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60v/27 %02, where C' is a constant associated with the
b 10
property (A) that we require for X.
© 2021 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let A be a Banach algebra. Then w: A x A — A denotes the product map, we write
A* for the dual of A, and B?(A, C) for the space of continuous bilinear functionals on A.

The Banach algebra A is said to be zero product determined if every ¢ € B?(A,C)
with the property

a,be A, ab=0 = ¢(a,b)=0 (1)
belongs to the space
B2(A,C)={¢om:£e A"}

This concept implicitly appeared in [1] as an additional outcome of the so-called property
B which was introduced in that paper, and was the basis of subsequent Jordan and
Lie versions (see [2-4]). For a comprehensive survey of the theory of the zero product
determined Banach algebras we refer the reader to [10]. The algebra A is said to have
property B if every ¢ € B%(A, C) satisfying (1) belongs to the closed subspace B2 (A, C)
of B%(A,C) defined by

BZ(A,C) = {4y € B*(A,C) : ¢(ab,c) = ¢(a,bc) Ya,b,c € A}.

In [1] it was shown that this class of Banach algebras is wide enough to include a number
of examples of interest: C*-algebras, the group algebra L!(G) of any locally compact
group G, and the algebra A(X) of approximable operators on any Banach space X.

Throughout, we confine ourselves to Banach algebras having a bounded left approx-
imate identity. Then B2(A,C) = BZ?(A,C) (Proposition 2.1), and hence A is a zero
product determined Banach algebra if and only if A has property B. For example, this
applies to C*-algebras, group algebras and the algebra A(X) on any Banach space X
having the bounded approximation property, so that all of them are zero product deter-
mined Banach algebras.

For each ¢ € B?(A, C), the distance from ¢ to B2(A,C) is

dist (¢, B2(4,C)) = inf {[|lo — 9] : ¥ € BA(A,C)},

which can be easily estimated through the constant
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ol = sup{|e(ab, c) — @(a,be)| : a,b,c € A, [lal| = [|b]] = ||| = 1}

(Proposition 2.1 below). Our purpose is to estimate dist (go, B2(A, (C)) through the con-
stant

lol., =sup{le(a,b)| : a,b € A, [lal| = [|b] =1, ab=0}.
Note that A is zero product determined precisely when

We call the Banach algebra A strongly zero product determined if condition (2) is
strengthened by requiring that there is a distance estimate

dist(p, B2(A,C)) < algl,, Ve € BX(A,C) 3)

for some constant «; in this case, the optimal constant « for which (3) holds will be
denoted by a4. The inequality [¢[,, < dist (¢, B2(A,C)) is always true (Proposition 2.1
below). We also note that A has property B exactly in the case when

¢ € BX(A,C), |¢l,,=0 = |g|, =0,
and the algebra A is said to have the strong property B if there is an estimate

lels < Blel,, VeeB*(A,C) (4)

for some constant f; in this case, the optimal constant S for which (4) holds will be
denoted by B4. The inequality [p],, < M [p[, is always true for some constant M
(Proposition 2.1 below). The spirit of this concept first appeared in [6], and was subse-
quently formulated in [14] and refined in [15]. This property has proven to be useful to
study the hyperreflexivity of the spaces of continuous derivations and, more generally,
continuous cocycles on A (see [7,8,13-15]).

From [5, Corollary 1.3], we obtain the following result.

Theorem 1.1. Let A be a C*-algebra. Then A is strongly zero product determined, has
the strong property B, and aa, B4 < 8.

It is shown in [15] that each group algebra has the strong property B and so (by
Corollary 2.2 below) it is also strongly zero product determined. In Theorem 3.3 we
prove that, for each group G,

1 +sin {5

apia) < ﬁLl(G) < 60v27 - QSinllO-
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This gives a sharper estimate for the constant of the strong property B of L'(G) to the
one given in [15, Theorem 3.4]. The estimates given in Theorems 1.1 and 3.3 can be used
to sharp the upper bound given in [15, Theorem 4.4] for the hyperreflexivity constant of
Z™(A, X), the space of continuous n-cocycles from A into X, where A is a C*-algebra
or the group algebra of a group with an open subgroup of polynomial growth and X is
a Banach A-bimodule for which the n*® Hochschild cohomology group H"*1(A, X) is a
Banach space.

Finally, in Theorem 4.1 we prove that the algebra A(X) is strongly zero product
determined for each Banach space X having property (A) (which is a rather strong
approximation property for the space X). Further, we will use this result to show that
the space Z™(A(X),Y™) is hyperreflexive for each Banach A(X)-bimodule Y.

There is no reason for an arbitrary zero product Banach algebra to be strongly zero
product determined. However, as yet, we do not know an example of a zero product
determined Banach algebra which is not strongly zero product determined.

Throughout, our reference for Banach algebras, and particularly for group algebras,
is the monograph [11].

2. Elementary estimates

In the following result we gather together some estimates that relate the seminorms
dist (-, B2(4,C)), ||, and [, on B2(A,C) to each other.

Proposition 2.1. Let A be a Banach algebra with a left approximate identity of bound M .
Then B2(A,C) = B(A,C) and, for each ¢ € B2(A,C), the following properties hold:

(i) The distance dist (@, B2(A,C)) is attained;
(it) 3 lel, < dist (0, B3 (A, C)) < M o],
(iii) |¢l., < dist (¢, B2(A,C)).

Proof. Let (ex),c, be a left approximate identity of bound M.
(i) Let (&,,) be a sequence in A* such that

. 2 BRT .
dist (QPva(Av C)) - nh—)néo ||90 gn © 7T|| :
For each n € N and a € A, we have
[&nexa)l = |(&n o m)(ex, a)| < M [|&n o 7| flal VA€ A

and hence, taking limit in the above inequality and using that limycp exa = a, we see
that |, (a)] < M ||&, o || ||a]|, which shows that ||&, || < M ||€, o «||. Further, since

[én o7l <l —&nom| + ol VneN,
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it follows that the sequence (||&,||) is bounded. By the Banach—Alaoglu theorem, the
sequence (&) has a weak*-accumulation point, say &, in A*. Let (§,),cy be a subnet of
(&,) such that w*-lim,en & = €. The task is now to show that

o — &om| = dist (¢, B2(A,C)) .
For each a,b € A with ||a|| = ||b]] = 1, we have
p(a,0) = &u(ab)| < flp =& oml| Vv eN,

and so, taking limits on both sides of the above inequality and using that
lim &, (ab) = &(ab
lim &, (ab) = £(ab)

and that (|[¢ — &, om|),cn is a subnet of the convergent sequence (|l¢ — &, o 7||), we
obtain

|o(a, b) — €(ab)| < dist (¢, B7(A,C)).
This implies that [ —&om| < dist (¢, B2(A,C)), and the converse inequality

dist (p, B2(A,C)) < |l¢ — £ o | trivially holds.
(ii) For each A € A define £, € A* by

&x(a) = p(er,a) Va € A.
Then [|§z]] < M ||¢l| for each X € A, so that (§x),c, is a bounded net in A* and hence
the Banach—Alaoglu theorem shows that it has a weak*-accumulation point, say &, in
A*. Let (& ),cn be a subnet of (§x)xca such that w*-lim,en &, = £. For each a,b € A
with ||a|| = ||b]] = 1, we have

lp(eva,b) — (e, ab)| < Mlp|, VveN

and hence, taking limit and using that (e,a),., is a subnet of the convergent net
(exa)yca and that lim,en p(ex, ab) = {(ab), we see that

|p(a,b) — &(ab)| < M [l -

This gives [[¢ — o n| < M |pl,, whence

dist (¢, Bz (A4, C)) < M|ply.
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Set £ € A*. For each a,b,c € A with |la|| = ||b]| = ||c|| = 1, we have

lp(ab, ¢) = p(a, be)| = [w(ab, ¢) — (§ o m)(ab, ¢) + (€ o ™)(a, be) — ¢(a, be)
< lp(ab, c) = (§om)(ab, c)| +[( o m)(a, be) — ¢(a, be)
<l = €omllabllflell + llv = Eo x| [la] [[oc]
<2 —&on|

and therefore |¢|, < 2||¢ — & om||. Since this inequality holds for each £ € A*, it follows
that

‘30|b S QdiSt (303 872\'(143 (C)) .
(iii) Let a,b € A with ||a|| = ||b]| = 1 and ab = 0. For each £ € A*, we see that

lp(a,b)| = |p(a,b) — (o m)(a,b)| < |l — o],

and consequently |Lp|zp < |l¢ — € o m]|. Since the above inequality holds for each £ € A*,

we conclude that

‘@' < diSt (907 8721'("47 (C)) :

zZp —

Finally, it is clear that B2(A4,C) C B?(A,C). To prove the reverse inclusion take
¢ € BE(A,C). Then ||, = 0, hence (ii) shows that dist (¢, B2(A4,C)) = 0, and (i) gives
1 € B2(A, C) such that || —v|| = 0, which implies that ¢ = € B2(A,C). O

The following result is an immediate consequence of assertion (ii) in Proposition 2.1.

Corollary 2.2. Let A be a Banach algebra with a left approzimate identity of bound M.
Then A is a strongly zero product determined Banach algebra if and only if has the strong
property B, in which case

384 < an < MPBa.

Let X and Y be Banach spaces, and let n € N. We write B"(X,Y) for the Banach
space of all continuous n-linear maps from X x 2o xX toY. As usual, we abbreviate
BYX,Y) to B(X,Y), B(X,X) to B(X), and B(X,C) to X*. The identity operator on
X is denoted by Ix. Further, we write (-, -) for the duality between X and X*. For each
subspace E of X, E+ denotes the annihilator of E in X*.

For a Banach algebra A and a Banach space X, and for each ¢ € B?(4, X), we
continue to use the notations

|ol, = sup{[(ab, ¢) = p(a,be)| : a,b,c € A, [lal| = [[b]] = [|c]| = 1},
|l = sup {le(a,b)| - a,b € A, |la] = [|b]] =1, ab =0}.
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Proposition 2.3. Let A be a Banach algebra with a left approximate identity of bound M
and having the strong property B. Let X be a Banach space, and let ¢ € B*(A, X). Then
the following properties hold:

(1) |30|b < BA |(p|zp7.
(ii) If X is a dual Banach space, then there exists ® € B(A, X) such that || — P ol <
M§Ba.
Proof. (i) For each £ € X*, we have
‘5090|b < ﬁA |§O¢‘zp‘

It follows from the Hahn-Banach theorem that

ol = sup{[€ o ol : € € X, [I¢]l =1},
|80|zp = Sup{|£o 90|zp : f € X*? ||£|| = 1}

In this way we obtain (i).
(ii) Suppose that X is the dual of a Banach space X,. Let (ex)rca be a left approxi-
mate identity for A of bound M, and define a net (®))rea in B(A4, X) by setting

®y(a) = p(ex,a) Yae A, VA eA.

Since each bounded subset of B(A, X) is relatively compact with respect to the weak*
operator topology on B(A, X) and the net (®))xea is bounded, it follows that there exist
® € B(A, X) and a subnet (®,),en of (Px)rea such that wo*-lim,eny ®, = ®. For each
a,b € A with |ja]| = ||b]| = 1, and z, € X, with ||z.| = 1, we have

(22 p(eva, b)) — (@, p(ev, ab))| < llo(eva, b) — p(ev, ab)l| < MBa Vv €N

and hence, taking limit and using that (e,a),en is a subnet of the net (exa)rea (which
converges to a with respect to the norm topology) and that lim,cn{(x., p(e,,ad)) =
(24, ®(ab)) (by definition of ®), we see that

|z, 0(a,b) — ®(ab))| = MB4.
This gives |[¢ — Pon|| < MBa. O
3. Group algebras
In this section we prove that the group algebra L!(G) of each locally compact group

G is a strongly zero product determined Banach algebra and we provide an estimate of
the constants a1 gy and Br1(g). Our estimate of #11(g) improves the one given in [15].
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For the basic properties of this important class of Banach algebras we refer the reader
to [11, Section 3.3].

Throughout this section, T denotes the circle group, and we consider the normalized
Haar measure on T. We write A(T) and A(T?) for the Fourier algebras of T and T2,
respectively. For each f € A(T), F € A(T?), and j,k € Z, we write f(j) and F(j, k) for
the Fourier coefficients of f and F, respectively. Let 1,{ € A(T) denote the functions
defined by

1(z) =1, ((z)=2z VzeT.
Let A: A(T?) — A(T) be the bounded linear map defined by
A(F)(z) = F(z,2) VzeT, VF € A(T?).
For f,g € A(T), let f ® g: T2 — C denote the function defined by
(f@g)(zw) = f(z)g(w) Vz,weT,
which is an element of A(T?) with ||f ® g|| = |||l llg]|-

Lemma 3.1. Let ®: A(T?) — C be a continuous linear functional, and let the constant
€ > 0 be such that

[,9€ A(T), fg=0 = [@(fog)l<e|flllgll-
Then
2(C®1-1®C)| <[ |keral 25in & + 60v/27 (1 +sin ) e.

Proof. Set

E:{eei:—%ﬂgegéﬂ},
W={(zw)eT?: 2w " € E},

and let F' € A(T?) be such that
F(z,w)=0 VY(z,w)eW. (5)
Our objective is to prove that
[D(F)| < 30vV27 || F| <. (6)

For this purpose, we take
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A={e":0<0< Ltn},
B={e":EZnr <0< Hr},
U={e":-kn<0<&n},

and we define functions w,v € A(T) by

w=30xa*xxu, v=30xB*XxU.

We note that
{z€T w(z)#£0} =AU ={e": —kmr <0 < Ln},

{ZET:U(Z)#O}zBUz{eGi:107r<9< T},

and, with ||-||, denoting the norm of L?*(T),

lwll < 30(Ixallz [Ixull; =30 —=
2 \/_ \/_

V27 1
[oll < 301Ixall, Ixvll, = 30\/—— 730 VT

Since

29 28
UJd*a=T, |Jd*A=8B,
k=0 k=2

it follows that

29 29 28 28
Z(sak*XA:ZXakA:]w Zéak*XA:ZXakA:XBv
k=0 k=0 k=2 k=2

and thus, for each j € Z, we have

j+29 29
D Bar kw =300, % D Gar * xax XU =300, % Lx xu =1, (7)
k=j k=0
j+28 28
Z Ogr * w = 30044 *Zéak *XA* XU = 30045 * XB * XU = 045 * V. (8)
k=j+2 k=2
IfjeZ ke{j—1,5,7+ 1} and z,w € T are such that (0,5 * w)(2)(0gr * w)(w) # 0,

then
2wt € ajAU(akAU)_1 cal™k {eei —2Zr << En} CE,
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whence {(z,w) € T?: (8,5 * w) @ (§,x *w)(z,w) # 0} C W and (5) gives
F(045 *w) ® (0gr *xw) = 0.
Since AU N BU = @, it follows that wv = 0, and therefore
(Ogr *w)(dgx xv) =0 Vk € Z.

From (7), (8), and (9) we deduce that

29 j+28
F= FZ Z 0 ¥ W) @ (Ogr * w)
7=0k=j—1
29 j+1 29 j+28
= Z Z F(0gi *w) @ (dgr * w) + Z Z F(by *w) ® (dgr * w)
3=0 k=j—1 3=0 k=j+2
29 j+28 29
_Z Z (0qi *w) (5ak*W):ZF(5aj*w>®(5aj*v).
J=0 k=j+2 j=0
As
F= > F(,kded
Jk=—o0
we have
Z ZF ik al *UJ)) ® (Ck(éaz * ’U)),
Jyk=—o00 1=0
so that
Z ZF i,k ( ¢ 51*w))®(gk(5az*v))).
J,k=—o00 =0

By (10), for each j,k,l € Z,

(€7 (641 * w)) (¥ (60 *v)) =0
and therefore

|<I> ((Cj(éaz *w)) ® (Ck(5az * U)))| <e "Cj(éaz, *w)H HCk(5az *’U)H
= ellw|| [v] < V2T7e.

We thus get

335

(10)
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> fiﬁ%xmu¢adww*w»®(&wd*unﬂ

J,k=—00 1=0

oo 29 N

Sy ‘F(j, k)( V3T e = 30V27 || F e,
J,k=—00 1=0

and (6) is proved.
Let f € A(T) be such that f(z) = 0 for each z € E, and define the function F: T2 —
C by

F(z,w) = f(zw Hw = Z f(k)zkw#“l Vz,we T.

k=—o0

Then F € A(T?), [|[F|| = |If, (®1-1®(—F € ker A, and

(<®171®<7F)<z,w):(14(1)) (1, )W*Zf Wk

k#0,1

which certainly implies that

lce1-10¢—Fl=|t=f)|+|-1-FO)|+ X |[F®)] = lc-1-71.

k0,1
According to (6), we have

P(R1-18Q)[<[B(CR1-18(—F)|+|®(F)
<@ ferall [C®1—=1@ ¢ — F +30v27||F|
=@ herall € — 1= £l +30v27 || £l ¢
<@ [kerall 1€ = 1= FIl +30V27([[¢ = 1 = fI| +2)e

(as || fll < |¢ =1 = f|| + ||¢ — 1]|). Further, this inequality holds for each function from
the set Z consisting of all functions f € A(T) such that f(z) = 0 for each z € E.
Consequently,

D1 —1®C)| < || |kerall dist(¢ — 1,7Z) 4 30v/27 (dist(¢ — 1,Z) + 2) e.
On the other hand, it is shown at the beginning of the proof of [9, Corollary 3.3] that
dist(¢ — 1,Z) < 2sin {5,
and we thus get
2(C®1-1®C)| < || |xeral 25in & + 30v/27 (2sin &5 + 2) e,

which completes the proof. O
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Lemma 3.2. Let ®: A(T?) — C be a continuous linear functional, and let the constant
€ > 0 be such that

fr9€ AT), fg=0 = [(feg)l<e|fllgll

Then
|®(F —1® AF)| < 60@% e ||F||
for each F € A(T?).
Proof. Fix 5,k € Z. We claim that
12(¢7 @ ¢F —1@ ™) < ||® |kerall 25in &5 + 60v/27 (1 +sin %) e. (11)

Of course, we are reduced to proving (11) for j # 0. We define d;: A(T) — A(T), and
Dj,Ly: A(T?) — A(T?) by

dif(z) = f(z") VfeA(T), VzeT
and
D;F(z,w) = F(2/,w?), LiF(2,w) = F(z,w)w* VF € A(T?), Vz,weT,

respectively. Further, we consider the continuous linear functional ® o Ly o D;. If f,g €
A(T) are such that fg = 0, then (d; f)(¢*d;g) = ¢(*d;(fg) = 0, and so, by hypothesis,

[®o Ly oDi(f®g)| = |®(d;f @ Fdig)| < elld;fIl|[¢*djgl| = I £1 gl -
By applying Lemma 3.1, we obtain
2 @*F—1@ ™) =]®oLroD;((®1-1®()|
< ||® 0 Ly 0 Dj Jxerall 28in & + 60v27 (1 + sin &%) e.
We check at once that (Lj o D;)(ker A) C ker A, which gives

@0 LioDj lkerall < [kerall,

and therefore (11) is proved.
Take F € A(T?). Then

F= 3 FGRded

Jk=—o0
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and
AF = Y F(j k)7t
J,k=—o00
Consequently,
OF-10AF)= Y F( oo ot -10¢"h),
J,k=—00

and (11) gives

®(F—1@AF)| < Y ‘ﬁ(jvk)"q’(4j®Ck—1®Cj+k)|

Jk=—o0

— |5 o o (12)
< > |FGR)| |19 |er all 2sin 75 + 60v/27 (1 +sin 75)
j,k=—o00

= ||F| {H‘I) lker ]| 28in & + 60v/27 (1 + sin ) 5} '
In particular, for each F' € ker A, we have

1) | < IF) {19 ler o 25in 75 + 60V2T (1 +sin 75) <]

Thus
||¢ |kerA|| < ||(P |kerA|| 2 sin 1% + 6027 (1 ~+ sin 130) g,
so that
1+ sin %
||¢) |kerA|| < 60v 27710
1-— 28111110
Using this estimate in (12), we obtain
1 + sin 75 . .
|O(F —1® AF)| <||F|| |60v27 T osin = €2sin {5 + 60v27 (1 + sin 1“—0) €
— 2sin 75
1 +sin &

= ||F|| 60v/27

10
1 — 2sin 75
for each F' € A(T?), which completes the proof. O

Theorem 3.3. Let G be a locally compact group. Then the Banach algebra L'(G) is
strongly zero product determined and
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1+sm

71 .
2 sin 16

aLl(G) < 6L1 < 60\/_

Proof. On account of Corollary 2.2, it suffices to prove that L!(G) has the strong prop-
erty B with

1+Sm

71—7
QSIHE

Bria) < 60\/_ (13)

because L'(G) has an approximate identity of bound 1. For this purpose set ¢ €
B%(LY(@),C).

Let t € G, and let d; be the point mass measure at ¢t on G. We define a contractive
homomorphism T': A(T) — M(G) by

T(u)= > (k)6 Vue A(T).
k=—o0
Take f,h € LY(G) with ||f|| = ||k|| = 1, and define a continuous linear functional

®: A(T?) — C by

O(F)= > F(.k)(f 0,00 +h) VF e A(T?).
(3,k)eZ?

Further, if u,v € A(T), then

Su@v) = Y UGTk)A(f * 6, % h) = @(f * T(w), T(v) * h);

(j,k)eZ?
in particular, if wv = 0, then (f * T'(u)) * (T'(v) * h) = f * T(uv) * h = 0, and so
[@(u@v)| = |p(f *T(u), T(v) * W) <[l | f* T (W] |T(v) * A
<ol lull o]l -
By applying Lemma 3.2 with F = ( ® 1, we see that

1+Sm

— e,
251nl77—O zp

[o(f %0, h) = (f,0, + h)| = [(C® 1= 1@ ()] < 60V2T

We now take g € L'(G) with ||g|| = 1. By multiplying the above inequality by |g(t)|, we
arrive at

1 —|—sm
—_ t)]. 14
eyl BV R ()

lp(g(t)f * 6, h) — (f, g(t)0r x h)| < 60\/_

Since the convolutions f % g and g * h can be expressed as
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frxg= [ gt)f = o dt,

gxh g(t)o; * hdt,

I
Qe O

where the expressions on the right-hand side are considered as Bochner integrals of
LY(G)-valued functions of ¢, it follows that

o(f % 9.h) — o(f.g % ) = / [o(g(6)f % b0, ) — ol g(t)6, * 1] dt.

G

From (14) we now deduce that

o(f % g.h) — o(fog* )| < / o(g(t)f * 60 1) — o(f,g(8)5, % )] dt
G
1+ sin =
< 60V2T — 0 / ()] dt
1—251nm zp
G
1—1—5111110

— el
1—2sm% zp

= 60v/27

We thus get

1+ sin &
|90|b S 60 4 27710 |90|zp’

1 — 2sin g5
and (13) is proved. O

4. Algebras of approximable operators

Let X be a Banach space. Then we write F(X) for the two-sided ideal of B(X)
consisting of finite-rank operators, and A(X) for the closure of F(X) in B(X) with
respect to the operator norm. For each x € X and ¢ € X*, we define z ® ¢ € F(X) by
(x ® ¢)(y) = (y, ¢)x for each y € X. A finite, biorthogonal system for X is a set

{(@j, ) 15,k =1,...,n}
Wlth LlyeeerTn EXand ¢17"'a¢n EX* Such that

(xj, ) =8k Vi ke{l,...,n}

Each such system defines an algebra homomorphism
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n
0: M, — F(X), (aj0) —~ D a;x7; @ dr,
J,k=1

where M, is the full matrix algebra of order n over C. The identity matrix is denoted
by I,.

The Banach space X is said to have property (A) if there is a directed set A such that,
for each A\ € A, there exists a finite, biorthogonal system

{(‘r;\7¢2) :j?k = 1)' ..,’I’L)\}
for X with corresponding algebra homomorphism 6y : M,,, — F(X) such that:

(i) limyea 0x(In, ) = Ix uniformly on the compact subsets of X;
(i) limyep Ox(In,)* = Ix~ uniformly on the compact subsets of X*;
(iii) for each index A € A, there is a finite subgroup G of the group of all invertible
nx X ny matrices over C whose linear span is all of M, , such that

sup sup [|6x(t)]| < oo. (15)
AEAtEG

Property (A) forces the Banach algebra A(X) to be amenable. For an exhaustive
treatment of this topic (including a variety of interesting examples of spaces with prop-
erty (A)) we refer to [12, Section 3.3].

The notation of the above definition will be standard for the remainder of this section.
Furthermore, our basic reference for this section is the monograph [12].

Theorem 4.1. Let X be a Banach space with property (A). Then the Banach algebra A(X)
is strongly zero product determined. Specifically, if C denotes the supremum in (15), then

U T
1+ sin 10 9

3 s
1—251nm

1Bax) < aax) < 60V27
Proof. For each A\ € A we define ®,: /1(G)) — F(X) by

Ou(f) = > F(®)OA(t) Vf € L(Gy).

teG

We claim that @) is an algebra homomorphism. It is clear the ®) is a linear map and,
for each f,g € £*(G)), we have
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x(frg) =D (Fx9)0OrE) = D D f(s)g(s " 1)ox(t)

teGx teGA s€Gy
N (Z > fls)gls )t >_9A (Z F(s)s > gl —1t)s—1t>
teGx s€G seG teG
— 0, (Z f()s 3 g<r>r> — 6, (Z f(8)8> 2 (Z g<r>r>
sEG reGy seGy reGy
= OA(f)Pa(9)-

Of course, @, is continuous because ¢1(G)) is finite-dimensional, and, further, for each
f € £X(G)), we have

IeA(HI < D IF@HIBOI < Y 1F@BIC=ClIf]; -

teG teG

Hence ||®,] < C.
Let ¢ € B*(A(X),C). Let us prove that

|0(S0x(2), 0A(t™)T) = 9(SOx(n2), O (Lo, )T)| < Bera) C* ISIHIT N Iel,,  (16)

forall A € A, S,T € A(X), and t € G. For this purpose, take A € A and S,T € A(X),
and define ¢y : £1(Gy) x £2(G,) — C by

oa(f,9) = @(SOA(f), PA(9)T) Vf,g € L (Gy).

Then ¢, is continuous and, for each f,g € ¢1(G,) such that f x g = 0, we have
(SOA(f))(Pr(g)T) = S(PA(f *¢))T = 0 and therefore

[oa(£: 9| < lel, ISPAAIHIRATN < lel., C*ISIITI AN gl

whence

oal.p < CISIITI L.,

zZp —

For each t € G, we have

©x(0¢,04-1) — @A(éln/\ ) 51,“)

= ‘@A(é% * 0ty 0p-1) — pA(dr,,, , 0 * 0p-1)| <
[oxly < Bergan) leal.p < BeranC2ISIITN el

which gives (16).
The projective tensor product A(X)®A(X) becomes a Banach A(X)-bimodule for
the products defined by
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R-(S®T)=(RS)®T, (S®T)-R=S®(TR) VR,S5T € A(X).
We define a continuous linear functional € (A(X)®A(X ))* through
(ST, o) =¢(S,T) VS,Te AX).

For each A € A, set Py = 0x(I,,) and
1
Dy=—— > 0\(t)@0,(t™).

Then (Py)xea is a bounded approximate identity for A(X) and (Dy)xea is an approx-
imate diagonal for A(X) (see [12, Theorem 3.3.9]), so that (||S - Dx — Dx - S|[)ycp — 0
for each S € A(X).

For each A € A and S,T € A(X), (16) shows that

[(S- Dx-T,0) — p(SPx, PAT))|

Z Sa)\ 9)\(1;_ ) )_ SD(SQ)\(IH/\)ve)\(InA)T)]

tEG

< BeanC?ISIITI el

and Theorem 3.3 then gives

R 1+4+sin &
(S Dx - T,8) = p(SPy, PAT)| < 60V27 — 25 C*[IS[| I Tl fel., . (17)
10

2sin
For each A\ € A, define &, € A(X)* by
(T,60) = (Dx-T,3) VT € A(X).
Note that
IExll < IBIHIDAN < llell €% VA€ A
and therefore (£x)xea is a bounded net in A(X)*. By the Banach—Alaoglu theorem the
net (€x)xea has a weak*-accumulation point, say &, in A(X)*. Take a subnet (£,),en of

(€x)xea such that w*-lim,ecn &, = €. Take S, T € A(X). For each v € N, we have

@(SPVaPuT) _§A(ST) =
@(SPVaPuT)*<S'DV'T79/0\>+<(S'DV*DV'S)‘T#@

so that (17) gives
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lp(SP,, P,T) — (ST, &) <

1+sin & 0 2
— " "10 I -D,—D, - .
T oan = C ST el +llel 1S ST

10

60v27

Taking limits on both sides of the above inequality, and using that (SP,),en — S,
(P,T)yen = T, and (||S- D, — D, - S||)ven — 0, we see that

0(S,T) = (ST, ¢)| <60\/_71002 ISIITI el
2sin = 10

We thus get

l—i—sm 2| |

1 zp)
-2 10

dist (0, B2(A(X), ))<60\/_

which proves the theorem. 0O

The hyperreflexivity of the space Z"(A, X) of continuous n-cocycles from A into
X, where A is a C*-algebra or a group algebra and X is a Banach A-bimodule has
been already studied in [15, Theorem 4.4]. We conclude this section with a look at
the hyperreflexivity of the space Z™(A(X),Y™). For this purpose we introduce some
terminology.

Let A be a Banach algebra, and let X be a Banach A-bimodule. Set

Lx = sup{||a czl|ix e X, a€ A, |z|| = a] = 1}
and
Rx =sup{|z-a|| :z € X, a€ A, ||z =|la]| =1}.

For each n € N, let §™: B"(A, X) — B""1(A, X) be the n-coboundary operator defined
by

(5”T)(a1, ey CLn+1) = a - 77(0,27 ey an+1)
+Z kT alv"'7akak+17"'7an+1)
k=1
=+ ( 1)"+1T(a1, . ,CLn) cQp41
for all T € B"(A, X) and a1, ...,an+1 € A. Further, 6°: X — B(A, X) is defined by
(6°z)(a)=a-z—2-a VreX, Vac A

The space of continuous n-cocycles, Z™(A, X), is defined as ker 6. The space of contin-
uous n-coboundaries, N (4, X), is the range of 6" ~!. Then N (A, X) C Z"(A, X), and
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the quotient H"(A, X) = Z"(A, X)/N™(A, X) is the n'" Hochschild cohomology group.
For each T € B"(A, X), the constant

dist, (T, 2"(A, X)) =
sup inf{||T(a,...,an) — S(ar,...,a,)| : S € Z"(A, X)}

llaxll=-=llanll=1

is intended to estimate the usual distance from 7' to Z™(A,X), and, in accordance
with [14,15], the space Z™(A, X) is called hyperreflexive if there exists a constant K
such that

dist(T, 2" (A, X)) < K dist, (T, 2"(A4, X)) VT € B"(4, X).
The inequality dist, (T, 2" (A, X)) < dist(T, 2"(A, X)) is always true.

Proposition 4.2. Let A be a C-amenable Banach algebra, and let X be a Banach A-
bimodule. Then there exist projections P,Q € B(X*) onto (X - A)* and (A - X)*,
respectively, with ||P|| <1+ RxC, ||Q|| <1+ LxC, and such that

dist(T, Z' (A, X*)) < C(Rx + Lx|[P|| + | PlllQ[) 16" Tl
for all T € B(A, X*). In particular, if the module X is essential, then
dist(7', 2' (A, X™)) < RxC||s'T||
for all T € B(A, X™).

Proof. The Banach algebra A has a virtual diagonal D with ||D|| < C'. This is an element
D € (A®A)** such that, for each a € A, we have

a-D=D-a and a-7(D)=a. (18)

Here, the Banach space A®A turns into a contractive Banach A-bimodule with respect
to the operations defined through

(a®@bc=a®bc, c(a®b) =ca®b Va,b,ce A,

and both (A®A)** and A** are considered as dual A-bimodules in the usual way. The
map 7: ARA — A is the projective induced product map defined through

T(a®b) =ab Va,be A.
For each ¢ € B%(A, C) there exists a unique element @ € (A®A)* such that

pla®b) = p(a,b) Va,be A,
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and we use the formal notation

/ o(u,v) dD(u, v) = (3,D).
AxA

Using this notation, the properties (18) can be written as

/tp(au,v)dD(u,v): / o(u,va) dD(u,v) (19)
AxXA AxA
and
[ taur.& dD(w ) = (a8 (20)
AxA

for all p € B%(A,C), a € A, and £ € A*; further, it will be helpful noting that

/ o(u, v) dD(u, v)| < D3] < Cllgl. (21)
X A

We proceed to define the projections P and ). For this purpose we first define Py, Qg €
B(X*) by

(i, Pog) = / (- (uv), €) dD(u, v),

AxA

(2, Qo) = / ((uv) - 7, €) dD(u, v)

AxXA

for all z € X and £ € X*, and set

P=1Ix-—F, Q=Ix-—CQo.

From (21) we obtain ||Py|| < RxC and ||Qo]| < LxC, so that [|P|| < 1+ RxC and
IQI <1+ LxC.
We claim that

a~P0§=P0(a~f):a~f, (22)
Po§-a=Py(§-a) (23)

for all @ € A and £ € X*. Indeed, for a € A, £ € X*, and each z € X, (19) and (20)
gives
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(2,0 Po€) = (z - a, Po€) = / (- (auv), €) dD(u, v)

AxXA

= <:L'~a,f> = <x,a~§>,
(. Pola-€)) = / (z (uv),a - €) dD(u,v)

AxXA

= /<x~(uva),§>dD(U,U)

AxXA

_ / (z - (auv), &) dD(u,v) = (z,a- ),

AxXA

and

@ Pga)={a-a.Pg) = [ (@) (), &) dD(w, )

AxXA

= / (- (uv),§ - a) dD(u,v) = (x, Py (& - a)),

AxA

which proves (22) and (23). From (22) we deduce that
<£L"(Z,P£> = <.’£,(1‘£7(1’P0€> =0,

and so P¢ € (X - A)L. Further, if £ € (X - A)*, then

(2, Pof) = / (- (uv), £) dD(u, v) = 0,

AXA  €X-A

347

and so P¢ = €. The operator P is a projection onto (X - A)L. From (22) we deduce

immediately that
P(A-X™)={0}.
The operator @ can be handled in much the same way as P, and we obtain

Qo a=Qo(§-a)=¢-aq,
a- Qo€ = Qola-§)

for all @ € A and & € X*, the operator () is a projection onto (A - X)+, and

QX" - A) = {0},

(24)

(25)
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Set T € B(A, X*), and define ¢ € X* by

(x,¢) = /(x,u~T(v))dD(u,fu) Vo € X.
AxA

For each z € X and a € A we have

(x, PyT(a)) = / (- (uv), T(a)) dD(u,v) = / (x, (uv) - T(a)) dD(u,v)

AxXA AxA
and
(z,(6°0)(a)) = (r,a- ¢~ ¢-a) = (z-a—a-z,¢)
= / (x-a—a-z,u-T))dD(u,v)
AxA
= / (x,(au) - T(v) —u-T(v) - a) dD(u,v)
AxA
= / (x,u-T(va) —u-T(v)-a)dD(u,v),
AxA
so that

(z,(PyT — 0°¢)(a)) = (z,u- (6'T)(v,a)) dD(u,v)

(x-u, (6'T)(v,a)) dD(u,v).

Ax/A
AZL&
From the latter identity and (21) we conclude that
(@, (PoT = 6°)(a))| < CRx |18 T||[la] [,
whence
1PoT — 8°¢ll < CRx||6'T||. (26)
Write S = PT. From (22) and (23) it follows that §1S(a,b) = P§'T(a,b), and so
I8 SII < I Pllo* Tl (27)

We now define » € X* by
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(2, 1) = / (2, S(u) - v) dD(w,v) Vz € X.

AxXA

For each x € X and a € A we have

(. QoS (a)) = / (uwv) - 2, S(a)) dD(u, v) = / (,5(a) - (uv)) dD(u, v)

AxA AxA
and
(z,(0")(a)) = (x,a- ¥~ -a) = (z-a—a z,¢)
= /<x~a—a~x,5(u)-v>dD(u,v)
AxA
= /<x,a~S(u)'v—S(u)'(va)>dD(u,v)
AxA
= /<x,a~S(u)~v—S(au)-v>dD(u,v),
AxA
and hence

(2, (QoS +0°¢)(a)) = [ (z,(6"S)(a,u) - v) dD(u,v)

A

(v-z,(6S)(a,u)) dD(u,v).

|
A

From the latter identity and (21) we conclude that
{2, (QoS +0°¢)(a))| < CLx||6" S|l|al] [l
Thus [|QoS + §°¢|| < CLx||6'S|| and (27) then gives
1QoS + 8"y || < CLx||PII[6'T|. (28)
Our next goal is to estimate |QPT||. For each u,v,a € A, we have
ST (a,uv) = a - T(uv) — T(auww) + T(a) - (uv),
(23) and (24) gives

P(6'T(a,uwv)) = P(a - T(uw)) —PT(auv) + PT(a) - (wv),
=0
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and finally (25) yields

QP(5'T(a,w)) = —QPT(auv) + Q(PT(a) - (uv)) = —QPT (auv).
—_———

=0

We thus get

(x,QPT(a)) = (x, QPT(auv)) dD(u,v)

A

/
_ / (@, ~QP(5'T)(a, wv)) dD(u, v)
XA

A
and (21) implies
{2, QPT(a)] < ClQPE'D)||lzlllall < CIQINIPIIS T [l|la].-
Hence
lQPT|| < ClIQIIIPIS T (29)
Finally, since
T — 6% + 6% = QPT + (PyT — 6°¢) + (QoPT + §%),

(26), (28), and (29) show that

1T = 6% + 6"l < | PT — 6°¢| + |QoPT + 6°0|| + | QPT|
< CRx|0'T|| + CLx|IP|[|6* Tl + CllQIII Pl TI.

Since —4%¢ + 6% € Z1(A, X*), it follows that
dist(T, Z'(A, X*)) < CRx|0'T|| + CLx||P||[|6*T|| + CllQ[|| PIl||6* T
as required. O

Corollary 4.3. Let A be a C-amenable Banach algebra, let X be a Banach A-bimodule,
and let n € N. Then

dist(7', 2" (A, X*)) < 2(n+ Lx)(1+ Rx)C?||6"T||

for each T € B™(A, X*).
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Proof. Of course, we need only consider the case where A is a non-zero Banach algebra,
which implies that C > 1.
Suppose that n =1, and T € B(A, X*). By Proposition 4.2,

dist(T, 2" (A, X*)) < C(Rx + Lx(1+ RxC) + (1+ LxC)(1+ RxC))[|6' T
<2(1+ Lx)(1+ Rx)C?||5' T,

as C' > 1.
The Banach space B"(A, X*) is a Banach A-bimodule with respect to the operations

(a-T)(ar,...,an) =a-T(a1,...,a,)
and

(T-a)(a1,...,a,) =T(aay,...,ay)
n—1

+ Z(il)kT(aa A1yeee s, QEAk41y - - -, an)
k=1

+(-1D)"T(a,a1,...,an-1) - an
forall T € B"(A, X*), and a,a1,...,a, € A. Let
Al B(A,B"(A, X*)) — B*(A,B"(A, X*))
be the 1-coboundary operator. We also consider the maps

T BYY(A, X)) — B(A, B (A, X)),
T BPT(A, X)) — B%(A,B"(A, X))
defined by

(r'T)(a)(a1,...,an) =T(a,a1,...,ay),
(T;T)(av b)(ah s 7an) = T(a7 ba Ay, ... 7an)'
Then:
e 71" and 75 are isometric isomorphisms;

e Alo =10 5"+1;
o TRETHI(A XYY = Z1(A, BU(A, X)),

For each T' € B (A, X*) we have

dist (T, 2"t (A, X*)) = dist (T, 7{" 2" T (4, X))

(30)
= dist(r]'T, 2" (A, B"(A, X*))).
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Our next objective is to apply Proposition 4.2 to estimate the distance of the last term
n (30). To this end, we realize that B"(A, X*) is a dual Banach A-bimodule by setting

Y = AR - QARX.
N—_———

n-times

Then:
¢ Y is a Banach A-bimodule with respect to the operations
(1 ® - ®a, @) a=01 Q- Qa, ®(v-a)

and

a- (a1 ® - ®a,®2)=(aa1) Q- Qap, Qx

n—1
+Z(_1)ka®al®"'®(akak+1)®"'®an®m
k=1
+(-D)"ae®a1 @ ®an—1 X (a, - x)
for all a,aq,...,an, € A, and x € X;

o we have the estimates
Ly <n+Lx, Ry <Rx;

o the Banach A-bimodule B™(A, X*) is isometrically isomorphic to the Banach A-
bimodule Y* through the duality

(a1 @ @ap@x,T) = (x,T(a1,...,an))

forall T € B"(A,X*), a1,...,a, € A, and z € X.

Proposition 4.2 now leads to

dist (r{'T, Z" (A, B"(A, X*))) = dist(r'T, 2" (A, V™))
<2(1+ Ly)(1+ Ry )C? || A T||
<2(14+n+ Lx)(1+ Rx)C? || AT
=2(14+n+Lx)(1+ Rx)C?||75"'T||
=2(1+n+ Lx)(1+ Rx)C? [|6"*1T]|.
Combining (30) with the inequality above, we obtain precisely the estimate of the corol-
lary. O
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Theorem 4.4. Let X be a Banach space with property (A), let Y be a Banach A(X)-
bimodule, and let n € N. Then the space Z"(A(X),Y™) is hyperreflexive. Specifically, if
C' denotes the supremum in (15), then

dist (T, 2" (A(X),Y*)) <
(n + Ly)(l + Ry)062n (026A(X) + (C + 1)2)n+1 dist, (T, Zn(.A(X), Y*>)

for each T € B"(A(X),Y™), where

1+ sin 7~
Bax) < 120127 ——30 C?
1-— 2sml”—0

Proof. From Theorem 4.1 we see that A(X) has the strong property B and the estimate
for B4(x) holds.

The Banach algebra A(X) has an approximate identity of bound C'. Further, for each
T € F(X) there exists S € F(X) such that ST = T'S = T, and [14, Proposition 5.4]
then shows that A(X) has bounded local units.

By [12, Theorem 3.3.9], A(X) is C?-amenable, and Corollary 4.3 now gives

dist (T, Z"(A(X),Y™)) < 2(n+ Ly)(1 + Ry)C®||6"T||
for each T' € B"(A(X),Y™). This estimate shows that the map

B"(A(X),Y*)/Z"(A(X),Y") = N"FHA(X), V™)
T+ Z"(A(X),Y*) s 6"T

is an isomorphism, hence N1 (A(X),Y*) is closed in B"T(A(X),Y*) and this implies
that the n'" Hochschild cohomology group H"*1(A(X),Y*) is a Banach space. By ap-
plying [15, Theorem 4.3] we obtain the hyperreflexivity of the space Z"(A(X),Y™) as
well as the statement about the estimate of dist(7T, Z"(A(X),Y™)). O
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