In this paper we give a quantitative estimate 
of this property by showing that, for the Banach algebra A, 
there exists a constant α with the property that for every 
continuous bilinear functional ϕ : A × A → C there exists a 
continuous linear functional ξ on A such that

sup
‖a‖=‖b‖=1

|ϕ(a, b) − ξ(ab)| ≤ α sup
‖a‖=‖b‖=1,

ab=0

|ϕ(a, b)|

in each of the following cases: (i) A is a C∗-algebra, in which 
case α = 8; (ii) A = L1(G) for a locally compact group 
G, in which case α = 60

√
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10
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10
; (iii) A = A(X) for 

a Banach space X having property (A) (which is a rather 
strong approximation property for X), in which case α =
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C2, where C is a constant associated with the 

property (A) that we require for X.
© 2021 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let A be a Banach algebra. Then π : A ×A → A denotes the product map, we write 
A∗ for the dual of A, and B2(A, C) for the space of continuous bilinear functionals on A.

The Banach algebra A is said to be zero product determined if every ϕ ∈ B2(A, C)
with the property

a, b ∈ A, ab = 0 ⇒ ϕ(a, b) = 0 (1)

belongs to the space

B2
π(A,C) =

{
ξ ◦ π : ξ ∈ A∗}.

This concept implicitly appeared in [1] as an additional outcome of the so-called property 
B which was introduced in that paper, and was the basis of subsequent Jordan and 
Lie versions (see [2–4]). For a comprehensive survey of the theory of the zero product 
determined Banach algebras we refer the reader to [10]. The algebra A is said to have 
property B if every ϕ ∈ B2(A, C) satisfying (1) belongs to the closed subspace B2

b (A, C)
of B2(A, C) defined by

B2
b (A,C) =

{
ψ ∈ B2(A,C) : ψ(ab, c) = ψ(a, bc) ∀a, b, c ∈ A

}
.

In [1] it was shown that this class of Banach algebras is wide enough to include a number 
of examples of interest: C∗-algebras, the group algebra L1(G) of any locally compact 
group G, and the algebra A(X) of approximable operators on any Banach space X.

Throughout, we confine ourselves to Banach algebras having a bounded left approx-
imate identity. Then B2

π(A, C) = B2
b (A, C) (Proposition 2.1), and hence A is a zero 

product determined Banach algebra if and only if A has property B. For example, this 
applies to C∗-algebras, group algebras and the algebra A(X) on any Banach space X
having the bounded approximation property, so that all of them are zero product deter-
mined Banach algebras.

For each ϕ ∈ B2(A, C), the distance from ϕ to B2
π(A, C) is

dist
(
ϕ,B2

π(A,C)
)

= inf
{
‖ϕ− ψ‖ : ψ ∈ B2

π(A,C)
}
,

which can be easily estimated through the constant

http://creativecommons.org/licenses/by-nc-nd/4.0/
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|ϕ|b = sup {|ϕ(ab, c) − ϕ(a, bc)| : a, b, c ∈ A, ‖a‖ = ‖b‖ = ‖c‖ = 1}

(Proposition 2.1 below). Our purpose is to estimate dist
(
ϕ,B2

π(A,C)
)

through the con-
stant

|ϕ|zp = sup {|ϕ(a, b)| : a, b ∈ A, ‖a‖ = ‖b‖ = 1, ab = 0} .

Note that A is zero product determined precisely when

ϕ ∈ B2(A,C), |ϕ|zp = 0 ⇒ ϕ ∈ B2
π(A,C). (2)

We call the Banach algebra A strongly zero product determined if condition (2) is 
strengthened by requiring that there is a distance estimate

dist
(
ϕ,B2

π(A,C)
)
≤ α |ϕ|zp ∀ϕ ∈ B2(A,C) (3)

for some constant α; in this case, the optimal constant α for which (3) holds will be 
denoted by αA. The inequality |ϕ|zp ≤ dist

(
ϕ,B2

π(A,C)
)

is always true (Proposition 2.1
below). We also note that A has property B exactly in the case when

ϕ ∈ B2(A,C), |ϕ|zp = 0 ⇒ |ϕ|b = 0,

and the algebra A is said to have the strong property B if there is an estimate

|ϕ|b ≤ β |ϕ|zp ∀ϕ ∈ B2(A,C) (4)

for some constant β; in this case, the optimal constant β for which (4) holds will be 
denoted by βA. The inequality |ϕ|zp ≤ M |ϕ|b is always true for some constant M

(Proposition 2.1 below). The spirit of this concept first appeared in [6], and was subse-
quently formulated in [14] and refined in [15]. This property has proven to be useful to 
study the hyperreflexivity of the spaces of continuous derivations and, more generally, 
continuous cocycles on A (see [7,8,13–15]).

From [5, Corollary 1.3], we obtain the following result.

Theorem 1.1. Let A be a C∗-algebra. Then A is strongly zero product determined, has 
the strong property B, and αA, βA ≤ 8.

It is shown in [15] that each group algebra has the strong property B and so (by 
Corollary 2.2 below) it is also strongly zero product determined. In Theorem 3.3 we 
prove that, for each group G,

αL1(G) ≤ βL1(G) ≤ 60
√

27
1 + sin π

10
π .
1 − 2 sin 10
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This gives a sharper estimate for the constant of the strong property B of L1(G) to the 
one given in [15, Theorem 3.4]. The estimates given in Theorems 1.1 and 3.3 can be used 
to sharp the upper bound given in [15, Theorem 4.4] for the hyperreflexivity constant of 
Zn(A, X), the space of continuous n-cocycles from A into X, where A is a C∗-algebra 
or the group algebra of a group with an open subgroup of polynomial growth and X is 
a Banach A-bimodule for which the nth Hochschild cohomology group Hn+1(A, X) is a 
Banach space.

Finally, in Theorem 4.1 we prove that the algebra A(X) is strongly zero product 
determined for each Banach space X having property (A) (which is a rather strong 
approximation property for the space X). Further, we will use this result to show that 
the space Zn(A(X), Y ∗) is hyperreflexive for each Banach A(X)-bimodule Y .

There is no reason for an arbitrary zero product Banach algebra to be strongly zero 
product determined. However, as yet, we do not know an example of a zero product 
determined Banach algebra which is not strongly zero product determined.

Throughout, our reference for Banach algebras, and particularly for group algebras, 
is the monograph [11].

2. Elementary estimates

In the following result we gather together some estimates that relate the seminorms 
dist

(
·,B2

π(A,C)
)
, |·|b, and |·|zp on B2

π(A, C) to each other.

Proposition 2.1. Let A be a Banach algebra with a left approximate identity of bound M . 
Then B2

π(A, C) = B2
b (A, C) and, for each ϕ ∈ B2(A, C), the following properties hold:

(i) The distance dist
(
ϕ,B2

π(A,C)
)

is attained;
(ii) 1

2 |ϕ|b ≤ dist
(
ϕ,B2

π(A,C)
)
≤ M |ϕ|b;

(iii) |ϕ|zp ≤ dist
(
ϕ,B2

π(A,C)
)
.

Proof. Let (eλ)λ∈Λ be a left approximate identity of bound M .
(i) Let (ξn) be a sequence in A∗ such that

dist
(
ϕ,B2

π(A,C)
)

= lim
n→∞

‖ϕ− ξn ◦ π‖ .

For each n ∈ N and a ∈ A, we have

|ξn(eλa)| = |(ξn ◦ π)(eλ, a)| ≤ M ‖ξn ◦ π‖ ‖a‖ ∀λ ∈ Λ

and hence, taking limit in the above inequality and using that limλ∈Λ eλa = a, we see 
that |ξn(a)| ≤ M ‖ξn ◦ π‖ ‖a‖, which shows that ‖ξn‖ ≤ M ‖ξn ◦ π‖. Further, since

‖ξn ◦ π‖ ≤ ‖ϕ− ξn ◦ π‖ + ‖ϕ‖ ∀n ∈ N,
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it follows that the sequence (‖ξn‖) is bounded. By the Banach–Alaoglu theorem, the 
sequence (ξn) has a weak∗-accumulation point, say ξ, in A∗. Let (ξν)ν∈N be a subnet of 
(ξn) such that w∗-limν∈N ξν = ξ. The task is now to show that

‖ϕ− ξ ◦ π‖ = dist
(
ϕ,B2

π(A,C)
)
.

For each a, b ∈ A with ‖a‖ = ‖b‖ = 1, we have

|ϕ(a, b) − ξν(ab)| ≤ ‖ϕ− ξν ◦ π‖ ∀ν ∈ N,

and so, taking limits on both sides of the above inequality and using that

lim
ν∈N

ξν(ab) = ξ(ab)

and that (‖ϕ− ξν ◦ π‖)ν∈N is a subnet of the convergent sequence (‖ϕ − ξn ◦ π‖), we 
obtain

|ϕ(a, b) − ξ(ab)| ≤ dist
(
ϕ,B2

π(A,C)
)
.

This implies that ‖ϕ− ξ ◦ π‖ ≤ dist
(
ϕ,B2

π(A,C)
)
, and the converse inequality 

dist
(
ϕ,B2

π(A,C)
)
≤ ‖ϕ− ξ ◦ π‖ trivially holds.

(ii) For each λ ∈ Λ define ξλ ∈ A∗ by

ξλ(a) = ϕ(eλ, a) ∀a ∈ A.

Then ‖ξλ‖ ≤ M ‖ϕ‖ for each λ ∈ Λ, so that (ξλ)λ∈Λ is a bounded net in A∗ and hence 
the Banach–Alaoglu theorem shows that it has a weak∗-accumulation point, say ξ, in 
A∗. Let (ξν)ν∈N be a subnet of (ξλ)λ∈Λ such that w∗-limν∈N ξν = ξ. For each a, b ∈ A

with ‖a‖ = ‖b‖ = 1, we have

|ϕ(eνa, b) − ϕ(eν , ab)| ≤ M |ϕ|b ∀ν ∈ N

and hence, taking limit and using that (eνa)ν∈N is a subnet of the convergent net 
(eλa)λ∈Λ and that limν∈N ϕ(eλ, ab) = ξ(ab), we see that

|ϕ(a, b) − ξ(ab)| ≤ M |ϕ|b .

This gives ‖ϕ − ξ ◦ π‖ ≤ M |ϕ|b, whence

dist
(
ϕ,B2

π(A,C)
)
≤ M |ϕ|b.
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Set ξ ∈ A∗. For each a, b, c ∈ A with ‖a‖ = ‖b‖ = ‖c‖ = 1, we have

|ϕ(ab, c) − ϕ(a, bc)| = |ϕ(ab, c) − (ξ ◦ π)(ab, c) + (ξ ◦ π)(a, bc) − ϕ(a, bc)|
≤ |ϕ(ab, c) − (ξ ◦ π)(ab, c)| + |(ξ ◦ π)(a, bc) − ϕ(a, bc)|
≤ ‖ϕ− ξ ◦ π‖ ‖ab‖ ‖c‖ + ‖ϕ− ξ ◦ π‖ ‖a‖ ‖bc‖
≤ 2 ‖ϕ− ξ ◦ π‖

and therefore |ϕ|b ≤ 2 ‖ϕ− ξ ◦ π‖. Since this inequality holds for each ξ ∈ A∗, it follows 
that

|ϕ|b ≤ 2 dist
(
ϕ,B2

π(A,C)
)
.

(iii) Let a, b ∈ A with ‖a‖ = ‖b‖ = 1 and ab = 0. For each ξ ∈ A∗, we see that

|ϕ(a, b)| = |ϕ(a, b) − (ξ ◦ π)(a, b)| ≤ ‖ϕ− ξ ◦ π‖ ,

and consequently |ϕ|zp ≤ ‖ϕ− ξ ◦ π‖. Since the above inequality holds for each ξ ∈ A∗, 
we conclude that

|ϕ|zp ≤ dist
(
ϕ,B2

π(A,C)
)
.

Finally, it is clear that B2
π(A, C) ⊂ B2

b (A, C). To prove the reverse inclusion take 
ϕ ∈ B2

b (A, C). Then |ϕ|b = 0, hence (ii) shows that dist
(
ϕ,B2

π(A,C)
)

= 0, and (i) gives 
ψ ∈ B2

π(A, C) such that ‖ϕ − ψ‖ = 0, which implies that ϕ = ψ ∈ B2
π(A, C). �

The following result is an immediate consequence of assertion (ii) in Proposition 2.1.

Corollary 2.2. Let A be a Banach algebra with a left approximate identity of bound M . 
Then A is a strongly zero product determined Banach algebra if and only if has the strong 
property B, in which case

1
2βA ≤ αA ≤ MβA.

Let X and Y be Banach spaces, and let n ∈ N. We write Bn(X, Y ) for the Banach 
space of all continuous n-linear maps from X× 

n· · · ×X to Y . As usual, we abbreviate 
B1(X, Y ) to B(X, Y ), B(X, X) to B(X), and B(X, C) to X∗. The identity operator on 
X is denoted by IX . Further, we write 〈·, ·〉 for the duality between X and X∗. For each 
subspace E of X, E⊥ denotes the annihilator of E in X∗.

For a Banach algebra A and a Banach space X, and for each ϕ ∈ B2(A, X), we 
continue to use the notations

|ϕ|b = sup {|ϕ(ab, c) − ϕ(a, bc)| : a, b, c ∈ A, ‖a‖ = ‖b‖ = ‖c‖ = 1} ,
|ϕ|zp = sup {|ϕ(a, b)| : a, b ∈ A, ‖a‖ = ‖b‖ = 1, ab = 0} .
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Proposition 2.3. Let A be a Banach algebra with a left approximate identity of bound M
and having the strong property B. Let X be a Banach space, and let ϕ ∈ B2(A, X). Then 
the following properties hold:

(i) |ϕ|b ≤ βA |ϕ|zp;
(ii) If X is a dual Banach space, then there exists Φ ∈ B(A, X) such that ‖ϕ −Φ ◦ π‖ ≤

MβA.

Proof. (i) For each ξ ∈ X∗, we have

|ξ ◦ ϕ|b ≤ βA |ξ ◦ ϕ|zp .

It follows from the Hahn-Banach theorem that

|ϕ|b = sup
{
|ξ ◦ ϕ|b : ξ ∈ X∗, ‖ξ‖ = 1

}
,

|ϕ|zp = sup
{
|ξ ◦ ϕ|zp : ξ ∈ X∗, ‖ξ‖ = 1

}
.

In this way we obtain (i).
(ii) Suppose that X is the dual of a Banach space X∗. Let (eλ)λ∈Λ be a left approxi-

mate identity for A of bound M , and define a net (Φλ)λ∈Λ in B(A, X) by setting

Φλ(a) = ϕ(eλ, a) ∀a ∈ A, ∀λ ∈ Λ.

Since each bounded subset of B(A, X) is relatively compact with respect to the weak∗

operator topology on B(A, X) and the net (Φλ)λ∈Λ is bounded, it follows that there exist 
Φ ∈ B(A, X) and a subnet (Φν)ν∈N of (Φλ)λ∈Λ such that wo∗-limν∈N Φν = Φ. For each 
a, b ∈ A with ‖a‖ = ‖b‖ = 1, and x∗ ∈ X∗ with ‖x∗‖ = 1, we have∣∣〈x∗, ϕ(eνa, b)〉 − 〈x∗, ϕ(eν , ab)〉

∣∣ ≤ ‖ϕ(eνa, b) − ϕ(eν , ab)‖ ≤ MβA ∀ν ∈ N

and hence, taking limit and using that (eνa)ν∈N is a subnet of the net (eλa)λ∈Λ (which 
converges to a with respect to the norm topology) and that limν∈N 〈x∗, ϕ(eν , ab)〉 =
〈x∗, Φ(ab)〉 (by definition of Φ), we see that∣∣〈x∗, ϕ(a, b) − Φ(ab)〉

∣∣ = MβA.

This gives ‖ϕ− Φ ◦ π‖ ≤ MβA. �
3. Group algebras

In this section we prove that the group algebra L1(G) of each locally compact group 
G is a strongly zero product determined Banach algebra and we provide an estimate of 
the constants αL1(G) and βL1(G). Our estimate of βL1(G) improves the one given in [15]. 
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For the basic properties of this important class of Banach algebras we refer the reader 
to [11, Section 3.3].

Throughout this section, T denotes the circle group, and we consider the normalized 
Haar measure on T . We write A(T ) and A(T 2) for the Fourier algebras of T and T 2, 
respectively. For each f ∈ A(T ), F ∈ A(T 2), and j, k ∈ Z, we write f̂(j) and F̂ (j, k) for 
the Fourier coefficients of f and F , respectively. Let 1, ζ ∈ A(T ) denote the functions 
defined by

1(z) = 1, ζ(z) = z ∀z ∈ T .

Let Δ: A(T 2) → A(T ) be the bounded linear map defined by

Δ(F )(z) = F (z, z) ∀z ∈ T , ∀F ∈ A(T 2).

For f, g ∈ A(T ), let f ⊗ g : T 2 → C denote the function defined by

(f ⊗ g)(z, w) = f(z)g(w) ∀z, w ∈ T ,

which is an element of A(T 2) with ‖f ⊗ g‖ = ‖f‖ ‖g‖.

Lemma 3.1. Let Φ: A(T 2) → C be a continuous linear functional, and let the constant 
ε ≥ 0 be such that

f, g ∈ A(T ), fg = 0 ⇒ |Φ(f ⊗ g)| ≤ ε ‖f‖ ‖g‖ .

Then

|Φ(ζ ⊗ 1 − 1 ⊗ ζ)| ≤ ‖Φ |ker Δ‖ 2 sin π
10 + 60

√
27

(
1 + sin π

10
)
ε.

Proof. Set

E =
{
eθi : −1

5π ≤ θ ≤ 1
5π

}
,

W =
{
(z, w) ∈ T 2 : zw−1 ∈ E

}
,

and let F ∈ A(T 2) be such that

F (z, w) = 0 ∀(z, w) ∈ W. (5)

Our objective is to prove that

|Φ(F )| ≤ 30
√

27 ‖F‖ ε. (6)

For this purpose, we take
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a = e
1
15π i,

A =
{
eθi : 0 < θ ≤ 1

15π
}
,

B =
{
eθi : 2

15π < θ ≤ 29
15π

}
,

U =
{
eθi : − 1

30π < θ < 1
30π

}
,

and we define functions ω, υ ∈ A(T ) by

ω = 30χA ∗ χU , υ = 30χB ∗ χU .

We note that

{z ∈ T : ω(z) �= 0} = AU =
{
eθi : − 1

30π < θ < 1
10π

}
,

{z ∈ T : υ(z) �= 0} = BU =
{
eθi : 1

10π < θ < 59
30π

}
,

and, with ‖·‖2 denoting the norm of L2(T ),

‖ω‖ ≤ 30 ‖χA‖2 ‖χU‖2 = 30 1√
30

1√
30

= 1,

‖υ‖ ≤ 30 ‖χB‖2 ‖χU‖2 = 30
√

27√
30

1√
30

=
√

27.

Since

29⋃
k=0

akA = T ,

28⋃
k=2

akA = B,

it follows that

29∑
k=0

δak ∗ χA =
29∑
k=0

χakA = 1,
28∑
k=2

δak ∗ χA =
28∑
k=2

χakA = χB ,

and thus, for each j ∈ Z, we have

j+29∑
k=j

δak ∗ ω = 30δaj ∗
29∑
k=0

δak ∗ χA ∗ χU = 30δaj ∗ 1 ∗ χU = 1, (7)

j+28∑
k=j+2

δak ∗ ω = 30δaj ∗
28∑
k=2

δak ∗ χA ∗ χU = 30δaj ∗ χB ∗ χU = δaj ∗ υ. (8)

If j ∈ Z, k ∈ {j − 1, j, j + 1}, and z, w ∈ T are such that (δaj ∗ ω)(z)(δak ∗ ω)(w) �= 0, 
then

zw−1 ∈ ajAU
(
akAU

)−1 ⊂ aj−k
{
eθi : − 2 π < θ < 2 π

}
⊂ E,
15 15
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whence 
{
(z, w) ∈ T 2 : (δaj ∗ ω) ⊗ (δak ∗ ω)(z, w) �= 0

}
⊂ W and (5) gives

F (δaj ∗ ω) ⊗ (δak ∗ ω) = 0. (9)

Since AU ∩BU = ∅, it follows that ωυ = 0, and therefore

(δak ∗ ω)(δak ∗ υ) = 0 ∀k ∈ Z. (10)

From (7), (8), and (9) we deduce that

F = F
29∑
j=0

j+28∑
k=j−1

(δaj ∗ ω) ⊗ (δak ∗ ω)

=
29∑
j=0

j+1∑
k=j−1

F (δaj ∗ ω) ⊗ (δak ∗ ω) +
29∑
j=0

j+28∑
k=j+2

F (δaj ∗ ω) ⊗ (δak ∗ ω)

=
29∑
j=0

j+28∑
k=j+2

F (δaj ∗ ω) ⊗ (δak ∗ ω) =
29∑
j=0

F (δaj ∗ ω) ⊗ (δaj ∗ υ).

As

F =
∞∑

j,k=−∞
F̂ (j, k)ζj ⊗ ζk

we have

F =
∞∑

j,k=−∞

29∑
l=0

F̂ (j, k)
(
ζj(δal ∗ ω)

)
⊗
(
ζk(δal ∗ υ)

)
,

so that

Φ(F ) =
∞∑

j,k=−∞

29∑
l=0

F̂ (j, k)Φ
((

ζj(δal ∗ ω)
)
⊗

(
ζk(δal ∗ υ)

))
.

By (10), for each j, k, l ∈ Z, (
ζj(δal ∗ ω)

)(
ζk(δal ∗ υ)

)
= 0

and therefore∣∣Φ ((
ζj(δal ∗ ω)

)
⊗

(
ζk(δal ∗ υ)

))∣∣ ≤ ε
∥∥ζj(δal ∗ ω)

∥∥∥∥ζk(δal ∗ υ)
∥∥

= ε ‖ω‖ ‖υ‖ ≤
√

27 ε.

We thus get
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|Φ(F )| =
∞∑

j,k=−∞

29∑
l=0

∣∣∣F̂ (j, k)
∣∣∣ ∣∣∣Φ((

ζj(δal ∗ ω)
)
⊗

(
ζk(δal ∗ υ)

))∣∣∣
≤

∞∑
j,k=−∞

29∑
l=0

∣∣∣F̂ (j, k)
∣∣∣√27 ε = 30

√
27 ‖F‖ ε,

and (6) is proved.
Let f ∈ A(T ) be such that f(z) = 0 for each z ∈ E, and define the function F : T 2 →

C by

F (z, w) = f(zw−1)w =
∞∑

k=−∞
f̂(k)zkw−k+1 ∀z, w ∈ T .

Then F ∈ A(T 2), ‖F‖ = ‖f‖, ζ ⊗ 1 − 1 ⊗ ζ − F ∈ ker Δ, and

(ζ ⊗ 1 − 1 ⊗ ζ − F ) (z, w) =
(
1 − f̂(1)

)
z +

(
−1 − f̂(0)

)
w −

∑
k �=0,1

f̂(k)zkw−k+1,

which certainly implies that

‖ζ ⊗ 1 − 1 ⊗ ζ − F‖ =
∣∣∣1 − f̂(1)

∣∣∣ +
∣∣∣−1 − f̂(0)

∣∣∣ +
∑
k �=0,1

∣∣∣f̂(k)
∣∣∣ = ‖ζ − 1 − f‖ .

According to (6), we have

|Φ(ζ ⊗ 1 − 1 ⊗ ζ)| ≤ |Φ(ζ ⊗ 1 − 1 ⊗ ζ − F )| + |Φ(F )|
≤ ‖Φ |ker Δ‖ ‖ζ ⊗ 1 − 1 ⊗ ζ − F‖ + 30

√
27 ‖F‖ ε

= ‖Φ |ker Δ‖ ‖ζ − 1 − f‖ + 30
√

27 ‖f‖ ε
≤ ‖Φ |ker Δ‖ ‖ζ − 1 − f‖ + 30

√
27
(
‖ζ − 1− f‖ + 2

)
ε

(as ‖f‖ ≤ ‖ζ − 1 − f‖ + ‖ζ − 1‖). Further, this inequality holds for each function from 
the set I consisting of all functions f ∈ A(T ) such that f(z) = 0 for each z ∈ E. 
Consequently,

|Φ(ζ ⊗ 1 − 1 ⊗ ζ)| ≤ ‖Φ |ker Δ‖ dist(ζ − 1, I) + 30
√

27 (dist(ζ − 1, I) + 2) ε.

On the other hand, it is shown at the beginning of the proof of [9, Corollary 3.3] that

dist(ζ − 1, I) ≤ 2 sin π
10 ,

and we thus get

|Φ(ζ ⊗ 1 − 1 ⊗ ζ)| ≤ ‖Φ |ker Δ‖ 2 sin π
10 + 30

√
27

(
2 sin π

10 + 2
)
ε,

which completes the proof. �
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Lemma 3.2. Let Φ: A(T 2) → C be a continuous linear functional, and let the constant 
ε ≥ 0 be such that

f, g ∈ A(T ), fg = 0 ⇒ |Φ(f ⊗ g)| ≤ ε ‖f‖ ‖g‖ .

Then

∣∣Φ(
F − 1 ⊗ ΔF

)∣∣ ≤ 60
√

27
1 + sin π

10
1 − 2 sin π

10
ε ‖F‖

for each F ∈ A(T 2).

Proof. Fix j, k ∈ Z. We claim that∣∣Φ(ζj ⊗ ζk − 1 ⊗ ζj+k)
∣∣ ≤ ‖Φ |ker Δ‖ 2 sin π

10 + 60
√

27
(
1 + sin π

10
)
ε. (11)

Of course, we are reduced to proving (11) for j �= 0. We define dj : A(T ) → A(T ), and 
Dj , Lk : A(T 2) → A(T 2) by

djf(z) = f(zj) ∀f ∈ A(T ), ∀z ∈ T

and

DjF (z, w) = F (zj , wj), LkF (z, w) = F (z, w)wk ∀F ∈ A(T 2), ∀z, w ∈ T ,

respectively. Further, we consider the continuous linear functional Φ ◦ Lk ◦Dj . If f, g ∈
A(T ) are such that fg = 0, then (djf)(ζkdjg) = ζkdj(fg) = 0, and so, by hypothesis,

|Φ ◦ Lk ◦Dj(f ⊗ g)| =
∣∣Φ(djf ⊗ ζkdjg)

∣∣ ≤ ε ‖djf‖
∥∥ζkdjg∥∥ = ε ‖f‖ ‖g‖ .

By applying Lemma 3.1, we obtain∣∣Φ(ζj ⊗ ζk − 1 ⊗ ζj+k)
∣∣ = |Φ ◦ Lk ◦Dj(ζ ⊗ 1 − 1 ⊗ ζ)|
≤ ‖Φ ◦ Lk ◦Dj |ker Δ‖ 2 sin π

10 + 60
√

27
(
1 + sin π

10
)
ε.

We check at once that (Lk ◦Dj)(ker Δ) ⊂ ker Δ, which gives

‖Φ ◦ Lk ◦Dj |ker Δ‖ ≤ ‖Φ |ker Δ‖ ,

and therefore (11) is proved.
Take F ∈ A(T 2). Then

F =
∞∑

j,k=−∞
F̂ (j, k)ζj ⊗ ζk
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and

ΔF =
∞∑

j,k=−∞
F̂ (j, k)ζj+k.

Consequently,

Φ(F − 1 ⊗ ΔF ) =
∞∑

j,k=−∞
F̂ (j, k)Φ(ζj ⊗ ζk − 1 ⊗ ζj+k),

and (11) gives

|Φ(F − 1 ⊗ ΔF )| ≤
∞∑

j,k=−∞

∣∣∣F̂ (j, k)
∣∣∣ ∣∣Φ(ζj ⊗ ζk − 1 ⊗ ζj+k)

∣∣
≤

∞∑
j,k=−∞

∣∣∣F̂ (j, k)
∣∣∣ [‖Φ |ker Δ‖ 2 sin π

10 + 60
√

27
(
1 + sin π

10
)
ε
]

= ‖F‖
[
‖Φ |ker Δ‖ 2 sin π

10 + 60
√

27
(
1 + sin π

10
)
ε
]
.

(12)

In particular, for each F ∈ ker Δ, we have

‖Φ(F )‖ ≤ ‖F‖
[
‖Φ |ker Δ‖ 2 sin π

10 + 60
√

27
(
1 + sin π

10
)
ε
]
.

Thus

‖Φ |ker Δ‖ ≤ ‖Φ |ker Δ‖ 2 sin π
10 + 60

√
27

(
1 + sin π

10
)
ε,

so that

‖Φ |ker Δ‖ ≤ 60
√

27
1 + sin π

10
1 − 2 sin π

10
ε.

Using this estimate in (12), we obtain

|Φ(F − 1 ⊗ ΔF )| ≤ ‖F‖
[
60

√
27

1 + sin π
10

1 − 2 sin π
10

ε2 sin π
10 + 60

√
27

(
1 + sin π

10
)
ε

]
= ‖F‖ 60

√
27

1 + sin π
10

1 − 2 sin π
10

ε

for each F ∈ A(T 2), which completes the proof. �
Theorem 3.3. Let G be a locally compact group. Then the Banach algebra L1(G) is 
strongly zero product determined and
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αL1(G) ≤ βL1(G) ≤ 60
√

27
1 + sin π

10
1 − 2 sin π

10
.

Proof. On account of Corollary 2.2, it suffices to prove that L1(G) has the strong prop-
erty B with

βL1(G) ≤ 60
√

27
1 + sin π

10
1 − 2 sin π

10
, (13)

because L1(G) has an approximate identity of bound 1. For this purpose set ϕ ∈
B2(L1(G), C).

Let t ∈ G, and let δt be the point mass measure at t on G. We define a contractive 
homomorphism T : A(T ) → M(G) by

T (u) =
∞∑

k=−∞
û(k)δtk ∀u ∈ A(T ).

Take f, h ∈ L1(G) with ‖f‖ = ‖h‖ = 1, and define a continuous linear functional 
Φ: A(T 2) → C by

Φ(F ) =
∑

(j,k)∈Z2

F̂ (j, k)ϕ(f ∗ δtj , δtk ∗ h) ∀F ∈ A(T 2).

Further, if u, v ∈ A(T ), then

Φ(u⊗ v) =
∑

(j,k)∈Z2

û(j)v̂(k)ϕ(f ∗ δtj , δtk ∗ h) = ϕ(f ∗ T (u), T (v) ∗ h);

in particular, if uv = 0, then (f ∗ T (u)) ∗ (T (v) ∗ h) = f ∗ T (uv) ∗ h = 0, and so

|Φ(u⊗ v)| = |ϕ(f ∗ T (u), T (v) ∗ h)| ≤ |ϕ|zp ‖f ∗ T (u)‖ ‖T (v) ∗ h‖
≤ |ϕ|zp ‖u‖ ‖v‖ .

By applying Lemma 3.2 with F = ζ ⊗ 1, we see that

|ϕ(f ∗ δt, h) − ϕ(f, δt ∗ h)| = |Φ(ζ ⊗ 1 − 1 ⊗ ζ)| ≤ 60
√

27
1 + sin π

10
1 − 2 sin π

10
|ϕ|zp .

We now take g ∈ L1(G) with ‖g‖ = 1. By multiplying the above inequality by |g(t)|, we 
arrive at

|ϕ(g(t)f ∗ δt, h) − ϕ(f, g(t)δt ∗ h)| ≤ 60
√

27
1 + sin π

10
1 − 2 sin π

10
|ϕ|zp |g(t)| . (14)

Since the convolutions f ∗ g and g ∗ h can be expressed as
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f ∗ g =
∫
G

g(t)f ∗ δt dt,

g ∗ h =
∫
G

g(t)δt ∗ h dt,

where the expressions on the right-hand side are considered as Bochner integrals of 
L1(G)-valued functions of t, it follows that

ϕ(f ∗ g, h) − ϕ(f, g ∗ h) =
∫
G

[ϕ(g(t)f ∗ δt, h) − ϕ(f, g(t)δt ∗ h)] dt.

From (14) we now deduce that

|ϕ(f ∗ g, h) − ϕ(f, g ∗ h)| ≤
∫
G

|ϕ(g(t)f ∗ δt, h) − ϕ(f, g(t)δt ∗ h)| dt

≤ 60
√

27
1 + sin π

10
1 − 2 sin π

10
|ϕ|zp

∫
G

|g(t)| dt

= 60
√

27
1 + sin π

10
1 − 2 sin π

10
|ϕ|zp .

We thus get

|ϕ|b ≤ 60
√

27
1 + sin π

10
1 − 2 sin π

10
|ϕ|zp ,

and (13) is proved. �
4. Algebras of approximable operators

Let X be a Banach space. Then we write F(X) for the two-sided ideal of B(X)
consisting of finite-rank operators, and A(X) for the closure of F(X) in B(X) with 
respect to the operator norm. For each x ∈ X and φ ∈ X∗, we define x ⊗ φ ∈ F(X) by 
(x ⊗ φ)(y) = 〈y, φ〉x for each y ∈ X. A finite, biorthogonal system for X is a set

{
(xj , φk) : j, k = 1, . . . , n

}
with x1, . . . , xn ∈ X and φ1, . . . , φn ∈ X∗ such that

〈xj , φk〉 = δj,k ∀j, k ∈ {1, . . . , n}.

Each such system defines an algebra homomorphism
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θ : Mn → F(X), (aj,k) �→
n∑

j,k=1

aj,kxj ⊗ φk,

where Mn is the full matrix algebra of order n over C. The identity matrix is denoted 
by In.

The Banach space X is said to have property (A) if there is a directed set Λ such that, 
for each λ ∈ Λ, there exists a finite, biorthogonal system

{
(xλ

j , φ
λ
k) : j, k = 1, . . . , nλ

}
for X with corresponding algebra homomorphism θλ : Mnλ

→ F(X) such that:

(i) limλ∈Λ θλ(Inλ
) = IX uniformly on the compact subsets of X;

(ii) limλ∈Λ θλ(Inλ
)∗ = IX∗ uniformly on the compact subsets of X∗;

(iii) for each index λ ∈ Λ, there is a finite subgroup Gλ of the group of all invertible 
nλ × nλ matrices over C whose linear span is all of Mnλ

, such that

sup
λ∈Λ

sup
t∈Gλ

‖θλ(t)‖ < ∞. (15)

Property (A) forces the Banach algebra A(X) to be amenable. For an exhaustive 
treatment of this topic (including a variety of interesting examples of spaces with prop-
erty (A)) we refer to [12, Section 3.3].

The notation of the above definition will be standard for the remainder of this section. 
Furthermore, our basic reference for this section is the monograph [12].

Theorem 4.1. Let X be a Banach space with property (A). Then the Banach algebra A(X)
is strongly zero product determined. Specifically, if C denotes the supremum in (15), then

1
2βA(X) ≤ αA(X) ≤ 60

√
27

1 + sin π
10

1 − 2 sin π
10

C2.

Proof. For each λ ∈ Λ we define Φλ : �1(Gλ) → F(X) by

Φλ(f) =
∑
t∈Gλ

f(t)θλ(t) ∀f ∈ �1(Gλ).

We claim that Φλ is an algebra homomorphism. It is clear the Φλ is a linear map and, 
for each f, g ∈ �1(Gλ), we have
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Φλ(f ∗ g) =
∑
t∈Gλ

(f ∗ g)(t)θλ(t) =
∑
t∈Gλ

∑
s∈Gλ

f(s)g(s−1t)θλ(t)

= θλ

(∑
t∈Gλ

∑
s∈Gλ

f(s)g(s−1t)t
)

= θλ

( ∑
s∈Gλ

f(s)s
∑
t∈Gλ

g(s−1t)s−1t

)

= θλ

( ∑
s∈Gλ

f(s)s
∑
r∈Gλ

g(r)r
)

= θλ

( ∑
s∈Gλ

f(s)s
)
θλ

( ∑
r∈Gλ

g(r)r
)

= Φλ(f)Φλ(g).

Of course, Φλ is continuous because �1(Gλ) is finite-dimensional, and, further, for each 
f ∈ �1(Gλ), we have

‖Φλ(f)‖ ≤
∑
t∈Gλ

|f(t)| ‖θλ(t)‖ ≤
∑
t∈Gλ

|f(t)|C = C ‖f‖1 .

Hence ‖Φλ‖ ≤ C.
Let ϕ ∈ B2(A(X), C). Let us prove that∣∣ϕ(Sθλ(t), θλ(t−1)T ) − ϕ(Sθλ(Inλ

), θλ(Inλ
)T )

∣∣ ≤ β�1(Gλ)C
2 ‖S‖ ‖T‖ |ϕ|zp (16)

for all λ ∈ Λ, S, T ∈ A(X), and t ∈ Gλ. For this purpose, take λ ∈ Λ and S, T ∈ A(X), 
and define ϕλ : �1(Gλ) × �1(Gλ) → C by

ϕλ(f, g) = ϕ(SΦλ(f),Φλ(g)T ) ∀f, g ∈ �1(Gλ).

Then ϕλ is continuous and, for each f, g ∈ �1(Gλ) such that f ∗ g = 0, we have 
(SΦλ(f))(Φλ(g)T ) = S(Φλ(f ∗ g))T = 0 and therefore

|ϕλ(f, g)| ≤ |ϕ|zp ‖SΦλ(f)‖ ‖Φλ(g)T‖ ≤ |ϕ|zp C2 ‖S‖ ‖T‖ ‖f‖1 ‖g‖1 ,

whence

|ϕλ|zp ≤ C2 ‖S‖ ‖T‖ |ϕ|zp .

For each t ∈ Gλ, we have∣∣∣ϕλ(δt, δt−1) − ϕλ(δInλ
, δInλ

)
∣∣∣ =

∣∣∣ϕλ(δInλ
∗ δt, δt−1) − ϕλ(δInλ

, δt ∗ δt−1)
∣∣∣ ≤

|ϕλ|b ≤ β�1(Gλ) |ϕλ|zp ≤ β�1(Gλ)C
2 ‖S‖ ‖T‖ |ϕ|zp ,

which gives (16).
The projective tensor product A(X)⊗̂A(X) becomes a Banach A(X)-bimodule for 

the products defined by
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R · (S ⊗ T ) = (RS) ⊗ T, (S ⊗ T ) ·R = S ⊗ (TR) ∀R,S, T ∈ A(X).

We define a continuous linear functional ϕ̂ ∈
(
A(X)⊗̂A(X)

)∗ through

〈S ⊗ T, ϕ̂〉 = ϕ(S, T ) ∀S, T ∈ A(X).

For each λ ∈ Λ, set Pλ = θλ(Inλ
) and

Dλ = 1
|Gλ|

∑
t∈Gλ

θλ(t) ⊗ θλ(t−1).

Then (Pλ)λ∈Λ is a bounded approximate identity for A(X) and (Dλ)λ∈Λ is an approx-
imate diagonal for A(X) (see [12, Theorem 3.3.9]), so that (‖S ·Dλ −Dλ · S‖)λ∈Λ → 0
for each S ∈ A(X).

For each λ ∈ Λ and S, T ∈ A(X), (16) shows that

|〈S ·Dλ · T, ϕ̂〉 − ϕ(SPλ, PλT )|

=

∣∣∣∣∣ 1
|Gλ|

∑
t∈Gλ

[
ϕ(Sθλ(t), θλ(t−1)T ) − ϕ(Sθλ(Inλ

), θλ(Inλ
)T )

]∣∣∣∣∣
≤ β�1(Gλ)C

2 ‖S‖ ‖T‖ |ϕ|zp

and Theorem 3.3 then gives

|〈S ·Dλ · T, ϕ̂〉 − ϕ(SPλ, PλT )| ≤ 60
√

27
1 + sin π

10
1 − 2 sin π

10
C2 ‖S‖ ‖T‖ |ϕ|zp . (17)

For each λ ∈ Λ, define ξλ ∈ A(X)∗ by

〈T, ξλ〉 = 〈Dλ · T, ϕ̂〉 ∀T ∈ A(X).

Note that

‖ξλ‖ ≤ ‖ϕ̂‖ ‖Dλ‖ ≤ ‖ϕ‖C2 ∀λ ∈ Λ

and therefore (ξλ)λ∈Λ is a bounded net in A(X)∗. By the Banach–Alaoglu theorem the 
net (ξλ)λ∈Λ has a weak∗-accumulation point, say ξ, in A(X)∗. Take a subnet (ξν)ν∈N of 
(ξλ)λ∈Λ such that w∗-limν∈N ξν = ξ. Take S, T ∈ A(X). For each ν ∈ N , we have

ϕ(SPν , PνT ) − ξλ(ST ) =

ϕ(SPν , PνT ) − 〈S ·Dν · T, ϕ̂〉 + 〈(S ·Dν −Dν · S) · T, ϕ̂〉

so that (17) gives



344 J. Alaminos et al. / Linear Algebra and its Applications 630 (2021) 326–354
|ϕ(SPν , PνT ) − 〈ST, ξλ〉| ≤

60
√

27
1 + sin π

10
1 − 2 sin π

10
C2 ‖S‖ ‖T‖ |ϕ|zp + ‖ϕ‖ ‖S ·Dν −Dν · S‖ ‖T‖ .

Taking limits on both sides of the above inequality, and using that (SPν)ν∈N → S, 
(PνT )ν∈N → T , and (‖S ·Dν −Dν · S‖)ν∈N → 0, we see that

|ϕ(S, T ) − 〈ST, ξ〉| ≤ 60
√

27
1 + sin π

10
1 − 2 sin π

10
C2 ‖S‖ ‖T‖ |ϕ|zp .

We thus get

dist
(
ϕ,B2

π(A(X),C)
)
≤ 60

√
27

1 + sin π
10

1 − 2 sin π
10

C2 |ϕ|zp ,

which proves the theorem. �
The hyperreflexivity of the space Zn(A, X) of continuous n-cocycles from A into 

X, where A is a C∗-algebra or a group algebra and X is a Banach A-bimodule has 
been already studied in [15, Theorem 4.4]. We conclude this section with a look at 
the hyperreflexivity of the space Zn(A(X), Y ∗). For this purpose we introduce some 
terminology.

Let A be a Banach algebra, and let X be a Banach A-bimodule. Set

LX = sup
{
‖a · x‖ : x ∈ X, a ∈ A, ‖x‖ = ‖a‖ = 1

}
and

RX = sup
{
‖x · a‖ : x ∈ X, a ∈ A, ‖x‖ = ‖a‖ = 1

}
.

For each n ∈ N, let δn : Bn(A, X) → Bn+1(A, X) be the n-coboundary operator defined 
by

(δnT )(a1, . . . , an+1) = a1 · T (a2, . . . , an+1)

+
n∑

k=1

(−1)kT (a1, . . . , akak+1, . . . , an+1)

+ (−1)n+1T (a1, . . . , an) · an+1

for all T ∈ Bn(A, X) and a1, . . . , an+1 ∈ A. Further, δ0 : X → B(A, X) is defined by

(δ0x)(a) = a · x− x · a ∀x ∈ X, ∀a ∈ A.

The space of continuous n-cocycles, Zn(A, X), is defined as ker δn. The space of contin-
uous n-coboundaries, Nn(A, X), is the range of δn−1. Then Nn(A, X) ⊂ Zn(A, X), and 
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the quotient Hn(A, X) = Zn(A, X)/Nn(A, X) is the nth Hochschild cohomology group. 
For each T ∈ Bn(A, X), the constant

distr
(
T,Zn(A,X)

)
:=

sup
‖a1‖=···=‖an‖=1

inf
{
‖T (a1, . . . , an) − S(a1, . . . , an)‖ : S ∈ Zn(A,X)

}
is intended to estimate the usual distance from T to Zn(A, X), and, in accordance 
with [14,15], the space Zn(A, X) is called hyperreflexive if there exists a constant K
such that

dist
(
T,Zn(A,X)

)
≤ K distr

(
T,Zn(A,X)

)
∀T ∈ Bn(A,X).

The inequality distr
(
T, Zn(A, X)

)
≤ dist

(
T, Zn(A, X)

)
is always true.

Proposition 4.2. Let A be a C-amenable Banach algebra, and let X be a Banach A-
bimodule. Then there exist projections P, Q ∈ B(X∗) onto (X · A)⊥ and (A · X)⊥, 
respectively, with ‖P‖ ≤ 1 + RXC, ‖Q‖ ≤ 1 + LXC, and such that

dist
(
T,Z1(A,X∗)

)
≤ C

(
RX + LX‖P‖ + ‖P‖‖Q‖

)
‖δ1T‖

for all T ∈ B(A, X∗). In particular, if the module X is essential, then

dist
(
T,Z1(A,X∗)

)
≤ RXC‖δ1T‖

for all T ∈ B(A, X∗).

Proof. The Banach algebra A has a virtual diagonal D with ‖D‖ ≤ C. This is an element 
D ∈ (A⊗̂A)∗∗ such that, for each a ∈ A, we have

a · D = D · a and a · π̂∗∗(D) = a. (18)

Here, the Banach space A⊗̂A turns into a contractive Banach A-bimodule with respect 
to the operations defined through

(a⊗ b)c = a⊗ bc, c(a⊗ b) = ca⊗ b ∀a, b, c ∈ A,

and both (A⊗̂A)∗∗ and A∗∗ are considered as dual A-bimodules in the usual way. The 
map π̂ : A⊗̂A → A is the projective induced product map defined through

π̂(a⊗ b) = ab ∀a, b ∈ A.

For each ϕ ∈ B2(A, C) there exists a unique element ϕ̂ ∈ (A⊗̂A)∗ such that

ϕ̂(a⊗ b) = ϕ(a, b) ∀a, b ∈ A,
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and we use the formal notation∫
A×A

ϕ(u, v) dD(u, v) := 〈ϕ̂,D〉.

Using this notation, the properties (18) can be written as∫
A×A

ϕ(au, v) dD(u, v) =
∫

A×A

ϕ(u, va) dD(u, v) (19)

and ∫
A×A

〈auv, ξ〉 dD(u, v) = 〈a, ξ〉 (20)

for all ϕ ∈ B2(A, C), a ∈ A, and ξ ∈ A∗; further, it will be helpful noting that∣∣∣∣∣∣
∫

A×A

ϕ(u, v) dD(u, v)

∣∣∣∣∣∣ ≤ ‖D‖‖ϕ̂‖ ≤ C‖ϕ‖. (21)

We proceed to define the projections P and Q. For this purpose we first define P0, Q0 ∈
B(X∗) by

〈x, P0ξ〉 =
∫

A×A

〈x · (uv), ξ〉 dD(u, v),

〈x,Q0ξ〉 =
∫

A×A

〈(uv) · x, ξ〉 dD(u, v)

for all x ∈ X and ξ ∈ X∗, and set

P = IX∗ − P0, Q = IX∗ −Q0.

From (21) we obtain ‖P0‖ ≤ RXC and ‖Q0‖ ≤ LXC, so that ‖P‖ ≤ 1 + RXC and 
‖Q‖ ≤ 1 + LXC.

We claim that

a · P0ξ = P0(a · ξ) = a · ξ, (22)

P0ξ · a = P0(ξ · a) (23)

for all a ∈ A and ξ ∈ X∗. Indeed, for a ∈ A, ξ ∈ X∗, and each x ∈ X, (19) and (20)
gives
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〈x, a · P0ξ〉 = 〈x · a, P0ξ〉 =
∫

A×A

〈x · (auv), ξ〉 dD(u, v)

= 〈x · a, ξ〉 = 〈x, a · ξ〉,

〈x, P0(a · ξ)〉 =
∫

A×A

〈x · (uv), a · ξ〉 dD(u, v)

=
∫

A×A

〈x · (uva), ξ〉 dD(u, v)

=
∫

A×A

〈x · (auv), ξ〉 dD(u, v) = 〈x, a · ξ〉,

and

〈x, P0ξ · a〉 = 〈a · x, P0ξ〉 =
∫

A×A

〈(a · x) · (uv), ξ〉 dD(u, v)

=
∫

A×A

〈x · (uv), ξ · a〉 dD(u, v) = 〈x, P0(ξ · a)〉,

which proves (22) and (23). From (22) we deduce that

〈x · a, Pξ〉 = 〈x, a · ξ − a · P0ξ〉 = 0,

and so Pξ ∈ (X ·A)⊥. Further, if ξ ∈ (X ·A)⊥, then

〈x, P0ξ〉 =
∫

A×A

〈x · (uv)︸ ︷︷ ︸
∈X·A

, ξ〉 dD(u, v) = 0,

and so Pξ = ξ. The operator P is a projection onto (X · A)⊥. From (22) we deduce 
immediately that

P (A ·X∗) = {0}. (24)

The operator Q can be handled in much the same way as P , and we obtain

Q0ξ · a = Q0(ξ · a) = ξ · a,
a ·Q0ξ = Q0(a · ξ)

for all a ∈ A and ξ ∈ X∗, the operator Q is a projection onto (A ·X)⊥, and

Q(X∗ ·A) = {0}. (25)
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Set T ∈ B(A, X∗), and define φ ∈ X∗ by

〈x, φ〉 =
∫

A×A

〈x, u · T (v)〉 dD(u, v) ∀x ∈ X.

For each x ∈ X and a ∈ A we have

〈x, P0T (a)〉 =
∫

A×A

〈x · (uv), T (a)〉 dD(u, v) =
∫

A×A

〈x, (uv) · T (a)〉 dD(u, v)

and

〈x, (δ0φ)(a)〉 = 〈x, a · φ− φ · a〉 = 〈x · a− a · x, φ〉

=
∫

A×A

〈x · a− a · x, u · T (v)〉 dD(u, v)

=
∫

A×A

〈x, (au) · T (v) − u · T (v) · a〉 dD(u, v)

=
∫

A×A

〈x, u · T (va) − u · T (v) · a〉 dD(u, v),

so that

〈x, (P0T − δ0φ)(a)〉 =
∫

A×A

〈x, u · (δ1T )(v, a)〉 dD(u, v)

=
∫

A×A

〈x · u, (δ1T )(v, a)〉 dD(u, v).

From the latter identity and (21) we conclude that

|〈x, (P0T − δ0φ)(a)〉| ≤ CRX‖δ1T‖‖a‖‖x‖,

whence

‖P0T − δ0φ‖ ≤ CRX‖δ1T‖. (26)

Write S = PT . From (22) and (23) it follows that δ1S(a, b) = Pδ1T (a, b), and so

‖δ1S‖ ≤ ‖P‖‖δ1T‖. (27)

We now define ψ ∈ X∗ by
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〈x, ψ〉 =
∫

A×A

〈x, S(u) · v〉 dD(u, v) ∀x ∈ X.

For each x ∈ X and a ∈ A we have

〈x,Q0S(a)〉 =
∫

A×A

〈(uv) · x, S(a)〉 dD(u, v) =
∫

A×A

〈x, S(a) · (uv)〉 dD(u, v)

and

〈x, (δ0ψ)(a)〉 = 〈x, a · ψ − ψ · a〉 = 〈x · a− a · x, ψ〉

=
∫

A×A

〈x · a− a · x, S(u) · v〉 dD(u, v)

=
∫

A×A

〈x, a · S(u) · v − S(u) · (va)〉 dD(u, v)

=
∫

A×A

〈x, a · S(u) · v − S(au) · v〉 dD(u, v),

and hence

〈x, (Q0S + δ0ψ)(a)〉 =
∫

A×A

〈x, (δ1S)(a, u) · v〉 dD(u, v)

=
∫

A×A

〈v · x, (δ1S)(a, u)〉 dD(u, v).

From the latter identity and (21) we conclude that

|〈x, (Q0S + δ0ψ)(a)〉| ≤ CLX‖δ1S‖‖a‖‖x‖.

Thus ‖Q0S + δ0ψ‖ ≤ CLX‖δ1S‖ and (27) then gives

‖Q0S + δ0ψ‖ ≤ CLX‖P‖‖δ1T‖. (28)

Our next goal is to estimate ‖QPT‖. For each u, v, a ∈ A, we have

δ1T (a, uv) = a · T (uv) − T (auv) + T (a) · (uv),

(23) and (24) gives

P (δ1T (a, uv)) = P (a · T (uv))︸ ︷︷ ︸−PT (auv) + PT (a) · (uv),

=0
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and finally (25) yields

QP (δ1T (a, uv)) = −QPT (auv) + Q(PT (a) · (uv))︸ ︷︷ ︸
=0

= −QPT (auv).

We thus get

〈x,QPT (a)〉 =
∫

A×A

〈x,QPT (auv)〉 dD(u, v)

=
∫

A×A

〈x,−QP (δ1T )(a, uv)〉 dD(u, v)

and (21) implies

|〈x,QPT (a)〉| ≤ C‖QP (δ1T )‖‖x‖‖a‖ ≤ C‖Q‖‖P‖‖δ1T‖‖x‖‖a‖.

Hence

‖QPT‖ ≤ C‖Q‖‖P‖‖δ1T‖. (29)

Finally, since

T − δ0φ + δ0ψ = QPT + (P0T − δ0φ) + (Q0PT + δ0ψ),

(26), (28), and (29) show that

‖T − δ0φ + δ0ψ‖ ≤ ‖P0T − δ0φ‖ + ‖Q0PT + δ0ψ‖ + ‖QPT‖
≤ CRX‖δ1T‖ + CLX‖P‖‖δ1T‖ + C‖Q‖‖P‖‖δ1T‖.

Since −δ0φ + δ0ψ ∈ Z1(A, X∗), it follows that

dist
(
T,Z1(A,X∗)

)
≤ CRX‖δ1T‖ + CLX‖P‖‖δ1T‖ + C‖Q‖‖P‖‖δ1T‖

as required. �
Corollary 4.3. Let A be a C-amenable Banach algebra, let X be a Banach A-bimodule, 
and let n ∈ N. Then

dist
(
T,Zn(A,X∗)

)
≤ 2(n + LX)(1 + RX)C3‖δnT‖

for each T ∈ Bn(A, X∗).



J. Alaminos et al. / Linear Algebra and its Applications 630 (2021) 326–354 351
Proof. Of course, we need only consider the case where A is a non-zero Banach algebra, 
which implies that C ≥ 1.

Suppose that n = 1, and T ∈ B(A, X∗). By Proposition 4.2,

dist
(
T,Z1(A,X∗)

)
≤ C

(
RX + LX(1 + RXC) + (1 + LXC)(1 + RXC)

)
‖δ1T‖

≤ 2(1 + LX)(1 + RX)C3‖δ1T‖,

as C ≥ 1.
The Banach space Bn(A, X∗) is a Banach A-bimodule with respect to the operations

(a · T )(a1, . . . , an) = a · T (a1, . . . , an)

and

(T · a)(a1, . . . , an) = T (aa1, . . . , an)

+
n−1∑
k=1

(−1)kT (a, a1, . . . , akak+1, . . . , an)

+ (−1)nT (a, a1, . . . , an−1) · an

for all T ∈ Bn(A, X∗), and a, a1, . . . , an ∈ A. Let

Δ1 : B(A,Bn(A,X∗)) → B2(A,Bn(A,X∗))

be the 1-coboundary operator. We also consider the maps

τn1 : B1+n(A,X∗) → B(A,Bn(A,X∗)),

τn2 : B2+n(A,X∗) → B2(A,Bn(A,X∗))

defined by

(τn1 T )(a)(a1, . . . , an) = T (a, a1, . . . , an),

(τn2 T )(a, b)(a1, . . . , an) = T (a, b, a1, . . . , an).

Then:

• τn1 and τn2 are isometric isomorphisms;
• Δ1 ◦ τn1 = τn2 ◦ δn+1;
• τn1 Zn+1(A, X∗) = Z1(A, Bn(A, X∗)).

For each T ∈ B1+n(A, X∗) we have

dist
(
T,Zn+1(A,X∗)

)
= dist

(
τn1 T, τ

n
1 Zn+1(A,X∗)

)(
n 1 n ∗ ) (30)
= dist τ1 T,Z (A,B (A,X )) .
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Our next objective is to apply Proposition 4.2 to estimate the distance of the last term 
in (30). To this end, we realize that Bn(A, X∗) is a dual Banach A-bimodule by setting

Y = A⊗̂ · · · ⊗̂A︸ ︷︷ ︸
n-times

⊗̂X.

Then:

• Y is a Banach A-bimodule with respect to the operations

(a1 ⊗ · · · ⊗ an ⊗ x) · a = a1 ⊗ · · · ⊗ an ⊗ (x · a)

and

a · (a1 ⊗ · · · ⊗ an ⊗ x) = (aa1) ⊗ · · · ⊗ an ⊗ x

+
n−1∑
k=1

(−1)ka⊗ a1 ⊗ · · · ⊗ (akak+1) ⊗ · · · ⊗ an ⊗ x

+ (−1)na⊗ a1 ⊗ · · · ⊗ an−1 ⊗ (an · x)

for all a, a1, . . . , an ∈ A, and x ∈ X;
• we have the estimates

LY ≤ n + LX , RY ≤ RX ;

• the Banach A-bimodule Bn(A, X∗) is isometrically isomorphic to the Banach A-
bimodule Y ∗ through the duality

〈a1 ⊗ · · · ⊗ an ⊗ x, T 〉 = 〈x, T (a1, . . . , an)〉

for all T ∈ Bn(A, X∗), a1, . . . , an ∈ A, and x ∈ X.

Proposition 4.2 now leads to

dist
(
τn1 T,Z1(A,Bn(A,X∗))

)
= dist

(
τn1 T,Z1(A, Y ∗)

)
≤ 2(1 + LY )(1 + RY )C3 ∥∥Δ1τn1 T

∥∥
≤ 2(1 + n + LX)(1 + RX)C3 ∥∥Δ1τn1 T

∥∥
= 2(1 + n + LX)(1 + RX)C3 ∥∥τn2 δn+1T

∥∥
= 2(1 + n + LX)(1 + RX)C3 ∥∥δn+1T

∥∥ .
Combining (30) with the inequality above, we obtain precisely the estimate of the corol-
lary. �
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Theorem 4.4. Let X be a Banach space with property (A), let Y be a Banach A(X)-
bimodule, and let n ∈ N. Then the space Zn(A(X), Y ∗) is hyperreflexive. Specifically, if 
C denotes the supremum in (15), then

dist
(
T,Zn(A(X), Y ∗)

)
≤

(n + LY )(1 + RY )C62n
(
C2βA(X) + (C + 1)2

)n+1 distr
(
T,Zn(A(X), Y ∗)

)
for each T ∈ Bn(A(X), Y ∗), where

βA(X) ≤ 120
√

27
1 + sin π

10
1 − 2 sin π

10
C2.

Proof. From Theorem 4.1 we see that A(X) has the strong property B and the estimate 
for βA(X) holds.

The Banach algebra A(X) has an approximate identity of bound C. Further, for each 
T ∈ F(X) there exists S ∈ F(X) such that ST = TS = T , and [14, Proposition 5.4]
then shows that A(X) has bounded local units.

By [12, Theorem 3.3.9], A(X) is C2-amenable, and Corollary 4.3 now gives

dist
(
T,Zn(A(X), Y ∗)

)
≤ 2(n + LY )(1 + RY )C6‖δnT‖

for each T ∈ Bn(A(X), Y ∗). This estimate shows that the map

Bn(A(X), Y ∗)/Zn(A(X), Y ∗) → Nn+1(A(X), Y ∗)

T + Zn(A(X), Y ∗) �→ δnT

is an isomorphism, hence Nn+1(A(X), Y ∗) is closed in Bn+1(A(X), Y ∗) and this implies 
that the nth Hochschild cohomology group Hn+1(A(X), Y ∗) is a Banach space. By ap-
plying [15, Theorem 4.3] we obtain the hyperreflexivity of the space Zn(A(X), Y ∗) as 
well as the statement about the estimate of dist

(
T, Zn(A(X), Y ∗)

)
. �

Declaration of competing interest

There is no competing interest.

References

[1] J. Alaminos, M. Brešar, J. Extremera, A.R. Villena, Maps preserving zero products, Stud. Math. 
193 (2009) 131–159.

[2] J. Alaminos, M. Brešar, J. Extremera, A.R. Villena, Zero Lie product determined Banach algebras, 
Stud. Math. 239 (2017) 189–199.

[3] J. Alaminos, M. Brešar, J. Extremera, A.R. Villena, Zero Lie product determined Banach algebras, 
II, J. Math. Anal. Appl. 474 (2) (2019) 1498–1511.

[4] J. Alaminos, M. Brešar, J. Extremera, A.R. Villena, Zero Jordan product determined Banach alge-
bras, J. Aust. Math. Soc. (2020) 1–14, https://doi .org /10 .1017 /S1446788719000478.

http://refhub.elsevier.com/S0024-3795(21)00335-9/bib56823D790E76EC93E30FEC8F2228AAF5s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib56823D790E76EC93E30FEC8F2228AAF5s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bibC9512565EF6194CA664DC41EC0DE7A53s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bibC9512565EF6194CA664DC41EC0DE7A53s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bibBBD97B00C539801E32317AB550867EC4s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bibBBD97B00C539801E32317AB550867EC4s1
https://doi.org/10.1017/S1446788719000478


354 J. Alaminos et al. / Linear Algebra and its Applications 630 (2021) 326–354
[5] J. Alaminos, J. Extremera, M.L.C. Godoy, A.R. Villena, Hyperreflexivity of the space of module 
homomorphisms between non-commutative Lp-spaces, J. Math. Anal. Appl. 498 (2) (2021) 124964.

[6] J. Alaminos, J. Extremera, A.R. Villena, Approximately zero product preserving maps, Isr. J. Math. 
178 (2010) 1–28.

[7] J. Alaminos, J. Extremera, A.R. Villena, Hyperreflexivity of the derivation space of some group 
algebras, Math. Z. 266 (2010) 571–582.

[8] J. Alaminos, J. Extremera, A.R. Villena, Hyperreflexivity of the derivation space of some group 
algebras, II, Bull. Lond. Math. Soc. 44 (2012) 323–335.

[9] G.R. Allan, T.J. Ransford, Power-dominated elements in a Banach algebra, Stud. Math. 94 (1) 
(1989) 63–79.

[10] M. Brešar, Zero Product Determined Algebras, Frontiers in Mathematics, Birkhäuser, Basel, 2021.
[11] H.G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Mono-

graphs, New Series, vol. 24, Oxford Science Publications, the Clarendon Press, Oxford University 
Press, New York, 2000.

[12] V. Runde, Amenable Banach algebras. A Panorama, Springer Monographs in Mathematics, 
Springer-Verlag, New York, 2020.

[13] E. Samei, Reflexivity and hyperreflexivity of bounded n-cocycles from group algebras, Proc. Am. 
Math. Soc. 139 (2011) 163–176.

[14] E. Samei, J. Soltani Farsani, Hyperreflexivity of the bounded n-cocycle spaces of Banach algebras, 
Monatshefte Math. 175 (2014) 429–455.

[15] E. Samei, J. Soltani Farsani, Hyperreflexivity constants of the bounded n-cocycle spaces of group 
algebras and C∗-algebras, J. Aust. Math. Soc. 109 (2020) 112–130.

http://refhub.elsevier.com/S0024-3795(21)00335-9/bib26CD892893612834911B2835614D961Cs1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib26CD892893612834911B2835614D961Cs1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bibA633B6C9860756FAACA545C99E69303Bs1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bibA633B6C9860756FAACA545C99E69303Bs1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib660115087A0C3646F83E2986388BC29Fs1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib660115087A0C3646F83E2986388BC29Fs1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib7769C3AC6BB5C446A85D4FBE0A2D2179s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib7769C3AC6BB5C446A85D4FBE0A2D2179s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib5B61A1B298A0D06EFA6933A97E68D763s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib5B61A1B298A0D06EFA6933A97E68D763s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib8D37869EBC7AF08A31DF14FE3F48BEE2s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bibF623E75AF30E62BBD73D6DF5B50BB7B5s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bibF623E75AF30E62BBD73D6DF5B50BB7B5s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bibF623E75AF30E62BBD73D6DF5B50BB7B5s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib8F9D8A494160076ED48683BC3A99E9DFs1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib8F9D8A494160076ED48683BC3A99E9DFs1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib490BD89BCDC4E9F01D1A33899736F7A3s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib490BD89BCDC4E9F01D1A33899736F7A3s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib82427F3784E2A15AFA2F4CD3ED7D42E7s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bib82427F3784E2A15AFA2F4CD3ED7D42E7s1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bibD53AEB78ABC83A52AB8982F5C82A3D5Bs1
http://refhub.elsevier.com/S0024-3795(21)00335-9/bibD53AEB78ABC83A52AB8982F5C82A3D5Bs1

	Strongly zero product determined Banach algebras
	1 Introduction
	2 Elementary estimates
	3 Group algebras
	4 Algebras of approximable operators
	Declaration of competing interest
	References


