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Abstract

We study the long-time behaviour of solutions to some partial di�erential equations
arising in modeling of several biological and physical phenomena. In this work, the
type of the equations we consider is mainly nonlocal, in the sense that they involve
integral operators. Moreover, the equations we consider describe the time evolution of
either some populations structured by several traits like age, elapsed-time and size or
the distribution of the dynamical states of a single particle, depending on time, space
and velocity. In the latter case, they are called kinetic equations.

We are interested in showing quantitatively the asynchronous behaviour of inter-
acting neuron populations which are composed of large and fully connected networks.
Neurons undergo a charging period followed by a sudden discharge in the form of firing
a spike. We consider two nonlinear models structured by the time elapsed since the
last discharge and nonlinearity comes from the dependence of firing rate on the total
neural activity at a time. In the second model, there is an addition of a fragmentation
term to include the e�ect of the past activity of neurons by displaying adaptation and
fatigue. With this addition, the equation shares many common properties with another
class of integro-partial di�erential equations called the growth-fragmentation equation.
This is the second type of equation we look at the convergence rate to a universal
profile in a quantitative way. The growth-fragmentation equation describes a system
of growing and dividing particles which may be used as a model for many processes
in ecology, neuroscience, telecommunications and cell biology. We consider two types
of fragmentation processes, namely mitosis and constant fragmentation and include
nonconservative cases where eigenelements cannot be computed explicitly. We present
quantitative exponential convergence speeds in the weighted total variation norm.
Furthermore, we also study hypocoercivity of some space inhomogeneous linear kinetic
equations including linear relaxation Boltzmann(linear BGK) and linear Boltzmann
equations which are posed either on the torus or on the whole space with a confining
potential. We prove exponential convergence in the torus or on the whole space
with a potential growing quadratically at infinity. Moreover, for the weaker confining
potentials (subquadratic) we present subgeometric convergence rates quantitatively.
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The physiologically structured population models and the space inhomogeneous
linear kinetic equations we deal with in this work are well-studied from various aspects
in the already-existing literature. We provide the references later. What di�ers
from the past plentiful studies on the asymptotic behaviour of these equations is the
techniques we use here. We consider a probabilistic approach which is first developed
for studying ergodic properties of discrete-time Markov processes. The method is
due to Doeblin and Harris; based on establishing a combination of a minorisation
(irreducibility) and a geometric drift (Lyapunov) conditions for a Markovian process.
This method gives a quantitative convergence speed and existence of a unique steady
state even without having to calculate it explicitly. Application of Harris’s Theorem
into the aforementioned partial di�erential equations to study the long-time behaviour
of solutions is the core of this thesis.
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Introduction

“Adına dünya dedi�imiz bu kitabı oku.”
— �hsan Oktay Anar, Puslu Kıtalar Atlası
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1.1 Overview
In this thesis, we are concerned with the long-time behaviour of solutions for some
nonlocal partial di�erential equations which describe the dynamics of various biological
and physical phenomena. Local models involve di�erential operators and they are
designed to capture some properties of a function at a given point. In this case, one
only needs to know the values of the function in an arbitrarily small neighborhood
to ensure that all partial derivatives are defined. However, nonlocal models involve
integral operators which describe some modeling structure of a function so that; in
order to determine the value at a desired point, information about the values of the
function in a larger interval is needed. These types of models are interesting to study
for several reasons. One can use nonlocal equations to deal with the discontinuities or
singularities of a function. Moreover, under suitable conditions if the integral operator
is a limiting case of the local operator, then the nonlocal equation can be considered
as an approximation of the local equation.

In this work, we give quantitative rates of convergence to a stationary state for
some linear nonlocal models coming from structured population dynamics. In some
cases, we are able to present some results in the nonlinear setting as well. Moreover,
we also study hypocoercivity of some linear, space inhomogeneous kinetic equations.
Hypocoercivity is a term used in the study of convergence to stationary state for certain
classes of kinetic equations, which are the linear relaxation Boltzmann and the linear
Boltzmann equations in our case. A common trait of such nonlocal population models
and kinetic equations is that the underlying dynamics is a special type of stochastic
process, called Markov process. A Markov process is a random process whose future
state depends only on its current state, not the past. The main innovation in this
work is to use a method coming from probability, from the study of convergence of
Markov processes. This technique is based on Doeblin’s/Harris’s Theorems and it can
be easily adapted to linear, nonlocal equations. In the next two sections, we describe
the mathematical models we consider for structured population dynamics and kinetic
theory. We conclude the introduction after giving an outline for the thesis.

1.2 Structured population dynamics
Population dynamics aims to have predictions about certain properties like the size of
a biological population in time. This problem has captured the attention of scientists
since long time. If the population consists of large number of members, tracking the
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time evolution of some averaged quantity makes it possible to construct a mathematical
model by using partial di�erential equations. Studying many properties of this PDEs
mathematically, provides a lot of information about the underlying population. One
main question in this kind of study concerns how the growth of a population will be
regulated in the long-time. Particularly being able to show the exponential growth
as a natural tendency of a biological population is the core of this study. It is often
referred as the asymptotic behaviour or the asynchronous behaviour or the Malthusian
behaviour of the population (after Thomas Robert Malthus).

Mathematical models for a structured population dynamics could be inspired from
various disciplines in biological, environmental and medical sciences like ecology, epi-
demiology, cell dynamics, genetics and evolution. Deriving useful analytical properties
for a mathematical model, most of the time, involves simplifying assumptions which
might be severe from a biologists’ point of view. Even so, sometimes it is still hard
to capture very fundamental biological properties of a population. That is what
makes the mathematical study of real-life-inspired models challenging yet beautiful
and interesting.

1.2.1 Age-structured population models

The study of age-structured populations dates back to the beginning of 20th century.
McKendrick’s paper in 1926 [79] on the renewal equation (also known as McKendrick-
von Foerster equation) and nonlinear extensions of this work aroused much interest both
in linear and nonlinear age-structured population models. Asynchronous exponential
growth of an age structured population has been heuristically derived first by Alfred J.
Lotka and F. R. Sharpe in 1911 (Part II of [97]). They showed that the population
grows exponentially with a Malthusian parameter and it converges to a “fixed” and
stable age-distribution.

Later another rigorous proof of exponential growth was given by William Feller
in 1941 (Part II of [97]). A milestone in this area is the book of Webb [104] on
age-structured population dynamics where he proved the stability of a stationary state
by using semigroup approach. Later the study of linear age-structured population
dynamics served as a step for developping general theory of positive semigroups
[100, 50, 68].
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A commonly used version of the conservative renewal equation is given by

ˆ

ˆt
n(t, a) + ˆ

ˆa
n(t, a) = ≠“(a)n(t, a), t, a > 0,

n(t, 0) =
⁄ Œ

0
—(a)n(t, a) da, t > 0,

n(0, a) = n0(a), a Ø 0.

(1.1)

Here the structuring variable a, stands for age, grows as fast as the time variable and
reset to zero with the rate “. For (1.1) the stationary age distribution, Nú(a), is explicit
and given by

Nú(a) = Nú(0)e≠
s

a

0 “(s) ds
.

Now we look at di�erent variations, including a nonlinear version, of this equation first;
then some other models which are structured by di�erent variables. Since some part of
this work focuses on modelling of neuron population models, we give a brief biological
introduction about the structure and the physiology of a single neuron.

1.2.2 Elapsed-time structured neuron population models

An integral part of an animal’s body is the nervous system that helps for behavioral
coordination by transmitting signals between di�erent parts of the body. The nervous
system is composed of neuron cells and the human brain alone contains roughly 100
millions of neurons. How do neurons function? They process the input which is received
from the outside world; then according to the input they send commands to muscles by
exchanging information among themselves and other cell types. The brain is such an
important and unique organ yet it is very challenging to study due to the complexity
of large neural networks it is composed of. Understanding the behaviour of interacting
neuron populations gives rise to many mathematical problems as well. In this context,
several mean-field models have been proposed to understand the electrical activity
of a group of interacting neurons. They are all based on simplified models for the
electrical activity of a single neuron, which can be described by an averaged partial
di�erential equation or integro-di�erential equation if the number of neurons involved
is large enough. Now we look at the physiology of a single neuron to understand better
a population of neurons.
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Fig. 1.1 Structure of a single neuron.
Image by Quasar Jarosz at English Wikipedia, CC BY-SA 3.0.

Physiology of a single neuron

A neuron consists mainly of dendrites, an axon, and a cell body or soma. The actual
shape of a neuron can be thought as analogous to that of a tree: dendrites, the axon
and the soma correspond to the branches, roots and trunk of a tree (See Figure 1.1).
A neuron receives the input from other cells through dendrites and sends the output
towards the axon via electrical signals called action potentials. Electrical signals are
created in the axon and then the action potentials travel through the signals. This
process initiates neurotransmitter release into the synapse enabling the neuron to
communicate with other neurons (See Figure 1.2). Action potentials are sometimes
also called spikes. After each spike, hundreds of synapses of a single neuron release
neurotransmitters so that a single neuron can communicate with hundreds of other
neuron cells.

Neurotransmitter is a chemical substance which can influence a neuron in an
excitatory or an inhibitory way. If a neurotransmitter promotes generating an action
potential then it is called an excitatory transmitter. On the contrary, if it prevents the
generation of an action potential then it is called inhibitory. Communication between
neurons depends on the balance between excitatory and inhibitory e�ects. When a
neuron receives hundreds of inputs; they are either added or subtracted based on the
type of the e�ect in the brain and this process is called synaptic integration. If the
total input hits a threshold value where the excitatory e�ect surpass the inhibitory
one then the neuron gets active and spikes.

https://commons.wikimedia.org/w/index.php?curid=7616130
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Fig. 1.2 Structure of a chemical synapse.
Image by Thomas Splettstoesser (www.scistyle.com) - Own work, CC BY-SA 4.0.

Roughly, the natural “charging” process of interacting neuron populations, followed
by a sudden “discharge” takes place in a stochastic way depending on some variables
like the current charge, the time since the last discharge, and the activity of other
connected neurons.

One way of modelling the dynamics of neuron populations is to consider the
membrane potential of neurons as the structuring variable. This means studying the
evolution of the density n(t, v) of neurons with potential v at time t. We refer to
[101, 27, 26, 24, 37, 29, 32, 33] for some of the recent mathematical theory of these
models.

We are interested in the family of models where the time evolution of the probability
density of neurons is structured by the time passed since the last discharge. Therefore
they are called elapsed time structured models and the models we look for here were
proposed in [89–91].

The first model is based on stochastic simulations done in [94]. It is a nonlinear
version of the conservative renewal (McKendrick-Von Foerster) equation which has
been well-studied by many authors in the past as a model for a broad range of biological
phenomena like epidemic spread and cell division [104, 92, 74, 68, 100, 50].

Thus, the dynamics of the interacting neuron populations governed by the following
integro-di�erential PDE

ˆ

ˆt
n(t, s) + ˆ

ˆs
n(t, s) + p(N(t), s)n(t, s) = 0, t, s > 0, (1.2)

https://commons.wikimedia.org/w/index.php?curid=41349545
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coupled with a boundary and an initial condition given by

N(t) := n(t, s = 0) =
⁄ +Œ

0
p(N(t), s)n(t, s) ds, t > 0,

n(t = 0, s) = n0(s), s Ø 0.

(1.3)

The integro-PDE (1.2)-(1.3) models the evolution of a neuron population density n(t, s)
depending on time t and the time s elapsed since the last discharge. Neurons randomly
fire at a rate p per unit of time, and they re-enter the cycle from s = 0 immediately
after they fire, as imposed through the boundary condition at s = 0; the variable s can
thus be regarded as the ‘age’ of neurons, making a parallel with models for birth and
death processes. The global activity N(t) denotes the density of neurons which are
undergoing a discharge at time t. If the firing rate p increases with N , interactions are
considered as excitatory and the firing of neurons makes it more likely that connected
neurons will also fire. If p decreases with N then interactions are inhibitory.

The second model which we consider has many similarities with a larger class
of integro di�erential equations called the growth-fragmentation equations which we
will give more details in the next section. The nonlinear version we study here was
introduced in [91], but on this general type of equations we also mention the works in
[93, 82, 96, 57, 75, 59, 38, 55, 62].

This model is a modified version of the first one where s represents a generic “state”
of the neuron, not necessarily the time elapsed since the last discharge now. It is
assumed that neurons in a state u return to a certain state s < u after firing, with a
certain probability distribution Ÿ(s, u). The model reads as follows:

ˆ

ˆt
n(t, s) + ˆ

ˆs
n(t, s) + p(N(t), s)n(t, s) =

⁄ +Œ

0
Ÿ(s, u)p(N(t), u)n(t, u)du, u, s, t > 0,

(1.4)

coupled with

n(t, s = 0) = 0, t Ø 0.

n(t = 0, s) = n0(s), s Ø 0.

(1.5)

The flux of neurons which are firing at time t is defined the same as before

N(t) :=
⁄ +Œ

0
p(N(t), s)n(t, s)ds, t > 0.
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The di�erence between (1.4)-(1.5) and the first one (1.2)-(1.3) is the addition of
a kernel Ÿ = Ÿ(s, u). For fixed u, the quantity Ÿ(·, u) is a probability measure which
gives the distribution of neurons which take the state s when they discharge at a state
u. Hence, neurons do not necessarily start the cycle from s = 0 after firing, and so s

cannot be considered as an ‘age’ variable in this model. We remark that that equation
(1.2)-(1.5) is a limiting case of equation (1.4)–(1.3) when Ÿ(·, u) = ”0(s), the Dirac
delta at x = 0. We remark that the terms involving p and Ÿ are mathematically close
to the ones appearing in fragmentation processes.

These nonlinear models (1.2)-(1.5) and (1.4)–(1.3) preserve positivity and have a
conservation property such that

d

dt

⁄ +Œ

0
n(t, s) ds = 0. (1.6)

In particular, this ensures that if the density of neurons is a probability distribution
initially, then it remains so. Whenever it is convenient we assume that n0 is a probability
distribution (which may be assumed after a suitable scaling).

These equations and similar models have been shown to exhibit many interesting
phenomena which are consistent with the experimental behaviour of neurons: depending
on the parameter p and the initial data one can find periodic solutions, apparently
chaotic solutions, and solutions which approach an equilibrium state. The first two
kinds of behaviour (periodic and chaotic solutions) are harder to study mathematically;
numerical simulations have been performed in [89, 90] and some explicit solutions
have been found. Regarding convergence to equilibrium, some regimes are studied in
these works using perturbative techniques, such as the so-called low-connectivity and
high-connectivity cases.

As a population balance equation of a form that appears often in mathematical
biology, several techniques exist to study equations (1.2)-(1.3) and (1.4)-(1.5) rigorously.
We refer to [92] for a good exposition of many of the relevant tools.

One of the main methods used so far in the study of convergence to equilibrium
for equations (1.2) and (1.4) is the entropy method, which involves finding a suitable
Lyapunov functional H = H(n) such that

d
dt

H(n(t, ·)) = ≠D(n(t, ·)) Æ 0 (1.7)

along solutions n = n(t, s) to (1.2)-(1.3) or (1.4)-(1.5), and then investigating whether
one may prove inequalities of the type ⁄H(n) Æ D(n) for some ⁄ > 0 and a family
of functions n su�ciently large to contain n(t, ·) for all times t. If the answer is
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positive, one can apply the Gronwall inequality to (1.7) and deduce that H(n(t, ·))
decays exponentially with a rate proportional to e

≠⁄t. This in turn may give useful
information on the approach to equilibrium, often implying that n(t, ·) approaches
equilibrium in the L

1 norm. This idea was followed in [89–91], using a specific Lyapunov
functional obtained by integrating the primitive of n ≠ nú (where nú is an equilibrium
state) against a suitable weight. A fundamental di�culty is that phenomenological
equations motivated by biological considerations do not have any obvious Lyapunov
functionals. This di�culty leads us to considering cases which are close to a linear
regime, taking advantage of the fact that mass and positivity conserving linear equations
(Markov evolutions).

Apart from the entropy method, for the time elapsed neuron network model (1.2),
another approach has been developed in [105, 86]. This approach is based on spectral
analysis theory for semigroups in Banach spaces. In [86], uniqueness of the steady state
and its nonlinear exponential stability in the weak connectivity regime for the first
model was proved. This approach is extended in [105] to the cases without delay and
with delay both in the weak and strong connectivity regimes considering a particular
step function as a firing rate. Furthermore, in [47] the link between several point
process models (Poisson, Wold, Hawkes) that have been proved to statistically fit real
spike trains data and age-structured partial di�erential equations which are introduced
by [89] was investigated. This approach is extended to generalized Hawkes processes
as microscopic models of individual neurons in [46].

In this work, we propose an alternative approach that is based on neither the
entropy method nor the aforementioned approaches, but instead takes advantage of a
set of results in the theory of Markov processes known as Doeblin’s theory, with some
extensions such as Harris’s theorem; see [71], or [70, 63] for simplified recent proofs
and [? ][Chapter 2] for a basic exposition. The idea is still based on first studying
the linear case and then carrying out a perturbation argument; the di�erence is that
we study the spectral properties of the linear operator by Doeblin’s theory, which is
quite flexible and later simplifies the proofs. We obtain a spectral gap property of the
linear equation in a set of measures, and this leads to a perturbation argument which
naturally takes care of the boundary conditions in (1.2)- (1.3) and (1.4)-(1.5). Similar
ideas are reviewed in [63] for the renewal equation, and have been recently used in [8]
for neuron population models structured by voltage.

Due to this strategy, studying solutions to (1.2)- (1.3) and (1.4)-(1.5) in the sense
of measures comes as a natural setting for two important reasons: first, it fits well
with the linear theory; and second, it allows us to treat the weakly nonlinear case as a
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perturbation of the linear one. Note that one di�erence between the weakly nonlinear
case and the linear case for equation (1.2)- (1.3) is the boundary condition, and this
is conveniently encoded as a di�erence in a measure source term. Measure solutions
are also natural since a Delta function represents an initial population whose age (or
structuring variable) is known precisely. There exist also recent works on numerical
schemes for structured population models in the space of nonnegative measures [23, 44].
Entropy methods have also been extended to measure initial data by [66] for the
renewal equation.

1.2.3 Size-structured population models

Sometimes, the age or the elapsed-time structure do not help in extracting meaningful
information about the dynamics of a population. In this case, structuring variable
can be size, length, weight, DNA content, biochemical composition etc. depending
on the underlying dynamics which the equation describes. We call it as size for
simplicity here. Cell division is one of the common examples of these type of models
and they are governed via a large class of integro-partial di�erential equations called
the growth-fragmentation equations.

The general form of the growth-fragmentation equation is given by

ˆ

ˆt
n(t, x) + ˆ

ˆx
(g(x)n(t, x)) =

⁄ +Œ

x
Ÿ(y, x)n(t, y) dy ≠ B(x)n(t, x), t, x > 0, (1.8)

coupled with

n(t, 0) = 0, t Ø 0,

n(0, x) = n0(x), x > 0,

(1.9)

where n(t, x) is the population density of individuals structured by a variable x > 0
(size) at a time t Ø 0. The equation (1.8) is coupled with an initial condition n0(x) at
time t = 0 and a 0 boundary condition which represents the fact that no individuals
are newly created at size 0.

The function g is the growth rate and B the total division/fragmentation rate of
individuals with size x Ø 0. The kernel Ÿ(y, x) represents the rate at which individuals
of size x are obtained as the result of a fragmentation event of an individual of size y.
The total fragmentation rate B is always obtained as

B(x) =
⁄ y

0

y

x
Ÿ(x, y) dy.
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We consider two particular cases for the fragmentation kernel:

Ÿ(x, y) = B(x) 2
x

”{y= x

2 },

which corresponds to the mitosis process, suitable for modelling of biological cells,
where individuals can only break into two equal fragments; and

Ÿ(x, y) = B(x) 2
x

,

which is the case with uniform fragment distribution, where fragmentation gives
fragments of any size less than the original one with equal probability. This case is
used for example in modelling of fragmentation of polymer chains, like in [80].

Two opposite dynamics, groeth and fragmentation are balanced through equation
(1.8)-(1.9). While growth term tends to increase the average size of the population,
fragmentation term increases the total number of individuals but breaks the population
into smaller sizes. If the growth rate g(x) © 0, then only fragmentation takes place
and the equation is known as the pure fragmentation equation. Similarly when B and
Ÿ are both 0, growth dominates the dynamics and the equation (1.8) is called the pure
growth equation.

We are concerned here with the mathematical theory of this equation, and more
precisely with its long-time behaviour as t æ +Œ. Under suitable conditions on
the coe�cients Ÿ and g, the typical behaviour is that the total population tends to
grow exponentially at a rate e

⁄t, for some ⁄ > 0, and the normalised population
distribution tends to approach a universal profile for large times, independently of the
initial condition. This has been investigated in a large amount of previous works, of
which we give a short summary.

The first mathematical study of this type of equation was done in [51] for the mitosis
case, in a work inspired by biophysical papers [9, 10]. In [51], authors considered the
mitosis kernel with the size variable in a bounded space and proved exponential growth
at a rate ⁄, and exponentially fast approach to the universal profile. In [83], the authors
considered the size variable in (0, Œ) and introduced General Relative Entropy method
and proved exponential relaxation to equilibrium in L

p spaces without an explicit
rate. Following the works [93] and [92], providing an explicit rate of convergence to a
stationary state under reasonable assumptions became a topic of research for many
other works. New functional inequalities were proved in [36, 35] in order to obtain
explicit rates of convergence. Some authors provided explicit solutions like in [107, 106];
some authors used semigroup approach like in [2, 6, 7, 56, 64, 84]; and some authors
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used a probabilistic approach like in [16, 15, 17, 18, 22]. In [12], the authors proved
that with a bounded fragmentation rate, exponential relaxation is not uniform with
respect to the initial data. Later in [13], the same authors considered unbounded
fragmentation rate and proved exponential growth in L

1 space. However, when the
equal mitosis kernel is considered, there is a special case with a linear growth rate
where solutions exhibit oscillatory behaviour in long time. This property was first
proved mathematically by [64] when the equation is posed in a compact set. Recently
in [14] this result is extended to R+ by the general relative entropy argument in a
convenient weighted L

2 space, where well-posedness is obtained via semigroup analysis.
They also propose a non-di�usive numerical scheme which can capture the oscillations.

Main tool when proving exponential relaxation to a stationary state is studying
Perron eigenvalue problem. Specifically proving existence and uniqueness of the first
positive eigenvalue associated to a positive eigenvector.

In [4], the authors gave some estimates on the principal eigenfunctions of the growth-
fragmentation operator, giving their first order behavior close to 0 and +Œ. Then
they proved a spectral gap result by means of entropy–entropy dissipation inequalities.
They assumed that growth and fragmentation coe�cients behave asymptotically like
power laws. Similar method was previously used in [36].

Perron eigenvalue problem consists of finding suitable eigenelements (⁄, N(x), „(x))
which satisfy the following:

ˆ

ˆx
(g(x)N(x)) + (B(x) + ⁄)N(x) =

⁄ +Œ

x
Ÿ(y, x)N(y) dy,

g(0)N(0) = 0, N(x) Ø 0,

⁄ +Œ

0
N(x) dx = 1.

(1.10)

≠g(x) ˆ

ˆx
„(x) + (B(x) + ⁄)„(x) =

⁄ x

0
Ÿ(x, y)„(y) dy,

„(x) Ø 0,

⁄ +Œ

0
„(x)N(x) dx = 1.

(1.11)

If such a triple exists then the equation (1.8)-(1.9) converges to a universal profile
whose shape is given by the eigenfunction N(x) and growth rate of the population
is given by the dominated eigenvalue ⁄ > 0. Moreover if we scale the equation by
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defining m(t, x) := n(t, x)e≠⁄t we obtain:

ˆ

ˆt
m(t, x) + ˆ

ˆx
(g(x)m(t, x)) + (B(x) + ⁄)m(t, x) =

⁄ Œ

x
Ÿ(y, x)m(t, y) dy, t, x Ø 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0.

(1.12)

We remark that N(x), solution of (1.10)-(1.11), if exists, is the stationary distribution
of (1.12). Existence and uniqueness of eigenelements prove many useful information
about long-time behaviour of the growth-fragmentation equation (1.8)-(1.9). We refer
to [55] for a detailed review. The reason we introduced the concept here is that we will
mainly work on (1.12) instead of (1.10)-(1.11); since it is more straight-forward and
we can easily recover the properties of the latter from the former. We also notice that

d
dt

⁄ +Œ

0
m(t, x)„(x) dx = 0, (1.13)

so that the quantity f(t, x) := m(t, x)„(x) is conserved if there exist a solution to the
Perron eigenvalue problem (1.10)-(1.11).

1.2.4 Main results

We introduced three di�erent models (1.2)-(1.3); (1.4)-(1.5) and (1.8)-(1.9) from struc-
tured population dynamics and we are interested in long-time behaviour of solutions
of these nonlocal PDEs. Since the time evolution for these type of models can also
be described as a Markov process, we can naturally apply some results which already
exist on the convergence of Markov processes. Here we use a couple of probabilistic
results, namely Doeblin’s-Harris’s theorems, of which precise statements and proofs
will be given in the Chapter 2.

We prove existence of solutions and steady states in the space of finite, nonnegative
measures for (1.2)-(1.3) and (1.4)-(1.5). We also show that the solutions converge to the
stationary state, which is unique up to scaling, exponentially in time, in the case of weak
nonlinearity (i.e., weak connectivity). Concerning the asymptotic behaviour, we show
the existence of a spectral gap property in the linear (no-connectivity) setting for both
models by using Doeblin’s theorem. Then by a constructive perturbation argument
we give results on exponential relaxation to the steady state for the nonlinear models
(1.2)-(1.3) and (1.4)-(1.5). The closest results in the literature are those of [89, 91].
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Our equation (1.2)(1.3) is essentially the same as in [89], written in a slightly di�erent
formulation that does not include time delay and does not highlight the connectivity
as a separate parameter (the connectivity of neurons in our case is measured in the size
of ˆNp). The results in [89] use entropy methods and show exponential convergence to
equilibrium with a similar result to ours in a weighted L

1 space, for the case with delay
and for a particular form of the firing rate p. As compared to this, our results work
in a space of measures and can be easily written for general firing rates p; however,
we have not considered the large-connectivity case (which would correspond to large
ˆNp in our case) or the e�ects of time delay. Similar remarks apply to the results
for equation (1.4)-(1.5) contained in [91]. In this case, our strategy works for general
conditions which are simpler to state, and provide a general framework which may
be applied to similar models. Similarly, we have not considered a time delay in the
equation, which is a di�erence with the above work. There are numerical simulations
and further results on regimes with a stronger nonlinearity in [89–91]. Details of our
results can be found in Chapter 3.

For the growth-fragmentation equation (1.8)-(1.9), we prove the spectral gap
property constructively under more general conditions on the total fragmentation and
growth rates. We consider equal mitosis and uniform fragmentation kernels and provide
quantitative rates of convergence by using Harris’s Theorem. We also give an existence
proof for eigenelements so that the spectral gap results do not require eigenelements to
be known explicitly. Moreover, we provide some bounds on the dual eigenfunction „ in
(1.11) so that we can use the scaled equation on f(t, x) := „(x)n(t, x)e≠⁄t which have
a conservation property. Later we recover the properties of the original model. Some
references for previous works on this equation was given earlier but we mention that a
variation growth-fragmentation equation with bounded fragmentation rate is used in
modeling of the dynamics of the carbon content of a forest whose deterministic growth
is interrupted by natural disasters [25] recently. The authors used Harris’s theorem
to obtain quantitative convergence rates. This might be the closest work to ours in
terms of the method and the model considered but we could obtain results in the case
where the total fragmentation rate is unbounded. Details of our results can be found
in Chapter 4.

1.3 Linear kinetic equations
Kinetic theory concerns the modelling of a particle system consisting of large number
of particles by describing densities in the phase space via distribution functions. Some
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of the common examples are modelling of the dynamics of a gas or a plasma. Moreover,
the phase space is not anymore composed only of the macroscopic variables like the
position but also the microscopic variables describing the ‘state’ of a particle. Since we
are interested neither in relativistic nor quantum systems here, we consider ‘velocity’
as a microscopic variable. Therefore the phase space will be (x, v), the position and
the velocity of a particle at some time.

Main modelling assumption is that the gas or the particle system which we consider
should be observed over some time t œ [0, +Œ) and it is contained in a domain � µ Rd

which can be bounded or unbounded. Then the nonnegative function f(t, x, v) defined
on [0, +Œ) ◊ � ◊ Rd is the probability distribution function describing the particle
system. Density of particles in the volume dx dv for a fixed time t is defined by the
quantity f(t, x, v) dx dv. Therefore f is at least assumed to be locally integrable or it
is a bounded measure on some X ◊ Rd where X is a compact subset of �.

The particle system can be treated as a continuum since we also assume that the
system consists of large number of particles. We express macroscopic quantities in
terms of integrals of the form

s
f(t, x, v)Ï(v) dv, via observables that are macroscopic

measures in terms of microscopic averages.
If we neglect the interaction between particles, then each particle will travel along

a straight line with a constant velocity and the density will remain constant along the
characteristics:

ẋ = v,

v̇ = 0,

so that the solution can be easily represented by the solution at time 0 by

f(t, x, v) = f(0, x ≠ vt, v),

where f is a weak solution to the free transport equation:

ˆtf + v · Òxf = 0, (1.14)

and the operator v ·Òx is called the transport operator. In the presence of a macroscopic
force acting on particles (1.14) becomes:

ˆtf + v · Òxf + F (x) · Òvf = 0, (1.15)
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In this case, particles do not follow a straight line trajectories anymore under the
influence of the force. The equation (1.15) is called the linear Vlasov equation. The force
field can be interpreted as the action of the external potential via F (x) = ≠Òx�(x).
If we want to take into account any type of interaction, either between particles or
with a background medium, we include an operator on the right-hand side of (1.14) or
(1.15). In this work we consider an interaction term as well. We consider equations in
(x, v) œ Td

◊ Rd; thus of the type

ˆtf + v · Òxf = Lf,

where f = f(t, x, v) is the density of particles at position x (the), moving with velocity
v at time t Ø 0. Here Td denotes d-dimensional unit torus.

We also consider the same equations posed on the whole space (x, v) œ Rd
◊ Rd

with an external potential � which has the confining e�ect;

ˆtf + v · Òxf ≠ (Òx� · Òvf) = Lf.

We note that the operator L acts only on the v variable. Particularly, we work
with the cases L equal to the linear relaxation Boltzmann operator (sometimes known
as linear BGK operator), and L equal to the linear Boltzmann operator. Therefore, we
give a brief introduction for these equations next.

1.3.1 The linear Boltzmann equation

The Boltzmann equation is derived by Ludwig Boltzmann in 1872 to describe the
statistical behaviour of a thermodynamical systems which is not in equilibrium. The
equation can also be used to describe the evolution of some physical quantities of a fluid
such as heat and momentum. In our context, the Boltzmann equation will describe the
behaviour of a dilute gas. It is a nonlocal integro-di�erential equation gives the time
evolution of a probability distribution in the phase space. This evolution depends on
the external forces exerted on the particles, the di�usion of particles and the internal
forces between particles during interactions.

First we specify the assumptions we need to make when considering the interactions
between particles:

• Particles interact via binary collisions which implies that the particle system is
dilute so that we can neglect the interaction of particles involving more than two
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particles since the probability of occurence of this type of encounters is much
smaller than the occurence of binary collisions.

• Collisions are localized in space and time. They occur in a very short duration
compared to time scale considered.

• Collisions are elastic in the sense that momentum and the kinetic energy is
conserved during the collision. If we denote the velocities before the collision as
v

Õ
, v

Õ
ú and after the collision as v, vú we obtain

v
Õ + v

Õ
ú = v + vú,

|v
Õ
|
2 + |v

Õ
ú|

2 = |v|
2 + |vú|

2
.

(1.16)

If d denotes the dimension, we end up with d + 1 scalar equations for 2d unknown
parameters.

Sometimes it is more convenient to use ‡-representation for (1.16) in the following
way:

v
Õ = v + vú

2 + v ≠ vú

2 ‡,

v
Õ
ú = v + vú

2 ≠
v ≠ vú

2 ‡,

(1.17)

where ‡ œ Sd≠1 varying in the d ≠ 1 unit sphere (see Figure 1.3). Moreover,
sometimes particles are assumed to interact via an interaction potential depending
on the distance between each other.

• Collisions are microreversible. This deterministically means that the dynamics is
time reversible. On the other hand, probabilistically this would mean that the
probability of velocities (vÕ

, v
Õ
ú) changing into (v, vú) is the same as the probability

of velocities (v, vú) changing into (vÕ
, v

Õ
ú).

• The last assumption is known also as the molecular chaos hypothesis. It means
that the velocities of two particles at the same position x are uncorrelated before
the collision.

Under these assumptions Ludwig Boltzmann (1872) derived the quadratic collision
operator Q(f, f) which describes how the collisions a�ect the distribution function f :

ˆ

ˆt
f(t, x, v) = Q(f, f)(t, x, v) =

⁄

Rd

⁄

Sd≠1
B(v ≠ vú, ‡) (f(vÕ)f(vÕ

ú) ≠ f(v)f(vú)) d‡ dvú,

(1.18)
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Fig. 1.3 A binary collision in the velocity phase space.
The angle between pre- and post- collisional velocities is ◊.

where f(vÕ) = f(t, x, v
Õ), f(vÕ

ú) = f(t, x, v
Õ
ú) and f(vú) = f(t, x, vú). The nonnegative

function B(z, ‡) is called the collision kernel and depends only on |z| and on the
scalar product

e
z

|z| , ‡

f
which is the cosine of the angle between pre- and post-collisional

velocities. It can be thought as having the e�ect of replacing the two particles with
given pre-collisional velocities with a cloud of particles whose post-collisional velocities
are distributed over the d-dimensional sphere of radius ‡ in terms of a function of the
relative velocity v ≠ vú. We write this dependence as

B(v ≠ vú, ‡) = B(|v ≠ vú|, cos ◊), cos ◊ =
K

v ≠ vú

|v ≠ vú|
, ‡

L

In the literature, there are two cases where B is explicit in terms of the interaction
between particles:

• Coulomb interactions; where the interaction between particles depends on the
distance between them by �(x) = 1/x. In this case, the e�ect of grazing collisions
are more stronger than the e�ect of other type of collisions and the solutions will
converge towards the solution of the Fokker-Planck-Landau Equation which is
used for describing the binary collisions between charged particles in a plasma
and given by

ˆtf + v · Òxf = Q(f, f),
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where

Q(f, f) = Òv ·

3⁄

Rd

A(v ≠ vú) (fúÒvf ≠ f(Òvf)ú) dvú

4
,

Aij(z) = (1/|z|)
1
”ij ≠ zizj/|z|

2
2

,

where f = f(t, x, v), t Ø 0; x, v œ Rd and Aij is a matrix valued function, for
more details see [102, 42] and the references therein.

The grazing collisions are the type of collisions which result in an infinitesimal
angle deflection of the trajectories.

• Hard spheres; which are impenetrable spheres which cannot overlap in space.
They bounce back after a collision like billiard balls. In this case B(|z|, ‡) is
proportional to |z|.

Considering inverse power law for the interaction potential is very common since it
is used in modeling of some relevant physical phenomena. For example; if we consider
a potential of the form

�(x) = 1
xs≠1 ,

• s = 7 corresponds to Van der Waals interactions,

• s = 5 corresponds to ion-neutral interactions,

• s = 3 corresponds to Manev interactions,

• s = 2 corresponds to Coulomb interactions.

Moreover for s > 2, the collision kernel B cannot be computed explicitly but it can be
written as a product

B(|v ≠ vú|, ‡) = |v ≠ vú|
“

b(cos ◊) = |v ≠ vú|
“
b

A
v ≠ vú

|v ≠ vú|
· ‡

B

, (1.19)

where “ = s≠(2d≠1)
s≠1 , for dimension d. When “ = 0, the collision kernel is independent

from the relative velocity and depends only on the angle ◊. These type of molecules
are Maxwellian molecules. If 0 < “ Æ 1, this case corresponds to hard potentials. If
≠d < “ < 0, this case models the soft potentials.

We assume also that b is integrable and uniformly positive on [≠1, 1]; that is, there
exists Cb > 0 such that

b(z) Ø Cb for all z œ [≠1, 1]. (1.20)
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Under this setting the Boltzmann equation on the whole Rd reads as

ˆ

ˆt
f + v · Òxf = Q(f, f), t Ø 0, x œ Rd

, v œ Rd
. (1.21)

or if the macroscopic force is also considered then,

ˆ

ˆt
f + v · Òxf + F (x) · Òvf = Q(f, f), t Ø 0, x œ Rd

, v œ Rd
. (1.22)

The velocity distribution function of a gas in equilibrium is described by the
Maxwellian distribution function which is derived by James Clerk Maxwell in 1860. It
is given by the expression

M(v) := (2fi)≠d/2 exp(≠|v|
2
/2) (1.23)

where d denotes the dimension.
Note that (1.21) and (1.22) are nonlinear but in this work we consider the linear

Boltzmann equation modelling the dynamics of interacting gas particles with the
background which is already in equilibrium. The reason is the probabilistic methods
that we use here are valid only for linear equations. The linear Boltzmann equation is
either posed in the d- dimensional torus so that it has periodic boundary conditions
or posed on the whole space Rd with a confining external potential. If x œ Td, the
equation takes the form;

ˆtf + v · Òxf =
⁄

Rd

⁄

Sd≠1
B

A

|v ≠ vú|,
v ≠ vú

|v ≠ vú|
· ‡

B

(f(vÕ)M(vÕ
ú) ≠ f(v)M(vú)) d‡dvú.

(1.24)
We assume that B splits as

B (||v ≠ vú|, ‡) = |v ≠ vú|
“
b

A
v ≠ vú

|v ≠ vú|
· ‡

B

.

We make a cuto� assumption that b is integrable in ‡. Moreover, we assume also that
b is bounded below by a constant. We also consider the hard spheres and Maxwell
molecules regime in this work, that is to suppose “ Ø 0, since for the soft potentials it is
expected that the convergence rates will be worse and di�cult to obtain quantitatively.
Moreover there might be a need of extra cuto� assumptions not only on the angle, see
[42, 30] and references therein. We have

ˆtf + v · Òxf = L
+

f ≠ Ÿ(v)f,
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where Ÿ(v) Ø 0 and Ÿ(v) behaves like |v|
“ for large v; that is,

0 Æ Ÿ(v) Æ (1 + |v|
2)“/2

, v œ Rd
. (1.25)

See [30] Lemma 2.1 for example.
We also look at the situation where the spatial variable is in Rd and we have a

confining potential. In this case the equation is

ˆtf + v · Òxf ≠ (Òx�(x) · Òvf) = Q(f, M). (1.26)

This equation models gas particles interacting with a background medium which is
already in equilibrium. Moreover, it has been used in describing many other systems
like radiative transfer, neutron transportation, cometary flow and dust particles. The
spatially homogeneous case has been studied in [76, 21, 30]. The kinetic equations
(5.7) or (5.6) fit into the general framework in [87, 53], so convergence to equilibrium
in weighted L

2 norms may be proved by using the techniques described there.

1.3.2 The linear relaxation Boltzmann equation

Sometimes the collision term in the Boltzmann equation is too complex to deal with,
some toy models are introduced to simplify it. The linear relaxation Boltzmann equation
or the linear BGK equation due to P. L. Bhatnagar, E. P. Gross and M. Krook [20] is
the best known of such models. This modified version of the Boltzmann equation in
the linear setting is then given by

ˆtf + v · Òxf = L
+

f ≠ f. (1.27)

when it is considered on the torus; that is, for x œ Td, v œ Rd, assuming periodic
boundary conditions.

If we consider the equation on the whole space x œ Rd then it reads

ˆtf + v · Òxf ≠ (Òx� · Òvf) = L
+

f ≠ f. (1.28)

in both the cases (5.4) and (5.5), L
+ is defined as

L
+

f =
3⁄

f(t, x, u)du

4
M(v),
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and M(v) := (2fi)≠d/2 exp(≠|v|
2
/2), Maxwellian. We assume that the potential

� : Rd
æ R is a C

2 function of x and it is bounded.
This simple equation is well studied in kinetic theory and can be thought of as

a toy model with similar properties to either the non-linear BGK equation or linear
Boltzmann equation. It is also one of the simplest examples of a hypocoercive equation.
Convergence to equilibrium in H

1 for this equation has been shown in [34], at a rate
faster than any function of t. It was then shown to converge exponentially fast in both
H

1 and L
2 using hypocoercivity techniques in [72, 87, 53].

1.3.3 Main results

The study of the speed of relaxation to equilibrium for kinetic equations is a well
known problem, both for linear and nonlinear models. The central obstacle is that
dissipation happens only on the v variable via the e�ect of the operator L, while only
transport takes place in x. The transport then “mixes” the dissipation into the x

variable, and one has to find a way to estimate this e�ect. The theory of hypocoercivity
was developed in [103, 72, 73] precisely to overcome these problems for linear operators.
In a landmark result, [49] proved that the full nonlinear Boltzmann equation converges
to equilibrium at least at an algebraic rate. Exponential convergence results for the
(linear) Fokker-Planck equation were given in [48], and a theory for a range of linear
kinetic equations has been given in [53]. All of these results give convergence in
exponentially weigthed L

2 norms or H
1 norms; convergence to equilibrium in weigthed

L
1 norms can then be proved for several kinetic models by using the techniques in [65].

We give exponential convergence results on the d-dimensional torus, or with confining
potentials growing at least quadratically at Œ, always in total variation or weighted total
variation norms (alternatively, L

1 or weighted L
1 norms). For subquadratic potentials

we give algebraic convergence rates, again in the same kind of weighted L
1 norms.

Some results were already available for these equations [34, 87, 53, 72, 58]. Previous
proofs of convergence to equilibrium used strongly weighted L

2 norms (typically with
a weight which is the inverse of a Gaussian), so one advantage of our method is that
it directly yields convergence for a much wider range of initial conditions. The result
works, in particular, for initial conditions with slow decaying tails, and for measure
initial conditions with very bad local regularity. The method gives also existence of
stationary solutions under quite general conditions; in some cases these are explicit
and easy to find, but in other cases they can be nontrivial. We also note that our
results for subquadratic potentials are to our knowledge new. Apart from these new
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results, our aim is to present a new application of a probabilistic method, using mostly
PDE arguments, and which is probably useful for a wide range of models.

1.4 Structure of the thesis
In this thesis, we present quantitative rates of relaxation to equilibrium for some
linear kinetic equations and nonlocal models for structured population dynamics. The
common feature of these equations is that they are Markov evolutions and thus; we
can use the results on the convergence of Markov processes.

In Chapter 2, we introduce the main techniques which are used in the subsequent
chapters in order to achieve quantitative convergence results for some nonlocal models.
This probabilistic method is first developed for the study of ergodic behaviour of
discrete-time Markov processes and it dates back to [52]. Then in [71], the author
extended this result to unbounded state space and gave the necessary and su�cient
conditions of having a unique equilibrium, or an invariant measure, in the case of
Markov processes. Later in [81] and in [99] this method is mentioned as Doeblin’s
Theorem and Harris’s Theorem respectively. The method is based on verifying a
minorisation condition and a geometric drift condition quantitatively in order to
achieve quantitative rates of convergence. In [70], the authors gave simplified proofs
of these theorems by using mass transport distances and it is an inspiration of this
dissertation.

We consider two nonlinear models for elapsed-time structured describing neuron
population models. The first one is a nonlinear version of the renewal equation and the
structuring variable can also be considered as age. The second model is a modification
of the first model with an addition of an integral term modeling the fact that neurons
have a memory e�ect in the sense that they exhibit fatigue and adaptation. Both
models were introduced in [89] and [91] respectively. Results concerning with the
asymptotic behaviour of these models presented in Chapter 3. This part of the thesis
is a joint work with José A. Cañizo at the University of Granada and it is published in
the journal Nonlinearity [28].

We also consider a large class of integro-PDEs called the growth-fragmentation
equation which is studied widely in the past literature due to the fact that it models
various ecological, biological, telecommunicational and neuroscience related processes.
In Chapter 4, we present the spectral gap results for this equation in some limiting
cases of integral kernels. Besides we present some incomplete results in the discrete
setting for the same equation. This part of the dissertation is based on two joint works.
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First one is done jointly with José A. Cañizo at the University of Granada and Pierre
Gabriel at Versailles Saint-Quentin-en-Yvelines University [40]; and the the second one
is a joint work in progress with José A. Carrillo at Imperial College London.

In Chapter 5, we present results on hypocoercivity of the linear relaxation Boltzmann
and the linear Boltzmann equations either on the torus (x, v) œ Td

◊ Rd or on the
whole space (x, v) œ Rd

◊Rd with a confining potential. We obtain explicit convergence
results in total variation or weighted total variation norms (alternatively L

1 or weighted
L

1 norms) by using Harris’s Theorem. This chapter is based on a joint work with José
A. Cañizo at the University of Granada, Chuqi Cao and Josephine A. Evans both at
University Paris Dauphine [39]. This work is recently accepted for publication to the
journal Kinetic and Related Models.

Finally, Chapter 6 contains conclusions, perspectives for each chapter and brief
introduction of some ongoing works where the aforementioned methods can be applica-
ble. Some of these works started jointly with José A. Carrillo, Josephine Evans and
Angeliki Menegaki.





Chapter 2

Convergence of Markov processes

“The ability to theorize is highly personal; it involves art, imagination, logic, and
something more.”

— Edwin Hubble
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In this chapter, we revise some basic definitions and concepts about Markov
processes. Eventually we are interested in convergence properties of Markov processes
with a special focus on Doeblin’s and Harris’s Theorems since these theorems will be
used for achieving the original results in Chapters 3-5. We give proofs of the theorems
as well, mainly based on [70] but various versions can be found in [99, 81, 95, 71, 70, 69]
and the references therein.

2.1 An introduction to Markov processes
A discrete-time stochastic process X on a state space S is a collection {Xn : n œ I}

of S-valued random variables on a probability space (�, F ,P), where S µ � and I is
a discrete index set I = {0, 1, 2, · · · }. For a given n; Xn is the value of the process
at time n. A continuous-time stochastic process {X(t) : t Ø 0} on a state space S is
defined in a similar way. The only di�erence here is that the increments now depend
on the time variable which is continuous.

We remark that the state space S can be

• A finite set {1, · · · , n} (In this case, the state space is discrete).

• Rn or Zn.

• A manifold such as the d-dimensional sphere Sd or the d-dimensional torus Td.

• A Hilbert space such as L
2([0, 1]) or l

2.

Markov processes are stochastic processes whose distribution of increments does
not depend on where they were in the past, but where they are at the present. This
property is called Markov property and random processes satisfying this property are
called Markov processes.

We give a formal definition of the Markov property in both discrete-time and
continuous-time settings for a discrete state space S:

2.1.1 Discrete-time Markov processes

The Markov property is given by the following:
For any j, i0, i1, · · · , in≠1 œ S and any n Ø 1,

P(Xn = j | X0 = i0, . . . , Xn≠1 = in≠1) = P(Xn = j | Xn≠1 = in≠1), (2.1)
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so that the distribution of Xn depends only on the immediate past, given the entire
past of the process. We note that this does not mean that the distribution of the
process does not depend on the time index n. In order to eliminate this possibility
we make another assumption called time-homogeneity meaning that every time the
process is at a state i then the distribution of where it is going to be at the next state
is the same. Formally this means

P(Xn+m = j | Xm = i) = P(Xn+m+k = j | Xm+k = i), (2.2)

for any i, j œ S and for any nonnegative n, m, k. The conditional probability (2.2) is
called the n-step transition probabilities since they give where will the process end up n

time after where it is right now. Similarly the 1-step transition probabilities defined as

P(Xn = j | Xn≠1 = i) = P(X1 = j | X0 = i) =: pi,j,

and pi,j does not depend on time because of the time-homogeneity assumption. We con-
struct a matrix P , a transition probability matrix, by the 1-step transition probabilities
where (i, j)th entry of P is pi,j such that

ÿ

jœS
pi,j =

ÿ

jœS
P(X1 = j | X0 = i) = 1.

Since each row of P is a probability distribution over S, P is a stochastic matrix.
Moreover, the n-step transition probabilities are determined by the 1-step transition
probabilities pi,j and this is known as the Chapman-Kolmogorov equations:

P
n+m = P

n
P

m or p
n+m
i,j =

ÿ

kœS
p

n
i,kp

m
k,j, (2.3)

where P
n is the n-step transition probability matrix whose (i, j)th entry is p

n
i,j =

P(Xn = j | X0 = i).
Equation (2.3) says that the probability of going the state j from the state i in

n + m steps is the sum over all k of the probability of going to the state k from the
state i in n steps, then to the state j from the state k in n steps.

We note that P
0 is the identity matrix and notice that P

n = PP
n≠1 = P for n Ø 1.

Now we define a row vector µ which is called a probability vector if all coordinates
of µ are nonnegative and their sum is 1. If the ith entry of µ satisfies (µ)i = P(X0 = i)
then µ is called the initial distribution of the Markov chain {Xn : n Ø 0}. By (2.1)
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and (2.3) we have that for n Ø 1;

P(X0 = i0, . . . , Xn≠1 = in≠1, Xn = j) = (µ)i0(P )i0i1 . . . (P )in≠1j.

If we sum with respect to (i0, . . . , in≠1) we obtain

(µP
n)j = P(Xn = j), n Ø 0 and j œ S.

It means that the row vector µP
n is the distribution of the Markov chain at time n if

µ is the distribution at time 0. For a given row vector fl we define

ÎflÎR =
ÿ

iœS
|(fl)i| (2.4)

as a measure for row vectors. It corresponds to total variation norm on the space of
measures.

Lemma 2.1.1. For a given row vector fl and a transition probability matrix P we have

ÎflPÎR Æ ÎflÎR.

Proof. It follows from

ÎflPÎR =
ÿ

jœS

-----
ÿ

iœS
(fl)i(P )ij

----- Æ
ÿ

iœS

Q

a
ÿ

jœS
| (fl)i | (P )ij

R

b = ÎflÎR.

Now, we consider a column vector Ï whose j
th coordinate is the value of a either

nonnegative or a bounded function f on the state space S. Then µÏ = q
iœS f(i)µ({i})

is the expected value of f with respect to µ and µ({i}) denotes the ith value of µ. The
column vector PÏ represents that whose value at i is the conditional expectation value
of f(Xn) given that X0 = i since

E [f(Xn) | X0 = i] =
ÿ

jœS
f(j)P(Xn = j | X0 = i) =

ÿ

jœS
(P n)ij(Ï)j = (P n

Ï)i.

If µ is the initial distribution of {Xn : n Ø 0}, then E [f(xn)] = µP
n
Ï. We define the

uniform norm Î · ÎC for the column vectors defined as

ÎÏÎC = sup
jœS

|(Ï)j|. (2.5)
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Lemma 2.1.2. For a given column vector ›, a row vector Ï and a transition probability
matrix P we have

|µÏ| Æ ÎµÎRÎÏÎC and ÎPÏÎC Æ ÎÏÎC .

Proof. We have

|µÏ| Æ
ÿ

iœS
|(µ)i||(Ï)i| Æ sup

iœS
|(Ï)j|

ÿ

iœS
|(µ)i| = ÎÏÎCÎµÎR.

Moreover,

ÎPÏÎC = sup
jœS

|(PÏ)j| Æ sup
jœS

|(Ï)j|
ÿ

iœS
(P )ij = ÎÏÎC .

This brief introduction will be used in Section 2.2.1.

If we want to know if the chain will stabilize after a su�ciently long time, then we
are interested in the limiting probabilities,

lim
næŒ

p
n
i,j = lim

næŒ
P(Xn = j | X0 = i).

It is natural to look at the limit of P
n which is easier to determine for a finite dimensional

state space S. If the above limit exists and finite then the Markov process is called
ergodic. In fact for any finite stochastic matrix P , there is exactly one eigenvalue which
is equal to 1 and all the other eigenvalues are less than 1 in terms of the distance to 0,
so that P

n converges to a matrix where each row is the eigenvector of P corresponding
to the eigenvalue 1 (The proof can be found in [99] and in many other probability
books.) But this argument fails when S; thus P is infinite dimensional.

General state space

In this section we consider S as a general state space which may not necessarily be
finite. In this case, the time-homogeneity assumption (2.2) for a discrete-time Markov
process X corresponds to having a measurable map P from S into P(S), the space of
probability measures on S, such that

P(Xn œ A | Xn≠1 = y) = P (y, A),

for every A œ B(S), ‡-field of all subsets of S, almost every y œ S, and every n > 0. In
this case P : �◊S ‘æ R is called transition probabilities of X or the transition probability
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function. We note that P (x, ·) is a probability measure for every x and x ‘æ P (x, A) is
a measurable function for every A œ S. Similarly the Chapman-Kolmogorov equations
(2.3) are given by the following theorem;

Theorem 2.1.1. Suppose that X is a time-homogenous Markov process and P is the
transition probabilities of X. Then we have

P(Xn œ A | X0 = y) = P
n(y, A),

where P
n is defined by

P
0 = I, P

1 = P, P
n(y, A) =

⁄

S
P (x, A)P n≠1(y, dx). (2.6)

Moreover we also have

P
n+m(y, A) =

⁄

S
P

n(x, A)P m(y, dx),

for every n, m Ø 1.
Associated Markov operator M on P(S) is defined by means of transition probabil-

ities P through;
(Mµ)(A) =

⁄

S
P (x, A)µ( dx). (2.7)

We similarly define M
ú the dual of M acting on the space of bounded measurable

functions from S to R by

(Mú
Ï)(x) =

⁄

S
Ï(y)P (x, dy) = E [Ï(y) | x0 = x], (2.8)

so that we have for every µ œ P(S) and for every bounded function Ï the following
holds true: ⁄

S
(Mú

Ï)(x)µ( dx) =
⁄

S
Ï(x)(Mµ)( dx).

2.1.2 Continuous-time Markov processes

Now we define the analogous concepts in the continuous-time setting beginning with
the Markov property:

For any j, i, i1, i2, · · · , in≠1 œ S and for any integer n Ø 1,

P(X(t) = j | X(s) = i, Xtn≠1 = in≠1, · · · , X(t1) = i1) = P(X(t) = j | X(s) = i),
(2.9)
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where 0 Æ t1 Æ t2 Æ · · · Æ tn≠1 Æ s Æ t any nondecreasing sequence of n + 1 times.
That is, given state of the process at time s, the distribution of the process at any time
after s is independent of the entire past of the process before time s, i.e. it depends
only on the process at the most recent time prior to time t. Similar to the discrete
case, a continuous-time Markov chain is time-homogeneous if for any s Æ t and any
states i, j œ S,

P(X(t) = j | X(s) = i) = P(X(t ≠ s) = j | X(0) = i).

We also define the transition probability function Pi,j(t) for a time-homogeneous,
continuous time Markov chain, as a counterpart to the n-step transition probabilities
pi, j

n in the discrete-time version by

Pi,j(t) = P(X(t) = j | X(0) = i).

For each i, j œ S, the transition probability function Pi,j(t) is a continuous function of
t.

For a continuous-time Markov chain {X(t) : t Ø 0} with the state space S and the
transition probability functions (Pi,j(t)){i,jœS}, the Chapman-Kolmogorov equations
are given by

Pi,j(t + s) =
ÿ

kœS
Pi,k(t)Pk,j(s) (2.10)

for any t, s Ø 0.
For a given t, if we construct a matrix Pt whose (i, j)th entry is the transition

probability function Pi,j(t) then (2.10) is equivalent to

Pt+s = PtPs.

We note that in the discrete-time case P
n is called the n-step transition probability

matrix. Since there is no time step in the continuous case we call Pt the matrix
transition probability function, which is a matrix-valued function of the continuous
variable t.

General state space

Similar to the discrete-time Markov process, now we consider S a general state space.
In this case, a continuous-time Markov process is described by a family of transition
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operators Pt instead of transition probabilities P . This family of transition operators
Pt satisfies the Chapman-Kolmogorov equations such that

• P0(x, ·) = ”x.

• Ps+t = PsPt.

We also have that

1. The map t ‘æ Pt(x, A) is measurable for every x.

2. For every x the process is right-continuous with left limits (càdlàg).

Since we are looking at a process we have a transition kernel Pt for each t > 0. We
also define Mt : M(�) æ M(�) the Markov semigroup and its dual M

ú
t through Pt as

in (2.7) and (2.8).
In the following chapters Mtµ will be the weak solution to the evolution equation

with initial data µ. If we define M(S) as the space of finite measures on (�, F) then
we have that Mt is a linear map

Mt : M(S) æ M(S).

From the conditions on Pt we see that Mt will be linear, mass preserving and positivity
preserving.

We also define the forwards operator L, associated to Pt as the operator which
satisfies

d
dt

M
ú
t Ï

-----
t=0

= LÏ, (2.11)

for all Ï œ C
Œ
c (S), whenever this is well defined.

A time homogeneous Markov process satisfies the Feller property if its transition
operator M

ú
t Ï is continuous whenever Ï is continuous and bounded. Similarly, it is

strong Feller if M
ú
t Ï is continuous whenever Ï is measurable and bounded.

2.2 Convergence of Markov processes
Here we will give some notions about the long-time behavior of Markov processes.
Finally we will give the statements of the main theorems which will be the core of this
work.

We start with the definition of an invariant measure which is the fundamental tool
in the study of long-time behaviour of Markov processes;
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Definition 2.2.1. A positive measure µ on S is invariant for the Markov process x if
Pµ = µ. In the case of continuous time process, a positive measure µ is invariant if
Ptµ = µ for every t Ø 0.

We denote ·A as the first time a Markov chain reaches the set A and it is defined as

·A := inf{n Ø 1: xn œ A}.

If ·A is infinite, then the set A is never reached by the associated chain.
Next, we define the concept of irreducibility.

Definition 2.2.2. A Markov chain is irreducible if in finite time every state is reachable
starting from any state.

This concept is the main idea behind Doeblin’s Theorem. It is very natural to
think that if the state space of a Markov process is finite and if the process run long
enough, the initial distribution of the process is going to get forgotten and the process
will stabilize.

2.2.1 Doeblin’s Theorem

Doeblin Theorem says that if a Markov process has a positive probability of visiting
some fixed state independently from the starting point, then this process stabilizes. It
dates back to [52]. Let us give the following theorem first:

Theorem 2.2.1. Let P be a transition probability of a Markov process on a state space
S. Assume that there exists a constant – > 0 and a probability measure ‹ on S such
that

P (x, ·) Ø –‹(·) for every x œ S, (2.12)

then, P has a unique invariant measure µú.

Proof. The assumption (2.12) implies that Mµ Ø –‹ for every probability measure µ

on S. Therefore we define probability measures M̄µ by

Mµ = –‹ + (1 ≠ –)M̄µ. (2.13)

Let µ1 and µ2 be any two probability measures on S. Using the inequality

Îµ1 ≠ µ2ÎTV Æ 2 ≠ 2 min{µ1, µ2}(S)
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where µ̄1 and µ̄2 are probability measures such that

µ1 = min{µ1, µ2} + 1
2Îµ1 ≠ µ2ÎTVµ̄1, µ2 = min{µ1, µ2} + 1

2Îµ1 ≠ µ2ÎTVµ̄2.

Therefore we obtain

ÎMµ1 ≠ Mµ2ÎTV = 1
2ÎMµ̄1 ≠ Mµ̄2ÎTVÎµ1 ≠ µ2ÎTV.

Also by (2.13),

ÎMµ̄1 ≠ Mµ̄2ÎTV = Î–‹ + (1 ≠ –)M̄µ̄1 ≠ –‹ ≠ (1 ≠ –)M̄µ̄2ÎTV

= (1 ≠ –)ÎMµ̄1 ≠ Mµ̄2ÎTV Æ 2(1 ≠ –),

since the total variation distance between two probability measures cannot exceed 2.
Finally we obtain

ÎMµ1 ≠ Mµ2ÎTV Æ (1 ≠ –)Îµ1 ≠ µ2ÎTV, (2.14)

which shows that M is a contraction. Then by Banach fixed point theorem, the result
follows.

Hypothesis 2.2.1 (Doeblin’s Condition). We assume that (Mt)tØ0 is a Markov semi-
group, defined through a transition probability functions, and that there exists t0 > 0,
a probability distribution ‹ and a constant – œ (0, 1) such that for any x in the state
space we have

Mt0”x Ø –‹.

By using Theorem 2.2.1 and Hypothesis 2.2.1 we prove;

Theorem 2.2.2 (Doeblin’s Theorem). If we have a Markov (transition) semigroup
(Mt)tØ0 satisfying Doeblin’s condition (Hypothesis 2.2.1) then for any two measures µ1

and µ2 and any integer n Ø 0 we have

ÎM
n
t0µ1 ≠ M

n
t0µ2ÎTV Æ (1 ≠ –)n

Îµ1 ≠ µ2ÎTV. (2.15)

Moreover, there exists a unique equilibrium probability measure µú for the semigroup,
and for all µ we have

ÎMt(µ ≠ µú)ÎTV Æ
1

1 ≠ –
e

≠⁄t
Îµ ≠ µúÎTV, t Ø 0, (2.16)
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where
⁄ := log(1 ≠ –)

t0
> 0.

Proof. This proof is classical and can be found in [70] and various versions in many
other places.

First, we show that if Mt”x Ø –‹ for every x, then we also have Mtµ Ø –‹ for
every probability measure µ. Here since Mt comes from a Markov transition kernel,
Hypothesis 2.2.1 implies that

Pt(x, ·) Ø –‹(·)

for every x. This is the semigroup version of the condition of Theorem 2.2.1. Therefore,

Mtµ(·) =
⁄

S
Pt(x, ·)µ( dx) Ø –

⁄

S
‹(·)µ( dx) = –‹(·).

By the triangle inequality we have

ÎMt0µ1 ≠ Mt0µ2ÎTV Æ ÎMt0µ1 ≠ –‹ÎTV + ÎMt0µ2 ≠ –‹ÎTV.

Now, since Mt0µ1 Ø –‹, due to mass conservation we can write

ÎMt0µ1 ≠ –‹ÎTV =
⁄

S
(Mt0µ1 ≠ –‹) =

⁄

S
µ1 ≠ – = 1 ≠ –.

The same holds for the term ÎMt0µ2 ≠ –‹ÎTV. This gives

ÎMt0µ1 ≠ Mt0µ2ÎTV Æ 2(1 ≠ –) = (1 ≠ –)Îµ1 ≠ µ2ÎTV

if µ1, µ2 have disjoint support. By homogeneity, this inequality is obviously also true
for any nonnegative µ1, µ2 having disjoint support with

s
µ1 =

s
µ2 so that this proves

ÎMt0µ1 ≠ Mt0µ2ÎTV Æ (1 ≠ –)Îµ1 ≠ µ2ÎTV. (2.17)

If we iterate this we obtain (2.15). Notice that (2.17) is the fixed time version of (2.14).
The contractivity (2.17) gives that the operator Mt0 has a unique fixed point, which

we call µú. In fact, µú is a stationary state of the whole semigroup since for all t Ø 0
we have

Mt0Ttµú = MtMt0µú = Mtµú,

which shows that Mtµú (which is again a probability measure) is also a stationary state
of Mt0 ; due to uniqueness,

Mtµú = µú.
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Hence the only stationary state of Mt must be µú, since any stationary state of Mt is
in particular a stationary state of Mt0 .

In order to show (2.16), for any probability measure µ and any t Ø 0 we write

k :=
7

t

t0

8
,

(where Â·Ê denotes the integer part) so that

t

t0
≠ 1 < k Æ

t

t0
.

Then,

ÎMt(µ ≠ µú)ÎTV = ÎMt≠kt0Tkt0(µ ≠ µú)ÎTV Æ ÎMkt0(µ ≠ µú)ÎTV

Æ (1 ≠ –)k
Îµ ≠ µúÎTV Æ

1
1 ≠ –

exp
3

t log 1 ≠ –

t0

4
Îµ ≠ µúÎTV.

Doeblin’s Theorem in the discrete setting

In this section we present Doeblin’s Theorem and its prrof in the discrete-time setting
with a finite and bounded state space based on [99]. The whole aim of this part is that
this version of the theorem is a good starting point to show analogous convergence
properties when both the time and the state space is discrete, such as a numerical
approximation of a PDE.

Theorem 2.2.3 (Doeblin’s Theorem as in [99]). Let P be a transition probability
matrix with the property that, for some state j0 œ S and ‘ > 0, (P )ij0 > ‘ for all i œ S.
Then P has a unique stationary probability vector fi, (fi)j0 > ‘, and, for all initial
distributions µ,

ÎµP
n

≠ fiÎR Æ 2(1 ≠ ‘)n
, n Ø 0.

Proof. Let fl œ RS be a row vector with ÎflÎR < Œ, then since by Fubini’s theorem,

ÿ

jœS
(flP )j =

ÿ

jœS

A
ÿ

iœS
(fl)i(flP )ij

B

=
ÿ

iœS

A
ÿ

iœS
(fl)i(flP )ij

B

=
ÿ

iœS
(fl)i,

we obtain
ÿ

jœS
(flP )j =

ÿ

iœS
(fl)i.



40 Convergence of Markov processes

Next we suppose that, q
i(fl)i = 0 and observe that

|(flP )j| =
-----
ÿ

iœS
(fl)i(flP )ij

----- =
-----
ÿ

iœS
(fl)i ((flP )ij ≠ ‘”j,j0)

----- Æ
ÿ

iœS
|(fl)i| ((flP )ij ≠ ‘”j,j0) .

Therefore,

ÎflPÎR Æ
ÿ

jœS

A
ÿ

iœS
|(fl)i| ((flP )ij ≠ ‘”j,j0)

B

=
ÿ

iœS
|(fl)i|

Q

a
ÿ

jœS
((flP )ij ≠ ‘”j,j0)

R

b

= (1 ≠ ‘)ÎflÎR.

Now, let µ be a probability vector such that µn = µP
n holds. Notice also that

µn = µn≠mP
m holds true. Then we have for n > m Ø 1:

Îµn ≠ µmÎR Æ (1 ≠ ‘)m
Îµn≠m ≠ µÎR Æ 2(1 ≠ ‘)m

,

since Îµn≠mÎR = q
i(µn≠m)i = 1 = q

i(µ)i = ÎµÎR. Since {µ
n
}

Œ
1 is a Cauchy

convergent sequence, then there exists a probability vector fi such that

lim
næŒ

Îµn ≠ fiÎR = 0.

Moreover, since we also have

fi = lim
næŒ

µP
n+1 = lim

næŒ
(µP

n)P = fiP,

then fi is an equilibrium and we obtain

(fi)j0 =
ÿ

iœS
(fi)i(P )ij0 Ø ‘

ÿ

iœS
(fi)i.

Thus, for any probability vector ‹ we obtain

Î‹P
m

≠ fiÎR Æ Î(‹ ≠ fi)P m
ÎR Æ 2(1 ≠ ‘)m

.

Corollary 2.2.1. For any M Ø 0 and ‘ > 0;

sup
j

inf
i

(P M)ij Ø ‘ =∆ ÎµP ≠ fiÎR Æ 2(1 ≠ ‘)Â n

M
Ê (2.18)
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for all probability vectors µ and a unique stationary probability vector fi.

Proof. Let fi be the stationary probability vector for P
M . For any probability vector

µ, for any m œ N and any 0 Æ r < M ,

ÎµP
mM+r

≠ fiÎR = Î(µP
r

≠ fi)P mM
ÎR Æ 2(1 ≠ ‘)m

.

Doeblin’s Threorem corresponds to irreducibility property in the bounded state
space. But when the state space is unbounded, often we cannot prove this minorisation
condition on the whole state space but in a set at the “center” of the state space.
Then we need an extra condition, which can be thought as a geometric drift condition
which will ensure that this set at the center will be visited infinitely often. We verify
this condition by using a Lyapunov structure. This constructive argument is given by
Harris’s Theorem:

2.2.2 Harris’s Theorem

For some fixed time t0 we make two assumptions on the behaviour of Mt0 :

Hypothesis 2.2.2 (Lyapunov condition). There exists some function V : S æ [0, Œ)
and constants D Ø 0, “ œ (0, 1) such that

(Mú
t0V )(x) Æ “V (x) + D.

Remark 2.2.4. We remark that the name Lyapunov condition is the standard name
used for this type of condition in probability literature. It is nothing to do with proving
monotonicity of a functional to obtain convergence to equilibrium.

In the continuous time setting this condition (2.2.2) is equivalent to prove
⁄

S
f(t0, x)V (x) dx Æ “

⁄

S
f(0, x)V (x) dx + D. (2.19)

We verify this by showing

d
dt

⁄

S
f(t, x)V (x) dx Æ ≠⁄

⁄

S
f(t, x)V (x) dx + K, (2.20)
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for some positive constants K and ⁄. We multiply left hand side of (2.20) by e
⁄t to

obtain

d
dt

A

e
⁄t

⁄

S
f(t, x)V (x) dx = ⁄e

⁄t
⁄

S
f(t, x)V (x) dx + e

⁄t d
dt

3⁄

S
f(t, x)V (x) dx

4B

Æ ⁄e
⁄t

⁄

S
f(t, x)V (x) dx ≠ ⁄e

⁄t
⁄

S
f(t, x)V (x) dx + Ke

⁄t
.

Then, we integrate from 0 to t0 in time

⁄ t0

0

A
d
dt

3
e

⁄t
⁄

S
f(t, x)V (x) dx

4
dt

B

= e
⁄t0

⁄

S
f(t0, x)V (x) dx +

⁄

S
f(0, x)V (x) dx

Æ K

⁄ t0

0
e

⁄t dt Æ
K

⁄
(e⁄t0 ≠ 1).

Therefore
⁄

S
f(t0, x)V (x) dx Æ e

≠⁄t0
⁄

S
f(t0, x)V (x) dx + K

⁄
(1 ≠ e

≠⁄t0).

which then implies (2.19) for “ = e
≠⁄t0 and D = K

⁄ (1 ≠ e
≠⁄t0) Æ Kt0.

The next assumption is a local minorisation condition as in Doeblin’s Theorem;

Hypothesis 2.2.3. There exists a probability measure ‹ and a constant – œ (0, 1)
such that

inf
xœC

Mt0”x Ø –‹,

where
C = {x : V (x) Æ R}

for some R >
2D
1≠“ := 2K

⁄ , where the constants D, “ are obtained by Hypothesis 2.2.2.

Harris’s Theorem extends the ideas of Doeblin to the unbounded state space setting
by finding a Lyapunov functional with small level sets. If the Lyapunov functional is
strong enough, then we can prove a spectral gap property in a weighted supremum
norm. Harris’s Theorem states that under a geometric drift condition and if T admits
su�ciently large “small” level sets, then its transition probabilities converge towards
a unique invariant measure at an exponential rate. The proof of the theorem relies
on existence of a Lyapunov functional and irreducibility; thus it is based on providing
a combination of a minorisation and a geometric drift conditions. The minorisation
condition can be thought as finding a bound on the probability of transitioning in one
step from any initial state to some specified region small level set in the state space.
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Contrary to Doeblin’s argument, if the state space is unbounded and the process may
drift arbitrarily far away; that is why we need a drift condition as well.

Following the notes [69] we define a weighted supremum norm:

Î„Î = sup
x

|„(x)|
1 + V (x) , (2.21)

for „ measurable function. We will give the statement of the theorem in the norm
(2.21) but proof will reply on considering a family of weighted supremum norms for
every — > 0;

Î„Î— = sup
x

|„(x)|
1 + —V (x) (2.22)

We also define the dual metric of (2.22) on the space of probability measures;

fl—(µ1, µ2) = sup
Î„Î—Æ1

⁄

S
„(x)(µ1 ≠ µ2)( dx).

Moreover, it is equivalent to the total variation norm given by

Îµ1 ≠ µ2ÎV,— =
⁄

(1 + —V (x))|µ1 ≠ µ2|( dx). (2.23)

Now we are ready to give the main statement:

Theorem 2.2.5 (Harris’s Theorem as in [70]). If Hypotheses 2.2.2 and 2.2.3 hold then
there exist –̄ œ (0, 1) and — > 0 so that

ÎMt0µ1 ≠ Mt0µ2ÎV,— Æ –̄Îµ1 ≠ µ2ÎV,—, (2.24)

for any probability measures µ1 and µ2 in S.
Explicitly if we choose ‘ œ (0, –) and ” œ (“ + 2D/R, 1) then we can set — = ‘/D

where all the constants are coming from Hypotheses 2.2.3 and 2.2.2. Then we have
–̄ = max {1 ≠ (– ≠ ‘), (2 + R”—)/(2 + R—)} .

The trick done in [70] for the proof of this theorem is to adjust — in a way that M

is a strict contraction for the total variation distance Î · ÎV,—. This does not imply that
the same result holds for fl1. But the equivalence of norms Î · Î and Î · Î— implies the
existence of n > 0 such that M

n is such a contraction.
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TV to Lipschitz seminorm

In [70], the authors reformulate the total variation distance between two probability
measure fl— as a Lipschitz seminorm. A metric d— between the points of S is defined by

d—(x1, x2) =

Y
_]

_[

0, if x1 = x2,

2 + —(V (x1) + V (x2)), if x1 ”= x2.
(2.25)

By using d—, we define a Lipschitz seminorm with its dual for the probability measures
by

Î„Îd—
= sup

x1 ”=x2

|„(x1) ≠ „(x2)|
d—(x1, x2)

,

d—(µ1, µ2) = sup
Î„Î|d

—
Æ1

⁄

S
„(x)(µ1 ≠ µ2)( dx).

Next lemma gives a proof of equivalence between the total variation norm fl— as in
(2.23) and the Lipschitz seminorm d— as given by (2.25).

Lemma 2.2.1. We have the identity Î„Îd—
= inf

aœR
Î„ + aÎ— and d— = fl—.

Proof. Since Î„Îd—
Æ Î„(x)Î—, we have Î„Îd—

Æ inf
aœR

Î„ + aÎ—.
To prove the reverse inequality, for a given „ with Î„Îd—

Æ 1 we set a = inf
x

(1 +
—V (x) ≠ „(x)). Since for any x1 and x2 we have

„(x1) Æ |„(x2)| + |„(x1) ≠ „(x2)| Æ |„(x2)| + 2(V (x1) + V (x2)),

we obtain

1 + —V (x1) ≠ „(x) Ø 1 + —V (x1) ≠ (|„(x2)| + 2(V (x1) + V (x2))
Ø ≠1 ≠ —V (x2) ≠ |„(x2)|.

There exists at least one point such that V (x2) < Œ, which provided a lower bound
for a, thus |a| < Œ. Also

„(x1) + a Æ „(x1) + 1 + —V (x1) = 1 + —V (x1),
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and

„(x1) + a = inf
x2

(„(x1) + 1 + —V (x2) ≠ „(x2) = inf
x2

(1 + —V (x2) + („(x1) ≠ „(x2)))

Ø inf
x2

(1 + —V (x2) ≠ Î„Îd—
· d—(x1, x2) Ø ≠(1 + —V (x1)).

Therefore, |„(x) + a| Æ 1 + —V (x) for any x which gives the result.

Proof of Theorem 2.2.5. Since we have that

min{1, —}Îµ1 ≠ µ2ÎV,1 Æ Îµ1 ≠ µ2ÎV,— Æ max{1, —}Îµ1 ≠ µ2ÎV,1.

The result follows if we can find a “0 < 1 such that

ÎMt0µ1 ≠ Mt0µ2ÎV,1 Æ “0Îµ1 ≠ µ2ÎV,—.

Assuming that µ1 and µ2 have disjoint support and that V (x) Ø R. Then, by choosing
any “1 œ (“, 1) and by Hypotheses 2.2.2 and 2.2.3 we obtain

ÎMt0µ1 ≠ Mt0µ2ÎV,1 Æ 2 + —(MV )(x) Æ 2 + —–(MV )(x) + 2—D

Æ 2 + —–1(MV )(x) + —(2D ≠ (“1 ≠ “)R).

If R is su�ciently large so that (“1 ≠ “)R > 2D, then there exists some –1 < 1
(depending on —) such that we have

ÎMt0µ1 ≠ Mt0µ2ÎV,1 Æ –1Îµ1 ≠ µ2ÎV,—.

Now, we choose an appropriate —.
We consider the case V (x) Æ R. To treat this case, we split the measure µ1 as

µ1 = µ
(1)
1 + µ

(2)
1 where |µ

(1)
1 | Æ 1, |µ

(2)
1 | Æ —V (x), for all x œ X .

Then we obtain

ÎMt0µ1 ≠ Mt0µ2ÎV,1 Æ ÎMt0µ
(1)
1 ≠ Mt0µ

(2)
1 ÎV,1 + ÎMt0µ2ÎV,1 Æ 2(1 ≠ “) + —–V (x) + 2—D

Æ 2 ≠ 2“ + —(“R + 2D).
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Hence fixing for example — = –/(“R + 2D) we obtain

ÎMt0µ1 ≠ Mt0µ2ÎV,1 Æ 2 ≠ – Æ

3
1 ≠

1
2–

4
Îµ1 ≠ µ2ÎV,—,

since Îµ1 ≠ µ2ÎV,— Ø 2. Setting –̄ = max
Ó
1 ≠

1
2–, –1

Ô
concludes the proof.

2.2.3 Subgeometric Harris’s Theorem

There are versions of Harris’s Theorem adapted to weaker Lyapunov conditions which
give subgeometric convergence [54]. We use the following theorem which can be found
in Section 4 of [69].

Theorem 2.2.6 (Subgeometric Harris’s Theorem). Given the forwards operator, L,
of the Markov semigroup (Mt)tØ0, suppose that there exists a continuous function
V : S æ [1, Œ) with precompact level sets such that

LV Æ K ≠ „(V ),

for some constant K and some strictly concave function „ : R+ æ R with „(0) = 0
and „ is increasing to infinity. Assume that for every C > 0 we have the minorisation
condition like Hypothesis 2.2.3. i.e. for some t0 a time and ‹ a probability distribution
and – œ (0, 1), then for all x with V (x) Æ C:

Mt0”x Ø –‹.

With these conditions we have that

• There exists a unique invariant measure µ for the Markov process and it satisfies
⁄

„(V (x)) dµ Æ K.

• Let H„ be the function defined by

H„ =
⁄ u

1

ds

„(s) .

Then there exists a constant C such that for every x1, x2 œ S we have
⁄ Œ

0
(„ ¶ H

≠1
„ )(t)ÎMt(x1, ·) ≠ Mt(x2, ·)ÎTV Æ C(V (x1) + V (x2))
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so that
ÎMt(x1, ·) ≠ Mt(x2, ·)ÎTV Æ C

V (x1) + V (x2)
H

≠1
„ (t)

.

• There exists a constant C such that

ÎMt(x, ·) ≠ µÎTV Æ
CV (x)
H

≠1
„ (t)

+ C

(„ ¶ H
≠1
„ )(t)

holds for every initial condition x œ S.

The proof is based on that fact that for two Markov processes xt and yt with the
transition semigroup (Mt)tØ0 then we have

ÎMt(x0, ·) ≠ Mt(y0, ·)ÎTV Æ 2P(xt ”= yt).

For the full proof and more details can be found in [69].





Chapter 3

On the asymptotic behaviour of
elapsed-time structured neuron
populations

“The human brain has 100 billion neurons, each neuron connected to 10 thousand
other neurons. Sitting on your shoulders is the most complicated object in the known

universe.”

— Michio Kaku
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3.1 Overview
In this chapter we present some results on asymptotic behaviour of neuron population
models introduced in Chapter 1. If the network of neurons consists of large enough
number of members which are connected and interacting with each other then the
underlying global dynamics can be described by partial di�erential equations based
on electrical activity of a single neuron and averaging some relevant structures on the
network. We need to make certain modelling assumptions in order to achieve this.
Main assumption is that neurons randomly create spikes which can be thought of a
sudden discharge followed by a charging process. The rate of neurons producing spikes
depends on the global activity of other neurons as well as the time passed since the
last discharge, called the elapsed time. Therefore, structuring the integro-PDE with
a variable representing the time elapsed since last discharge comes very natural for
modelling.

Moreover, due to this random firing behaviour, interacting neuron population
models in the linear setting can be considered as piecewise deterministic Markov
processes (PDMP) from probability theory. PDMPs represent the processes whose
behaviour is regulated by stochastic jumps at some points in time but the evolution
of the process can be defined deterministically between these points. Continuous
time Markov chains are examples of PDMPs. This is the reason we can easily apply
Doeblin’s Theorem to obtain some results on the long time behaviour of solutions.

This chapter is organized as follows: In the next section we recall the two nonlinear
integro-PDEs (3.1) and (3.2) which are modelling the dynamics of interacting neuron
populations. We also state the modelling assumptions and the main Theorem 3.1.1
concerning the exponential convergence rate to equilibrium in the low connectivity
regime. Next two sections are dedicated to the age-structured neuron population model
(3.1) and the second model (3.2) with a property of displaying adaptation and fatigue
properties respectively. We give proofs for well-posedness, existence and uniqueness
of stationary solutions, always in the weak nonlinearity regime. For the exponential
relaxation to equilibrium we first consider the linear equations (when p does not depend
on N) and we prove that solutions have positive lower bounds which ensures that the
associated stochastic semigroups satisfy the Doeblin condition. Therefore we obtain
the exponential relaxation results in the linear setting. Finally, we prove exponential
relaxation to the steady state for the nonlinear models (3.1)-(3.2) by a perturbation
argument based on the linear theory.
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3.1.1 Assumptions and the main theorem

Now, we recall these two nonlinear evolution equations. First one is nonlinear version
of the renewal equation and describes the time evolution of a neuron population density
depending on the time elapsed since last discharge x;

ˆ

ˆt
n(t, x) + ˆ

ˆx
n(t, x) = ≠p(N(t), x)n(t, x), t, x > 0,

N(t) = n(t, 0) =
⁄ +Œ

0
p(N(t), x)n(t, x) dx, t > 0,

n(0, x) = n0(x), x Ø 0.

(3.1)

where p is the firing rate depending on current state x and the global activity of neurons
at time t via N(t). We also remark that connectivity of the network which is related
to level of nonlinearity is enclosed in dependence of p to N(t). Since the boundary
condition ensures neurons re-enter the cycle from x = 0 immediately after they fire
with a rate p, in this model the structuring variable x can also be considered as age.
This model was first proposed in [89]. For the second model we consider a modification
by defining the structuring variable x as a generic “state” of the neuron, not necessarily
the time elapsed since the last discharge. We also assume that neurons in a state y

return to a certain state x < y after firing, with a certain probability distribution
Ÿ(x, y). Thus the model is given by;

ˆ

ˆt
n(t, x) + ˆ

ˆx
n(t, x) + p(N(t), x)n(t, x) =

⁄ +Œ

0
Ÿ(x, y)p(N(t), y)n(t, y) dy, x, y, t > 0,

n(t, x = 0) = 0, t > 0,

n(t = 0, x) = n0(x), x Ø 0,

(3.2)

where the flux of discharging neurons at time t is defined by

N(t) :=
⁄ +Œ

0
p(N(t), x)n(t, x) dx.

This model was introduced in [91]. Our contribution in this work is a simplified study of
the low-connectivity case (corresponding to a weak nonlinearity) which gives improved
results by using a promising new probabilistic method for these type of models.

Now we give a detailed notation and assumptions we are going to consider throughout
the chapter.
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Assumption 3.1.1 (regularity of p). We assume that p is a bounded, Lipschitz and
nonnegative function such that p œ W

1,Œ([0, +Œ) ◊ [0, +Œ)) satisfying

p(N, x) Ø 0 for all N, x œ [0, +Œ). (3.3)

We denote L the Lipschitz constant of p with respect to N ; that is, L is the smallest
number such that

|p(N1, x) ≠ p(N2, x)| Æ L|N1 ≠ N2| for all N1, N2, x Ø 0. (3.4)

Assumption 3.1.2 (bounds on p). We assume that there exist some constants
xú, pmin, pmax > 0 such that

pmin [xú,Œ) Æ p(N, x) Æ pmax for all N, x Ø 0, (3.5)

where A denotes the characteristic function of a set A.

Assumption 3.1.3. We assume that for a fixed global activity N the firing rate
increases as time passes; more precisely,

ˆ

ˆx
p(N, x) > 0, for all N, x Ø 0. (3.6)

where the derivative is well-defined.

Assumption 3.1.4 (support of Ÿ). We assume that for each y Ø 0,

Ÿ(·, y) is a probability measure supported on [0, y]. (3.7)

Assumption 3.1.5 (positivity of Ÿ). We assume that there exists ‘ > 0, 0 < ” < xú

such that
Ÿ(·, y) Ø ‘ [0,”] for all y Ø xú. (3.8)

The last assumption 3.1.5 regarding the positivity of Ÿ guarantees that after firing
there is always a sizeable probability of jumping to a state with x close to 0.

Now we give the main result for both equation (3.1) and (3.2):

Theorem 3.1.1. We make the assumptions 3.1.1-3.1.3 for the equation (3.1); so that
(3.3)-(3.5) hold true for (3.1). We additionally assume 3.1.4 and 3.1.5 for the equation
(3.2) so that (3.3)-(3.8) hold true for (3.2). We further assume that L is small enough
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depending on p and Ÿ (with an explicit estimate; see remarks after the statement). Let
n0 be a probability measure on [0, +Œ). There exists a unique probability measure nú

which is a stationary solution to (3.1) or (3.2), and there exist constants C Ø 1, ⁄ > 0
depending only on p and Ÿ such that the (mild or weak) measure solution n = n(t) to
(3.1)-(3.2) satisfies

În(t) ≠ núÎTV Æ Ce
≠⁄t

În0 ≠ núÎTV, for all t Ø 0. (3.9)

Remark 3.1.2. The constants in Theorem 3.1.1 are all constructive. Precisely, we
can take

⁄ = ⁄1 ≠ C̃, C = C1 for (3.1),
⁄ = ⁄2 ≠ C̃, C = C2 for (3.2),

where

C1 := 1
1 ≠ xú—

, ⁄1 = ≠
log(1 ≠ xú—)

2xú

C2 := 1
1 ≠ ‘”(xú ≠ ”)— , ⁄2 = ≠

log(1 ≠ ‘”(xú ≠ ”)—)
2xú

and with
— = pmine

≠2pmaxxú and C̃ = 2pmaxL

1 ≠ L
.

Remark 3.1.3. Smallness condition on L regarding the network connectivity and the
degree of nonlinearity can be written as

L < min
I

p
2
min

p2
max (xúpmin(xúpmin + 2) + 2) ,

log(1 ≠ xú—)
log(1 ≠ xú—) ≠ 4pmaxxú

J

for (3.1)

or

L < min
I

pmin‘”(xú ≠ ”)—
pmin‘”(xú ≠ ”)— + pmaxe4pmaxxú

,
log(1 ≠ ‘”(sú ≠ ”))

log(1 ≠ ‘”(xú ≠ ”)) ≠ 4pmaxxú

J

for (3.2).

3.2 An age-structured neuron population model
In this section we consider equation (3.1) for an age-structured neuron population. We
first develop a well-posedness theory in the sense of measures, and then we use Doeblin’s
Theorem for the linear problem (when time dependence of p is neglected) to show
exponential convergence to the equilibrium. After giving conditions for existence and
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uniqueness of a stationary solution to equation (1.2), we use a perturbation argument
in order to obtain a result on its asymptotic behaviour in the nonlinear setting.

3.2.1 Well posedness

In order to develop our well-posedness theory in measures we need to introduce our
notation and the norms we will be considering. We denote R+

0 := [0, +Œ), and M(R+
0 )

is the set of finite, signed Borel measures on R+
0 . We denote a subset M+(R+

0 ) µ M(R+
0 )

formed by the nonnegative measures. Since we will always work in R+
0 , for simplicity

we will often write M and M+ to denote these sets, respectively.
We often identify a measure µ œ M(R+

0 ) with its density with respect to Lebesgue
measure, denoting the latter by the function µ = µ(x). We abuse notation by writing
µ(x) even for measures that may not have a density with respect to Lebesgue measure.
Similarly, for a function n : [0, T ) æ M(R+

0 ) we may often write n(t, x) even if n(t)
does not have a density with respect to Lebesgue measure. In these cases any identities
involved should be understood as identities between measures.

We denote by C0(R+
0 ) © C0 the set of continuous functions „ on R+

0 with

lim
xæ+Œ

„(x) = 0

endowed with the supremum norm

Î„ÎŒ := sup
xØ0

|„(x)|,

With this setup, C0(R+
0 ) is a Banach space. Similarly, Cc(R+

0 ) © Cc denotes the set of
compactly supported continuous functions on [0, +Œ).

In M one can define the usual total variation norm, which we will denote by Î · ÎTV.
We recall that (M, Î ·ÎTV) is a Banach space, and is the topological dual of C0([0, +Œ))
with the supremum norm, as stated by the Riesz representation theorem.

The weak-ú topology on M is the weakest topology that makes all functionals
T : M æ R, µ ‘æ

s
R+

0
„µ continuous, for all „ œ C0. In the associated topology, a

sequence {µk}kØ1 in M converges in the weak-ú sense to µ œ M when

lim
kæ+Œ

⁄

R+
0

„µk =
⁄

R+
0

„µ, for all „ œ C0.
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We will also use the bounded Lipschitz norm Î · ÎBL on M, sometimes known as
the flat metric or the W

1,Œ dual metric, defined by

ÎµÎBL := sup
ÂœL

⁄

R+
0

Âµ, µ œ M

where

L :=
Ó
Â œ C(R+

0 ) | Â bounded and Lipschitz with ÎÂÎŒ + ÎÂ
Õ
ÎŒ Æ 1

Ô
.

One sees from this definition that the bounded Lipschitz norm is dual to the norm

ÎÂÎ1,Œ := ÎÂÎŒ + ÎÂ
Õ
ÎŒ, Â œ W

1,Œ(R+
0 )

defined on W
1,Œ(R+

0 ) = {Â œ C(R+
0 ) | Â is bounded and Lipschitz} (but (M, Î · ÎBL)

is not the topological dual of W
1,Œ). An important property of this norm is that

it metrises the weak-ú topology on any tight set with bounded total variation. We
recall that a set B ™ M is tight if for every ‘ > 0 there exists R > 0 such that
|µ|((R, +Œ)) < ‘ for all µ œ B.

Lemma 3.2.1 ([77], 2.5.1, Proposition 43). If B ™ M is tight and is bounded in total
variation norm, then the topology associated to Î · ÎBL on B is equal to the weak-ú
topology on B.

If I ™ R is an interval we denote by C(I, M+(R+
0 )) the set of functions n : I æ

M+(R+
0 ) which are continuous with respect to the bounded Lipschitz norm on M+(R+

0 ).
We define mild measure solutions to equation (1.2) by the usual procedure of rewriting
it using Duhamel’s formula. We denote by (Tt)tØ0 the translation semigroup generated
on (M, Î · ÎBL) by the operator ≠ˆs. That is: for t Ø 0, any measure n œ M(R+

0 ) and
any „ œ C0(R+

0 ), ⁄

R+
0

„(s)Ttn(x) dx :=
⁄

R+
0

„(x + t)n(x) dx. (3.10)

In other words, using the notation we follow in this chapter,

Ttn(x) := n(x ≠ t),

with the understanding that n is zero on (≠Œ, 0).

Definition 3.2.1. Assume p satisfies (3.3) and is nonnegative. A couple of functions
n œ C([0, T ), M+(R+

0 )) and N œ C([0, T ), [0, +Œ)), defined on an interval [0, T )
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for some T œ (0, +Œ), is called a mild measure solution to (1.2) with initial data
n0 œ M(R+

0 ) and N0 œ R if it satisfies n(0) = n0, N(0) = N0,

n(t, x) = Ttn0(x) ≠

⁄ t

0
Tt≠·

1
p(N(·), ·)n(·, ·)

2
(x) d· +

⁄ t

0
Tt≠·

1
N(·)”0

2
(x) d· (3.11)

for all t œ [0, T ), and

N(t) =
⁄ Œ

0
p(N(t), x)n(t, x) dx, t œ [0, T ).

Remark 3.2.1. We notice that the second term in (3.11) can be rewritten as

⁄ t

0
Tt≠·

1
N(·)”0

2
(x) d· =

⁄ t

0
N(·)”t≠· (x) d·

= N(t ≠ x) [0,t](x) = N(t ≠ x) [0,Œ)(t ≠ x). (3.12)

This will sometimes be a more convenient form.

By integrating in R+
0 , Definition 3.2.1 directly implies mass conservation:

Lemma 3.2.2 (Mass conservation for measure solutions). Let T œ (0, +Œ]. Any mild
measure solution (n, N) to (1.2) defined on [0, T ) satisfies

⁄

R+
0

n(t, x) dx =
⁄

R+
0

n0(x) dx, for all t œ [0, T ), (3.13)

or in other words (since solutions are nonnegative measures by definition),

În(t)ÎTV = În0ÎTV for all t œ [0, T ).

Lemma 3.2.3. Assume that p satisfies (3.3) and the Lipschitz constant L in (3.4)
satisfies L < 1/ÎnÎTV, and let n œ M(R+

0 ). There exists a unique N œ R satisfying

N =
⁄ Œ

0
p(N, x)n(x) dx. (3.14)

Under these conditions, if n1, n2 œ M(R+
0 ) are two measures and N1, N2 œ R are the

corresponding solutions to (3.14), then

|N1 ≠ N2| Æ
ÎpÎŒ

1 ≠ LÎn1ÎTV
În1 ≠ n2ÎTV. (3.15)
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Proof. We define the map � : R æ R by

�(N) :=
⁄ Œ

0
p(N, x)n(x) dx,

and we notice that for any N1, N2 œ R,

|�(N1) ≠ �(N2)| Æ Îp(N1, ·) ≠ p(N2, ·)ÎŒÎnÎTV Æ L|N1 ≠ N2|ÎnÎTV.

Since L < 1/ÎnÎTV, the map � is contractive and has a unique fixed point, which is a
solution to (3.14). For the second part of the lemma, consider n1, n2 œ M(R+

0 ) and
N1, N2 the corresponding solutions to (3.14). Then

|N1 ≠ N2| Æ

⁄ Œ

0
|p(N1, x) ≠ p(N2, x)|n1(x) dx +

----
⁄ Œ

0
p(N2, x)(n1(x) ≠ n2(x)) dx

----

Æ L|N1 ≠ N2|În1ÎTV + ÎpÎŒÎn1 ≠ n2ÎTV,

which shows (3.15).

Theorem 3.2.2 (Well-posedness of (1.2) in measures). Assume that p satisfies (3.3)
and the Lipschitz constant L in (3.4) satisfies L Æ 1/(4În0ÎTV). For any given initial
data n0 œ M+(R+

0 ) there exists a unique measure solution n œ C([0, +Œ); M+(R+
0 )) of

(1.2) in the sense of Definition 3.2.1. In addition, if n1, n2 are any two mild measure
solutions to (1.2) (with possibly di�erent initial data) defined on any interval [0, T )
then

În1(t) ≠ n2(t)ÎTV Æ În1(0) ≠ n2(0)ÎTV e
4ÎpÎŒt for all t œ [0, T ). (3.16)

Remark 3.2.3. We notice that the condition that L is small is already needed here,
since otherwise the problem is not well-posed: consider for example the case p(N, x) :=
N , for which a solution should satisfy

N(t) = N(t)
⁄ Œ

0
n(t, x) dx,

which only allows two options: either N(t) = 0 or
s Œ

0 n(t, x) dx = 1. If
s Œ

0 n0(x) dx = 1
then the second option holds and there are infinitely many solutions (since the choice of
N = N(t) is free). If

s Œ
0 n0(x) dx ”= 1 then N(t) must be 0 for all t > 0. In this latter

case, either N0 = 0 (and then the only solution is just pure transport: n(t, x) = n0(x≠t)
for x > t, n(t, x) = 0 otherwise) or N0 ”= 0 (and there there are no solutions).
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Similar ill-posed examples can be easily designed with firing rates of the form
p(N, x) = f(N)g(x).

Proof of Theorem 3.2.2. The proof of this result is a standard fixed-point argument
as followed for example in [29], or in [89] for L

1 solutions.
Let us first show existence of a solution for a nonnegative initial measure n0 œ

M+(R+
0 ). If n0 = 0 it is clear that setting n(t) equal to the zero measure on R+

0 for all
t defines a solution, so we assume n0 ”= 0. Fix C, T > 0, to be chosen later. Consider
the complete metric space

X = {n œ C([0, T ], M+(R+
0 )) | n(0) = n0, În(t)ÎTV Æ C for all t œ [0, T ]},

endowed with the norm
ÎnÎX := sup

tœ[0,T ]
În(t)ÎTV.

We remark that C([0, T ], M(R+
0 )) refers to functions which are continuous in the

bounded Lipschitz topology, not in the total variation one. Define an operator � : X æ

X by

�[n](t) := Ttn0 ≠

⁄ t

0
Tt≠·

1
p(N(·), ·)n(·)

2
d· +

⁄ t

0
Tt≠·

1
N(·)”0

2
d· (3.17)

for all n œ X , where N(t) is defined implicitly (see Lemma 3.2.3) as

N(t) =
⁄ Œ

0
p(N(t), x)n(t, x) dx for t œ [0, T ]. (3.18)

The definition of �[n] indeed makes sense, since both · ‘æ Tt≠·

1
p(N(·), ·)n(·)

2
and

· ‘æ Tt≠·

1
N(·)”0

2
are continuous functions from [0, T ] to M(R+

0 ), hence integrable
(in the sense of the Bochner integral).

We first check that �[n] is indeed in X . It is easy to see that t ‘æ �[n](t) is
continuous in the bounded Lipschitz topology, and it is a nonnegative measure for each
t œ [0, T ]. We also have

Î�[n](t)ÎTV Æ În0ÎTV +
⁄ t

0
Îp(N(·), ·)n(·, ·)ÎTV d· +

⁄ t

0
ÎN(·)”0ÎTV d·

Æ În0ÎTV + TCÎpÎŒ + TÎNÎLŒ([0,T ]) Æ În0ÎTV + 2TCÎpÎŒ.

We choose
T Æ

1
4ÎpÎŒ

and C := 2În0ÎTV, (3.19)
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so that
În0ÎTV + 2TCÎpÎŒ Æ În0ÎTV + C

2 Æ C.

Hence with these conditions on T and C we have �[n] œ X .
Let us show that � is a contraction mapping. Take n1, n2 œ X and let N1, N2 be

defined by (3.18) corresponding to n1 and n2, respectively. We have

Î�[n1](t) ≠ �[n2](t)ÎTV Æ

⁄ t

0
Î(p(N1(·), ·) ≠ p(N2(·), ·))n1(·, ·)ÎTV d·

+
⁄ t

0
Îp(N2(·), ·)(n1(·) ≠ n2(·))ÎTV d· +

⁄ t

0
Î(N1(·) ≠ N2(·))”0ÎTV d·

=: T1 + T2 + T3.

We bound each term separately. For T1, since L Æ 1/(4În0ÎTV), using Lemma 3.2.3
we have

T1 Æ TCL sup
·œ[0,T ]

|N1(·) ≠ N2(·)|

Æ 2TCLÎpÎŒÎn1 ≠ n2ÎX Æ TÎpÎŒÎn1 ≠ n2ÎX . (3.20)

For T2,
T2 Æ TÎpÎŒÎn1 ≠ n2ÎX , (3.21)

and for T3, using again Lemma 3.2.3,

T3 Æ T sup
·œ[0,T ]

|N1(·) ≠ N2(·)| Æ 2TÎpÎŒÎn1 ≠ n2ÎX . (3.22)

Putting equations (3.20)–(3.22) together and taking the supremum over 0 Æ t Æ T ,

Î�[n1] ≠ �[n2]ÎX Æ 4TÎpÎŒÎn1 ≠ n2ÎX .

Taking now T Æ 1/(8ÎpÎŒ) ensures that � is contractive, so it has a unique fixed
point in X , which is a mild measure solution on [0, T ]. If we call n this fixed point,
since În(T )ÎTV = În0ÎTV by mass conservation (see Lemma 3.2.2), we may repeat this
argument to continue the solution on [T, 2T ], [2T, 3T ], showing that there is a solution
defined on [0, +Œ).

In order to show stability of solutions with respect to the initial data (which
implies uniqueness of solutions), take two measures n

1
0, n

2
0 œ M+(R+

0 ), and consider
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two solutions n1, n2 with initial data n
1
0, n

2
0 respectively. We have

În1(t) ≠ n2(t)ÎTV Æ În
1
0 ≠ n

2
0ÎTV +

⁄ t

0
Î(p(N1(·), ·) ≠ p(N2(·), ·))n1(·, ·)ÎTV d·

+
⁄ t

0
Îp(N2(·), ·)(n1(·) ≠ n2(·))ÎTV d· +

⁄ t

0
Î(N1(·) ≠ N2(·))”0ÎTV d·, (3.23)

and with very similar arguments as before we obtain that

În1(t) ≠ n2(t)ÎTV Æ În
1
0 ≠ n

2
0ÎTV + 2LÎn0ÎTVÎpÎŒ

⁄ t

0
În1(·) ≠ n2(·)ÎTV d·

+ ÎpÎŒ

⁄ t

0
În1(·) ≠ n2(·)ÎTV d· + 2ÎpÎŒ

⁄ t

0
În1(·) ≠ n2(·)ÎTV d·

Æ În
1
0 ≠ n

2
0ÎTV + 4ÎpÎŒ

⁄ t

0
În1(·) ≠ n2(·)ÎTV d·. (3.24)

Gronwall’s inequality then implies (3.16).

Weak solutions Definition 3.2.1 is convenient for finding solutions but later we will
need a more manageable form:

Definition 3.2.2. (Weak solution to (1.2)) Assume p satisfies (3.3) and is nonnegative.
A couple of functions n œ C([0, T ), M+(R+

0 )) and N œ C([0, T ), [0, +Œ)), defined on
an interval [0, T ) for some T œ (0, +Œ], is called a weak measure solution to (1.2)
with initial data n0 œ M(R+

0 ) and N0 œ R if it satisfies n(0) = n0, N(0) = N0, and for
each Ï œ C

Œ
c (0, +Œ) the function t ‘æ

s Œ
0 Ï(x)n(t, x) dx is absolutely continuous and

d
dt

⁄ Œ

0
Ï(x)n(t, x) dx

=
⁄ Œ

0
ˆxÏ(s)n(t, x) dx ≠

⁄ Œ

0
p(N(t), x)n(t, x)Ï(x) dx +

⁄ Œ

0
N(t)”0(s)Ï(x) dx.

(3.25)

for almost all t œ [0, T ), and

N(t) =
⁄ Œ

0
p(N(t), x)n(t, x) dx, for all t œ [0, T ).

Equivalence results between definitions based on the Duhamel formula and defini-
tions of weak solutions based on integration against a test function are fairly common.
Here we use the main theorem in [5] with f(t, ·) = ≠p(N(t), ·)n(t, ·) ≠ N(t)”0(·), which
implies that mild solutions of our equation are are equivalent to weak solutions:
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Theorem 3.2.4 ([5]). Assume p satisfies (3.3) and is nonnegative, and take T œ

(0, +Œ]. A function n : [0, T ) æ M+(R+
0 ) is a weak measure solution (cf. Definition

3.2.2) to (3.1) if and only if it is a mild measure solution (cf. Definition 3.2.1).

3.2.2 The linear equation

When p = p(N, s) does not depend on N , equation (1.2) becomes linear:

ˆ

ˆt
n(t, x) + ˆ

ˆx
n(t, x) = ≠p(x)n(t, x), t, x > 0,

N(t) := n(t, x = 0) =
⁄ +Œ

0
p(x)n(t, x) dx, t > 0,

n(t = 0, x) = n0(x), x Ø 0.

(3.26)

Note that this is referred to as the “no-connectivity” case or the “J = 0 case” in [89].

Well posedness

We give a similar definition for mild measure solutions:

Definition 3.2.3. Assume p : [0, +Œ) æ [0, +Œ) is a bounded measurable function.
A function n œ C([0, T ), M+(R+

0 )), defined on an interval [0, T ) for some T œ (0, +Œ],
is called a mild measure solution to (3.26) with initial data n0 œ M(R+

0 ) if it satisfies
n(0) = n0 and

n(t, x) = Ttn0(x) ≠

⁄ t

0
Tt≠·

1
p(·)n(·, ·)

2
(x) d· +

⁄ t

0
Tt≠·

1
N(·)”0

2
(x) d· (3.27)

for all t œ [0, T ), with

N(t) :=
⁄ Œ

0
p(x)n(t, x) dx, t œ [0, T ). (3.28)

Our existence result stated in 3.2.2 easily gives the following as a consequence:

Theorem 3.2.5 (Well-posedness of (3.26) in measures). Assume that p : [0, +Œ) æ

[0, +Œ) is bounded, Lipschitz and nonnegative. For any given initial data n0 œ M(R+)
there exists a unique measure solution n œ C([0, +Œ); M(R+

0 )) of the linear equation
(3.26) in the sense of Definition 3.2.3. In addition, if n is any mild measure solution
to (3.26) defined on any interval [0, T ) then

În(t)ÎTV Æ În(0)ÎTV for all t œ [0, T ). (3.29)
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Proof. This result can be mostly deduced from Theorem 3.2.2. For the existence part,
split n0 into its positive and negative parts as n0 = n

+
0 ≠ n

≠
0 . Theorem 3.2.2 gives the

existence of two solutions n
+ and n

≠ with initial data n
+
0 and n

≠
0 , respectively; then

n := n
+

≠ n
≠ is a mild measure solution with initial data n0.

For uniqueness, if n is any mild solution on [0, T ), the same argument as it (3.23)–
(3.24) shows that

În(t)ÎTV Æ În0ÎTV + 4ÎpÎŒ

⁄ t

0
În1(·)ÎTV d·,

which gives by Gronwall’s inequality that

În(t)ÎTV Æ În0ÎTV e
4ÎpÎŒt for all t œ [0, T ).

In particular, by linearity this implies solutions are unique. Finally, with the same
argument as in Lemma 3.2.2 one sees that for any solution n defined on [0, T ) it holds

⁄

R+
0

n(t, x) dx =
⁄

R+
0

n0(x) dx

for all t œ [0, T ). Due to uniqueness, with the same splitting we used at the beginning
of the proof we have n(t) = n

+(t) ≠ n
≠(t), so

În(t)ÎTV Æ În
+(t)ÎTV + În

≠(t)ÎTV = În
+
0 ÎTV + În

≠
0 ÎTV = În0ÎTV,

which finishes the proof.

The above result allows us to define an evolution semigroup (St)tØ0 (in fact it is a
C0-semigroup on M with the bounded Lipschitz topology) by setting

St : M æ M, St(n0) := n(t)

for any n0 œ M, where n(t) is the mild measure solution to (3.26) with initial data n0.

Stationary solutions for the linear equation We remark that Theorem 3.2.7
below implies that the linear equation (3.26) has a unique stationary solution in the
space of probabilities on [0, +Œ) (for p bounded, Lipschitz, and satisfying (3.5)); of
course in this case this solution is explicit, given by

nú(x) := Núe
≠

s
x

0 p(·) d·
, x Ø 0,
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where Nú is the appropriate normalisation constant that makes this a probability
density. Although Theorem 3.2.7 does not rule out the existence of other stationary
solutions which may not be probabilities, since the solution is explicit it is not di�cult
to see that, up to a constant factor, nú is the only stationary solution within the set of
all finite measures. This is also a consequence of Doeblin’s theorem below.

Uniform minorisation condition

Our main result on the spectral gap for the linear operator is based on the fact that
for any initial probability distribution, solutions have a universal lower bound after a
fixed time. We give the following lemma:

Lemma 3.2.4. Let p : [0, +Œ) æ [0, +Œ) be bounded, Lipschitz function satisfying
(3.6) and (3.5), and consider the semigroup (St)tØ0 given by the existence Theorem 3.2.5.
Then St0 satisfies Doeblin’s condition (2.2.1) for t0 = 2xú and – = pminxúe

≠2pmaxxú.
More precisely, for t0 = 2xú we have

S2xún0(x) Ø pmine
≠2pmaxxú

{0<x<xú}

for all probability measures n0 on [0, +Œ).

Proof. We define a semigroup S̃t associated to the linear problem

ˆ

ˆt
ñ(t, x) + ˆ

ˆx
ñ(t, x) = ≠p(x)ñ(t, x), t, x > 0,

ñ(t, 0) = 0, t > 0
ñ(0, x) = n0(x), x Ø 0,

(3.30)

which has the explicit solution

ñ(t, x) =

Y
_]

_[

n0(x ≠ t)e≠
s

t

0 p(x≠t+·) d·
, x > t,

0, t > x.

Then we write the solution to the linear equation (3.26) as

n(t, x) = S̃tn0(x) +
⁄ t

0
S̃t≠· (N(·)”0)(x) d·.
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For x > t we have

n(t, x) Ø S̃tn0(x) = n0(x ≠ t)e≠
s

t

0 p(x≠t+·) d·
Ø n0(x ≠ t)e≠pmaxt

S̃t≠· n0(x) Ø n0(x ≠ t + ·)e≠pmax(t≠·)
.

Then for t > xú it holds that

N(t) =
⁄ +Œ

0
p(x)n(t, x) dx Ø pmine

≠pmaxt
⁄ Œ

xú
n0(x ≠ t) dx

Ø pmine
≠pmaxt

⁄ +Œ

0
n0(x) dx = pmine

≠pmaxt
.

Therefore, for any x > 0 and t > x + xú we have:

n(t, x) Ø

⁄ t

0
S̃t≠· (N(·)”0)(x) d· Ø

⁄ t

sú
S̃t≠· (pmine

≠pmax·
”0)(x) d·

Ø pmin

⁄ t

xú
e

≠pmax·
e

≠pmax(t≠·)
”0(x ≠ t + ·) d· = pmine

≠pmaxt
{0<x<t≠xú}.

Hence for t = 2xú and all 0 < x < xú we obtain the result.

Spectral gap

Exponential convergence to the equilibrium for the linear equation is an immediate
consequence of Theorem 2.2.2. We give the following proposition based on that:

Proposition 3.2.6. For a given initial data n0 œ M(R+), let p : [0, Œ) æ [0, +Œ)
be bounded, Lipschitz function satisfying (3.6) and (3.5). Then, there exists a unique
probability measure nú œ P([0, +Œ)) which is a stationary solution to (3.26), and any
other stationary solution is a multiple of it. Also, for

C = 1
1 ≠ –

> 1 and ⁄ := ≠
log(1 ≠ –)

t0

we have
ÎSt(n0 ≠ nú)ÎTV Æ Ce

≠⁄t
În0 ≠ núÎTV, for all t Ø 0. (3.31)

In addition, for t0 := 2xú we have

ÎSt0(n1 ≠ n2)ÎTV Æ (1 ≠ –)În1 ≠ n2ÎTV (3.32)
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for any probability distributions n1, n2, and with

– := pminxúe
≠2pmaxxú .

Proof. We apply Theorem 2.2.2, since Lemma 3.2.4 shows that St0 satisfies the Doeblin
condition for t0 = 2xú. Moreover,

C = 1
1 ≠ –

= e
⁄t0 = e

≠ log(1≠pminxúe≠2pmaxxú ) = 1
1 ≠ pminxúe≠2pmaxxú

> 1.

3.2.3 Steady state for the nonlinear equation

Definition 3.2.4. We say that a nonnegative function nú œ C([0, +Œ)) fl C
1(0, +Œ)

is a stationary solution to (1.2) if it satisfies

ˆ

ˆx
nú(x) + p(Nú, x)nú(x) = 0, x > 0,

nú(0) =: Nú =
⁄ +Œ

0
p(Nú, x)nú(x) dx.

(3.33)

The following result is essentially the same as that given in [89]. There it is
proved for a particular form of p, i.e. for p(N, s) = x>xú(N), for some nonnegative
x

ú
œ C

1([0, +Œ)) such that d
dN x

ú(N) Æ 0 with x
ú(0) < 1. So we prove it here for

completeness, and to adapt it to our precise assumptions:

Theorem 3.2.7. Assume (3.3), (3.4), (3.5) for p and also that

L < (pmax)≠2
A

x
2
ú

2 + xú

pmin
+ 1

p
2
min

B≠1

.

Then there exists a unique probability measure nú which is a stationary solution to
(1.2).

Proof. If there is a stationary solution nú then (since the first equation of (3.33) is an
ordinary di�erential equation) it must satisfy

nú(x) = nú(0)e≠
s

x

0 p(Nú,·) d· = Núe
≠

s
x

0 p(Nú,·) d·
, s Ø 0. (3.34)
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If nú is a probability, by integrating we see that

Nú =
3⁄ +Œ

0
e

≠
s

x

0 p(Nú,·) d· dx

4≠1
. (3.35)

In particular, Nú must be strictly positive. Conversely, if Nú > 0 is such that (3.35) is
satisfied then we may define nú = nú(x) by (3.34) and it is straightforward to check
that it is a probability, and it is a stationary solution to (1.2). Hence the problem is
reduced to showing that there exists a unique solution Nú > 0 to (3.35); this is ensured
by a simple fixed point argument, since

ˆ

ˆN

3⁄ +Œ

0
e

≠
s

x

0 p(N,·) d· dx

4≠1

=
⁄ +Œ

0

1 ⁄ x

0
ˆNp(N, ·)d·

21
e

≠
s

x

0 p(N,·) d·
2

dx

3⁄ +Œ

0
e

≠
s

x

0 p(N,·) d· dx

4≠2

Æ L

⁄ +Œ

0
xe

≠
s

x

0 p(N,·) d· dx

3⁄ +Œ

0
e

≠pmaxx dx

4≠2

where we have used (3.4) and (3.5). Note that these calculation is rigorous due to (3.3)
and the fact that the integrals in s converge uniformly for all N .

Similarly to our main results, the condition on L in the above theorem can be
understood as a condition of weak nonlinearity.

3.2.4 Asymptotic behaviour

In this section we prove Theorem 3.1.1 for equation (3.1). Formally, the proof is based
on rewriting it as

ˆ

ˆt
n = LN(n) = LNú(n) + (LN(n) ≠ LNú(n)) =: LNú(n) + h, (3.36)

where we define

LN(n)(t, x) := ≠
ˆ

ˆx
n(t, x) ≠ p(N(t), x)n(t, x) + ”0(x)

⁄ Œ

0
p(N(t), y)n(t, y) dy,

and

h(t, x) := [p(Nú, x) ≠ p(N(t), x)] n(t, x)

+ ”0(x)
⁄ +Œ

0
[p(N(t), y) ≠ p(Nú, y)] n(t, y) dy. (3.37)
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We treat the term h as a perturbation. In order to do this rigorously, notice that h

contains a multiple of ”0, so it is necessary to use a concept of solution in a space
of measures. Then, since the solutions we are using do not allow us to write (3.36)
rigorously, we need to use a concept of solution that allows for the same formal
computation; this is the reason why weak solutions were introduced earlier.

Before proving the Theorem 3.1.1 for equation (3.1) we need the following lemma:

Lemma 3.2.5. Assume the conditions in Theorem 3.1.1 for equation (3.1). Then h,
defined by (3.37), satisfies

Îh(t)ÎTV Æ C̃În(t) ≠ núÎTV for all t Ø 0, (3.38)

where C̃ := 2pmax
L

1≠L . It also satisfies
⁄ Œ

0
h(t, x) dx = 0 for all t Ø 0.

Proof. We notice that the stationary solution nú exists due to Theorem 3.2.7, and the
solution n(t) © n(t, x) with initial data n0 was obtained in Theorem 3.2.2. Call Nú the
total firing rate corresponding to the stationary solution nú. We estimate directly each
of the terms in the expression of h:

Îh(t)ÎTV

Æ Î(p(Nú, x) ≠ p(N(t), x))n(t, x)ÎTV +
....”0

⁄ +Œ

0
(p(N(t), x) ≠ p(Nú, x))n(t, x) dx

....
TV

Æ Îp(Nú, x) ≠ p(N(t), x)ÎŒÎn(t)ÎTV +
----
⁄ +Œ

0
(p(N(t), x) ≠ p(Nú, x))n(t, x) dx

----

Æ L|Nú ≠ N(t)| + Îp(Nú, x) ≠ p(N(t), x)ÎŒÎn(t)ÎTV

Æ
Lpmax
1 ≠ L

În(t) ≠ núÎTV + L|Nú ≠ N(t)| Æ 2pmax
L

1 ≠ L
În(t) ≠ núÎTV,

where the last inequality is due to Lemma 3.2.3 and the fact that ÎnúÎTV = În(t)ÎTV =
1, which imply

|Nú ≠ N(t)| Æ
pmax
1 ≠ L

În(t) ≠ núÎTV.
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Regarding the integral of h in x we have

⁄ +Œ

0
h(t, x) dx =

⁄ +Œ

0
[p(Nú, x) ≠ p(N(t), x)]n(t, x) dx

+
⁄ +Œ

0
”0(y)

⁄ +Œ

0
[p(N(t), x) ≠ p(Nú, x)]n(t, x) dx dy

=
⁄ +Œ

0
[p(Nú, x) ≠ p(N(t), x)]n(t, x) dx +

⁄ +Œ

0
[p(N(t), x) ≠ p(Nú, x)]n(t, x) dx

= 0,

which gives the result.

Proof of Theorem 3.1.1 for eq. (3.1). Call Nú the value of the total firing rate at equi-
librium. The solution n to equation (1.2) is in particular a weak solution (see Theorem
3.2.4). Then one sees it is also a weak solution (in the sense of [5]) to the equation

d
dt

n(t, ·) = LNún(t, ·) + h(t, ·),

where LNú is the linear operator corresponding to p = p(Nú, x) for Nú fixed,

LNún(t, x) := ≠
ˆ

ˆx
n(t, x) ≠ p(Nú, x)n(t, x) + ”0

⁄ +Œ

0
p(Nú, y)n(t, y) dy.

Then by [5] we may use Duhamel’s formula and write the solution as

n(t, x) = Stn0(x) +
⁄ t

0
St≠· h(·, x) d·, (3.39)

where St is the linear semigroup defined in Section 3.2.2. We subtract the stationary
solution from both sides;

n(t, x) ≠ nú(x) = Stn0(x) ≠ nú(x) +
⁄ t

0
St≠· h(·, x) d·.

Then we take the TV norm;

În(t) ≠ núÎTV Æ ÎStn0 ≠ núÎTV +
....

⁄ t

0
St≠· h(·, x) d·

....
TV

. (3.40)
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By using Lemma 3.2.5 and Proposition 3.2.6, Equation (3.40) becomes:

În(t) ≠ núÎTV Æ ÎSt(n0 ≠ nú)ÎTV +
⁄ t

0
ÎSt≠· h(·, x)ÎTV d·

Æ Ce
≠⁄t

În0 ≠ núÎTV + C̃

⁄ t

0
e

≠⁄(t≠·)
În(·) ≠ núÎTV d·.

Therefore, by Gronwall’s inequality we obtain

În(t) ≠ núÎTV Æ Ce
≠(⁄≠C̃)t

În0 ≠ núÎTV.

3.3 A neuron population model with a fatigue prop-
erty

We now consider the equation (3.2) for a neuron population model. We follow the
same order as in Section 3.2.

3.3.1 Well-posedness

We refer the reader to Section 3.2.1 for preliminary notation and useful results. We
define mild measure solutions in a similar way. Still denoting by (Tt)tØ0 the translation
semigroup generated on (M, Î · ÎBL) by the operator ≠

ˆ
ˆx , we rewrite (1.4) as

ˆ

ˆt
n(t, x) ≠ Ln(t, x) = A[n](t, x),

where

L = ≠
ˆ

ˆx
and A[n](t, x) := ≠p(N(t), x)n(t, x) +

⁄ +Œ

0
Ÿ(x, y)p(N(t), y)n(t, y) dy.

(3.41)

Definition 3.3.1. Assume that p satisfies (3.3),(3.4) and Ÿ satisfies (3.7). A couple
of functions n œ C([0, T ), M+(R+

0 )) and N œ C([0, T ), [0, +Œ)), defined on an interval
[0, T ) for some T œ (0, +Œ), is called a mild measure solution to (1.4) with initial
data n0(x) œ M(R+

0 ), n(0) = n0 if it satisfies

n(t, x) = Ttn0(s) +
⁄ t

0
Tt≠· (A[n(·, ·)])(x)d·, for all t œ [0, T ), (3.42)
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where A[n](t, x) is defined as in (3.41) and

N(t) =
⁄ +Œ

0
p(N(t), x)n(t, x)dx, t œ [0, T ).

By integrating in R+
0 , Definition 3.3.1 directly implies mass conservation. Therefore

Lemma 3.2.2 holds true for this equation as well. Moreover we have the Lemma 3.2.3
satisfied with the same constants.

Theorem 3.3.1 (Well-posedness of (3.2) in measures). Assume that p satisfies (3.3),
(3.4) and the Lipschitz constant L in (3.4) satisfies L Æ 1/(4În0ÎTV). Assume also
(3.7) for Ÿ. For any given initial data n0 œ M(R+) there exists a unique measure
solution n œ C([0, +Œ); M(R+

0 )) of (1.4) in the sense of Definition 3.3.1. In addition,
if n1, n2 are any two mild measure solutions to (1.2) (with possibly di�erent initial
data) defined on any interval [0, T ) then

În1(t) ≠ n2(t)ÎTV Æ În1(0) ≠ n2(0)ÎTV e
4ÎpÎŒt for all t œ [0, T ). (3.43)

Proof of Theorem 3.3.1. Let us first show existence of a solution for a nonnegative
initial measure n0 œ M+(R+

0 ). If n0 = 0 it is clear that setting n(t) equal to the zero
measure on R+

0 for all t defines a solution, so we assume n0 ”= 0. Fix C, T > 0, to be
chosen later. Consider the complete metric space

Y =
Ó
n œ C([0, T ], M+(R+

0 )) | n(0) = n0, În(t)ÎTV Æ C for all t œ [0, T ]
Ô

,

endowed with the norm
ÎnÎY := sup

tœ[0,T ]
În(t)ÎTV.

We remark that C([0, T ], M(R+
0 )) refers to functions which are continuous in the

bounded Lipschitz topology, not in the total variation one. We define an operator
� : Y æ Y by

�[n](t) := Ttn0 +
⁄ t

0
Tt≠· (A[n](·, ·))(x)d· (3.44)

for all n œ Y .

The definition of �[n] indeed makes sense, since · ‘æ Tt≠· (A[n](·, ·)) is a continuous
function from [0, T ] to M(R+

0 ), hence integrable.
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We first check that �[n] is indeed in Y. It is easy to see that t ‘æ �[n](t) is
continuous in the bounded Lipschitz topology, and it is a nonnegative measure for each
t œ [0, T ]. We also have

Î�[n](t)ÎTV Æ În0ÎTV +
⁄ t

0
Îp(N(·), ·)n(·, ·)ÎTV d·

+
⁄ t

0

.....

⁄ +Œ

0
Ÿ(., y)p(N(·), y)n(·, y) dy

.....
TV

d·

Æ În0ÎTV + TCÎpÎŒ +
⁄ t

0

⁄ +Œ

0

-----

3⁄ +Œ

0
Ÿ(x, y) dx

4
p(N(·), y)n(·, y)

----- dy d·

Æ În0ÎTV + TCÎpÎŒ +
⁄ t

0
Îp(N(·), ·)n(·, ·)ÎTV d· Æ În0ÎTV + 2TCÎpÎŒ.

Here we used the assumption (3.7) on Ÿ. We choose

T Æ
1

4ÎpÎŒ
, and C := 2În0ÎTV, (3.45)

so that
În0ÎTV + 2TCÎpÎŒ Æ În0ÎTV + C

2 Æ C.

Hence with these conditions on T and C we have �[n] œ Y .
Let us show that � is a contraction mapping. Take n1, n2 œ Y and let N1, N2 be

defined by (3.18) corresponding to n1 and n2, respectively. We have

Î�[n1](t) ≠ �[n2](t)ÎTV Æ

⁄ t

0
Î(p(N1(·), ·) ≠ p(N2(·), ·))n1(·, ·)ÎTV d·

+
⁄ t

0
Îp(N2(·), ·)(n1(·, ·) ≠ n2(·, ·))ÎTV d·

+
⁄ t

0

.....

⁄ +Œ

0
Ÿ(·, y)(p(N1(·), y) ≠ p(N2(·), y))n1(·, y) dy

.....
TV

d·

+
⁄ t

0

.....

⁄ +Œ

0
Ÿ(·, y)p(N2(·), y)(n1(·, y) ≠ n2(·, y)) dy

.....
TV

d·

=: T1 + T2 + T3 + T4.

We bound each term separately. We can bound T3 and T4 in the following way;

T3 Æ

⁄ t

0

⁄ +Œ

0

-----

3⁄ +Œ

0
Ÿ(x, y) dx

4
(p(N1(·), y) ≠ p(N2(·), y))n1(·, y)

----- dy d· = T1,

T4 Æ

⁄ t

0

⁄ +Œ

0

-----

3⁄ +Œ

0
Ÿ(x, y) dx

4
p(N2(·), ·)(n1(·) ≠ n2(·))

----- dy d· = T2
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For T1, since L Æ 1/(4În0ÎTV), using Lemma 3.2.3 as previously calculated we have

T1 Æ TÎpÎŒÎn1 ≠ n2ÎY , (3.46)

and for T2,
T2 Æ TÎpÎŒÎn1 ≠ n2ÎY . (3.47)

Putting equations (3.46)–(3.47) together and taking the supremum over 0 Æ t Æ T ,

Î�[n1] ≠ �[n2]ÎY Æ 4TÎpÎŒÎn1 ≠ n2ÎY .

Taking now T Æ 1/(4ÎpÎŒ) ensures that � is contractive, so it has a unique fixed
point in Y, which is a mild measure solution on [0, T ]. If we call n this fixed point,
since În(T )ÎTV = În0ÎTV by mass conservation (see Lemma 3.2.2), we may repeat this
argument to continue the solution on [T, 2T ], [2T, 3T ], showing that there is a solution
defined on [0, +Œ).

In order to show stability of solutions with respect to the initial data (which
implies uniqueness of solutions), take two measures n

1
0, n

2
0 œ M+(R+

0 ), and consider
two solutions n1, n2 with initial data n

1
0, n

2
0 respectively. We have

În1(t) ≠ n2(t)ÎTV Æ În
1
0 ≠ n

2
0ÎTV +

⁄ t

0
Î(p(N1(·), ·) ≠ p(N2(·), ·))n1(·, ·)ÎTV d·

+
⁄ t

0
Îp(N2(·), ·)(n1(·) ≠ n2(·))ÎTV d·

+
⁄ t

0

.....

⁄ +Œ

0
Ÿ(x, y)(p(N1(·), ·) ≠ p(N2(·), ·))n1(·, ·) dy

.....
TV

d·

+
⁄ t

0

.....

⁄ +Œ

0
Ÿ(x, y)p(N2(·), ·)(n1(·) ≠ n2(·)) dy

.....
TV

d·,

and with very similar arguments as before we obtain that

În1(t) ≠ n2(t)ÎTV Æ În
1
0 ≠ n

2
0ÎTV + 4ÎpÎŒ

⁄ t

0
În1(·) ≠ n2(·)ÎTV d·.

Gronwall’s inequality then implies (3.43).
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3.3.2 The linear equation

The linear version of equation (1.4) obtained when p = p(N, x) does not depend on N :

ˆ

ˆt
n(t, x) + ˆ

ˆx
n(t, x) + p(x)n(t, x) =

⁄ +Œ

0
Ÿ(x, y)p(y)n(t, y) dy, x, y, t > 0,

n(t, x = 0) = 0, N =
⁄ +Œ

0
p(x)n(t, x) dx, t > 0,

n(t = 0, x) = n0(x), x Ø 0.

(3.48)

Well-posedness

Similarly to Section 3.2.2, we can generalise slightly our concept of solution to include
measures which are not necessarily nonnegative:

Definition 3.3.2. Assume that p : [0, +Œ) æ [0, +Œ) is a bounded, nonnegative func-
tion satisfying (3.4) and Ÿ satisfies (3.7). A couple of functions n œ C([0, T ), M+(R+

0 ))
and N œ C([0, T ), [0, +Œ)), defined on an interval [0, T ) for some T œ (0, +Œ], are
called a mild measure solution to (1.4) with initial data n0(s) œ M(R+

0 ) if it satisfies
n(0) = n0

n(t, x) = Ttn0(x) +
⁄ t

0
Tt≠· A[n(·, ·)](x) d· (3.49)

for all t œ [0, T ) where

A[n](t, x) := ≠p(x)n(t, x) +
⁄ +Œ

0
Ÿ(x, y)p(y)n(t, y) dy

and
N(t) =

⁄ +Œ

0
p(x)n(t, x) dx, t œ [0, T ).

By the existence result for (1.4) we have:

Theorem 3.3.2 (Well-posedness of (3.48) in measures). Assume that p : [0, +Œ) æ

[0, +Œ) is a bounded, nonnegative, Lipschitz function. Assume also that Ÿ satisfies
(3.7). For any given initial data n0 œ M(R+) there exists a unique measure solution
n œ C([0, +Œ); M(R+

0 )) of the linear equation (3.48) in the sense of Definition 3.3.2.
In addition, if n is a mild measure solution to (3.48) defined on any interval [0, T ) then

În(t)ÎTV Æ În(0)ÎTV, for all t œ [0, T ). (3.50)

For the proof of this result one can follow the same procedure as in the proof of
Theorem 3.2.5, so we omit it here.
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Theorem 3.3.2 allows us to define a C0-semigroup (St)tØ0 on M, such that St(n0) :=
n(t) for any n0 œ M where n(t) is the mild solution to (3.48) similarly as in Section
3.2.2.

Given p, we define L as the generator of the corresponding semigroup St, defined
on its domain D(L). One can of course see that for su�ciently regular measures n,

Ln(x) = ˆ

ˆx
n(x) + p(x)n(x) ≠

⁄ +Œ

0
Ÿ(x, y)p(y)n(y) dy. (3.51)

Since the only unbounded operator involved in this expression is ˆ
ˆsn, one sees that

the domain D(L) can be described explicitly as

D(L) :=
I

n œ M(R+
0 )

----
ˆ

ˆx
n œ M(R+

0 )
J

,

where the derivative is taken in the sense of distributions on R. Expression (3.51) is
valid for all n œ D(L), again understanding the derivative in distributional sense.

Finally, for the arguments regarding the nonlinear equation (1.4) we will need a
result on continuous dependence of the solutions of the linear equation (3.48) on the
firing rate p:

Theorem 3.3.3 (Continuous dependence with respect to p for the linear equation).
Let p1, p2 be bounded, nonnegative, Lipschitz functions. Assume also that Ÿ satisfies
(3.7). For any given initial data n0 œ M(R+) consider n1, n2 the two solutions to the
linear equation (3.48) on [0, +Œ) with firing rate p1, p2 respectively and initial data
n0. Assuming Îp1ÎŒ ”= 0, it holds that

În1(t) ≠ n2(t)ÎTV Æ
În0ÎTVÎp1 ≠ p2ÎŒ

Îp1ÎŒ

1
e

2Îp1ÎŒt
≠ 1

2
for all t Ø 0. (3.52)

Proof. With the obvious changes in notation, from (3.49) we have

În1(t) ≠ n2(t)ÎTV Æ

⁄ t

0
ÎTt≠· A1[n1(·, ·)] ≠ Tt≠· A2[n2(·, ·)]ÎTV d·

=
⁄ t

0
ÎA1[n1(·)] ≠ A2[n2(·)]ÎTV d·.
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In a very similar way as the estimate we carried out for Theorem 3.3.1, this last term
can be estimated as

ÎA1[n1(·)] ≠ A2[n2(·)]ÎTV

Æ 2Îp1(x)(n1(·, x) ≠ n2(·, x))ÎTV + 2În2(x)(p1(x) ≠ p2(x))ÎTV

Æ 2Îp1ÎŒÎn1(·, ·) ≠ n2(·, ·))ÎTV + 2În0ÎTVÎp1 ≠ p2ÎŒ.

Hence, calling m(t) © m(t) := În1(t, ·) ≠ n2(t, ·)ÎTV and K := În0ÎTVÎp1 ≠ p2ÎŒ, we
have

m(t) Æ 2Îp1ÎŒ

⁄ t

0
m(·) d· + 2tK.

Gronwall’s Lemma then shows that

m(t) Æ
K

Îp1ÎŒ

1
e

2Îp1ÎŒt
≠ 1

2
.

Steady state for the linear equation

Definition 3.3.3. A stationary solution to (3.48) nú œ M is defined as such that
nú œ D(L) and

Lnú = 0.

We remark that Proposition 3.3.4 below implies that the linear equation (3.48) has
a unique stationary solution in the space of probabilities on [0, +Œ) (for p bounded,
Lipschitz, satisfying (3.5) and Ÿ satisfying (3.7)); nú is the only stationary solution up
to a constant factor within the set of all finite measures.

Uniform minorisation condition

Analogous to Section 3.2.2, we want to show that for a given positive initial distribution,
solutions of (3.48) after some time have a positive lower bound, so that the semigroup
St(n0) satisfies the Doeblin’s condition.

Lemma 3.3.1. Let p : [0, +Œ) ≠æ [0, +Œ) be a bounded, Lipschitz function satisfying
(3.6) and (3.5). We assume also that Ÿ satisfies (3.7) and (3.8). Consider the semigroup
defined as St(n0) := n(t) for any n0 œ M. Then St0 satisfy the Doeblin condition (??)
for t0 = 2xú and – = ‘”pmin(xú ≠ ”)e≠pmaxt0. More precisely, for t0 = 2xú we have

S2xún0(s) Ø ‘”pmine
≠2pmaxxú

{”<x<xú}

for all probability measures n0 on [0, +Œ).
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Proof. Since for x, t > 0, it holds true for solutions of (3.48) that

ˆ

ˆt
n(t, x) + ˆ

ˆx
n(t, x) Ø ≠p(x)n(t, x).

Moreover, solutions of (3.48) satisfy n(t, x) Ø ñ(t, x) where the equation on ñ(t, x)
was defined in (3.30) of Lemma 3.2.4. By the same argument we have for t > xú,
N(t) Ø pmine

≠pmaxt.
We consider the same semigroup S̃t associated to (3.30). Then, solutions of (3.48)

satisfy

n(t, s) = S̃tn0(x) +
⁄ t

0
S̃t≠·

3⁄ +Œ

0
Ÿ(·, y)p(y)n(t, y) dy

4
(x) d·

Ø S̃tn0(x) +
⁄ t

0
S̃t≠· (‘N(·) {xÆ”}) d·

since
⁄ +Œ

0
Ÿ(x, y)p(y)n(t, y) dy Ø

⁄ +Œ

0
„(x)p(y)n(t, y) dy Ø ‘ {xÆ”}

⁄ +Œ

0
p(y)n(t, y) dy

= ‘ {xÆ”}N(t).

Then for t > x + xú and x > ” we have

n(t, x) Ø

⁄ t

0
S̃t≠· (‘N(·) {xÆ”}) d· Ø

⁄ t

xú
S̃t≠· (‘ {xÆ”}pmine

≠pmax· ) d·

Ø ‘pmin

⁄ t

xú
e

≠pmax·
e

≠pmax(t≠·)
{0<x≠t+·Æ”} d· = ‘pmine

≠pmaxt
⁄ t

xú
{0<x≠t+·Æ”} d·

= ‘”pmine
≠pmaxt

{”<x<t0≠xú}.

Hence for t = 2xú and ” < x < xú we obtain the result.

Spectral gap

We again obtain a spectral gap property as a consequence of Theorem 2.2.2:

Proposition 3.3.4. Let n0 œ M(R+) be the initial data given for (3.48). We assume
that p is a nonnegative, Lipschitz function satisfying (3.4)–(3.5) and Ÿ satisfies (3.7),
(3.8). Then, there exists a unique probability measure nú œ P([0, +Œ)) which is a
stationary solution to (3.48), and any other stationary solution is a multiple of it. Also
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for

C = 1
1 ≠ –

> 1, and ⁄ = ≠
log(1 ≠ –)

t0
,

we have
ÎSt(n0 ≠ nú)ÎT V Æ Ce

≠⁄t
În0 ≠ núÎTV, for all t Ø 0.

In addition, for t0 := 2xú we have

ÎSt0(n1 ≠ n2)ÎTV Æ (1 ≠ –)În1 ≠ n2ÎTV (3.53)

for any probability distributions n1, n2, and with

– := ‘”pmin(xú ≠ ”)e≠2pmaxxú .

Proof. Lemma 3.3.1 ensures the operator St0 satisfies the Doeblin condition (2.2.1) for
t0 = 2xú. We obtain the result by applying Theorem 2.2.2.

3.3.3 Steady state for the nonlinear equation

Definition 3.3.4. We say that a pair (nú, Nú), where nú œ M+(R+
0 ) and Nú Ø 0, is a

stationary solution to (1.4) if nú œ D(L) and

LNúnú = 0, Nú =
⁄ +Œ

0
p(Nú, x)nú(x) dx,

where LNú is the semigroup generator associated to p(x) © p(Nú, x) (see Theorem
3.3.2 and the following remarks; observe that the domain D(L) does not depend on the
value of Nú). We say that Nú is the global neural activity associated to the stationary
solution.

We give the following theorem for existence and uniqueness of stationary solutions:

Theorem 3.3.5. Assume (3.3), (3.4), (3.5), (3.7), and also that

L <

A

1 + Cpmax
–pmin

B≠1

,

where C := e
4pmaxxú and – is given by Proposition 3.3.4. Then there exists a unique

stationary solution (nú, Nú) of (1.4) such that nú is a probability measure.
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Proof. Proposition 3.3.4 ensures that for a fixed Nú, there exists a unique probability
stationary solution of the corresponding linear problem. We prove the existence of a
stationary solution by recovering Nú from nú and carrying out a fixed-point argument.
We define a map � : [0, +Œ) ≠æ [0, +Œ), by

�(N) :=
⁄ +Œ

0
p(N, x)n(x) dx,

where n is the unique probability measure which is an equilibrium of the linear problem
associated to p(x) © p(N, x). We notice that the statement we wish to prove is
equivalent to the fact that � has a unique fixed point.

Let us show that this map is contractive. For any N1, N2 Ø 0,

|�(N1) ≠ �(N2)| =
----
⁄ +Œ

0
(p(N1, x)n1(x) ≠ p(N2, x)n2(x)) dx

----

Æ

⁄ +Œ

0

----(p(N1, x) ≠ p(N2, x))n2(x)| dx +
⁄ +Œ

0
|p(N1, x)(n1(x) ≠ n2(x))

---- dx

Æ L|N1 ≠ N2| + pmaxÎn1 ≠ n2ÎTV.

Now, we will prove later that

În1 ≠ n2ÎTV Æ
LC

–pmin
|N1 ≠ N2|, (3.54)

where C := e
4pmaxxú and – is the one from Proposition 3.3.4. This implies that

|�(N1) ≠ �(N2)| Æ L

3
1 + Cpmax

–pmin

4
|N1 ≠ N2|,

which makes � a contraction operator if L satisfies the inequality in the statement. So
in order to complete the proof we only need to show (3.54). For this we define the two
operators

P1(n) := S
1
t0n ≠ n, P2(n) := S

2
t0n ≠ n,

where for i = 1, 2, (Si
t)tØ0 is the linear semigroup given by Theorem 3.3.2, associated

to the firing rate pi(x) := p(Ni, x), and t0 := 2xú is the time mentioned in Proposition
3.3.4. We use that, since n1, n2 are equilibria for the linear equations with p1, p2,

0 = P1(n1) = P2(n2)
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so that

0 = ÎP1(n1) ≠ P2(n2)ÎTV = ÎP1(n1 ≠ n2) + (P1 ≠ P2)(n2)ÎTV

Ø ÎP1(n1 ≠ n2)ÎTV ≠ Î(P1 ≠ P2)n2ÎTV,

which implies
ÎP1(n1 ≠ n2)ÎTV Æ Î(P1 ≠ P2)n2ÎTV. (3.55)

Then by Proposition 3.3.4 we have

ÎP1(n1 ≠ n2)ÎTV Ø În1 ≠ n2ÎTV ≠ ÎS
1
t0(n1 ≠ n2)ÎTV Ø –În1 ≠ n2ÎTV,

since
s

n1 dx =
s

n2 dx = 1, where – is the one in Proposition 3.3.4. On the other
hand, by (3.52),

Î(P1 ≠ P2)n2ÎTV = Î(S1
t0 ≠ S

2
t0)n2ÎTV Æ

În2ÎTVÎp1 ≠ p2ÎŒ

Îp1ÎŒ

1
e

2Îp1ÎŒt0 ≠ 1
2

Æ
L|N1 ≠ N2|

pmin
e

2pmaxt0 .

Using the last two equations in (3.55),

În1 ≠ n2ÎTV Æ
1
–

Î(P1 ≠ P2)n2ÎTV Æ
L|N1 ≠ N2|

–pmin
e

2pmaxt0 ,

which proves (3.54). Therefore � has a unique fixed point, and hence (1.4) has a
unique stationary solution.

3.3.4 Asymptotic behaviour

In this section we prove Theorem 3.1.1 for equation (1.4). We define two operators in
the following way:

LN(t)n(t, x) := ˆtn(t, x) = ≠ˆxn(t, x) ≠ p(N(t), x)n(t, x) +
⁄

Ÿ(x, y)p(N(t), y)n(t, y) dy,

LNún̄(x) := ≠ˆxn̄(s) ≠ p(Nú, x)n̄(x) +
⁄

Ÿ(x, y)p(Nú, y)n̄(y) dy.

We rewrite (1.4) as

ˆ

ˆt
n(t, x) = LN(t)n(t, x) = LNún(t, x) ≠ (LNú ≠ LN(t))n(t, x). (3.56)
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Then, similarly as in Section 3.2.4 by [5] we may use Duhamel’s formula and write the
solution as

n(t, x) = Stn0(x) +
⁄ t

0
St≠· h(·, x) d·, (3.57)

where Stn0(x) := e
LNú n0(x) and n̄ is the solution to linear problem, LNú is acting on

n(t, x). Also,

h(t, x) := (LNú ≠ LN(t))n(t, x)

= (p(N(t), x) ≠ p(Nú, x))n(t, x) +
⁄ +Œ

0
Ÿ(x, y)(p(Nú, y) ≠ p(N(t), y))n(t, y) dy.

(3.58)

Then we give the following lemma:

Lemma 3.3.2. Assume that (3.4) and (3.5) hold true for a Lipschitz function p and
Ÿ satisfies (3.7). Then h, which is defined by (3.58), satisfies

Îh(t)ÎTV Æ C̃În(t) ≠ núÎTV, (3.59)

where C̃ = 2pmax
L

1≠L . Moreover
s +Œ

0 h(t, x) dx = 0.

Proof.

Îh(t)ÎTV = Î(LNú ≠ LN(t))n(t, x)ÎTV

Æ Î(p(N(t), x)≠p(Nú, x))n(t, x)ÎTV+
....

⁄ +Œ

0
Ÿ(x, y)(p(Nú, y)≠p(N(t), y))n(t, y) dy

....
T V

Æ LÎn(t)ÎTV|Nú ≠ N(t)| + LÎn(t)ÎTV|Nú ≠ N(t)|

Æ 2pmax
LÎn(t)ÎTV

1 ≠ LÎn(t)ÎTV
În(t) ≠ núÎTV = 2pmax

L

1 ≠ L
În(t) ≠ núÎTV

Since

|Nú ≠ N(t)| =
----
⁄ +Œ

0
p(Nú, x)nú(x) dx ≠

⁄ +Œ

0
p(N(t), x)n(t, x) dx

----

Æ

----
⁄ +Œ

0
(p(Nú, x)nú(x) + (p(Nú, x)n(t, x) ≠ p(Nú, x)n(t, x))p(N(t), x)n(t, x)) dx

----

Æ

----
⁄ +Œ

0
p(Nú, x)(nú(x) ≠ n(t, x)) dx

---- +
----
⁄ +Œ

0
(p(Nú, x) ≠ p(N(t), x)n(t, x) dx

----

Æ pmaxÎn(t) ≠ núÎTV + L|Nú ≠ N(t)|ÎnÎTV
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implies that

|Nú ≠ N(t)| Æ
pmax

1 ≠ LÎn(t)ÎT V
În(t) ≠ núÎTV = pmax

1 ≠ L
În(t) ≠ núÎTV (3.60)

since În(t)ÎTV = ÎnúÎTV = 1. Moreover we have

⁄ +Œ

0
h(t, x) dx =

⁄ +Œ

0
p(N(t), x)n̄(t, x) dx ≠

⁄ +Œ

0
p(Nú, x)n̄(t, x) dx

+
⁄ +Œ

0

⁄ +Œ

0
Ÿ(x, y)p(Nú, y)n̄(t, y) dy dx ≠

⁄ +Œ

0

⁄ +Œ

0
Ÿ(x, y)p(N(t), y)n̄(t, y) dy dx

= N(t) ≠

⁄ +Œ

0
p(Nú, x)n̄(t, x) dx

+
⁄ +Œ

0

3⁄ y

0
Ÿ(x, y) dx

4
p(Nú, y)n̄(t, y) dy +

⁄ +Œ

0

⁄ y

0
Ÿ(x, y) dyp(N(t), y)n̄(t, y) dy

= N(t) ≠

⁄ +Œ

0
p(Nú, x)n̄(t, x) dx +

⁄ +Œ

0
p(Nú, y)n̄(t, y) dy ≠ N(t) = 0.

Proof of Theorem 3.1.1 for (3.2). We subtract the unique probability stationary solu-
tion from both sides of (3.57):

n(t, x) ≠ nú(x) = Stn0(x) ≠ nú(x) +
⁄ t

0
St≠· h(·, x) d·.

We take the total variation norm and obtain

În(t) ≠ núÎTV Æ ÎStn0 ≠ núÎTV +
....

⁄ t

0
St≠· h(·, x) d·

....
TV

.

Then by Proposition 3.3.4 and Lemma 3.3.2 we have

În(t) ≠ núÎTV Æ Ce
≠⁄t

În0 ≠ núÎTV +
⁄ t

0
ÎSt≠· h(·, x)ÎTV d·

Æ Ce
≠⁄t

În0 ≠ núÎTV +
⁄ t

0
e

≠⁄(t≠·)
Îh(·, x)ÎTV d·

Æ Ce
≠⁄t

În0 ≠ núÎTV + C̃

⁄ t

0
e

≠⁄(t≠·)
În(·) ≠ núÎTV d·.

Therefore, by Gronwall’s lemma we obtain

În(t) ≠ núÎTV Æ Ce
≠(⁄≠C̃)t

În0 ≠ núÎTV.
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3.4 Summary and conclusion
We studied the long time behaviour of population models describing the dynamics of
interacting neurons, initially proposed by [89, 91]. In the first model, the structuring
variable x represents the time elapsed since its last discharge, while in the second one
neurons exhibit a fatigue property and the structuring variable is a generic “state”. We
prove existence of solutions and steady states in the space of finite, nonnegative measures.
Furthermore, we show that solutions converge to the equilibrium exponentially in time
in the case of weak nonlinearity (i.e., weak connectivity). The main innovation is the
use of Doeblin’s theorem from probability in order to show the existence of a spectral
gap property in the linear (no-connectivity) setting. Relaxation to the steady state for
the nonlinear models is then proved by a constructive perturbation argument. The
results presented in this chapter are based on [28].

The closest results in the literature are those of [89, 91]. Equation (3.1) is essentially
the model in [89], written in a slightly di�erent formulation that does not include time
delay and does not highlight the connectivity as a separate parameter (the connectivity
of neurons in our case is measured in the size of ˆNp). The results in [89] use entropy
methods and show exponential convergence to equilibrium (a similar statement to
Theorem 3.1.1) in a weighted L

1 space, for the case with delay and for a particular form
of the firing rate p. As compared to that, these results work in a space of measures
and can be easily written for general firing rates p; however, we have not considered
the large-connectivity case (which would correspond to large ˆNp in our case) or the
e�ects of time delay.

Similar remarks apply to the results for equation (3.2) contained in [91]. In this case
our strategy gives in general conditions which are simpler to state, and provide a general
framework which may be applied to similar models. Again, we have not considered
a time delay in the equation, which is a di�erence with the above work. There are
numerical simulations and further results on regimes with a stronger nonlinearity in
[89–91].

Here we use an alternative approach to prove convergence to equilibrium that is
based on some results in the theory of Markov processes known as Doeblin’s theory,
with some extensions such as Harris’s Theorem; see [71], or [70, 63] which we explained
in detail in the previous Chapter 2. Applying Doeblin’s Theorem for the nonlinear
models which are introduced is based on first studying the linear case and then carrying
out a perturbation argument. We study the spectral properties of the linear operator
by Doeblin’s theory, which is quite flexible and later simplifies the proofs. We obtain
a spectral gap property of the linear equation in a set of measures, and this leads to



84 On the asymptotic behaviour of elapsed-time structured neuron populations

a perturbation argument which naturally takes care of the boundary conditions in
(3.1)-(3.2). Similar ideas are reviewed in [63] for the renewal equation, and have been
recently used in [8] for neuron population models structured by voltage.

Due to this strategy, studying solutions to (3.1) and (3.2) in the sense of measures
comes as a natural setting for two important reasons: first, it fits well with the linear
theory; and second, it allows us to treat the weakly nonlinear case as a perturbation of
the linear one. Note that one di�erence between the weakly nonlinear case and the
linear case for equation (3.1) is in the boundary condition, and this is conveniently
encoded as a di�erence in a measure source term; see the proof of Theorem 3.1.1 for
details on this. Measure solutions are also natural since a Delta function represents
an initial population whose age (or structuring variable) is known precisely. There
exist also recent works on numerical schemes for structured population models in the
space of nonnegative measures [44, 67]. Entropy methods have also been extended to
measure initial data by [66] for the renewal equation.



Chapter 4

On the asymptotic behaviour of the
growth-fragmentation equation

“There are no impossible obstacles; there are just stronger and weaker wills, that’s all!”

— Jules Verne, The Adventures of Captain Hatteras
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4.1 Overview
In this chapter we study the long-time behaviour of the growth-fragmentation equation
which is a linear evolution equation describing a wide range of phenomena in structured
population dynamics. We apply Harris’s Theorem to the associated semigroup in order
to obtain spectral gap. This part of the chapter is based on a collaboration [40]. In the
last section 4.4 we also give a numerical approximation of the growth-fragmentation
equation in a particular case. This part is an incomplete project started earlier this year
jointly with José A. Carrillo and aimed at using Harris type arguments for numerical
approximation, in the discrete setting, to show convergence to equilibrium. We give
some part of it here just for the sake of completeness.

We already give a brief introduction for the growth-fragmentation equation in
Chapter 1. Here we recall the equation, state the main assumptions and present the
main result. General form of the growth-fragmentation equation is given by:

ˆ

ˆt
n(t, x) + ˆ

ˆx
(g(x)n(t, x)) =

⁄ Œ

x
Ÿ(y, x)n(t, y) dy ≠ B(x)n(t, x), t, x > 0,

n(t, 0) = 0, t Ø 0,

n(0, x) = n0(x), x > 0,

(4.1)

where n(t, x) represents the population density of individuals structured by a variable
x > 0 at a time t Ø 0. The structuring variable x could be age, size, length, weight,
DNA content, biochemical composition etc. depending on the context but we consider
it as size from now on. The boundary condition implies that no individuals are
newly created at size 0. The function g is called the growth rate and B the total
division/fragmentation rate of individuals with size x Ø 0. The kernel Ÿ(y, x) is the
rate at which individuals of size x are obtained as the result of a fragmentation event
of an individual of size y.

After a long time, the total population is expected to grow exponentially at a
rate e

⁄t, that for some ⁄ > 0, and the normalised population distribution tends to
approach a universal profile for large times, independently of the initial condition under
suitable conditions on the coe�cients Ÿ and g. Our goal is to prove this behaviour
and determine the rate of convergence to the universal profile by carrying out totally
constructive arguments via Harris’s Theorem. However, studying the asymptotic
behaviour of solutions to (4.1) is not a new problem and there are already good amount
of previous works in the literature, most of which are mentioned in Chapter 1. If we
briefly recall here, the milestone papers in the mathematical study of (4.1) date back
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to [51, 83, 93, 92]. There are also some results achieved by providing explicit solutions,
using semigroup and probabilistic approaches. Our approach is also a probabilistic one.
We use Harris’s Theorem to prove the spectral gap property. Applying this type of
argument into biological and kinetic models which can be defined as Markov processes
is a subject of many recent works. Recently in [25], the authors used the growth-
fragmentation equation with bounded fragmentation rate to model the dynamics of
the carbon content of a forest whose deterministic growth is interrupted by natural
disasters. The authors used Harris’s Theorem to obtain quantitative convergence rates.
This might be the closest work to the one we present here but we note that our result
works for unbounded total fragmentation rate as well.

We continue by giving the modelling assumptions and the main result in the
following section. Later we will dedicate the subsequent sections to showing the
existence of solutions to the associated Perron eigenvalue problem (1.10)-(1.11) which
was introduced in Chapter 1 and verifying Hypotheses 2.2.2 and 2.2.3 for the Harris’s
Theorem 2.2.5 for the growth-fragmentation equation.

4.1.1 Assumptions and the main theorem

In this section we list the modelling assumptions some of which are standard and used
in the previous literature as well and the assumptions we need in order our method to
work.

The total fragmentation rate B is obtained through Ÿ as

B(x) =
⁄ y

0

y

x
Ÿ(x, y) dy.

We consider two types of fragmentation kernels:

1. Mitosis kernel describes mitosis process where individuals only break into two
equal fragments, such as many in biological cells. It is given by

Ÿ(x, y) = B(x) 2
x

”{y= x

2 }.

2. Constant kernel describes uniform fragment distribution where the fragmentation
event gives fragments of any size less than the original one with equal probability
and given by

Ÿ(x, y) = B(x) 2
x

.

We make the following assumptions regarding the fragmentation kernel Ÿ:
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Assumption 4.1.1. We consider Ÿ(x, y), the fragmentation kernel is of the form;

Ÿ(x, y) = 1
x

p

3
y

x

4
B(x), for y > x > 0, (4.2)

so that the total fragmentation rate of cells of size x > 0 satisfies

xB(x) =
⁄ x

0
yŸ(x, y) dy. (4.3)

Assumption 4.1.2. We define p, distribution of fragments, by

pk :=
⁄ 1

0
z

k
p(z) dz, for all k Ø 0, (4.4)

satisfying
0 < pk < p1 = 1 < p0 for k Ø 2 (4.5)

and p is a nonnegative finite measure on [0, 1].

Remark 4.1.1. Uniform fragment distribution corresponds to taking p(z) = 2; whereas
for the equal mitosis process we consider p(z) = 2”1/2(z). We also note that for both
the cases p0 =

s 1
0 p(z) dz = 2.

Next two assumptions are on growth and total division rates.

Assumption 4.1.3. We assume that g : (0, +Œ) æ (0, +Œ) is a locally Lipschitz
function and there exists C > 0 such that g(x) Æ Cx for all x Ø 1. Moreover we also
assume ⁄ 1

0

1
g(x) dx < +Œ. (4.6)

and on the behaviour close to 0 and +Œ,

g(x) ≥ g0x
–0 as x æ 0,

g(x) ≥ gŒx
– as x æ +Œ,

(4.7)

where 0 < –, –0 < 1.
The total fragmentation rate B : [0, +Œ) æ [0, +Œ) is a continuous function which

is locally integrable in [0, Œ). Moreover the following holds

xB(x)
g(x) ≠æ

xæ+Œ
+Œ,

xB(x)
g(x) ≠æ

xæ0
0, (4.8)

When the growth rate is linear, if we consider the mitosis kernel; it is known that
there does not exist a unique equilibrium but a set of equilibria ([14] and the references



90 On the asymptotic behaviour of the growth-fragmentation equation

therein). Therefore we only look at uniform fragmentation kernel if the growth rate is
linear.

Main result of the paper is given in the following theorem:

Theorem 4.1.2. Assume 4.1.1, 4.1.2 and 4.1.3. There exist C, ⁄, fl > 0 and a universal
profile nú such that any solution n = n(t, x) © nt(x) to equation (4.1) with initial data
n0 œ M(R+) satisfies

Îe
≠⁄t

nt ≠ MnúÎV Æ Ce
≠flt

În0 ≠ MnúÎV for all t Ø 0, (4.9)

for M =
s

„(x)n0(x) dx > 0 a positive constant and nú(x) = N(x) where N(x) and „(x)
are the eigenfunction and the dual eigenfunction, solution to (4.10)-(4.11). Moreover,
the norm Î · Î— is the weighted total variation norm defined by

ÎµÎV =
⁄ +Œ

0
V (x)|µ|( dx),

4.2 Existence of Perron eigenelements
In Chapter 1, we introduced the Perron eigenvalue problem (1.10)-(1.11) which we
recall the definition below:

ˆ

ˆx
(g(x)N(x)) + (B(x) + ⁄)N(x) =

⁄ +Œ

x

B(y)
y

p

A
x

y

B

N(y) dy,

g(0)N(0) = 0, N(x) Ø 0,

⁄ +Œ

0
N(x) dx = 1.

(4.10)

≠g(x) ˆ

ˆx
„(x) + (B(x) + ⁄)„(x) = B(x)

x

⁄ x

0
p

3
y

x

4
„(y) dy,

„(x) Ø 0,

⁄ +Œ

0
„(x)N(x) dx = 1.

(4.11)

If there exists a solution to (4.10)-(4.11), that is a triple (⁄, N(x), „(x)), which
are called eigenelements, then the equation (4.1) converges to a universal profile
whose shape is given by the eigenfunction N(x) and growth rate of the population is
given by the dominated eigenvalue ⁄ > 0. If we scale the equation (4.1) by defining
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m(t, x) := n(t, x)e≠⁄t and under Assumptions 4.1.1, 4.1.2 and 4.1.3 we obtain:

ˆ

ˆt
m(t, x) + ˆ

ˆx
(g(x)m(t, x)) + c(x)m(t, x) = A(t, x), t, x Ø 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0.

(4.12)

where
c(x) := B(x) + ⁄

and
A(t, x) :=

⁄ +Œ

x

B(y)
y

p

A
x

y

B

m(t, y) dy,

with p(z) = 2 or p(z) = 2”1/2(z).
Notice that N(x) is the stationary state for (4.12).
If the eigenelements exist, we can consider equation (4.12) instead of (4.1) and

study the long-time behaviour of the former. We can easily recover the nature of (4.1)
through (4.12) .

We define the fragmentation operator acting only on x:

F [m](t, x) := F+[m](t, x) ≠ c(x)m(t, x)

where
F+[m](t, x) := A(t, x),

is the positive part. Then, we define a linear operator by

L[m](t, x) := ˆ

ˆt
m(t, x) = ≠

ˆ

ˆx
(g(x)m(t, x) + F [m](t, x),

which describes the evolution of (4.12). We notice that ⁄ is the first positive eigenvalue
of L and N(x) is the corresponding eigenvector. We also define the adjoint of L by

L
ú[„](x) := g(x) ˆ

ˆx
„(x) + B(x)

x

⁄ x

0
p

3
y

x

4
„(y) dy ≠ c(x)„(x). (4.13)

We also note that the quantity f(t, x) := „(x)m(t, x) is conserve for the equation (4.12)
such that

d
dt

⁄
„(x)m(t, x) dx = 0.



92 On the asymptotic behaviour of the growth-fragmentation equation

4.2.1 Bound on the dual eigenfunction „

Now, we prove a theorem that implies existence and boundedness of the dual eigenfunc-
tion „ which is a solution to the dual eigenproblem given by (4.11). First, we state the
main theorem of this section and give the poof after several lemmas and a corollary;

Theorem 4.2.1 (bounds on the eigenfunction „). We make Assumptions 4.1.1, 4.1.2
and 4.1.3. There exists a solution to (4.11) with 0 < „(x) < 1 + x

k for k > 1.

We prove this theorem at the end of the section.
We begin with defining a truncated version of the Perron eigenproblem (4.10)-(4.11)

in an interval [0, R] for some R > 0:

ˆ

ˆx
(g(x)NR(x)) + (B(x) + ⁄R)NR(x) =

⁄ R

x

B(y)
y

p

A
x

y

B

NR(y) dy,

g(0)NR(0) = 0, NR(x) Ø 0,

⁄ R

0
NR(x) dx = 1.

(4.14)

≠g(x) ˆ

ˆx
„R(x) + (B(x) + ⁄R)„R(x) = B(x)

x

⁄ R

0
p

3
y

x

4
„R(y) dy,

„R(x) Ø 0,

⁄ R

0
„R(x)NR(x) dx = 1.

(4.15)

Now we give some lemmas which will be used in the proof of Theorem 4.2.1. The
existence of a weak solution to (4.14)-(4.15) is proved by the Krein-Rutman theorem
in the Appendix of [55]. Moreover in [4], the authors proved that there exists R0 > 0
large enough such that for all R > R0 we have ⁄R > 0. They used (4.14) to pass to the
limit as R æ +Œ which requires assuming polynomial growth for the total division
rate B as x æ +Œ. Here we want to relax this assumption, that is why we pass to the
limit as R æ +Œ by using (4.15). In order to do that we need to prove some bounds
on the truncated eigenfunction „R.

First we recall a maximum principle. We begin with defining an operator LR,

LRÏ(x) := ≠g(x)ÏÕ(x) + (⁄R + B(x)) Ï(x) ≠
B(x)

x

⁄ x

0
p

3
y

x

4
Ï(y) dy. (4.16)

We have the following maximum principle like in Lemma C.1. in Appendix C of [55]:

Lemma 4.2.1. Suppose that Ï(x) Ø 0 for x œ [0, A] for some A œ (0, R) with Ï(R) Ø 0
and LRÏ(x) > 0 on [A, R]. Then Ï(x) Ø 0 on [0, R].

Proof. Proof is the same as in in Lemma C.1. in Appendix C of [55] where 0 is the
supersolution of (4.16).
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Next lemmas are on the boundedness of the truncated dual eigenfunction „R, the
truncated eigenvalue ⁄R and | „

Õ
R | respectively:

Lemma 4.2.2. Under Assumptions 4.1.1, 4.1.2 and 4.1.3, for all R > R0 and for all
x œ [0, R] we have

0 Æ „R(x) Æ 1 + x
k
,

for some k > 1.

Proof. For the bound below we want to use the maximum principle in Lemma 4.2.1.
Therefore we want to prove LRÏ(x) > 0 for x œ (A, R) for such A œ (0, R) as in the
Lemma 4.2.1.

We take Ï(x) = 1 + x
k for some k > 1. Then for R Ø R0 we have

LRÏ(x) = ⁄R(1 + x
k) ≠ kg(x)xk≠1 + B(x)

3
(1 + x

k) ≠
1
x

⁄ x

0
(1 + y

k)p
3

y

x

4
dy

4

= ⁄R(1 + x
k) ≠ kg(x)xk≠1 + B(x)(1 + x

k
≠ p0 ≠ x

k
pk)

> x
k≠1

1
≠kg(x) ≠ B(x)x1≠k + (1 ≠ pk)B(x)x

2
:= fl(x)

(4.17)

since p0 = 2 and 0 < pk < 1 = p1 for k > 1. Moreover assuming (4.8) gives that
behaviour of fl will be dominated by the positive term (1 ≠ pk)B(x)xk

> 0. Therefore,
we can find A(k) > 0 such that for all A(k) < x < R, we have LRÏ(x) > 0. We fix
A > 0 as above and normalize „R such that

sup
xœ[0,A]

„R(x) = 1. (4.18)

Then by the maximum principle (4.16) we obtain the result.

Lemma 4.2.3. Under Assumptions 4.1.1, 4.1.2 and 4.1.3, there exists a constant
C > 0 such that ⁄R Æ C for all R > R0.

Proof. Since „R is continuous and by (4.18), there exists xR œ [0, A] such that „R(xR) =
1. Moreover, the equation LR„R = 0 ensures that for all x > 0 we have

A

„R(x) exp
A

≠

⁄ x

A

⁄R + B(s)
g(s) ds

BBÕ

= ≠
B(x)
xg(x) exp

A

≠

⁄ x

A

⁄R + B(s)
g(s) ds

B ⁄ x

0
p

3
y

x

4
„R(y) dy
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By integrating this from xR to x Ø A;

„R(x) exp
A

≠

⁄ x

A

⁄R + B(s)
g(s) ds

B

≠ „R(xR) exp
A

≠

⁄ xR

A

⁄R + B(s)
g(s) ds

B

= „R(x) exp
A

≠

⁄ x

A

⁄R + B(s)
g(s) ds

B

≠ exp
A⁄ A

xR

⁄R + B(s)
g(s) ds

B

= ≠

⁄ x

xR

B(y)
yg(y) exp

A

≠

⁄ y

A

⁄R + B(s)
g(s) ds

B ⁄ y

0
p

A
z

y

B

„R(z) dz dy

By using the upper bound on „R we obtain, for R > R0,

„R(x) exp
A

≠

⁄ x

A

⁄R + B(s)
g(s) ds

B

= exp
A⁄ A

xR

⁄R + B(s)
g(s) ds

B

≠

⁄ x

xR

B(y)
yg(y) exp

A

≠

⁄ y

A

⁄R + B(s)
g(s) ds

B ⁄ y

0
p

A
z

y

B

„R(z) dz dy

Ø 1 ≠

⁄ x

xR

B(y)
yg(y) exp

A

≠

⁄ y

A

⁄R + B(s)
g(s) ds

B ⁄ y

0
p

A
z

y

B

(1 + z
k) dz dy

Ø 1 ≠

⁄ x

xR

B(y)
g(y) exp

A

≠

⁄ y

A

⁄R + B(s)
g(s) ds

B 1
p0 + y

k
pk

2
dy

Since „R(R) = 0 we deduce that for all R > R0, denoting

� := sup
yØ0

B(y)
g(y) exp

A

≠

⁄ y

A

B(s)
g(s) ds

B

,

0 Ø 1 ≠

⁄ R

xR

B(y)
g(y) exp

A

≠

⁄ y

A

⁄R + B(s)
g(s) ds

B 1
p0 + y

k
pk

2
dy

Ø 1 ≠ �
⁄ Œ

0
(p0 + y

k
pk) exp

A

≠⁄R

⁄ y

A

1
g(s) ds

B

dy.

By monotone convergence theorem, we have

�
⁄ Œ

0
(p0 + y

k
pk) exp

A

≠⁄

⁄ y

A

1
g(s) ds

B

dy ≠≠≠≠æ
⁄æ+Œ

0

so the inequality

�
⁄ Œ

0
(p0 + y

k
pk) exp

A

≠⁄R

⁄ y

A

1
g(s) ds

B

dy Ø 1



4.3 Hypotheses for Harris’s Theorem 95

enforces ⁄R to be bounded from above.

We remark that in [4] the proof of the positivity of ⁄R is done by using the equation
on NR and this requires an assumption of polynomial growth for B at infinity.

Lemma 4.2.4. Under Assumptions 4.1.1, 4.1.2 and 4.1.3, | „
Õ
R | is bounded.

Proof of Theorem 4.2.1. By the equation LR„R = 0 and bounds on „R and ⁄R we
obtain

| „
Õ
R | = ⁄R„R

g(x) + B(x)
g(x)

----„R ≠
1
x

⁄ x

0
p

3
y

x

4
„R(y) dy

----

Æ
⁄R

g(x)(1 + x
k) + B(x)

g(x)

----1 + x
k

≠
1
x

(1 + x
k)

⁄ x

0
p

3
y

x

4
dy

----

Æ
⁄R

g(x)(1 + x
k) + B(x)

g(x)

----1 + x
k

≠
1
x

(1 + x
k)xp0

---- Æ
⁄R

g(x)(1 + x
k) + B(x)

g(x) (1 ≠ p0).

Finally we end this section with the proof of Theorem 4.2.1:

Proof of Theorem 4.2.1. Lemmas 4.2.2, 4.2.3 and 4.2.4 give the proof. Since there
exists a solution to the truncated Perron eigenproblem (4.14)-(4.15) for R > 0 by the
Krein-Rutman theorem, it only remains to prove bounds in order to pass to the limit
as R æ +Œ. We show the bounds on „R, ⁄R and „

Õ
R by Lemmas 4.2.2, 4.2.3, 4.2.4

respectively.
These bounds ensure that we can extract a subsequence of (⁄R) which converges

to ⁄ > 0 and a subsequence of („R) which converges locally uniformly to a limit „

which satisfies 0 Æ „(x) Æ 1 + x
k
. Clearly (⁄, „) is the solution to the dual Perron

eigenproblem (1.11), and „ ”© 0 since sup
xœ[0,A]

„(x) = 1.

4.3 Hypotheses for Harris’s Theorem
We dedicate this section to verify Hypotheses 2.2.2 and 2.2.3 from Chapter 2 and then
we give a proof for Theorem 4.1.2.

4.3.1 Lyapunov condition

In this part, we prove that Lyapunov condition 2.2.2 is satisfied for (4.12). Due to the
special nature of the case with the linear growth, we treat it first, separately than the
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general case. Thus, in this particular case (4.12) takes the form

ˆ

ˆt
m(t, x) + ˆ

ˆx
(xm(t, x)) = 2

⁄ Œ

x

B(y)
y

m(t, y) dy ≠ (B(x) + 1)m(t, x) (4.19)

coupled with the usual initial and boundary conditions.
We remark that we consider only the constant fragmentation kernel in this case

since with the mitosis kernel there is no convergence to a universal profile. Also note
that for(4.19), the eigenvalue and the dual eigenfunction are know explicitly, which are
⁄ = 1 and „(x) = x.

Lemma 4.3.1. We consider (4.19) under the assumptions 4.1.1, 4.1.2 and 4.1.3. For
V (x) = 1 + x

k≠1 + x
K≠1 where k < 1, K > 1 and f(t, x) := xm(t, x) there exist some

time t0 > 0, C1, C̃ > 0 such that for all t Ø t0:
⁄ +Œ

0
V (x)f(t0, x) dx Æ e

≠C1t0
⁄ +Œ

0
V (x)f0(x) dx + C̃

⁄ +Œ

0
f0(x) dx. (4.20)

Proof. We have

d
dt

⁄ +Œ

0

1
x

k + x
K

2
m(t, x) dx

= ≠

⁄ +Œ

0

1
x

k + x
K

2 ˆ

ˆx
(xm(t, x)) dx ≠

⁄ +Œ

0

1
x

k + x
K

2
(B(x) + 1)m(t, x) dx

+ 2
⁄ +Œ

0

1
x

k + x
K

2 ⁄ +Œ

x

B(y)
y

m(t, y) dy dx

= ≠
1
2(1 ≠ k)

⁄ +Œ

0
(xk≠1 + x

K≠1)xm(t, x) dx

+
⁄ +Œ

0

1
c1B(x)xK≠1 + c2x

K≠1 + c3B(x)xk≠1 + c4x
k≠1

2
xm(t, x) dx

where

≠1 < c1 := K ≠ 1
K + 1 < 0, c2 := K ≠

k + 1
2 > 0, 0 < c3 := 1 ≠ k

1 + k
< 1, c4 := k ≠ 1

2 < 0.

We define Ï(x) := c1B(x)xK≠1 + c2x
K≠1 + c3B(x)xk≠1 + c4x

k≠1 and notice that when
x æ +Œ, the first term will dominate the behaviour of Ï; thus it will approach to
≠Œ. Similarly when x æ 0, the last term will dominate the behaviour of Ï, which is
negative as well. Since B is continuous and by the assumption 4.1.3 we can always
bound sup

xØ0
Ï(x) Æ C2 with some positive quantity C2 > 0. Therefore by denoting
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f(t, x) = xm(t, x) we obtain;

d
dt

⁄ +Œ

0
(1 + x

k≠1 + x
K≠1)f(t, x) dx

Æ ≠C1

⁄ +Œ

0
(1 + x

k≠1 + x
K≠1)f(t, x) dx + C̃

⁄ +Œ

0
f0(x) dx (4.21)

where C1 = 1
2(1 ≠ k) > 0, C̃ = C1 + C2 > 0 and since

s
f(t, x)dx =

s
f0(x)dx. This

gives (4.20) with C̃ = 1 + C2
C1

.

Now, we consider the general case (1.12):

Lemma 4.3.2. We consider (4.12) under the assumptions 4.1.1, 4.1.2 and 4.1.3. We
take K > 1 ≠ –0. Then the following holds true

d
dt

⁄ +Œ

0
x

K
m(t, x) dx Æ ≠C1

⁄ +Œ

0
x

K
m(t, x) dx + C2

⁄ +Œ

0
m(t, x) dx (4.22)

where C1 = ⁄ > 0 and C2 > 0.

Proof. We have

d
dt

⁄ +Œ

0
x

K
m(t, x) dx

= ≠

⁄ +Œ

0
x

K ˆ

ˆx
(g(x)m(t, x)) dx ≠

⁄ +Œ

0
x

K(B(x) + ⁄)m(t, x) dx

+
⁄ +Œ

0
x

K
⁄ +Œ

x

B(y)
y

p

A
x

y

B

m(t, y) dy dx

= ≠⁄

⁄ +Œ

0
x

K
m(t, x) dx +

⁄ +Œ

0

1
(pK ≠ 1)xK

B(x) + Kx
K≠1

g(x)
2

m(t, x) dx

We define Ï(x) := (pK ≠ 1)xK
B(x) + Kx

K≠1
g(x) and notice that sup

xØ0
Ï(x) Æ C2 for

some C2 > 0 because of the assumption (4.8), concerning the behaviour of xB(x)
g(x) when

x æ +Œ and x æ 0, where –0 < 1.

Corollary 4.3.1. We consider (4.12) under the assumptions 4.1.1, 4.1.2 and 4.1.3.
For V (x) = 1 + xK

„(x) where K > 1 ≠ –0 and f(t, x) := „(x)m(t, x) there exists some
time t0 > 0, C1, C̃ > 0 and for all t Ø t0 such that

⁄ +Œ

0
V (x)f(t0, x) dx Æ e

≠ C1
2 t0

⁄ +Œ

0
V (x)f0(x) dx + C̃

⁄ +Œ

0
f0(x) dx. (4.23)



98 On the asymptotic behaviour of the growth-fragmentation equation

Proof. By adding „(x) of both sides of (4.22) we obtain

d
dt

⁄ +Œ

0
x

K
m(t, x) dx = d

dt

⁄ +Œ

0
(xK + „(x))m(t, x) dx

Æ ≠
C1
2

⁄ +Œ

0
(xK + „(x))m(t, x) dx + C1

2

⁄ +Œ

0
„(x)m(t, x) dx

+
⁄ +Œ

0

3
C2 ≠

C1
2 x

K
4

m(t, x) dx,

that is

d
dt

⁄ +Œ

0
x

K
m(t, x) dx

Æ ≠
C1
2

⁄ +Œ

0
(xK+„(x))m(t, x) dx+C1

2

⁄ +Œ

0
„(x)m(t, x) dx+C3

⁄ +Œ

0
„(x)m(t, x) dx.

Therefore, we have for f(t, x) = „(x)m(t, x);

d
dt

⁄ +Œ

0

A

1 + x
K

„(x)

B

f(t, x) dx

Æ ≠
C1
2

⁄ +Œ

0

A

1 + x
K

„(x)

B

f(t, x) dx +
3

C1
2 + C3

4 ⁄ +Œ

0
f0(x) dx,

since
s

f(t, x)dx =
s

f0(x)dx. This gives (4.23) with C̃ = 1 + 2C3
C1

.

Remark that we verified the Lyapunov condition 2.2.2;

Lemma 4.3.3 (Lyapunov condition). Hypothesis 2.2.2 is verified for (4.12).

Proof. We consider (4.19), and by Lemma 4.3.1 we have the Lyapunov condition
satisfied for “ = e

≠C1t0 and K = C̃
s

f0(x) dx > 0 with V (x) = 1 + x
k + x

K , where
k < 1 and K > 1.

Similarly for (4.12), excluding the case above, by Corollary 4.3.1 we obtain the result
“ = e

≠ C1
2 t0 and K = C̃

s
f0(x) dx > 0 with V (x) = „(x) + x

K where K > 1 ≠ –0.

4.3.2 Minorisation condition

In this section, we show that (4.12) either with equal mitosis or uniformly distributed
fragmentation process satisfies the minorisation condition 2.2.3 given in Chapter 2.
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We start by recalling some known results on the solution of the transport part of
(4.12). We consider the equation

ˆ

ˆt
m(t, x) + ˆ

ˆx
(g(x)m(t, x)) = ≠c(x)m(t, x), t, x > 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0,

(4.24)

which is the same as (4.12) without the positive part of the fragmentation operator.
We remark that Assumption 4.1.3 ensures that the characteristic ordinary di�erential
equation

d
dt

Xt(x0) = g(Xt(x0)),

X0(x0) = x0,

(4.25)

has a unique solution, defined for t œ [0, +Œ), for any initial condition x0 > 0. In fact,
it is defined in some interval (tú(x0), +Œ), for some tú(x0) < 0. If 1/g(x) is locally
integrable close to 0, the solution can be explicitly given in terms of H

≠1, where

H(x) :=
⁄ x

0

1
g(y) dy, x Ø 0.

We notice that H is strictly increasing with H(0) = lim
xæ0

H(x) = 0 and lim
xæ+Œ

H(x) =
+Œ (since g grows sublinearly as x æ +Œ), so that it is invertible. It can easily be
checked that

Xt(x0) = H
≠1(t + H(x0)) for x0 > 0 and t > ≠H(x0), (4.26)

so that that the maximal interval where the solution of (4.25) is defined is precisely
(≠H(x0), +Œ).

For each t Ø 0, this defines the flow map Xt : (0, +Œ) æ (H≠1(t), +Œ), which is
strictly increasing. For negative times, we may consider X≠t : (H≠1(t), +Œ) æ (0, +Œ)
(where t > 0). Of course, X≠t = (Xt)≠1.

If n0 is a nonnegative measure, it is well known that the unique measure solution
to (4.24) is given by

m(t, x) = Xt#n0(x) exp
3

≠

⁄ t

0
c(X≠· (x)) d·

4
, t Ø 0, x > H

≠t(t),

m(t, x) = 0, t Ø 0, x Æ H
≠t(t),

(4.27)
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where we abuse notation by evaluating the measures m(t, ·) and Xt#n0 at a point
x > 0. For a Borel measurable map X : (0, +Œ) æ (0, +Œ), the expression X#n0

denotes the transport, or push forward, of the measure n0 by the map X, defined by
duality through

⁄ Œ

0
Ï(x)X#n0(x) dx :=

⁄ Œ

0
Ï(X(y))n0(y) dy

for all continuous, compactly supported Ï : (0, +Œ) æ R. If additionally n0 is a
function and X has a left inverse X

≠1 : (a, b) æ (0, +Œ), one has

X#n0(x) =

Y
_]

_[

n0(X≠1(x))
----

d
dx(X≠1)(x))

---- if x œ (a, b),

0 otherwise.

Using this for the solution to (4.24), if n0 is a function we may write m in the equivalent
form

m(t, x) = n0(X≠t(x)) d
dx

X≠t(x) exp
3

≠

⁄ t

0
c(X≠· (x)) d·

4
, t Ø 0, x > H

≠t(t),

m(t, x) = 0, t Ø 0, x Æ H
≠t(t).

(4.28)

Using that Yt(x) := d
dxXt(x) satisfies d

dtYt(x) = g
Õ(Xt(x))Yt(x), we note for later that

d
dx

X≠t(x) = exp
3

≠

⁄ t

0
g

Õ(X≠· (x)) d·,

4
t Ø 0, x > H

≠t(t). (4.29)

Uniform fragment distribution

In this section, we consider the case p(z) = 2, corresponding to Ÿ(x, y) = 2
xB(x) {0ÆxÆy}.

The growth-fragmentation equation (4.1) in this case is widely studied and depending
on some assumptions made on growth and division rates existence (in some cases exact
values) of eigenelements are known.

If we consider a linear growth g(x) = g0x (– = 1) and a power like total division
B(x) = b0x

“ with “ > 0, and g0, b0 > 0, the eigenvalue and the corresponding dual
eigenfunction are given by

⁄ = 1 and „(x) = x
s

yN(y) .
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In this case, egenelements can be computed explicitly (depending on the value of “)
and given in Table 1 of [55].

“ = 1 ⁄ = g0 N(x) = b0
g0

exp
1
≠

b0
g0

x

2
„(x) = b0

g0
x

“ = 2 ⁄ = g0 N(x) =
Ò

2b0
fig0

exp
1
≠

1
2

b0
g0

x
2
2

„(x) =
Ò

fib0
2g0

x

“ ⁄ = g0 N(x) =
1

b0
ng0

21/“ “

�( 1
“
) exp

1
≠

1
“

b0
g0

x
“
2

„(x) =
1

b0
“g0

21/“ �( 1
“
)

�( 2
“
)x

Table 4.1 Explicit eigenelements for the growth-fragmentation equation.

The case where g(x) = g0x and B(x) = b0x“ with “ > 0 and for p(z) = 2.

Moreover, in [4], the authors gave the asymptotics of the profile N and provided
accurate bounds on the dual eigenfunction „ in a more general form of the growth-
fragmentation equation where growth and total division rates behave like a power law
for large and small x. This also contains the case in Table 4.1 above. In this work we
relax these assumptions a bit.

We consider the scaled growth-fragmentation equation with the uniform fragment
distribution;

ˆ

ˆt
m(t, x) + ˆ

ˆx
(x–

m(t, x)) = 2
⁄ Œ

x

B(y)
y

m(t, y) dy ≠ (B(x) + ⁄)m(t, x), t, x Ø 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0.

(4.30)

Lemma 4.3.4 (Lower bound for constant fragment distribution). We make Assump-
tions 4.1.1, 4.1.2 and 4.1.3 with p(z) = 2. Let (St)tØ0 be the Markov semigroup
associated to equation (4.30). For all — > 0 given, there exists tB > 0 such that for all
t > tB and x0 œ [0, —] it holds that

St”x0(x) Ø C(t, —)

for all x in an open interval It which depends on the time t, and for some quantity
C = C(t, —) depending only on t and —.

Proof. Calling (Tt)tØ0 the semigroup associated to the transport equation

ˆ

ˆt
m(t, x) + ˆ

ˆx
(g(x)m(t, x)) + c(x)m(t, x) = 0, (4.31)
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where c(x) = B(x) + ⁄, by Duhamel’s formula we have

Stn0(x) = m(t, x) = Ttn0(x) +
⁄ t

0
Tt≠· (A(·, .))(x) d·, (4.32)

where A(t, x) := 2
s Œ

x
B(y)

y m(t, y) dy. Taking n0 = ”x0 with x0 œ (0, —], the first bound
gives

St”x0 Ø Tt”x0 = Xt#”x0 exp
3

≠

⁄ t

0
c(X≠· (x)) d·

4
,

= ”Xt(x0) exp
3

≠

⁄ t

0
c (X≠· (Xt(x0))) d·

4
,

where we have used the expression of Tt given in (4.27). Since for some C1 = C1(t, —) > 0
(increasing in t and —) we have

c(Xt≠· (x0)) = B(Xt≠· (x0)) + ⁄ Æ 1 + sup
yÆXt(—)

c(y) := C1(t, —)

we deduce that
St”x0 Ø ”Xt(x0)e

≠C1t
. (4.33)

Using this we obtain

A(t, x) Ø 2e
≠C1t B(Xt(x0))

Xt(x0)
for all t > 0 and x < Xt(x0).

We use that there is some xB > 0 for which B is bounded below by a positive quantity
on any interval of the form [xB, R]. There is some tB > 0 such that for t > tB we have
Xt(x0) > xB for all x0 > 0. Hence, for some C2 = C2(—),

A(t, x) Ø C2e
≠C1t for all t > tB and x < Xt(x0).

As a consequence, using (4.27) and (4.29),

Tt≠· A(·, x) Ø C2e
≠C1· exp

3
≠

⁄ t≠·

0
g

Õ(X≠s(x)) ds

4
,

for all · > tB and H
≠1(t ≠ ·) < x < Xt(x0). In particular, the bound is true for all

· > tB and H
≠1

1
t ≠

tB

2

2
< x < H

≠1(t). In this range, and for 0 < s < t ≠ · we have
(using (4.25))

H
≠1

3
tB

2

4
Æ X·≠t(x) Æ X≠s(x) Æ x Æ H

≠1(t),
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Using that g
Õ(X) Æ C3 for all X œ

Ë
H

≠1
1

tB

2

2
, H

≠1(t)
È

we have

Tt≠· A(·, x) Ø C2e
≠C1·

e
≠C3(t≠·)

Ø C2e
≠C4t

for all · > tB and H
≠1

1
t ≠

tB

2

2
< x < H

≠1(t). A final integration gives, for
H

≠1
1
t ≠

tB

2

2
< x < H

≠1(t),

St”x0(x) Ø

⁄ t

0
Tt≠· (A(·, ·))(x) d· Ø C2e

≠C4t
⁄ t

tB

d· = C2e
≠C4t(t ≠ tB).

This gives the result.

Remark 4.3.1. The above argument relies on defining

H(x) :=
⁄ x

0

1
g(y) dy, x Ø 0.

where H is strictly increasing with H(0) = lim
xæ0

H(x) = 0 and lim
xæ+Œ

H(x) = +Œ. So it
excludes the case with the linear growth g(x) = x. We treat this case separately below.

We give the following lemma concerning a lower bound for (4.19).

Lemma 4.3.5 (Lower bound for the linear growth rate). We make Assumptions 4.1.1
and 4.1.2 with g(x) = x, p(z) = 2. Let (St)tØ0 be the Markov semigroup associated
to equation (4.19). We also assume that the total division rate B is continuous and
bounded below on a compact interval, that is; there exists C2(—) > 0 such that

B(y) Ø C2(—) for all y œ [0, —]. (4.34)

For all –, — > 0 given, there exists tB > 0 such that for all t > tB and x0 œ [–, —] it
holds that

St”x0(x) Ø C(t, —) for all x œ (0, –e
t]

for some quantity C = C(t, —) depending only on t and —.

Proof. We consider (4.24) where c(x) = B(x) + 1. As before we denote (S)tØ0 and
(T )tØ0 semigroups associated to (4.19) and (4.24) respectively.

We rewrite the solution to (4.24) by the method of characteristics

Ttn0(x) = m(t, x) = n0(xe
≠t) exp

3
≠

⁄ t

0
c(xe

s≠t) ds

4
, for all x Ø 0. (4.35)
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Taking n0 = ”x0 we obtain the first bound:

St”x0 Ø Ttn0(x) = ”x0(xe
≠t) exp

3
≠

⁄ t

0
c(xe

s≠t) ds

4
= e

t
”x0et(x) exp

3
≠

⁄ t

0
c(x0e

s) ds

4

Ø e
(1≠C1)t

”x0et(x),

since ”x0(xe
≠t) = e

t
”x0et(x). We used also that there exists C1(t, —) > 0 (decreasing in

t) such that

c(x0e
s) = 1 + B(x0e

s) Æ 1 + sup
yœ[0,—et]

B(y) := C1(t, —), for all 0 < s < t.

Therefore for A(t, x) := 2
s +Œ

x
B(y)

y m(t, y) dy and using (4.34) we obtain

A(t, x) Ø 2e
(1≠C1)t

⁄ +Œ

x

B(y)
y

”x0et(y) dy = 2e
(1≠C1)t B(x0e

t)
x0et

Ø
2
—

e
≠C1t

B(x0e
t)

Ø C3(t, —) for all x Æ x0e
t
.

Hence for some C4(t, —) > 0 we obtain that

Tt≠· A(·, x) Ø C4(t, —) {xe≠(t≠·)Æx0e· } Ø C4(t, —) {xÆ–et}.

Integrating this gives the final bound:
⁄ t

0
Tt≠· A(·, x) d· Ø tC4(t, —) {xÆ–et}.

This gives the result.

Equal mitosis

In this section, we consider kernel p(z) = 2” 1
2
(z) which describes the process of cells

of size x breaking down into two equal daughter cells of size x/2, so that in (4.12)
A(t, x) := 4B(2x)m(t, 2x). Particularly we have the growth-fragmentation equation of
the form

ˆ

ˆt
m(t, x) + ˆ

ˆx
(g(x)m(t, x)) = 4B(2x)m(t, 2x) ≠ (B(x) + ⁄)m(t, x), t, x Ø 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0.

(4.36)
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The case where g and B are constant is a subject of numerous works in the past
and we refer to Chapter 4 of [92] for a detailed description. For g(x) = 1 and B(x) = 1,
eigenelements are explicit and given by

(⁄, N(x), „(x)) =
A

1, N̄

Œÿ

n=0
(≠1)n

–ne
≠2n+1x

, „ © 1
B

,

which implies the existence of a unique stationary state and convergence to this
stationary state with a rate e

≠t. However, when a linear growth rate g(x) = x is
considered (4.12) exhibits oscillatory behaviour in long time. This is because instead
of a dominant real eigenvalue, we observe nonzero imaginary part of the principal
eigenvalue so that there exists a set of dominant eigenvalues. This type of periodic long
time behaviour first explained in [51] and then it was proved in [64] by using theory
of positive semigroups combined with spectral analysis to obtain the convergence to
a semigroup of rotations. Since the method relies on some compactness arguments,
the authors considered the equation in a compact subset of (0, Œ). Recently in [14],
the authors proved the oscillatory behaviour of the solution for a general division rate
on (0, +Œ). The proof in this case relies on a general relative entropy argument in
a convenient weighted L

2 space. Moreover, they proposed a non-di�usive numerical
scheme which captures the oscillatory behaviour. Here we consider a sublinear growth
rate and a more general division rate than those so far considered in the literature,
excluding the case above, and prove a localized minorisation condition to verify 2.2.3.

Now we give a lemma which will be used later:

Lemma 4.3.6. We have the following equality for the time integration of a measure
moving in time; ⁄ t

0
”F (·)(x) d· =

1
F

≠1
2Õ

(x) {F (0)ÆxÆF (t)}.

Proof. Integrating against a smooth test function Ï(x) we obtain

⁄ +Œ

0
Ï(x)

⁄ t

0
”F (·)(x) d· dx =

⁄ t

0

⁄ +Œ

0
Ï(x)”F (·)(x) dx d·

=
⁄ t

0
Ï(F (·)) d· =

⁄ F (t)

F (0)
Ï(y)

1
F

≠1
2Õ

(y) dy.

by using a change of variable y = F (·).

Lemma 4.3.7 (Lower bound for equal mitosis). We make Assumptions 4.1.1, 4.1.2,
4.1.3 with a mitosis kernel p(z) = 2” 1

2
(z). Let (St)tØ0 be the Markov semigroup associ-

ated to equation (4.36). For — > 0 given, there exists tC > 0 such that for all t > tC,
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and x0 œ [0, —] it holds that
St”x0(x) Ø C(t, —),

for all x in an open interval It which depends on time t, and for some quantity
C = C(t, —) depending only on t and —.

Proof. We follow the same strategy as in the proof of Lemma 4.3.4. Here the only
di�erent part is the term A(t, x). We consider the semigroup (Tt)tØ0 defined as in (4.31)
and (St)tØ0 defined as the semigroup associated to (4.36) with A(t, x) = 4B(2x)m(t, 2x).
Using (4.33) and particularly

Tt”x0(2x) = Xt#”x0(2x)e≠C1t = 1
2” 1

2 Xt(x0)(x)e≠C1t

we obtain
A(t, x) Ø 2e

≠C1t
B (Xt (x0)) ” 1

2 Xt(x0)(x) for all t > 0.

Similarly for some xB > 0 for which B is bounded below by a positive quantity in
[xB, R] and there exists a tB > 0 such that for t > tB we have Xt (x0) > xB for all
x0 > 0. Hence, for some C2 = C2(—),

A(t, x) Ø C2e
≠C1t

” 1
2 Xt(x0)(x) for all t > tB.

By (4.27) and (4.29) we have

Tt≠· A(·, x) Ø C2e
≠C1·

”Xt≠·( 1
2 Xt(x0))(x) exp

3
≠

⁄ t≠·

0
g

Õ(X≠s(x)) ds

4

Ø C2e
≠C1·

e
≠C3(t≠·)

”Xt≠·( 1
2 Xt(x0))(x) Ø C2e

≠C4t
”Xt≠·( 1

2 Xt(x0))(x),

for all · > tB. Here we used g
Õ(X) Æ C3 for all X œ

Ë
H

≠1
1

tB

2

2
, H

≠1(t)
È
.

By Lemma 4.3.6 we obtain

⁄ t

0
Tt≠· A(·, x) d· Ø C2e

≠C4t
⁄ t

0
”Xt≠·( 1

2 Xt(x0))(x) d· Ø C2e
≠C4t (F (·))Õ (x) Ix0

where F (·) := Xt≠·

1
1
2Xt(x0)

2
and

Ix0 :=
51
2Xt(x0), Xt

3
x0
2

46
. (4.37)

Remark 4.3.2. To be able to give a further bound to this integral and continue the
similar argument as in the case of constant fragmentation we need to have (4.37) to
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be a nonempty interval for x0 values we considered and
31

Xt≠·

1
1
2Xt(x0)

22≠14Õ
(x) to

be a finite quantity. Therefore we need to consider a specific from of the growth rate
satisfying these properties. From now on, we will take g(x) = x

– with 0 < – < 1.

We take g(x) = x
– with 0 < – < 1, and then (4.25) implies that

Xt(x0) =
1
(1 ≠ –)t + x

1≠–
0

21/(1≠–)
.

Therefore,
⁄ t

0
Tt≠· A(·, x) d· Ø C2e

≠C4t
Ix0

⁄ t

0
(F (·))Õ (x) d·

Since x0 œ [0, —], we notice that

I0 =
C

1
2 ((1 ≠ –)t)1/(1≠–)

, ((1 ≠ –)t)1/(1≠–)
D

,

I— =
C

1
2

1
(1 ≠ –)t + —

1≠–
21/(1≠–)

,

1
(1 ≠ –)t + (—/2)1≠–

21/(1≠–)
D

Then we define

I :=
‹

x0œ[0,—]
Ix0 =

51
2((1 ≠ –)t + —

1≠–)1/(1≠–)
, ((1 ≠ –)t)1/(1≠–)

6

for all
t >

—
1≠–

(21≠– ≠ 1)(1 ≠ –) := tA.

For all t > max{tA, tB} := tC and there exists C5 such that x Æ xM for all x œ I so
that

s t
0 (F (·))Õ (x) d· Æ (F (·))Õ (C5) := FC > 0 by taking C2 = C2FC

St”x0 Ø

⁄ t

0
Tt≠· A(·, x) d· Ø C2e

≠C4t
It.

for all t > tC , x0 œ [0, —].

Lemma 4.3.8 (Minorisation condition). Let (St)tØ0 be the Markov semigroup asso-
ciated to equation (4.12). Under the assumptions 4.1.1, 4.1.2 and 4.1.3. For — > 0
given, there exists t0 > 0 such that for all t > t0, and x0 œ (0, —] Hypothesis 2.2.3 is
verified for (St)tØ0.

Proof. Lemmas 4.3.4, 4.3.5 and 4.3.7 give the result.
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We conclude this part by giving the proof of Theorem 4.1.2:

Proof. (proof of Theorem 4.1.2) Lemmas 4.3.8, 4.3.5 and 4.3.3 verify the hypotheses of
Harris’s Theorem 2.2.5 for (4.12). This gives final result (4.9).

4.4 A numerical scheme
Constructing a numerical scheme for the growth-fragmentation equation and study
the asymptotic properties by using Harris’s Theorem in the discrete setting can be a
natural extension for this work. Here in this section, we present a brief introduction
about how this could be done in the simplest case.

This part of the Chapter is a joint work in a collaboration with José Antonio
Carrillo. I started working on this project earlier this year during my stay at Imperial
College London. I would like to express that this section of the chapter is still in
progress, subject to changes and improvements and can be considered as perspectives.

In the case where constant growth and fragmentation rates are considered in (4.12)
(g = 1 and B = 1), we give an explicit numerical scheme to approximate the solutions
of (4.12). We note that in this case, the eigenvalue is known: ⁄ = 1.

We define a grid for a given N such that xk = k�x for k = 0, . . . , N , where
�x = xN/N so that we denote approximate solution to (4.12) where g = 1, B = 1 and
⁄ = 1 by n

j
k = n(t = j, x = xk).

We take �t = �x
2 = xN

2N and consider the following explicit scheme

n
j+1
k ≠ n

j
k

�t
+ n

j
k ≠ n

j
k≠1

�x
+ 2n

j
k = 2

Nÿ

i=k

n
j
i

xi
�x for all k = 1, . . . , N, (4.38)

so that
n

j+1
k = (1 ≠ 2�t)nj

k + �t

�x
(nj

k≠1 ≠ n
j
k) + 2�t

Nÿ

i=k

n
j
i

i�x
�x.

Since mass is conserved, we also have

Nÿ

k=1
�xn

j+1
k =

Nÿ

k=1
�xn

j
k. (4.39)
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In order to keep the mass conservation property at each time step we impose a boundary
condition n

j
N = n

j
0. Moreover, the stationary solution is given by

n
j
k = k

k + 2�x(k ≠ 1)

Q

an
j
k≠1 + 2�x

Nÿ

i=k+1

n
j
i

i

R

b (4.40)

for all k = 1, . . . , N .
First, we prove a useful equality which will be used later:

Lemma 4.4.1. Under the setting given in (4.38)-(4.40) we have

Nÿ

k=1

Nÿ

i=k

n
j
i

i
=

Nÿ

k=1
n

j
k

Proof. We calculate

Nÿ

k=1

Nÿ

i=k

n
j
i

i
=

Nÿ

k=1

A
n

j
k

k
+ n

j
k+1

k + 1 + . . . + n
j
N≠1

N ≠ 1 + n
j
N

N

B

(k = 1) = n
j
1

1 + n
j
2

2 + n
j
3

3 + . . . + n
j
N≠1

N ≠ 1 + n
j
N

N

(k = 2) + n
j
2

2 + n
j
3

3 + . . . + n
j
N≠1

N ≠ 1 + n
j
N

N

...

(k = N ≠ 1) + n
j
N≠1

N ≠ 1 + n
j
N

N

(k = N) + n
j
N

N

= n
j
1

1 + 2n
j
2

2 + 3n
j
3

3 + . . . + (N ≠ 1) n
j
N≠1

N ≠ 1 + N
n

j
N

N
=

Nÿ

k=1
n

j
k.

4.4.1 Some properties of the scheme

Lemma 4.4.2. Scheme (4.38) is positivity preserving for �t <
�x

1≠2�x with �x <
1
2 .

Proof. It is clear since if for all k, n
j
k is positive, then we have

n
j+1
k =

A

1 ≠
�t

�x
≠ 2�t

B

n
j
k + �t

�x
n

j
k≠1 + 2�t

Nÿ

i=k

n
j
i

i�x
�x.
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For �t <
�x

1≠2�x with �x <
1
2 , makes the right-hand side terms positive.

Remark 4.4.1. Discrete conservation law (4.39) and positivity implies the scheme is
a contraction for the discrete L

1 norm Î · Î1 defined for a vector n = (nk)1ÆkÆN by

ÎnÎ1 =
Nÿ

k=1
�x|nk|.

Now we give an intuition about how to prove the convergence of the scheme (4.38);
We write the scheme in the condensed form n

j+1 = Pn
j where P is the iteration matrix

in the following form:
Q

cccccccccccccccccccca

n
j+1
1

n
j+1
2

n
j+1
3

...

n
j+1
N

R

ddddddddddddddddddddb

N◊1

=

Q

cccccccccccccccccccca

1
2

�x
2

�x
3 . . . . . .

1
2 + �x

N

1
2

1
2 ≠

�x
2

�x
3 . . . . . .

�x
N

0 1
2

1
2 ≠

2�x
3 . . . . . .

�x
N

... ... . . . . . . . . .
�x
N

0 0 0 . . .
1
2

1
2 ≠

(N≠1)�x
N

R

ddddddddddddddddddddb

N◊N

◊

Q

cccccccccccccccccccca

n
j
1

n
j
2

n
j
3

...

n
j
N

R

ddddddddddddddddddddb

N◊1

The contraction property reads ÎPÎ1 Æ 1 and this implies the stability of the scheme.
Now we prove consistency. We have by Taylor expansion

n(tj+1, xk) = n(tj, xk) + �tˆtn + �t
2

2 ˆtt + O(�t
3)

n(tj, xk) = n(tj, xk≠1) + �xˆxn + �x
2

2 ˆxxn + O(�x
3)

which implies as (�t, �x) æ 0 we have

n(tj+1, xk) ≠ n
j+1
k

=
A

1 ≠
�t

�x

B

n(tj, xk) + �t

�x
n(tj, xk≠1) + �t (ˆxn(tj, xk) + ˆtn(tj, xk)) +

�t

A
�x

2 ˆxxn(tj, xk) + �t

2 ˆttn(tj, xk)
B

+ O(�x
3 + �t

3)

≠

A

1 ≠
�t

�x
≠ 2�t

B

n
j
k ≠

�t

�x
n

j
k≠1 ≠ 2�t

Nÿ

i=k

n
j
i

i
.
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Therefore,

n(tj+1, xk) ≠ n
j+1
k = 2�tn

j
k ≠ 2�t

Nÿ

i=k

n
j
i

i

+ �t

A

ˆxn(tj, xk) + ˆtn(tj, xk) + �x

2 ˆxxn(tj, xk) + �t

2 ˆttn(tj, xk)
B

+ O æ 0

Having proved the stability and the consistency implies the convergence of the scheme
(4.38).

Now, we give some intuition about how to prove a minorisation and Lyapunov
conditions similar in the discrete setting for this case. We remind that this work is not
complete there might be mistakes in the calculations of this part. However, we include
them with the purpose of conveying the main idea.

4.4.2 Minorisation condition

We consider an initial data satisfying

n(0, xk) = n
0
k =

Y
_]

_[

”xp
(xk) for some p œ [0, N ],

0 elsewhere.

(4.41)

Lemma 4.4.3 (local Doeblin condition). We consider the scheme (4.38). Suppose
that initial data satisfies (4.41). Then we have for all j Ø 1:

n
j+1
k Ø “, (4.42)

for some “ œ (0, 1) and for p Ø 1.

Proof. We give the proof by induction. For j = 1 we have for �t = �x
2 :

n
1
k = (1 ≠ �x)n0

k + 1
2(n0

k≠1 ≠ n
0
k) + �x

Nÿ

i=k

n
0
i

i
.

We want to prove that n
j+1
k is positive for some j by induction. We assume (4.41) for

n
0
k. Then we have 4 possible outcomes for n

1
k:

1. p = k, then n
1
k = (1 ≠ �x) ≠

1
2 + �x

p = 1
2 ≠ �x + �x

p = 1
2 + �x

1
1≠p

p

2
> 0.

2. p = k ≠ 1, then i.e. n
1
k = 1

2 .

3. p > k, then n
1
k = 1

p .
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4. p < k ≠ 1, then n
1
k = 0.

Therefore, there exists –(p) = min
Ó

1
2 + �x

1
1≠p

p

2
,

1
p

Ô
œ (0, 1) such that n

1
k Ø – for

p Ø k ≠ 1, k > 1.
We assume for some j, n

j
k Ø — where — œ (0, 1) for p Ø k ≠ 1, k > 1. Then,

n
j+1
k = 1

2n
j
k≠1 +

31
2 ≠ �x

4
n

j
k + �x

Nÿ

i=k

n
j
i

i
= 1

2— +
31

2 ≠ �x

4
— + —�x

Nÿ

i=k

1
i

Ø (1 ≠ �x)— + —�x
N ≠ k

N
= —

A

1 ≠
k�x

N

B

(4.43)

Setting “ = —

1
1 ≠

k�x
N

2
gives the result.

4.4.3 Lyapunov condition

Lemma 4.4.4 (Lyapunov condition). We consider the scheme (4.38). Then we have
for some positive constants C1, C2 that:

Nÿ

k=1
(1 + x

2
k)n

j+1
k ≠ n

j
k

�t
�x Æ ≠C1

Nÿ

k=1
(1 + x

2
k)nj

k�x + C2

Nÿ

k=1
n

j
k�x. (4.44)

for some k, N .

Proof. We have

Nÿ

k=1
(1 + x

2
k)n

j+1
k ≠ n

j
k

�t
�x

= +
Nÿ

k=1
(1 + x

2
k)(nj

k≠1 ≠ n
j
k) ≠ 2

Nÿ

k=1
(1 + x

2
k)nj

k�x + 2
Nÿ

k=1
(1 + x

2
k)

Nÿ

i=k

n
j
i

i
�x

= ≠

Nÿ

k=1
(1 + x

2
k)nj

k�x +
N≠1ÿ

k=1
(x2

k+1 ≠ x
2
k)nj

k + x
2
1n

j
0 ≠ x

2
Nn

j
N

≠

Nÿ

k=1
(1 + x

2
k)nj

k�x + 2
Nÿ

k=1
n

j
k�x + 2

Nÿ

k=1
x

2
k

Nÿ

i=k

n
j
i

i
�x

= ≠

Nÿ

k=1
(1 + x

2
k)nj

k�x +
N≠1ÿ

k=1
(2k + 1)nj

k�x
2

≠

N≠1ÿ

k=1
(1 + x

2
k)nj

k�x + 2
N≠1ÿ

k=1
n

j
k�x

+ (1 ≠ N
2)�x

2
n

j
N ≠ (1 + N

2�x
2)�xn

j
N + 2�xn

j
N + 2

Nÿ

k=1
�x

2
k

2
Nÿ

i=k

n
j
i

i
�x,
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so that

Nÿ

k=1
(1 + x

2
k)n

j+1
k ≠ n

j
k

�t
�x

= ≠

Nÿ

k=1
(1 + x

2
k)nj

k�x +
N≠1ÿ

k=1
(≠�x

2
k

2 + 2�xk + �x + 1)nj
k�x

+ (�x + 1)(1 ≠ N
2�x)nj

N�x + 2�x
2

Nÿ

k=1
k

2
Nÿ

i=k

n
j
i

i
�x.

Here we define „1(k) := ≠�x
2
k

2 + 2�xk + �x + 1 and notice that we have
„1(k) Æ �x + 2 for k Ø

1
�x .

Moreover we decompose the sum 2�x
2 qN

k=1 k
2 qN

i=k
nj

i

i �x and we obtain

Nÿ

k=1
(1 + x

2
k)n

j+1
k ≠ n

j
k

�t
�x

Æ ≠

Nÿ

k=1
(1 + x

2
k)nj

k�x +
N≠1ÿ

k=1
(�x + 2)nj

k�x + (�x + 1)(1 ≠ N
2�x)nj

N�x

+2�x
3

A
Nÿ

k=1
kn

j
k +

Nÿ

k=1

k
2

k + 1n
j
k+1 + · · · +

Nÿ

k=1

k
2

N ≠ 1n
j
N≠1 +

Nÿ

k=1

k
2

N
n

j
N

B

such that

Nÿ

k=1
(1 + x

2
k)n

j+1
k ≠ n

j
k

�t
�x Æ ≠

Nÿ

k=1
(1 + x

2
k)nj

k�x +
N≠1ÿ

k=1
(�x + 2)nj

k�x

+2�x
3

A
Nÿ

k=1
kn

j
k +

Nÿ

k=1

k
2

k + 1n
j
k+1 + · · · +

Nÿ

k=1

k
2

N ≠ 1n
j
N≠1

B

+(�x + 1)(1 ≠ N
2�x)nj

N�x + �x
2

3 (N + 1)(2N + 1)nj
N�x

We define „2(N) := ≠N
2

1
�x2

3 + �x

2
+ �x

2
N + �x2

2 + �x + 1 and we have „(N) Æ C3

where C3 > 0 for some N > 0. Therefore we obtain Inequality (4.44) for C1 = 1 and
for some C2 > 0 could be calculated explicitly.
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4.4.4 Simulations

Stable stationary size distribution

In the last part of this chapter we present some simulations using the scheme (4.38)-
(4.39) for g(x) = 1 and B(x) = 1 with a smooth initial data:

n0(x) = x
2 exp

3
≠

x

2

4
. (4.45)

Initial distribution Time = 0.1 Time = 0.2

Time = 0.3 Time = 0.4 Time = 0.5

Time = 1 Time = 5 Time = 10

Fig. 4.1 Time evolution of size distribution of the growth-fragmentation equation.

In Figure 4.1, red line plots the initial size distribution and blue line is the size
distribution at the time which is specified in the caption. Time di�erence between
sub-figures is not uniform because the change in the distribution is fast in the earlier
times and then it stabilizes and converge to the stationary distribution so that the
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change very less and slow at later times. In conclusion, Figure 4.1 shows that after
some time the growth-fragmentation equation reaches a universal size distribution
given in “time=10”.

Oscillatory size distribution

We also present results of some simulations for the case of linear growth rate and
mitosis kernel. It is already pointed out that in this case instead of a unique real
dominant eigenvalue there is a family of dominant eigenvalues whose imaginary part is
nonzero. For the figures below we implemented the semi implicit flux splitting scheme
given in [14].

(a) Smooth initial data (b) Non-smooth initial data

Fig. 4.2 Initial size distributions.

We considered two types of initial data given in Figure 4.2. The smooth initial
data is given in (4.45) and the non-smooth one mimics the behaviour of the Dirac
delta function concentrated at the middle of the domain. In Figure 4.3 we present
size distributions at di�erent times printed on the same figure. The color is di�erent
for each time. We see that no matter how long we run the simulations, there are
several stationary size distributions, not a unique one, and the solutions will oscillate
in between each of those.
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(a) Evolution of smooth initial data

0 0.5 1 1.5 2 2.5 3 3.5 4
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0.8

1

1.2

1.4

(b) Evolution of non-smooth initial data

Fig. 4.3 Time evolution of the size distribution at di�erent times.

4.5 Summary and conclusion
In this chapter, we studied the asymptotic behaviour of the growth-fragmentation
equation (4.1). This linear, nonlocal, evolution equation describes the dynamics of
growing and dividing processes. This equation appears in modelling of wide range of
real-life processes in cell biology, ecology, neurology or in telecommunication. Depending
on the balance (or imbalance) between growth and division terms, size distribution of
the population density may or may not converge to a stable distribution. In this work
we were interested in the case where there is a relaxation towards a universal profile.

What di�ers in our results from the previous works on this type of models is
that under fairly general assumptions we give a completely constructive proof for the
existence of the spectral gap property in a weighted total variation distance. We use
Harris’s theorem for the main result; thus we obtain quantitative convergence rates to
the universal profile. If the associated perron eigenvalue problem has a solution, then
it is straightforward to show the spectral gap. Indeed, in some special cases for the
growth and the total division rates, eigenelements can be obtained explicitly. However,
in this work we considered quite general cases where eigenelements may not be known
explicitly. In this case we give a rigorous proof for the existence of eigenelements.

In the last section, we also considered a numerical scheme for the growth-fragmentation
equation where we aimed at proving asymptotic behaviour in the discrete setting as
well via Harris’s Theorem. This work is yet to be completed and it is expected to be
useful and intuitive for wider range of models which generate a linear, positivity and
mass preserving stochastic semigroup.



Chapter 5

Hypocoercivity of linear kinetic
equations

“What we can do is to establish a bridge between the various levels in order to form a
coherent picture; the whole of Boltzmann’s work is a masterpiece of this procedure, i.e.

how to construct, starting from atoms, a description that explains everyday life.”

— Carlo Cercignani, Ludwig Boltzmann: The Man Who Trusted Atoms
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5.1 Overview
In this chapter we show how to obtain quantitative rates of convergence to a stationary
state for some linear kinetic equations, using Harris’s Theorem presented in Chapter 2.
If certain hypotheses concerning irreducibility are verified quantitatively, this theorem
gives quantitative convergence rates to a unique stationary state for Markov processes
and it is very well adapted to hypocoercive, nonlocal, dissipative equations. This
chapter is based on a collaboration [39].

Studying rate of convergence to equilibrium for kinetic equations involves estimating
dissipative e�ect on the space variable. Dissipation for kinetic equations is caused by
the positive jump operator (later will be called as L) which acts only on the velocity
variable v; whereas transport takes place only in the space variable x and it mixes the
dissipation in x. This is a celebrated problem for both linear and nonlinear equations.
In [103, 72, 73], the authors developed a techique which is called hypocoercivity to
tackle this problem for linear kinetic equations. In a landmark result [49], it is proved
that the full nonlinear Boltzmann equation converges to equilibrium at least at an
algebraic rate. Exponential convergence results for the (linear) Fokker-Planck equation
were proven in [48], and a theory for a range of linear kinetic equations has been
shown in [53]. All of these results give convergence in weigthed L

2 norms or H
1 norms.

However, convergence to a stationary state in weigthed L
1 norms can be proven for

several kinetic models by using the techniques in [65].
We consider linear kinetic equations of the type

ˆtf + v · Òxf = Lf,

where f = f(t, x, v) represents the probability density of having a particle that is
located at around a point x in the space at time t Ø 0 and moving with a velocity
v. We consider v œ Rd and x œ Td (the d-dimensional unit torus) for the case above
which implies periodic boundary conditions.

We also consider linear kinetic equations that are posed in x œ Rd and read as

ˆtf + v · Òxf ≠ (Òx� · Òvf) = Lf.

In this case we introduce a confining potential � as well. The operator L acts only on
the v variable, and it is the generator of the associated stochastic semigroup we will
work with later.
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5.1.1 Assumptions and the main theorems

In this work, we take L as either the linear relaxation Boltzmann (linear BGK) or
the linear Boltzmann operator. It is a well defined operator from L

1(Td
◊ Rd) to

L
1(Td

◊ Rd) when the equations are posed in Td or from L
1(Rd

◊ Rd) to L
1(Rd

◊ Rd)
when the equations are posed on Rd. Similarly it can also be defined as an operator
from M(Td

◊ Rd) to M(Td
◊ Rd) or M(Rd

◊ Rd) to M(Rd
◊ Rd).

We denote the set of probability measures on a set � ™ Rd by P(�) (that is, the
probability measures defined on the Borel ‡-algebra of �).

Definition 5.1.1. In the linear BGK case, we define L as

L := L
+

f ≠ f,

where
L

+
f =

3⁄
f(t, x, u) du

4
M(v),

and
M(v) := (2fi)≠d/2 exp(≠|v|

2
/2)

the Maxwellian distribution which is known to be an equilibrium state for the equation.
In the linear Boltzmann case, the operator L is the Boltzmann operator Q which is

given by

Q(f, g) =
⁄

Rd

⁄

Sd≠1
B(|v ≠ vú|, ‡) (f(vÕ)g(vÕ

ú) ≠ f(v)g(vú)) d‡ dvú,

where
v

Õ = v + vú

2 + |v ≠ vú|

2 ‡, v
Õ
ú = v + vú

2 ≠
|v ≠ vú|

2 ‡,

and B is the collision kernel.

First assumption is on the collision kernel B:

Assumption 5.1.1. We assume that B is a hard kernel and can be written as a product

B(|v ≠ vú|, ‡) = |v ≠ vú|
“

b

A

‡ ·
v ≠ vú

|v ≠ vú|

B

, (5.1)

for some “ Ø 0, meaning that we work in the hard spheres/Maxwell molecules regime.
Moreover we will make a cuto� assumption on b so that b integrable in ‡. We also
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assume that b is uniformly positive on [≠1, 1]; that is, there exists Cb > 0 such that

b(z) Ø Cb for all z œ [≠1, 1]. (5.2)

Remark 5.1.1. Assumption 5.1.1 includes the physical hard-spheres collision kernel,
for which b © 1. The non-cuto� kernels, where b is not integrable, are not considered.

Remark 5.1.2. Assumption 5.1.1 implies that we can write the linear Boltzmann
equation on the torus

ˆtf + v · Òxf = L
+

f ≠ Ÿ(v)f,

where Ÿ(v) Ø 0 and Ÿ(v) behaves like |v|
“ for large v; that is,

0 Æ ‡(v) Æ (1 + |v|
2)“/2

, v œ Rd
. (5.3)

See [30] Lemma 2.1 for example.

Assumption 5.1.2. We assume that the confining potential � : Rd
æ R is bounded

from below and � œ C
2(Rd). We consider potentials growing at least quadratically at

infinity and some weaker potentials. Later we will also make some spesific assumptions
regarding the growth rate depending on each case we consider.

Under these assumptions we present convergence results on the following equations:

• The linear relaxation Boltzmann equation

either posed in (x, v) œ Td
◊ Rd;

ˆtf + v · Òxf = L
+

f ≠ f. (5.4)

or posed in (x, v) œ Rd
◊ Rd;

ˆtf + v · Òxf ≠ (Òx� · Òvf) = L
+

f ≠ f. (5.5)

• The linear Boltzmann equation

either posed in (x, v) œ Td
◊ Rd;

ˆtf + v · Òxf = Q(f, M). (5.6)

or posed in (x, v) œ Rd
◊ Rd;

ˆtf + v · Òxf ≠ (Òx� · Òvf) = Q(f, M). (5.7)
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Finally we state our main results on the torus Td, and then on Rd with a confining
potential �:

Theorem 5.1.3 (Exponential convergence results on the torus). Suppose that t ‘æ ft

is the solution to (5.4) or (5.6) with initial data f0 œ P(Td
◊ Rd). In the case of

equation (5.6) we also assume (5.1) with “ Ø 0 and (5.2). Then there exist constants
C > 0, ⁄ > 0 (independent of f0) such that

Îft ≠ µÎú Æ Ce
≠⁄t

Îf0 ≠ µÎú,

where µ is the only equilibrium state of the corresponding equation in P(Td
◊Rd) (that

is, µ(x, v) = M(v)). The norm Î ·Îú is just the total variation norm Î ·ÎTV for equation
(5.4),

Îf0 ≠ µÎú = Îf0 ≠ µÎTV :=
⁄

Rd

⁄

Td

|f0 ≠ µ| dx dv for equation (5.4),

and it is a weigthed total variation norm in the case of equation (5.6):

Îf0 ≠ µÎú =
⁄

Rd

⁄

Td

(1 + |v|
2)|f0 ≠ µ| dx dv for equation (5.6).

Theorem 5.1.4 (Exponential convergence results with a confining potential). Suppose
that t ‘æ ft is the solution to (5.5) or (5.7) with initial data f0 œ P(Rd

◊ Rd) and a
potential � œ C

2(Rd) which is bounded below, and satisfies

x · Òx�(x) Ø “1|x|
2 + “2�(x) ≠ A, x œ Rd

,

for some positive constants “1, “2, A. Define ÈxÍ =
Ò

1 + |x|2. In the case of equation
(5.6) we also assume (5.1) with “ Ø 0, (5.2) and

x · Òx�(x) Ø “1ÈxÍ
“+2 + “2�(x) ≠ A,

for some positive constants “1, “2, A. Then there exist constants C > 0, ⁄ > 0 (inde-
pendent of f0) such that

Îft ≠ µÎú Æ Ce
≠⁄t

Îf0 ≠ µÎú,

where µ is the only equilibrium state of the corresponding equation in P(Rd
◊ Rd),

dµ = M(v)e≠�(x) dv dx.
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The norm Î · Îú is a weighted total variation norm defined by

Îft ≠ µÎú :=
⁄ 3

1 + 1
2 |v|

2 + �(x) + |x|
2
4

|ft ≠ µ| dv dx.

In all results above the constants C and ⁄ can be explicitly estimated in terms of
the parameters appearing in the equation by following the calculations in the proofs.
We do not give them explicitly since we do not expect them to be optimal, but they
are completely constructive.

We also consider weaker potentials by looking at Harris type theorems with weaker
controls on moments to give analogues of all our theorems and give algebraic rates
of convergence with rates depending on the assumption we make on the confining
potential. Subgeometric convergence for kinetic Fokker-Planck equations with weak
confinement has been shown in [54, 3, 41]> However for the linear BGK and the
linear Boltzmann equations there is no other result giving a quantitative algebraic
convergence rates up to our knowledge.

Theorem 5.1.5 (Subgeometric convergence results with weak confining potentials).
Suppose that t ‘æ ft is the solution to (5.5) with initial data f0 œ P(Rd

◊ Rd) in the
whole space with a confining potential � œ C

2(Rd) which is bounded below. Define
ÈxÍ =

Ò
1 + |x|2. Assume that for some — œ (0, 1) the confining potential satisfies

x · Òx�(x) Ø “1ÈxÍ
2— + “2�(x) ≠ A,

for some positive constants “1, “2, A. Then we have that there exists a constant C > 0
such that

Îft≠µÎTV Æ min
;

Îf0 ≠ µÎTV, C

⁄
f0(x, v)

3
1 + 1

2 |v|
2 + �(x) + |x|

2
4

(1 + t)≠—/(1≠—)
<

.

Similarly if t ‘æ ft is the solution to (5.7) in the whole space, satisfies (5.1), (5.2) and
that

x · Òx�(x) Ø “1ÈxÍ
—+1 + “2�(x) ≠ A, �(x) Æ “3ÈxÍ

1+—
,

for some positive constants “1, “2, “3, A, —. Then we have that there exists a constant
C > 0 such that

Îft ≠ µÎTV Æ min
;

Îf0 ≠ µÎTV, C

⁄
f0(x, v)

3
1 + 1

2 |v|
2 + �(x) + |x|

4
(1 + t)≠—

<
.

We carry out all of our proofs using variations of Harris’s Theorem from probability
which was explained in detail in Chapter 2. Mainly it states that having a good
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confining property and some uniform mixing property in the centre of the state space
is enough to obtain exponentially fast convergence to equilibrium in a weighted total
variation norm for a Markov process.

These type of techniques have already been used to show convergence to equilibrium
for some kinetic equations. In [78], the authors show convergence to equilibrium for
the kinetic Fokker-Planck equation with non-quantitative rates. In [11], the authors
use a strategy based on Doeblin’s Theorem, which is a precursor to Harris’s Theorem,
to show non-quantitative rates for convergence to equilibrium for scattering equations
with non-equilibrium steady states. In [43], the authors show quantitative exponential
convergence to a non-equilibrium steady state for some non-linear kinetic equations on
the torus using Doeblin’s Theorem.

We dedicated the next two sections to presenting results on the linear relaxation
Boltzmann and the linear Boltzmann equations respectively.

5.2 The linear relaxation Boltzmann equation
Recalling the definition for the linear relaxation Boltzmann (or the linear BGK)
equation

ˆtf + v · Òxf ≠ (Òx� · Òvf) = L
+

f ≠ f,

where
L

+
f =

3⁄
f(t, x, u) du

4
M(v),

and M(v) := (2fi)≠d/2 exp(≠|v|
2
/2). The function f = f(t, x, v) depends on time t Ø 0,

space x œ Rd, and velocity v œ Rd, and the potential � : Rd
æ R is a C

2 function of
x. We also consider this equation on the torus; that is, for x œ Td, v œ Rd, assuming
periodic boundary conditions. In that case we omit � (which corresponds to � = 0 in
the above equation):

ˆtf + v · Òxf = L
+

f ≠ f.

This simple equation is well studied in kinetic theory and can be thought of as a
toy model with similar properties to either the non-linear BGK equation or linear
Boltzmann equation. It is also one of the simplest examples of a hypocoercive equation.
Convergence to equilibrium in H

1 for this equation has been shown in [34], at a rate
faster than any function of t. It was then shown to converge exponentially fast in both
H

1 and L
2 using hypocoercivity techniques in [72, 87, 53].
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5.2.1 On the torus

Since this is the simplest case we can use Doeblin’s Theorem where we have a uniform
minorisation condition. We consider

ˆtf + v · Òxf = Lf, (5.8)

posed for (x, v) œ Td
◊ Rd, where Td is the d-dimensional torus of side 1 and

Lf(x, v) := L
+

f(x, v) ≠ f(x, v) :=
3⁄

Rd

f(x, u) du

4
M(v) ≠ f(x, v), (5.9)

which is a well defined operator from L
1(Td

◊ Rd) to L
1(Td

◊ Rd), and can also be
defined as an operator from M(Td

◊ Rd) to M(Td
◊ Rd) with the same expression

(where
s
Rd f(x, u) du now denotes the marginal of the measure f with respect to u).

We define (Tt)tØ0 as the transport semigroup associated to the operator ≠v · Òxf in
the space of measures with the bounded Lipschitz topology (see for example [29]); that
is, t ‘æ Ttf0 solves the equation ˆtf + v · Òxf = 0 with initial condition f0. In this case
one can write Tt explicitly as

Ttf0(x, v) = f0(x ≠ tv, v). (5.10)

Using Duhamel’s formula repeatedly one can obtain that, if f is a solution of (5.8)
with initial data f0, then

e
t
ft Ø

⁄ t

0

⁄ s

0
Tt≠sL

+
Ts≠rL

+
Trf0 dr ds. (5.11)

Now we check two properties, which are listed as lemmas. The first one implies
that the operator L always allows jumps to any small velocity.

Lemma 5.2.1. For all ”L > 0 there exists –L > 0 such that for all nonnegative
functions g œ L

1(Td
◊ Rd) we have

L
+

g(x, v) Ø –L

3⁄

Rd

g(x, u) du

4
{|v|Æ”L} (5.12)

for almost all (x, v) œ Td
◊ Rd.

Proof. Given any ”L it is enough to choose –L := M(v) for any v with |v| = ”L.

The second one is regarding to the behaviour of the transport part alone. It implies
that if we start at any point inside a ball of radius R with any small velocity, then we
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can reach any point in the ball of radius R with a predetermined bound on the final
velocity:

Lemma 5.2.2. Given any time t0 > 0 and radius R > 0 there exist ”L, R
Õ
> 0 such

that for all t Ø t0 it holds that
⁄

B(RÕ)
Tt

3
”x0(x) {|v|Æ”L}

4
dv Ø

1
td {|x|ÆR} for all x0 with |x0| < R. (5.13)

In particular, if we take R >
Ô

d, there exist ”L, R
Õ
> 0 such that

⁄

B(RÕ)
Tt

3
”x0(x) {|v|Æ”L}

4
dv Ø

1
td

for all x0 œ Td. (5.14)

Proof. Take t, R > 0. We have

Tt

1
”x0(x) B(”L)(v)

2
= ”x0(x ≠ vt) B(”L)(v),

where B(”) denotes the open ball {x œ Rd
| |x| < ”}, and in general we will use the

notation B(z, ”) to denote the open ball of radius ” centered at z œ Rd. Integrating
this and changing variables gives that

⁄

B(RÕ)
Tt

1
”x0(x) B(”L)(v)

2
dv = 1

td

⁄

B(x,tRÕ)
”x0(y) B(”L)

3
x ≠ y

t

4
dy.

Since |x ≠ y| Æ |x| + |y| we have that

B(”L)

3
x ≠ y

t

4
Ø B(”L/2)

3
x

t

4
B(”L/2)

3
y

t

4
.

Therefore if we take ”L > 2R/t we have

B(”L)

3
x ≠ y

t

4
Ø B(R)(x) B(R)(y).

On the other hand, if we take |x| < R and R
Õ
> 2R/t then

B(x, tR
Õ) ´ B(x, 2R) ´ B(R).

Hence if ”L > 2R/t and R
Õ
> 2R/t,

⁄

B(RÕ)
Tt

1
”x0(x) B(”L)(v)

2
dv Ø

1
td B(R)(x),
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which proves the result.

Lemma 5.2.3 (Doeblin condition for the linear relaxation Botzmann equation on the
torus). For any tú > 0 there exist constants –, ”L > 0 (depending on tú) such that any
solution f to equation (5.8) with initial condition f0 œ P(Td

◊ Rd) satisfies

f(tú, x, v) Ø – {|v|Æ”L}, (5.15)

where the inequality is understood in the sense of measures.

Proof. It is enough to prove it for f0 := ”(x0,v0), where (x0, v0) œ Td
◊Rd is an arbitrary

point. From Lemma 5.2.2 (with R >
Ô

d and t0 := tú/3) we will use that there exists
”L > 0 such that

⁄

Rd

Tt

3
”x0(x) {|v|Æ”L}

4
dv Ø

1
td

for all x0 œ Td, t > t0.

Also, Lemma 5.2.1 gives an –L > 0 such that

L
+

g Ø –L

3⁄

Rd

g(x, u) du

4
{|v|Æ”L}.

Take any r > 0. Since Trf0 = ”(x0≠v0r,v0), using this shows

L
+

Trf0 Ø –L ”x0≠v0r(x) {|v|Æ”L}.

Hence, whenever s ≠ r > t0 we have

L
+

Ts≠rL
+

Trf0 Ø –L

3⁄

Rd

Ts≠rL
+

Trf0 du

4
{|v|Æ”L}

Ø –
2
L

3⁄

Rd

Ts≠r

1
”x0≠v0r(x) {|u|Æ”L}

2
du

4
{|v|Æ”L}

Ø
1

(s ≠ r)d
–

2
L {|v|Æ”L}.

Finally, for the movement along the flow Tt≠s, notice that

Tt

1
Td(x) {|v|<”L}(v)

2
= Td(x) {|v|<”L}(v) for all t Ø 0.

This means that for all t > s > r > 0 such that s ≠ r > t0 we have

Tt≠sL
+

Ts≠rL
+

Trf0 Ø
1

(s ≠ r)d
–

2
L {|v|Æ”L}.
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For any tú we have then, recalling that t0 = tú/3,
⁄ tú

0

⁄ s

0
Ttú≠sL

+
Ts≠rL

+
Trf0 dr ds Ø –

2
L {|v|Æ”L}

⁄ tú

2t0

⁄ t0

0

1
(s ≠ r)d

dr ds

Ø
t
2
0

td
ú
–

2
L {|v|Æ”L} = 1

9t
2≠d
ú –

2
L {|v|Æ”L}.

Finally, from Duhamel’s formula (5.11) we obtain

f(tú, x, v) Ø
1
9e

≠tút
2≠d
ú –

2
L {|v|Æ”L},

which gives the result.

Proof of Theorem 5.1.3 in the case of the linear relaxation Boltzmann equation. We use
Lemma 5.2.3 which allows to apply directly Doeblin’s Theorem 2.2.2 to obtain fast
exponential convergence to equilibrium in the total variation distance. This rate is also
explicitly calculable. Therefore, the proof follows.

5.2.2 On the whole space with a confining potential

Now we consider the equation

ˆtf + v · Òxf ≠ Òx�(x) · Òvf = Lf, (5.16)

where L is defined as in the previous section and x, v œ Rd. We want to use a
slightly di�erent strategy to show the minorisation condition based on the fact that we
instantaneously produce large velocities. We first need a result on the trajectories of
particles under the action of the potential �. Always assuming that � is a C

2 function,
we consider the characteristic ordinary di�erential equations associated to the transport
part of (5.16):

ẋ = v

v̇ = ≠Ò�(x),
(5.17)

and we denote by (Xt(x0, v0), Vt(x0, v0)) the solution at time t to (5.17) with initial
data

x(0) = x0,

v(0) = v0.
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Performing time integration twice, it clearly satisfies

Xt(x0, v0) = x0 + v0t +
⁄ t

0

⁄ s

0
Ò�(Xu(x0, v0)) du ds (5.18)

for any x0, v0 œ Rd and any t for which it is defined. Intuitively the idea is that for
small times we can approximate (Xt, Vt) by (X(0)

t , V
(0)

t ) which is a solution to the
ordinary di�erential equation

ẋ = v

v̇ = 0,

(5.19)

whose explicit solution is

(X(0)
t , V

(0)
t ) = (x0 + v0t, v0).

If we want to hit a point x1 in time t then if we travel with the trajectory X
(0) we just

need to choose v0 = (x1 ≠ x0)/t. Now we choose an interpolation between (X(0)
, V

(0))
and (X, V ). We denote it by (X(‘)

, V
(‘)) which is a solution to the ordinary di�erential

equation

ẋ = v

v̇ = ≠‘
2
Ò�(x),

(5.20)

still with initial data (x0, v0). We calculate that

X
(‘)
t (x0, v0) = X‘t

3
x0,

v0
‘

4
, V

(‘)
t (x0, v0) = ‘V‘t

3
x0,

v0
‘

4
.

Now we can see from the ODE representation (and we will make this more precise
later) that (X, V ) is a C

1 map of (t, ‘, x, v). Therefore if we fix t and x0 we can define
a C

1 map
F : [0, 1] ◊ Rd

æ Rd
,

by
F (‘, v) = X

(‘)
t (x0, v).

Then for ‘ = 0 we can find vú such that F (0, vú) = x1 as given above. Furthermore
ÒF (0, vú) ”= 0 so by the implicit function theorem for all ‘ less than some ‘ú we have a
C

1 function v(‘) such that F (‘, v(‘)) = x1. This means that

X‘t

A

x0,
v(‘)

‘

B

= x1.
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So if we take s < ‘út then we can choose v such that Xs(x0, v) = x1. We now need to
get quantitative estimates on ‘ú, and we do this by tracking the constants in the proof
of the contraction mapping theorem.

In order to make these ideas quantitative and to check that the solution is in fact
C

1 we need to get bounds on (Xt, Vt) and Ò�(Xt) for t is some fixed intervals. For
the potentials of interest we will have that the solutions to these ODEs will exist for
infinite time. We prove bounds on the solutions and Ò�(Xt) for any potential:

Lemma 5.2.4. Assume that the potential � is C
2 in Rd. Take ⁄ > 1, R > 0 and

x0, v0 œ Rd with |x0| Æ R. The solution t ‘æ Xt(x0, v0) to (5.17) is defined (at least)
for |t| Æ T , with

T := min

Y
]

[
(⁄ ≠ 1)R

2|v0|
,

Ò
(⁄ ≠ 1)R
Ô

2C⁄R

Z
^

\ , C⁄R := max
|x|Æ⁄R

|Ò„(x)|.

(It is understood that any term in the above minimum is +Œ if the denominator is 0.)
Also, it holds that

|Xt(x0, v0)| Æ ⁄R for |t| Æ T .

Proof. By standard ODE theory, the solution is defined in some maximal (open)
time interval I containing 0; if this maximal interval has any finite endpoint tú, then
Xt(x0, v0) has to blow up as t approaches tú. Hence if the statement is not satisfied,
there must exist t œ I with |t| Æ T such that |Xt(x0, v0)| Ø ⁄R. By continuity, one
may take t0 œ I to be the “smallest” time when this happens: that is, |t0| Æ T and

Xt0(x0, v0) = ⁄R,

|Xt0(x0, v0)| Æ ⁄R for |t| Æ |t0|.

By (5.18) and using that |t0| Æ T we have

⁄R = |Xt0(x0, v0)| Æ |x0| + |v0t0| + t
2
0
2 max{|Ò„(Xt(x0, v0))| : t Æ t0}

Æ R + (⁄ ≠ 1)R
2 + C⁄R

2 t
2
0 = (⁄ + 1)R

2 + C⁄R

2 t
2
0,

which implies that
(⁄ ≠ 1)R Æ C⁄Rt

2
0.

If C⁄R = 0 this is false; if C⁄R > 0, then this contradicts with that |t0| Æ T .
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We now follow the intuition given at the beginning of this section. However we
collapse the variables ‘ and t together and consequently look at Xt

1
x,

v
t

2
which is

intuitively less clear but algebraically simpler.

Lemma 5.2.5. Assume that � œ C
2(Rd), and take x0, x1 œ Rd. Let R := max{|x0|, |x1|}.

There exists 0 < T1 = T1(R) such that for any t Æ T1 we can find a |v0| Æ 4R such that

Xt

3
x0,

v0
t

4
= x1.

In fact, it is enough to take T1 > 0 such that

CT
2
1 e

CT 2
1 Æ

1
4 , T1 Æ

Ô
R

Ô
2C2R

, T1 Æ
2
Ô

R
Ô

C9R
,

where
C := sup

|x|Æ9R
|D

2�(x)|,

and C⁄R is defined in Lemma 5.2.4. Here D
2� denotes the Hessian matrix of �.

Proof. We define

f(t, v) = Xt

3
x0,

v

t

4
≠ x1, t ”= 0, v œ Rd,

f(0, v) := x0 + v ≠ x1, v œ Rd.

Notice that due to Lemma 5.2.4 with ⁄ = 9, this is well-defined whenever

|t| Æ
2
Ô

R
Ô

C9R
=: T2, |v| Æ 4R.

Our goal is to find a neighbourhood of t = 0 on which there exists v = v(t) with
f(t, v(t)) = 0, for which we will use the implicit function theorem.

Now, notice that we have
f(0, x1 ≠ x0) = 0

and
ˆf

ˆvi
(0, x1 ≠ x0) = 1, i = 1, . . . , d.

We can apply the implicit function theorem to find a neighbourhood I of t = 0 and a
function v = v(t) such that f(t, v(t)) = 0 for t œ I. However, since we need to estimate
the size of I and of v(t), we carry out a constructive proof.
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Take v0, v1 œ Rd with |v0|, |v1| Æ 4R, and denote

ṽ0 := v0
t

, ṽ1 := v1
t

.

By (5.18), for all 0 < t Æ T2 we have

Xt(x0, ṽ1) ≠ Xt(x0, ṽ0) = (ṽ1 ≠ ṽ0)t +
⁄ t

0

⁄ s

0
Ò„(Xu(x0, ṽ1)) ≠ Ò„(Xu(x0, ṽ0)) du ds.

(5.21)
Take any T1 Æ T2, to be fixed later. Then Lemma 5.2.4 implies, for all 0 Æ t Æ T1,

|Xt(x0, ṽ1) ≠ Xt(x0, ṽ0)| Æ |ṽ1 ≠ ṽ0|t + CT1

⁄ t

0
|Xu(x0, ṽ1) ≠ Xu(x0, ṽ0)| du.

by Gronwall’s Lemma we have

|Xt(x0, ṽ1) ≠ Xt(x0, ṽ0)| Æ |ṽ1 ≠ ṽ0|te
CT1t for 0 < t Æ T1.

Using this again in (5.21) we have

|Xt(x0, ṽ1) ≠ Xt(x0, ṽ0) ≠ (ṽ1 ≠ ṽ0)t| Æ |ṽ1 ≠ ṽ0|CT1

⁄ t

0
ue

CT1u du

Æ |ṽ1 ≠ ṽ0|t CT
2
1 e

CT 2
1 .

Taking T1 such that
CT

2
1 e

CT 2
1 Æ

1
4 (5.22)

we have
|Xt(x0, ṽ1) ≠ Xt(x0, ṽ0) ≠ (ṽ1 ≠ ṽ0)t| Æ

1
4 |ṽ1 ≠ ṽ0|t

which is the same as
----Xt

3
x0,

v1
t

4
≠ Xt

3
x0,

v0
t

4
≠ (v1 ≠ v0)

---- Æ
1
4 |v1 ≠ v0|, (5.23)

for any 0 < t Æ T1 and any v0, v1 with |v0|, |v1| Æ 4R. Now, for any 0 Æ t Æ T1 and
|v| Æ 4R we define

At(v) = v ≠ f(t, v).

A fixed point of At(v) satisfies f(t, v) = 0, and by (5.23) At(v) is contractive:

|At(v1) ≠ At(v0)| Æ
1
4 |v1 ≠ v0| for 0 Æ t Æ T1, |v| Æ 4R.
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(Equation (5.23) proves this for 0 < t Æ T1, and for t = 0 it is obvious.) In order to use
the Banach fixed-point theorem we still need to show that the image of At is inside
the set with |v| Æ 4R. Using (5.23) for v1 = 0, v0 = v we also see that

----Xt(x0, 0) ≠ Xt

3
x0,

v

t

4
+ v

---- Æ
1
4 |v|,

which gives
|At(v) + x1 ≠ Xt(x0, 0)| Æ

1
4 |v|,

so
|At(v)| Æ

1
4 |v| + |x1| + |Xt(x0, 0)| Æ 2R + |Xt(x0, 0)|. (5.24)

If we take
T1 Æ

Ô
R

Ô
2C2R

(5.25)

then Lemma 5.2.4 (used for ⁄ = 2) shows that

|Xt(x0, 0)| Æ 2R for 0 Æ t Æ T1,

and from (5.24) we have

|At(v)| Æ 4R for 0 < t Æ T1.

Hence, as long as T1 satisfies (5.22) and (5.25), At has a fixed point |v| for any
0 < t Æ T1, and this fixed point satisfies |v| Æ 4R.

Lemma 5.2.6. Assume that the potential � œ C
2(Rd) is bounded below, and let Ts

denote the transport semigroup associated to the operator f ‘æ ≠v ·Òxf +Òx�(x) ·Òvf .
Given any R > 0 there exists a time T1 > 0 such that for any 0 < s < T1 one can find
constants –, R

Õ
, R2 > 0 (depending on s and R) such that

⁄

B(RÕ)
Ts(”x0 {|v|ÆR2}) dv Ø – {|x|ÆR}, (5.26)

for any x0 with |x0| Æ R. The constants –, R
Õ
, R2 are uniformly bounded in bounded

intervals of time; that is, for any closed interval J ™ (0, T1) one can find –, R
Õ
, R2 for

which the inequality holds for all s œ J .

Proof. Since the statement is invariant if � changes by an additive constant, we may
assume that � Ø 0 for simplicity. Using Lemma 5.2.5 we find T1 such that for any
s < T1 and every x1 œ B(R) there exists v œ B(4R) (depending on x0, x1 and s) such
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that
Xs

3
x0,

v

s

4
= x1.

Since v/s œ B(4R/s), call R2 := 4R/s. We see that for every x1 œ B(0, R) there is at
least one u œ Rd such that

(x1, u) œ Ts ({x0} ◊ {|v| Æ R2}) .

In other words,
Xs(x0, {|v| Æ R2}) ´ B(0, R). (5.27)

This essentially contains our result, and we just need to carry out a technical argument
to complete it and estimate the constants – and R

Õ. For any compactly supported,
continuous and positive Ï : Rd

æ R we have
⁄

Rd

Ï(x)
⁄

B(RÕ)
Ts(”x0 {|v|ÆR2}) dv dx

=
⁄

Rd

⁄

Rd
{|Vs(x,v)|<RÕ} Ï(Xs(x, v))”x0(x) {|v|ÆR2}) dv dx

=
⁄

|v|ÆR2
{|Vs(x0,v)|<RÕ} Ï(Xs(x0, v) dv, (5.28)

since the characteristics map (x, v) ‘æ (Xs(x, v), Vs(x, v)) is measure-preserving. If we
write the energy as H(x, v) = |v|

2
/2 + �(x) and call

E0 := sup{H(x, v) : |x| < R, |v| < R2}.

Then for all s Ø 0
E(Xs(x0, v), Vs(x0, v)) Æ E0,

and in particular
|Vs(x0, v)| Æ

Ò
2E0.

If we take R
Õ
>

Ô
2E0 then the term {|Vs(x0,v)|<RÕ} is always 1 in (5.28) and we get

⁄

Rd

Ï(x)
⁄

B(RÕ)
Ts(”x0 {|v|ÆR2}) dv dx =

⁄

|v|ÆR2
Ï(Xs(x0, v)) dv.
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Now, take an M > 0 such that | Jacv Xs(x, v)| Æ M for all (x, v) with |x| Æ R and
|v| Æ R2. (Notice that M depends only on �, R and R2.) Then

⁄

|v|ÆR2
Ï(Xs(x0, v)) dv Ø

1
M

⁄

|v|ÆR2
Ï(Xs(x0, v))| Jacv Xs(x0, v)| dv

= 1
M

⁄

Xs(x0,{|v|ÆR2})
Ï(x) dx Ø

1
M

⁄

B(0,4R)
Ï(x) dx,

where we have used (5.27) in the last step. In sum we find that
⁄

Rd

Ï(x)
⁄

Rd

Ts(”x0 {|v|ÆR2}) dv dx Ø
1

M

⁄

B(0,R)
Ï(x) dx

for all compactly supported, continuous and positive functions Ï. This directly implies
the result.

Lemma 5.2.7 (Doeblin condition for linear relaxation Boltzmann equation with a
confining potential). Let the potential � : Rd

æ R be a C
2 function with compact

level sets. Given t > 0 and K > 0 there exist constants –, ”X , ”V > 0 such that any
solution f to equation (5.16) with initial condition f0 œ P(Rd

◊ Rd) supported on
B(0, K) ◊ B(0, K) satisfies

f(t, x, v) Ø – {|x|<”X} {|v|<”V }

in the sense of measures.

Proof. Fix any t, K > 0. Set

Hmax(K) = max
Ó
H(x, v) = |v|

2
/2 + �(x) : x œ B(0, K), v œ B(0, K)

Ô
,

and then define
R := max {|x| : �(x) Æ Hmax(K)} .

Since our conditions on � imply that its level sets are compact we know that R is
finite. We use Lemma 5.2.6 to find constants –, R2 > 0 and an interval [a, b] ™ (0, t)
such that ⁄

Rd

Ts(”x0 {|v|ÆR2}) dv Ø – {|x|ÆR},

for any x0 with |x0| Æ R and any s œ [a, b]. From Lemma 5.2.1 we will use that there
exists a constant –L > 0 such that

L
+

g(x, v) Ø –L

3⁄

Rd

g(x, u) du

4
{|v|ÆR2} (5.29)
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for all nonnegative measures g. We first notice that we can do the same estimate as in
formula (5.11), where now (Tt)tØ0 represents the semigroup generated by the operator
≠v · Òxf + Òx�(x) · Òvf ; thus

e
t
ft Ø

⁄ t

0

⁄ s

0
Tt≠sL

+
Ts≠rL

+
Trf0 dr ds. (5.30)

Take x0, v0 œ B(0, K), and call f0 := ”(x0,v0). For all r we have by the definition of R

that
|Xr(x0, v0)| Æ R for all 0 Æ r. (5.31)

For any r > 0, since Trf0 = ”(Xr(x0,v0),Vr(x0,v0)), using (5.12) gives

L
+

Trf0 Ø –L”Xr(x0,v0)(x) {|v|ÆR2}.

Then, using (5.31) and our two lemmas, whenever s ≠ r œ [a, b] we have

L
+

Ts≠rL
+

Trf0 Ø –L

3⁄

Rd

Ts≠rL
+

Trf0 du

4
{|v|ÆR2}

Ø –
2
L

3⁄

Rd

Ts≠r

3
”Xr(x0,v0)(x) {|u|ÆR2}

4
du

4
{|v|ÆR2}

Ø –
2
L– {|x|ÆR} {|v|ÆR2}.

We now need to allow for a final bit of movement along the flow Tt≠s. By the continuity
of the flow, there exist ‘ > 0 su�ciently small so that for all 0 Æ · Æ ‘ we have

T·

3
B(R)(x) B(R2)(v)

4
Ø B(R/2)(x) B(R2/2)(v).

Then for all t, s, r such that t ≠ s Æ ‘ and s ≠ r œ (a, b) we have

Tt≠sL
+

Ts≠rL
+

Trf0 Ø –
2
L– {|x|ÆR/2} {|v|ÆR2/2}.

We have then
⁄ t

0

⁄ s

0
Tt≠sL

+
Ts≠rL

+
Trf0 dr ds Ø –

2
L–

⁄ t

t≠‘

⁄ s≠a

s≠b
{|x|ÆR/2} {|v|ÆR2/2} dr ds

= –
2
L–‘(b ≠ a) {|x|ÆR/2} {|v|ÆR2/2}.

Finally, from Duhamel’s formula (5.30) we obtain

f(t, x, v) Ø e
≠t

–
2
L–‘(b ≠ a) {|x|ÆR/2} {|v|ÆR2/2},
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which gives the result.

Lemma 5.2.8 (Lyapunov condition). Suppose that �(x) is a C
2 function satisfying

x · Ò�(x) Ø “1|x|
2 + “2�(x) ≠ A

for positive constants “1 “2, A. Then we have that

V (x, v) = 1 + �(x) + 1
2 |v|

2 + 1
4x · v + 1

8 |x|
2

is a function for which the semigroup satisfies Hypothesis 2.2.2.

Remark 5.2.1. If � is superquadratic at infinity (which is implied by earlier assump-
tions) then V is equivalent to 1 + H(x, v) where the energy is defined as H(x, v) =
|v|

2
/2 + �(x). So the total variation distance weighted by V is equivalent to the total

variation distance weighted by 1 + H(x, v).

Proof. We look at the forwards operator acting on an observable „,

U„ = v · Òx„ ≠ Òx�(x) · Òv„ + L
ú
„ =: T

ú
„ + L

ú
„,

where L
ú is the adjoint of the linear relaxation Boltzmann operator L, given by

L
ú
„(x, v) =

⁄
„(x, u)M(u) du ≠ „(x, v).

We want a function V (x, v) such that

UV Æ ≠⁄V + K

for some constants ⁄ > 0, K Ø 0. We need to make the assumption that

x · Òx�(x) Ø “1|x|
2 + “2�(x) ≠ A, (5.32)

for some positive constants “1, “2, A. We then try the function

V (x, v) = H(x, v) + –x · v + —|x|
2 = �(x) + 1

2 |v|
2 + –x · v + —|x|

2
,

with –, — > 0 to be fixed later. We want this to be positive so we impose –
2

< 2—.
Using that

L
ú(|v|

2) = d ≠ |v|
2
, L

ú(x · v) = ≠x · v, L
ú(�(x)) = L

ú(|x|
2) = 0
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and that

T
ú(H(x, v)) = 0, T

ú(x · v) = |v|
2

≠ x · Òx�(x), T
ú(|x|

2) = 2x · v,

we see that

UV =d

2 ≠
1
2 |v|

2
≠ –x · v + –|v|

2
≠ –x · Òx�(x) + 2—x · v

ÆC
Õ
≠

31
2 ≠ –

4
|v|

2 + (2— ≠ –)x · v ≠ –“1|x|
2

≠ –“2�(x),

where we have used (5.32), and C
Õ := d

2 + –A. Now, taking – = 1/4, — = 1/8,

UV =C
Õ
≠

1
4 |v|

2
≠

“1
4 |x|

2
≠

“2
4 �(x)

ÆC
Õ
≠ min{“1, 1}

1
4(|x|

2 + |v|
2) ≠

“2
4 �(x)

ÆC
Õ
≠ min{“1, 1}

1
4

31
2 |v|

2 + 1
4x · v + 1

8 |x|
2
4

≠
“2
4 �(x).

So V (x, v) works with
⁄ = 1

4 min{“1, “2, 1}.

Proof of Theorem 5.1.4 in the case of the linear relaxation Boltzmann equation. We give
the proof by applying Harris’s Theorem since Lemmas 5.2.7 and 5.2.8 show that the
equation satisfies the hypotheses of the theorem.

5.2.3 Subgeometric convergence

When we do not have the superquadratic behaviour of the confining potential at
infinity we can still use a Harris type theorem to show convergence to equilibrium.
However since the confining potential is weaker we can only obtain subgeometric rates
of convergence. We use the subgeometric Harris’s Theorem given in Section 2.2.3
of Chapter 2 which can be found in Section 4 of [69]. Now instead of our earlier
assumption on the confining potential �, we instead make a weaker assumption that �
is a C

2 function satisfying

x · Òx�(x) Ø “1ÈxÍ
2— + “2�(x) ≠ A,

for some positive constant “1, “2, A where

ÈxÍ =
Ò

1 + |x|2,
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and — œ (0, 1).

Proof of Theorem 5.1.5 in the case of the linear relaxation Boltzmann equation. We have
already proved the minorisation condition. We can also replicate the calculations for
the Lyapunov function to get that in this new situation, take the V in Lemma 5.2.8,
we have that

UV Æ C
Õ
≠

1
4 |v|

2
≠

“1
4 ÈxÍ

2—
≠

“2
4 �(x).

for Since x, y Ø 1
(x + y)—

Æ x
— + y

—
.

We obtain

UV ÆC
Õ
≠ min{“1, 1}

1
4

1
ÈvÍ

2 + ÈxÍ
2—

2
≠

“2
4 �(x)

ÆC
ÕÕ

≠ min{“1, 1}
1
4

1
1 + |x|

2 + |v|
2
2—

≠
“2
4 �(x)—

ÆC
ÕÕ

≠ ⁄

3
1 + 1

2 |v|
2 + 1

4x · v + 1
8 |x|

2
4—

≠ ⁄�(x)—

ÆC
ÕÕ

≠ ⁄

3
�(x) + 1

2 |v|
2 + 1

4x · v + 1
8 |x|

2
4—

,

for some constant ⁄, C
ÕÕ

> 0 that can be explicitly computed, so we have that

UV Æ ≠⁄V
— + C

ÕÕ
.

This means we can take „(s) = 1 + s
—. Therefore, for u large

H„(u) =
⁄ u

1

1
1 + t—

dt ≥ 1 + u
1≠—

,

and for t large
H

≠1
„ (t) ≥ 1 + t

1/(1≠—)

and
„ ¶ H

≠1
„ (t) ≥ (1 + t)—/(1≠—)

.
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5.3 The linear Boltzmann equation
We recall that the linear Boltzmann equation is given by

ˆtf + v · Òxf ≠ (Òx� · Òvf) = Q(f, M),

where � is a C
2 potential and M(v) := (2fi)≠d/2 exp(≠|v|

2
/2), and Q is the Boltzmann

operator and B is the collision kernel. We also consider the same equation posed for
x œ Td, v œ Rd, without any potential �:

ˆtf + v · Òxf = Q(f, M).

This equation models gas particles interacting with a backgroundmedium which is
already in equilibrium. Moreover, it has been used in describing many other systems
like radiative transfer, neutron transportation, cometary flow and dust particles. The
spatially homogeneous case has been studied in [76, 21, 30]. The kinetic equations
(5.7) or (5.6) fit into the general framework in [87, 53], so convergence to equilibrium
in weighted L

2 norms may be proved by using the techniques described there. Here
the interest is partly that this is a more complex and physically relevant operator.
Also, it presents less globally uniform behaviour in v which means that we have to
use a Lyapunov function even on the torus. Apart from this, the strategy is very
similar to that from the linear relaxation Boltzmann equation. The full Boltzmann
equation has been studied as a Markov process in [60], the linear case is similar and
more simple. It is well known that this equation preserves positivity and mass, which
follows from standard techniques both in the spatially homogeneous case and the case
with transport. The Lyapunov condition on the torus and the bound below on the
jump operator have to be verified in this situation.

When we consider the situation where the spatial variable is in Rd and we have a
confining potential; in the hard sphere case (“ > 0), the operator L

+ acting on x · v

produces error terms which are di�cult to deal with. We show that when we have hard
spheres with “ > 0 we can still show exponential convergence when �(x) is growing at
least as fast as |x|

“+2. In the subgeometric case we suppose �(x) grows at least as fast
as |x|

‘+1
, ‘ > 0.

We begin by proving lemmas which are useful for proving the Doeblin condition
in both situations. We want to reduce to a similar situation to the linear relaxation
Boltzmann equation.
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Lemma 5.3.1. Let f be a solution to (1.24) or (1.26), and define the energy H(x, v) :=
|v|

2
/2 on the torus for (1.24) or H(x, v) := �(x) + |v|

2
/2 in the whole space for (1.26),

where � is a C
2 potential bounded below. Take E0 > 0 and assume that f has initial

condition f0 = ”(x0,v0) with
H(x0, v0) Æ E0.

Then there exists a constant C1 > 0 such that

f(t, x, v) Ø e
≠tC1

⁄ t

0

⁄ s

0
Tt≠s

ÂL+
Ts≠r

ÂL+
Tr( Ef0(x, v)) dr ds,

where
ÂL+

g := EL
+

g, E :=
Ó
(x, v) œ Rd

◊ Rd : H(x, v) Æ E0
Ô

.

Proof. Let (Xt(x, v), Vt(x, v)) be the solution to the backward characteristic equations
obtained from the transport part of either (1.24) or (1.26). Let us call

�(s, t, x, v) = e

s
t

s
Ÿ(Vr(x,v)) dr

.

By Duhamel’s formula again we obtain

f(t, x, v) = �(0, t, x, v)Ttf0 +
⁄ t

0
�(0, t ≠ s, x, v)(Tt≠sL

+
fs)(x, v) ds

If a function g = g(x, v) has support on the set

E := {(x, v) : H(x, v) Æ E0},

then the same is true of Ttg (since the transport part preserves energy). On the set E

we have, using (5.3),
⁄ t

s
Ÿ(Vr(x, v)) dr Æ (t ≠ s)C (1 + 2E0)“/2 =: (t ≠ s)C1, for all(x, v) œ E.

Hence,

f(t, x, v) Ø �(0, t, x, v)Tt( Ef0) +
⁄ t

0
�(0, t ≠ s, x, v)(Tt≠s( EL

+
fs))(x, v) ds

Ø e
≠tC1Tt( Ef0) +

⁄ t

0
e

≠(t≠s)C1(Tt≠s( EL
+

fs))(x, v) ds

= e
≠tC1Ttf0 +

⁄ t

0
e

≠(t≠s)C1(Tt≠s( ÂL+
fs))(x, v) ds,
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where we define
ÂL+

g := EL
+

g.

Iterating this formula we obtain the result.

We have that

L
+

f =
⁄

Rd

⁄

Sd≠1
b

A
v ≠ vú

|v ≠ vú|
· ‡

B

|v ≠ vú|
“
f(vÕ)M(vÕ

ú) d‡ dvú.

Using the Carleman representation we rewrite this as

L
+

f =
⁄

Rd

f(vÕ)
|v ≠ vÕ|d≠1

⁄

E(v,vÕ)
B(|u|, ›)M(vÕ

ú) dv
Õ
ú dv,

where E(v,vÕ) denotes the hyperplane
Ó
v

Õ
ú œ Rd

| (v ≠ v
Õ) · (v ≠ v

Õ
ú) = 0

Ô
, and the integral

in v
Õ
ú is understood to be with respect to (n≠1)-dimensional measure on this hyperplane.

We want to bound this in the manner of Lemma 5.2.1 from the first part. We consider
hard spheres and no angular dependence, which means

B(|u|, ›) = C|u|
“
›

d≠2

with “ Ø 0. We also have that

› = |v ≠ v
Õ
|

|2v ≠ vÕ ≠ vÕ
ú|

, |u| = |2v ≠ v
Õ
≠ v

Õ
ú|.

So we have that

L
+

f =
⁄

Rd

f(vÕ)
|v ≠ vÕ|

⁄

E(v,vÕ)
|2v ≠ v

Õ
≠ v

Õ
ú|

“≠d≠2
M(vÕ

ú) dv
Õ
ú dv

Õ
.

Using this we can give the following lower bound of L
+, which the reader can compare

with the Lemma 5.2.1:

Lemma 5.3.2. Consider the positive part L
+ of the linear Boltzmann operator for

hard spheres, assuming (5.1) with “ Ø 0, and (5.2). For all RL, rL > 0, there exists
– > 0 such that for all g œ P we have

L
+

g(v) Ø –

⁄

B(RL)
g(u) du for all v œ Rd with |v| Æ rL.
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Proof. First we note that on E(v,vÕ) we have

|2v ≠ v
Õ
≠ v

Õ
ú|

≠d≠2
Ø Cd exp

3
≠

1
2 |v ≠ v

Õ
ú|

2
≠

1
2 |v ≠ v

Õ
|
2
4

.

Then since “ Ø 0 we have

|2v ≠ v
Õ
≠ v

Õ
ú|

“ =
1
|v ≠ v

Õ
|
2 + |v ≠ v

Õ
ú|

2
2“/2

Ø |v ≠ v
Õ
ú|

“
.

So this means that
⁄

E(v,vÕ)
|2v ≠ v

Õ
≠v

Õ
ú|

“≠d≠2
M(vÕ

ú) dv
Õ
ú

Ø Ce
≠|v≠vÕ|2/2

⁄

E(v,vÕ)
|v ≠ v

Õ
ú|

“ exp
3

≠
1
2 |v ≠ v

Õ
ú|

2
≠

1
2 |v

Õ
ú|

2
4

dv
Õ
ú

Ø Ce
≠|v≠vÕ|2/2≠|v|2/2

⁄

E(v,vÕ)
|v ≠ v

Õ
ú|

“
e

≠|v≠vÕ
ú|2 dv

Õ
ú

= C
Õ
e

≠|v≠vÕ|2/2≠|v|2/2
.

So we have that

L
+

f(v) Ø C

⁄

Rd

f(vÕ)|v ≠ v
Õ
|
≠1

e
≠|v≠vÕ|2/2≠|v|2/2 dv

Õ

Ø C

⁄

Rd

f(vÕ)e≠2|vÕ|2≠3|v|2

Ø Ce
≠2R2

Le
≠3|v|2

⁄

B(0,RL)
f(vÕ) dv

Õ
,

which is a similar bound to the one we found in Lemma 5.2.1. This gives the result by
choosing – := C exp(≠2R

2
L ≠ 3|rL|

2).

5.3.1 On the torus

Now we consider the spatial variable on the torus. For the minorisation condition we
can argue almost exactly as for the linear relaxation Boltzmann equation.

Lemma 5.3.3 (Doeblin condition). Assume (5.1) with “ Ø 0, and (5.2). Given tú > 0
and R > 0 there exist constants 0 < – < 1, ”L > 0 such that any solution f = f(t, x, v)
to the linear Boltzmann equation (1.24) on the torus with initial condition f0 = ”(x0,v0)

with |v0| Æ R satisfies
f(tú, x, v) Ø – {|v|Æ”L}

in the sense of measures.



144 Hypocoercivity of linear kinetic equations

Proof. Take f0 := ”(x0,v0), where (x0, v0) œ Td
◊ Rd is an arbitrary point with |v0| Æ R.

From Lemma 5.2.2 (with R >
Ô

d and t0 := tú/3) we will use that there exist ”L, R
Õ
> 0

such that
⁄

B(RÕ)
Tt

3
”x0(x) {|v|Æ”L}

4
dv Ø

1
td

for all x0 œ Td, t > t0. (5.33)

Also, Lemma 5.3.2 gives an – > 0 such that

L
+

g Ø –

A⁄

B(RL)
g(x, u) du

B

{|v|Æ”L}, (5.34)

where RL := max{R
Õ
, R}. Finally, from Lemma 5.3.1 we can find C1 > 0 (depending

on R) such that

f(t, x, v) Ø e
≠tC1

⁄ t

0

⁄ s

0
Tt≠s

ÂL+
Ts≠r

ÂL+
Tr( E”(x0,v0)) dr ds,

where E is the set of points with energy less than E0, with

E0 := max
I

R
2

2 ,
”

2
L

2

J

,

and we recall that ÂL+
f := EL

+
f . Due to the choice of E0, we see that equation

(5.33) also holds with ÂL+ in the place of L
+. One can then carry out the same proof

as in Lemma 5.2.3, using estimates (5.33) and (5.34) instead of the corresponding ones
there.

Since our Doeblin condition holds only on sets which are bounded in |v|, we do
need a Lyapunov functional in this case (as opposed to the linear relaxation Boltzmann
equation, where Lemma 5.2.3 gives lower bound for all starting conditions (x, v)).
Testing with V = v

2 involves proving a result similar to the moment control result
from [21]. Instead of the ‡ representation we use the n-representation for the collisions:

v
Õ = v ≠ n(u · n), v

Õ
ú = vú + n(u · n).

By our earlier assumption, the collision kernel can be written as

B̃(|v ≠ vú|, |›|) = |v ≠ vú|
“
b̃(|›|),
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where
› := u · n

|u|
, u := v ≠ vú.

Here the B̃, b̃ are di�erent from those in the ‡ representation because of the change of
variables. We also have by assumption that b̃ is normalised, that is,

⁄

Sd

b̃(|w · n|) dn = 1

for all unit vectors w œ Sd≠1.

Lemma 5.3.4. The function V (x, v) = |v|
2 is a Lyapunov function for the linear

Boltzmann equation on the torus in the sense that it is a function for which the
associated semigroup satisfies Hypothesis 2.2.2.

Proof. Let L be the linear Boltzmann operator. Using the weak formulation of L we
have

⁄

Rd

L(f)|v|
2 dv =

⁄

Rd

⁄

Rd

⁄

Sd≠1
f(v)M(vú)|v ≠ vú|

“
b̃(|›|)(|vÕ

|
2

≠ |v|
2) dn dv dvú.

In other words,

L
ú(|v|

2) =
⁄

Rd

⁄

Sd≠1
M(vú)|v ≠ vú|

“
b̃(|›|)(|vÕ

|
2

≠ |v|
2) dn dvú.

We are going to prove the Lyapunov condition by showing that
⁄

Rd

⁄

Rd

(L(f) + T (f))|v|
2 dx dv Æ ≠⁄

⁄

Rd

⁄

Rd

f |v|
2 dx dv + K

⁄

Rd

⁄

Rd

f dx dv,

where T f = ≠vÒxf is the transport operator. The transport part plays no role, since
⁄

Rd

⁄

Rd

T (f)|v|
2 dx dv = 0.

For the collisional part, we notice that

|v
Õ
|
2

≠ |v|
2 = |vú|

2
≠ |v

Õ
ú|

2 = ≠(u · n)2
≠ 2(vú · n)(u · n)

= ≠|u|
2
›

2
≠ 2(vú · n)(v · n) + 2(vú · n)2

= ≠|v|
2
›

2
≠ |vú|

2
›

2 + 2v · vú›
2

≠ 2(vú · n)(v · n) + 2(vú · n)2
.
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Note that the first term is negative and quadratic in v, and the rest of the terms are of
lower order in v. Hence, calling “b :=

s
Sd≠1 ›

2
b̃(|›|) d› we have

⁄

Rd

L(f)|v|
2 dv = ≠ “b

⁄

Rd

|v|
2
f(v)

⁄

Rd

M(vú)|v ≠ vú|
“ dvú dv

≠ “b

⁄

Rd

f(v)
⁄

Rd

|vú|
2
M(vú)|v ≠ vú|

“ dvú dv

+ 2“b

⁄

Rd

vf(v)
⁄

Rd

vúM(vú)|v ≠ vú|
“ dvú dv

≠ 2
⁄

Sd≠1

⁄

Rd

(v · n)f(v)
⁄

Rd

(vú · n)M(vú)|v ≠ vú|
“ dvú dv dn

+
⁄

Sd≠1

⁄

Rd

f(v)
⁄

Rd

(vú · n)2
M(vú)|v ≠ vú|

“ dvú dv dn

Æ ≠ “b

⁄

Rd

|v|
2
f(v)

⁄

Rd

M(vú)|v ≠ vú|
“ dvú dv

+ (2 + “b)
⁄

Rd

|v|f(v)
⁄

Rd

|vú|M(vú)|v ≠ vú|
“ dvú dv

+
⁄

Rd

f(v)
⁄

Rd

|vú|
2
M(vú)|v ≠ vú|

“ dvú dv.

We can now use the following bound, which holds for all k Ø 0 and some constants
0 < Ak Æ Ck depending on k:

Ak(1 + |v|
“) Æ

⁄

Rd

|vú|
k
M(vú)|v ≠ vú|

“ dvú Æ Ck(1 + |v|
“), v œ Rd

.

Choosing ‘ > 0 we get
⁄

Rd

L(f)|v|
2 dv Æ ≠ A0“b

⁄

Rd

|v|
2(1 + |v|

“)f(v) dv + C1(2 + “b)
⁄

Rd

|v|(1 + |v|
“)f(v) dv

+ C2

⁄

Rd

(1 + |v|
“)f(v) dv

Æ

⁄

Rd

3
C2 + C1

‘

3
1 + “b

2

44
(1 + |v|

“) f(v) dv

≠

3
A0“b ≠ ‘C1

3
1 + “b

2

44 ⁄

Rd

|v|
2(1 + |v|

“)f(v) dv

Æ

⁄

Rd

3
C2 + C1

‘

3
1 + “b

2

4
+

3
‘C1

3
1 + “b

2

4
≠ A0“b

4
|v|

2
4

(1 + |v|
“)f(v) dv

≠

3
A0“b ≠ ‘C1

3
1 + “b

2

44 ⁄

Rd

|v|
2
f(v) dv

Æ–1

⁄

Rd

f(v) dv ≠ –2

⁄

Rd

|v|
2
f(v) dv.
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Here we choose ‘ su�ciently small to make the constant in front of the second moment
negative. This also means that

3
C2 + C1

‘

3
1 + “b

2

4
+

3
‘C1

3
1 + “b

2

4
≠ A0“b

4
|v|

2
4

(1 + |v|
“)

is bounded above. These things together give that
⁄

Rd

⁄

Rd

(L(f) + T (f))|v|
2 dx dv Æ ≠–2

⁄

Rd

⁄

Rd

|v|
2
f(v) dx dv + –1

⁄

Rd

⁄

Rd

f ú v dx dv,

which finishes the proof.

Proof of Theorem 5.1.3 in the case of the linear Boltzmann equation. We have the Doe-
blin condition from Lemma 5.3.3 and the Lyapunov structure from Lemma 5.3.4.
Therefore Harris’s Theorem gives the result.

5.3.2 On the whole space with a confining potential

Now we consider the spatial variable on the whole space with a confining potential. As
we stated earlier, we cannot verify the Lyapunov condition in the hard spheres case.
However, the proof for the Doeblin’s condition is the same as in the hard sphere or
Maxwell molecule case. We need to combine the Lemmas 5.2.6, 5.3.1 and 5.3.2.

Lemma 5.3.5. Let the potential � : Rd
æ R be a C

2 function with compact level sets.
Given t > 0 and K > 0 there exist constants –, ”X , ”V > 0 such that for any (x0, v0)
with |x0|, |v0| < K the solution f to (1.26) with initial data ”(x0,v0) satisfies

ft Ø – {|x|Æ”X} {|v|Æ”V }.

Proof. We fix R > 0 as in Lemma 5.2.7. We use Lemma 5.2.6 to find constants
–, R2, R

Õ
> 0 and an interval [a, b] ™ (0, t) such that

⁄

B(RÕ)
Ts(”x0 {|v|ÆR2}) dv Ø – {|x|ÆR},

for any x0 with |x0| Æ R and any s œ [a, b]. From Lemma 5.3.2 we will use that there
exists a constant –L > 0 such that

L
+

g(x, v) Ø –L

3⁄

RL

g(x, u) du

4
{|v|ÆR2} (5.35)
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for all nonnegative measures g, where RL := max{R, R
Õ
}. From Lemma 5.3.1 we can

find C1 > 0 (depending on R) such that

f(t, x, v) Ø e
≠tC1

⁄ t

0

⁄ s

0
Tt≠s

ÂL+
Ts≠r

ÂL+
Tr( E”(x0,v0)) dr ds,

where E is the set of points where the energy is less than E0, with

E0 := max {H(x, v) : |x| Æ R, |v| Æ max{RL, R2}} ,

and we recall that ÂL+
f := EL

+
f . These three estimates allow us to carry out a proof

which is completely analogous to that of Lemma 5.2.7; notice that the only di�erence
is the appearance of R

Õ here, and the need to use ÂL+ (which still satisfies a bound of
the same type).

Now we need to find a Lyapunov functional. As before we will look at V of the
form

V (x, v) = �(x) + 1
2 |v|

2 + –x · v + —|x|
2
,

for some –, — > 0. In this case we need a stronger bound for �(x); as stated in the
following;

Lemma 5.3.6. Assume that for some positive constants “1, “2, A we have,

x · Òx�(x) Ø “1ÈxÍ
“+2 + “2�(x) ≠ A,

where “ is the exponent in (5.1). We can find –, — such that

V (x, v) = �(x) + 1
2 |v|

2 + –x · v + —|x|
2

is a function for which the semigroup associated to (1.26) satisfies Hypothesis 2.2.2.

Proof. We are going to show that, for an appropriate choice of –, — it holds that

(T ú + L
ú)(V ) Æ ≠⁄V + K,

for some ⁄, K > 0, where L
ú is the dual of the Boltzmann collision operator, and

T
ú
f = v · Òxf ≠ Òx� · Òvf (the dual of the transport operator, which has the same

expression as -T ). This will show Hypotheses 2.2.2. We first look at how the collision
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operator acts on the di�erent terms
⁄

Rd

L(f)|v|
2 dv =

⁄

Rd

⁄

Rd

⁄

Sd≠1
M(vú)b̃(|›|)|v ≠ vú|

“
f(v)

1
|v

Õ
|
2

≠ |v|
2
2

dn dv dvú.

Repeating the same calculation as in the proof of Lemma 5.3.4 in this case, we see that
⁄

Rd

L(f)|v|
2dv Æ ≠–1

⁄

Rd

ÈvÍ
“+2

f(v)dv + –2

⁄

Rd

f(v)dv.

That is,
L

ú(|v|
2) Æ ≠–1ÈvÍ

“+2 + –2. (5.36)

Similarly we have
⁄

Rd

L(f)x · v dv =
⁄

Rd

⁄

Rd

⁄

Sd≠1
f(v)M(vú)b̃(|›|)|v ≠ vú|

“ (vÕ
· x ≠ v · x) dn dv dvú.

We can see that
v

Õ
· x ≠ v · x = (v · n)(x · n) ≠ (vú · n)(x · n).

Integrating this gives that
⁄

Rd

L(f)x · v dv =
⁄

Rd

⁄

Rd

⁄

Sd≠1
f(v)M(vú)b̃(|›|)|v ≠ vú|

“(v · n)(x · n) dvú dv dn

Æ

⁄

Rd

f(v)ÈvÍ
“+1

|x| dv,

which is equivalent to
L

ú(x · v) Æ ÈvÍ
“+1

|x|. (5.37)

Now we look at the e�ect of T
ú; notice that

V (x, v) = �(x) + |v|
2
/2 + –x · v + —|x|

2 = H(x, v) + –x · v + —|x|
2
,

where H(x, v) denotes the energy. We have

T
ú(H(x, v)) = 0, T

ú(|x|
2) = 2x · v, T

ú(x · v) = |v|
2

≠ x · Òx�(x)

Using this together with (5.36) and (5.37) we have

(Lú + T
ú)(V ) Æ ≠

–1
2 ÈvÍ

“+2 + –2
2 + –ÈvÍ

“+1
|x| + –|v|

2
≠ –x · Òx�(x) + 2—x · v

Æ

3
– ≠

–1
2

4
ÈvÍ

“+2 + (– + 2—)|x|ÈvÍ
“+1

≠ –“1ÈxÍ
“+2

≠ –“2�(x) + –2
2 + –A.
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Setting — = –, – Æ –1/4, and using Young’s inequality AB Æ
1
pA

p + 1
q B

q on
(|x|/‘) (ÈvÍ

“+1
‘) with p = (“ + 2)/(“ + 1) and q = “ + 2, we get

(Lú + T
ú)(V (x, v)) Æ

A

≠
–1
4 + 3‘

“+2
“+1

“ + 1
“ + 2

B

ÈvÍ
“+2 +

A
3–

“+2

(“ + 2)
1

‘“+2 ≠ –“1

B

ÈxÍ
“+2

≠ –“2�(x) + –2
2 + –A.

Now we can choose ‘ small enough so that the ÈvÍ
“+2 term is negative and then for

this ‘ choose – small enough so that the ÈxÍ
“+2 term is negative (since “ + 2 Ø 1).

Then, since ÈzÍ
“+2 grows faster than |z|

2 at infinity this gives

(Lú + T
ú)(V (x, v)) Æ ≠⁄1(|x|

2 + |v|
2) ≠ ⁄2�(x) + K.

Then using equivalence between the quadratic forms

|x|
2 + |v|

2 and 1
2 |v|

2 + –x · v + –|x|
2
,

when – < 1/2 we obtain the result.

Proof of Theorem 5.1.4 in the case of the linear Boltzmann equation. We have the mi-
norisation condition in Lemma 5.3.5 and the Lyapunov condition from Lemma 5.3.6.
Therefore we can apply Harris’s Theorem.

5.3.3 Subgeometric convergence

As with the linear relaxation Boltzmann equation, the minorisation results in Lemma
5.3.5 holds for � which are not su�ciently confining to prove the Lyapunov structure.
However in this situation we can still prove subgeometric rates of convergence. Here in
order to find a Lyapunov functional we need to be more precise about how L acts on
the x · v moment.

We need �(x) to provide a stronger confinement if we consider hard potentials. We
want

x · Òx�(x) Ø “1ÈxÍ
1+” + “2�(x) ≠ A, �(x) Æ “3ÈxÍ

1+” (5.38)

for some “1, “2, “3.” > 0. Then we have
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Lemma 5.3.7. Assume that � is a C
2 potential satisfying (5.38). Then there exist

some –, — > 0 with 4–
2

< — such that the function

V (x, v) = �(x) + 1
2 |v|

2 + –x · v

ÈxÍ
+ —ÈxÍ

satisfies
U(V ) Æ ≠⁄V

”/(1+”) + K,

for some positive constants ⁄, K.

Remark 5.3.1. Notice that

V (x, v) Ø �(x) + 1
4 |v|

2 + (— ≠ 4–
2)ÈxÍ,

so that the sub level sets of V are bounded.

Proof. Using (5.36), (5.37) and that

T
ú(H(x, v)) = 0, T

ú(ÈxÍ) = x · v

ÈxÍ
, T

ú
A

x · v

ÈxÍ

B

= |v|
2

ÈxÍ
≠

(x · v)2

ÈxÍ2 ≠ Òx� ·
x

ÈxÍ
,

we have the following

(Lú + T
ú)(V (x, v)) Æ ≠–1ÈvÍ

“+2 + –2 + –ÈvÍ
“+1 + –|v|

2
≠

–x · Òx�(x)
ÈxÍ

+ —x · v

ÈxÍ
.

Using (5.38), x · v

ÈxÍ
Æ ÈvÍ Æ ÈvÍ

2+“ and �(x)”/(1+”)
Æ “

”/(1+”)
3 ÈxÍ

” we get

(Lú + T
ú)(V (x, v))

Æ (2– ≠ –1 + —)ÈvÍ
“+2

≠ –“1ÈxÍ
”

≠ –“2
�(x)
ÈxÍ

+ –2 + –A

Æ ⁄1
1
≠|v|

2
≠ ÈxÍ

”
≠ �(x)”/(1+”) + C

2
Æ ⁄V (x, v)”/(1+”) + K,

for some ⁄1, K > 0. To make the last two inequalities valid we choose – and — satisfying
–1 > 2– + — and 4–

2
< — so that

V (x, v) Ø �(x) + 1
4 |v|

2 + (— ≠ 4–
2)ÈxÍ.
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Proof of Theorem 5.1.5 in the linear Boltzmann case. We have the minorisation con-
dition in Lemma 5.3.5 and the Lyapunov condition from Lemma 5.3.7. Therefore we
can apply Harris’s Theorem.

5.4 Summary and conclusion
We present explicit results for L is either equal to the linear relaxation Boltzmann (or
linear BGK) operator, and for L equal to the linear Boltzmann operator.

We obtain exponential convergence results on the d-dimensional torus, or with
confining potentials growing at least quadratically at Œ, in total variation or weighted
total variation norms (alternatively, L

1 or weighted L
1 norms). For subquadratic

potentials we give algebraic convergence rates, again in the same kind of weighted L
1

norms. Some results were already available for these equations [34, 87, 53, 72, 58].
Previous proofs of convergence to equilibrium relied strongly on weighted L

2 norms
(typically with a weight which is the inverse of a Gaussian). One of the advantages
of Harris’s Theorem is that it directly provides convergence for a much wider range
of initial conditions. In particular, the method works for initial conditions with
slow decaying tails, and for measure initial conditions with very bad local regularity.
Particularly it is only needed for an initial data f0 to be a probability measure where
Îf0 ≠ µÎ is finite. Moreover, the theorem gives existence of stationary solutions under
quite general conditions; in some cases these are explicit and easy to find, but in other
cases they can be nontrivial. Another advantage of this method is that the condition on
the moments used here might be much easier to verify in the case where the equilibrium
state cannot be made explicit. This is the motivation behind [11, 43].

We also note that the results in this work for subquadratic potentials are new up to
our knowledge. Apart from these new results, we aimed at presenting a new application
of a probabilistic method, using mostly PDE arguments, and which is probably useful
for a wide range of models.

Harris’s Theorem provides an alternative and very di�erent strategy for proving
quantitative exponential decay to equilibrium. By using this method we can observe
hypocoercive e�ects on the level of stochastic processes. Moreover it allows us to
produce quantitative theorems based on trajectorial intuition.

Another di�erence is that the confining behaviour is shown here by exploiting
good behaviour of moments rather than a Poincaré inequality so that we study point
wise bounds rather than integral controls on the operator. However these are often
equivalent for time reversible processes [3, 45].
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On the other hand, we can only consider Markov processes in order to use Harris’s
Theorem. Although many linear kinetic equations are Markov processes but this
excludes the study of linearized non-linear equations which are not necessarily mass
preserving.





Chapter 6

Conclusion and perspectives

alice: “Where should I go?”
the cheshire cat: “That depends on where you want to end up.”

— Lewis Carroll, Alice’s Adventures in Wonderland
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In this chapter we give a general conclusion and perspectives for some of the previous
chapters. Moreover we list some of the possible future applications and extensions in
the form of ideas and works in progress.

6.1 Conclusion
In this work, we presented some examples of how well adapted and suitable some
probabilistic techniques such as Harris’s Theorem are for studying the asymptotic
behaviour of nonlocal linear partial di�erential equations coming from modelling of
various context. Moreover, in one case we were able to obtain some results in the
weakly nonlinear case. Predicting the long time behaviour of mathematical models is
a well known modelling problem. There is a particular interest towards proving the
existence of a stationary state (unique up to scaling in many cases) and estimating
the rate of convergence to that state. We used a probabilistic approach to tackle these
type of problems. The methods we use are presented in Chapter 2 in detail. These
methods are particulary very useful for obtaining quantitative rates of relaxation to
a unique equilibrium once the hypothesis for the theorems are verified quantitatively.
Furthermore, existence of a unique steady state is also a conclusion of the theorems
and rate of convergence does not require to know explicit form of the steady state.

Although these methods are very established and well known in the probability
community, applications on partial di�erential equations has become more popular
recently and is a relatively new field of research in the PDE community. We have given
some references to earlier works in the previous chapters. We would like to add that it
is a very promising research direction.

6.2 Perspectives
Most natural prospective of this work is to use Harris’s and Doeblin’s Theorems for
obtaining convergence results for numerical schemes. It is natural because iterations
in time can be described by discrete time Markov processes for which these theorems
were first developed. Therefore it is expected to achieve convergence results similar to
the continuous time case once the assumptions are satisfied in the discrete setting.

In addition to the summary and conclusions at the end of Chapters 3 - 5, here we
will list some perspectives for each of these chapters.
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In Chapter 3, we presented exponential convergence rates for two nonlinear and
nonlocal evolution equations modelling the dynamics of interacting neuron populations.
Doeblin’s Theorem was used to prove spectral gap for the linear versions of the
equations and then a perturbation argument carry the exponential convergence rate to
the nonlinear setting. However, due to this perturbative argument the nonlinearity we
considered was weak corresponding to the case of low connectivity of the underlying
neural network. In [89] and [90], the authors provided some numerical results concerning
the oscillatory behaviour of long time solutions depending on the network connectivity.
It was shown that in some intermediate regime of the connectivity neurons will
exhibit synchronous behaviour between two equilibria. On the other hand, they
observed a unique stationary solution in the case of higher connectivities meaning full
nonlinearities. One possible extension could be trying to prove this behaviour by using
probabilistic methods. In the second model introduced in [91], there is an addition
of an integral kernel modelling the fatigue property of neurons. Another prospective
could be investigate this model numerically and check if the periodic behaviour could
be observed in this case as well. Another di�erence from the previous works is that
we did not take into account the e�ect of delay in [28]. This type of consideration
enables us to construct more realistic models for real behaviour of nuron populations.
Formulating these models in terms of delay di�erential equations and trying to achive
results on the long time behaviour of solutions is another possible extension.

In Chapter 4, we presented exponential rates of relaxation to eqilibrium for the
growth-fragmentation equation with two critical fragmentation kernels: mitosis and
constant fragmentation. Moreover we proved existence of eigenelements and some
bounds on the dual eigenfunction with considering less strong assumptions as compared
to many previous works on these type of equations. Therefore, our work includes
showing convergence results for the cases where mass conservation property may not
achieved. This implies the violation of balance conditions. One extension of this work
could be a consideration of di�erent integral kernels, possibly the one combining the
two cases we considered. We also gave some example of proving similar results for a
numerical approximation to the growth-fragmentation equation in the case of constant
growth rate and constant total division rate. Aim is to extend it to more general
consideration of these rates and complete it.

In Chapter 5, we presented quantitative convergence rates to equilibrium for the
inhomogeneous linear relaxation Boltzmann and linear Boltzmann equations either in
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the torus or on the whole space with a confining potential. We obtained exponential
convergence results in the torus and on the whole space with potentials growing at
quadratically at infinity. Moreover, apart from the techniques another innovation in
this work is providing algebraic convergence rates for weaker potentials. One prospect
could be to extend this to kinetic nonlocal di�usion equation which we could not
achieve at the moment due to having to find a clear bound from below n number
of jumps for the minorisation condition in Harris’s theorem. But we believe this
could be achieved. Another consideration is proving similar results for a numerical
approximation of these type of equations. An inspiration for this direction is a recent
work [19] where asymptotic preserving (AP) property of a finite volume scheme is
presented for some linear kinetic equations.

6.2.1 Ongoing projects

Finally, I would like to present a brief introduction to ongoing works I started working
on this year bu most likely they will not be completed during my doctoral period. The
common feature of all the models that are presented below is that we can actually
determine the long time behaviour of solutions by applying Doeblin’s or Harris’s
theorems.

On the asymptotic behaviour of the run-and-tumble model for bacteria
movement

This is a work in progress in collaboration with Josephine A. Evans at University Paris
Dauphine and Angeliki Menegaki at the University of Cambridge.

Many microorganisms like bacteria undergo a biased random walk which is called
run and tumble in response to a chemical substance. Chemotaxis is the mechanism
for the microorganisms move towards or away from chemical stimuli to find food
sources or avoid poisonous areas. The underlying biased random walk can be modelled
mathematically by a kinetic equation describing the time evolution of the density of
bacteria and it is called run and tumble model. This special movement is done by
bacteria which have propeller like structure, called flagella, helping them swim in the
substance. Bacteria move in a straight line with a velocity v when all the flagella incline
towards the same direction rotating counterclockwise and propelling bacteria. This
movement, run, followed by a random rotation, tumble, towards a direction depending
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Fig. 6.1 Run and tumble movement of a bacterium.
Counter-clockwise rotation of the flagella results in a run and the clockwise rotation of the flagella

results in a tumble.
Image: Figure 3.55 of Chapter 3, Section 3 of the book Microbiology: Canadian Edition by Wendy

Keenleyside, CC by 4.0.

on a concentration gradient of a chemical and fulfilled by the rotation of the flagella in
the clockwise direction (See Figure 6.1).

The original mathematical model is proposed in [1, 98] and given by

ˆtf(t, x, v) + v · Òxf(t, x, v) =
⁄

(T (t, x, v, v
Õ)f(t, x, v

Õ) ≠ T (t, x, v
Õ
, v)f(t, x, v)) dv

Õ
,

f(0, x, v) = f0(x, v), x œ Rd
, v œ V .

(6.1)

where f(t, x, v) Ø 0 is the density distribution of bacteria at time t Ø 0 at a position
x œ Rd moving with a velocity v œ V . We start with taking V = B(0, V0) with |V| = 1.
Bacteria change their velocity from v

Õ to v after an instantaneous tumbling event. The
tumbling frequency T is defined as

T (t, x, v, v
Õ) : = T (ˆtM(t, x) + v

Õ
· ÒxM(t, x), v, v

Õ),
T (t, x, v

Õ
, v) : = T (ˆtM(t, x) + v · ÒxM(t, x), v

Õ
, v),

where M is related to the chemoattractant concentration, S by M = m0 + log(S). The
tumbling frequency T is assumed to be decomposed as

T (t, x, v, v
Õ) = ⁄(m)K(v, v

Õ), (6.2)

https://ecampusontario.pressbooks.pub/microbio/chapter/unique-characteristics-of-prokaryotic-cells/
https://ecampusontario.pressbooks.pub/microbio/
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where ⁄ is the jump rate where m(x, v) := ˆtM(t, x) + v
Õ
· ÒxM(t, x) and K is the

conditional probability of jumping from velocity v
Õ to velocity v. Therefore

⁄
K(v, v

Õ) dv = 1.

Also we have that
⁄ : R ◊ V æ [0, Œ).

We assume that ⁄(m) increases as m æ ≠Œ. We also consider a nonlinear version of
this model by coupling it with a Poisson equation

�xS + S = fl(t, x) =
⁄

f(t, x, v) dv.

In this case we assume that S æ 0 as |x| æ Œ. Various versions of this model is
studied by many people in the past but since this is a brief introduction we will not
mention all of them here. However we remark that in a recent work [85], the authors
show global well posedness, existence, uniqueness and convergence to steady states of
(6.1) in the case where K is uniform and

⁄(m) = 1 ≠ ‰ sgn(m),

where ‰ œ (0, 1) a constant. This assumption implies some bounds on the jump rate
such that

1 ≠ ‰ Æ ⁄(x, v) Æ 1 + ‰. (6.3)

Goal of this work is to obtain converge rates in the linear case by using Harris’s
theorem and then exploring the nonlinear version of the model by making realistic
assumptions, obtaining some properties of stationary solutions and finally treating
long-time behaviour of solutions by considering perturbations similar to [28].

On the spectral gap for a biological model for genetic circuits

This is a work in progress in collaboration with José A. Cañizo at the University of
Granada and José A. Carrillo at Imperial College London.

This work is based on obtaining quantitative rates for asymptotic behaviour of a
kinetic model for genetic circuits by using Doeblin-Harris approach. Recently in [31], the
authors used entropy methods to show exponentially fast convergence to equilibrium
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with explicit models. They also provided asymptotic equilibration results for the
multidimensional case involving more than one gene through numerical simulations.
Their results are however, given in weighted L

2 norms which is natural for the methods
they use. Our aim in this work is to obtain exponential convergence rates in weighted
L

1 distances which enables us to consider wider range of initial data.
DNA molecules store the genetic code for living beings and the information encoded

in the genes need to be read and processed for organisms to develop, survive, reproduce
and function properly. This happens in two steps broadly;

• Some area of DNA containing the desired information is copied by cells inside
the nucleid acid RNA. This process is called transcription.

• Then, RNA copies which carry the desired information now, are used for protein
production. This process is called translation.

Resulting gene regulatory network depending on the signals perceived from DNA
through some binding proteins is stochastic if the number of species involved in the
network is not too large and it is described by the chemical master equation (CME).
One way of obtaining a CME solution is assuming a bursting behaviour for protein
production which eventually yields a partial integro-di�erential equation (PIDE) model.
The PIDE is then a continuous approximation of the CME. If the gene regulatory
network consists of only one gene the resulting kinetic equation, as first introduced in
[61], has mathematically interesting analytical properties.

The time evolution of the probability density of the amount of proteins p : R+
◊

R+
æ R+ is given by the following partial integro-di�erential equation as in [31]:

dp

ˆt
(t, x) ≠

ˆ(xp)
ˆx

(t, x) + ac(x)p(t, x) = a

⁄ x

0
w(x ≠ y)c(y)p(t, y) dy, (6.4)

p(0, x) = p0(x), x > 0. (6.5)

This model is valid under the assumption that protein is produced in bursts. Therefore
in (6.4)

• b represents burst size and typically modelled by an exponential distribution.

• The conditional probability for protein level to jump from a state y to a state
x > y after a burst is proportional to w which is defined as

w(x ≠ y) = 1
b

exp
3

≠
x ≠ y

b

4
, x > y > 0.
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• a > 0 is a rate constant related to transcription.

• c : R+
æ [‘, 1] is the input function which represents the feedback mecha-

nism, where ‘ is the leakage constant. DNA being in its its active state always
corresponds to c(x) = 1.

Equation (6.4) has a unique solution after scaling such that
s +Œ

0 pŒ(x) dx = 1; and
this solution is given by

pŒ(x) = Z(fl(x))
a(1≠‘)

H

1
x1≠a‘

exp
3

≠
x

b

4
(6.6)

where Z is the normalising constant and H œ Z \ {0} is the Hill coe�cient. Negative
feedback (H > 0) means that proteins bound to the DNA inhibiting their production
and H > 0 represents positive feedback, having the opposite e�ect. Therefore, the
fraction of the parameter in the active or inactive state is described by Hill function.
Then, probability that the promoter is in its inactive state in terms of amount of the
protein x is defined by a function fl : R+

‘æ [0, 1] and the input function defined in
terms of fl by c(x) = (1 = fl(x)) + fl(x)‘. Finally we aim to present quantitative rates
for relaxation to equilibrium for the generalised case as well via Harris’s theorem.

Note also that, (6.4) conserves mass.
We define (T )tØ0 as being the semigroup associated to the equation

ˆp

ˆt
(t, x) ≠

ˆ(xp)
ˆx

(t, x) + ac(x)p(t, x) = 0, (6.7)

which can be written as

ˆp

ˆt
(t, x) ≠ x

ˆp

ˆx
(t, x) + d(x)p(t, x) = 0, (6.8)

where d(x) := ac(x) ≠ 1.
We remark that Ttp0 is the solution to (6.8) at time t with an initial data p0(x) > 0.

Moreover we define (S)tØ0 as being the Markov semigroup associated to (6.4) similarly
and call the nonlocal part

A(t, x) := a

b
exp

3
≠

x

b

4 ⁄ x

0
exp

3
y

b

4
c(y)p(t, y) dy.

Therefore we have by Duhamel’s formula

Stp0(x) = Ttp0(x) +
⁄ t

0
Tt≠· A(·, ·) d·.
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Eventually, verifying a Lyapunov condition and a minorisation condition we make
use of Harris’s theorem.

Moreover, in [31], the authors also considered a generalized n-dimensional PIDE
model (which was proposed first in [88]) to handle with a network involving more than
one gene. The network is composed of n genes:

G = {DNA1, DNA2, · · · , DNAn}

which are transcribed into n messenger RNAs;

R = {mRNA1, mRNA2, · · · , mRNAn}

and translated into n types of proteins;

P = {P1, P2, · · · , Pn} .

We define the amount of protein corresponding to each type protein by the n-vector
x = (x1, x2, · · · , xn) œ Rn

+. Under this set-up the generalised n-dimensional PIDE
model is given by (as in [88])

ˆ

ˆt
p(t, x) =

nÿ

i=1

A
ˆ

ˆxi
[–xi

(x)xip(x)] + k
i
m

⁄ xi

0
Êi(xi ≠ yi)ci(yi)p(t, yi) dyi ≠ k

i
mci(x)p(x)

B

,

(6.9)

where

• –xi
is the degragation rate of each protein.

• yi represents the vector state of x with its i-th position is changed to yi so that
Y
_]

_[

(yi)j = xj if i ”= j,

(yi)j = yi if i = j,

• The conditional probability for protein level to jump from a state yi to a state xi

after a burst is given by

wi(xi ≠ yi) = 1
bi

exp
3

≠
xi ≠ yi

bi

4
.
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• bi is the mean protein produced per bust size following an exponential distribution
as a modelling assumption.

• ci : Rn
+ æ [‘i, 1] is the input function modelling the regulation mechanism where

‘i is the leakage constant as before.

• k
i
m represents the transcription rate of mRNA for each gene.

Therefore, (6.9) describes the competition between protein degradation and protein
production which takes place in bursts. Analytical expression of the stationary state of
(6.9) is not known explicitly; however, the total mass is conserved as in the 1-dimensional
case.
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Appendix A

An introduction to measure and
probability theories

In this chapter we revise some definitions and theorems from the measure theory and
probability.

A.1 Some measure theory
Definition A.1.1. A measurable space is a pair (X , F) where X is a set, the space
and B(X ) is a ‡-algebra of subsets of X and it satisfies;

(i) X œ B(X ).

(ii) If A œ B(X ) then A
c

œ B(X ).

(iii) If Ak œ B(X ) for k = 1, 2, 3, · · · then tŒ
k=1 Ak œ B(X ).

When we consider the state space R, we always assume it is equipped with the
Borel ‡-algebra.

Definition A.1.2 (measurable function). Consider two measurable spaces (X , B(X ))
and (Y , B(Y)) if the mapping f : X ≠æ Y is a measurable function if

f
≠1(B) := {x : f(x) œ B} œ B(Y)

for all sets B œ B(Y).

We always assume (X , B(X )) is measurable.
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Definition A.1.3 ((signed)measure). If a function µ : B(X ) ≠æ (≠Œ, Œ) on a
measurable space (X , B(X )) is called a (signed) measure if Ak œ B(X ) for k = 1, 2, 3, · · ·

and Ai fl Aj = ÿ for i ”= j, then

µ

A Œ€

i=1
Ai

B

=
Œÿ

i=1
Ai.

If µ(A) Ø 0 for any set A then µ is a positive measure. If µ is positive and µ(X ) = 1
then it is called a probability measure. Lebesgue measure on the real line (R, B(R)) is
a positive measure defined for intervals.

Definition A.1.4 (total variation norm). The total variation norm of a signed measure
is defined as

ÎµÎTV := sup
|f(x)|Æ1

⁄
f dµ,

where the supremum is taken over all measurable function f : (X , B(X )) ≠æ (R, B(R)).

Moreover for a signed measure µ, the total variation norm is defined by writing the
state space X as the union of disjoint sets X+ and X≠:

ÎµÎTV = µ(X+) ≠ µ(X≠).

Next, we recall the definition of the Lebesgue integral for a non-negative and
measurable function f : (X , B(X )) ≠æ (R, B(R)) with respect to a positive measure µ.
For A œ B(A) we define

µ(A) :=
⁄

X
A(x)µ( dx),

where A is the indicator function defined as

A(x) =

Y
_]

_[

1 if x œ A,

0 otherwise.

If f is a simple function such that for sets {A + 1, · · · , AN} µ B(X ) and for positive
numbers {a1, · · · , aN} µ R+ we write f = qN

k=1 ak Ak
then we define the Lebesgue

integral with respect to µ:

⁄

X
f(x)µ( dx) :=

Nÿ

k=1
akµ{Ak}.
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Since for a given any non-negative measurable function f , there exits a sequence of
simple function {fk}

Œ
k=1 such that for each x œ X we have fk(x) ≠æ f(x), the limit

lim
k

⁄

X
fk(x)µ( dx) =:

⁄

X
f(x)µ( dx)

always exists. If f is nonnegative we write f = f
+

≠ f
≠ where both f

+, f
≠ are

non-negative measurable functions and define
⁄

X
f(x)µ( dx) :=

⁄

X
f

+(x)µ( dx) ≠

⁄

X
f

≠(x)µ( dx),

if both terms on the right hand side are finite. The we call such function f as
µ-integrable and mostly we denote the integral in the following way:

⁄
f dµ :=

⁄

X
f(x)µ( dx).

Finally, we state three important theorems concerning the convergence of sequences of
integrals that we are going to use in the future. Proofs are omitted and can be found
in many books.

Theorem A.1.1 (Fatou’s Lemma). Suppose that µ is a finite, positive measure on
(X , B(X )) and fi : (X , B(X )) ≠æ (R, B(R)) for i œ Z+ are nonnegative measurable
functions, then ⁄

X
lim

i
inf fi(x)µ( dx) Æ lim

i
inf

⁄

X
fi(x)µ( dx).

Theorem A.1.2 (Monotone Convergence Theorem). Suppose that µ is a finite, positive
measure on (X , B(X )) and fi : (X , B(X )) ≠æ (R, B(R)) for i œ Z+ are measurable
functions satisfying 0 Æ fi(x) æ f(x) for µ-almost every x œ X , then

⁄

X
f(x)µ( dx) = lim

i

⁄

X
fi(x)µ( dx).

Theorem A.1.3 (Dominated Convergence Theorem). Suppose that µ is a finite,
positive measure on (X , B(X )) and h : (X , B(X )) ≠æ (R, B(R)) is a µ-integrable
function such that h Ø 0. If f and fi : (X , B(X )) ≠æ (R, B(R)) for i œ Z+ are
measurable functions satisfying |fi(x)| Æ h(x) for µ-almost every x œ X , and if
fi(x) ≠æ

iæŒ
f(x) for µ-almost every x œ X , then each fi is µ-integrable and

⁄

X
f(x)µ( dx) = lim

i

⁄

X
fi(x)µ( dx).



180 An introduction to measure and probability theories

A.2 Some probability theory
Now, we recall some concepts from probability theory.

Definition A.2.1 (probability space). A probability space is a triple (�, F , P) where
� is a set, F is a ‡-algebra of subsets of � and P is a probability measure on F , so that
it consists of a measurable set (�, F) where F is a ‡-agebra over � and a probability
measure P.

Definition A.2.2 (probability measure). A probability measure P on the measurable
space (�, F) is a map P : F æ [0, 1] and satisfy the following properties;

1. P(ÿ) = 0 and P(�) = 1.

2. If {An}n>0 is a countable collection of disjoint elements of F then

P

3
fi

n>0
An

4
=

ÿ

n>0
P(An).

Definition A.2.3 (random variable). Suppose (�, F , P) is a probability space and
(X , B(X )) is a measurable space, then a mapping X : � æ X is said to be X -valued
random variable if it is measurable., i.e. for any set B œ B(X ):

{X œ A} = {X
≠1(A)} = {Ê œ � : X(Ê) œ A} œ F .

If X : � æ X is a random variable and f : (X , B(X )) æ (R, B(R)) is a real-valued
measurable function then f(X) is a real-valued random variable on (�, F , P). The
expectation for f(X) is defined as

E[f(X)] =
⁄

�
f(X(Ê))P( dÊ).

The set of real-valued random variables for which the expectation is well defined and
finite is denoted by L

1(�, F , P).
Now we recall another concept called conditional expectation which will be the key

element of guessing the value of a random variable.

Definition A.2.4 (conditional expectation). Let x be a real valued random variable
on some probability space (�, F , P) such that E[x] < Œ and let F

Õ be a sub ‡-algebra
of F . Then the conditional expectation of x with respect to F

Õ is the F
Õ measurable

random variable x
Õ such that for all A œ F

Õ:
⁄

A
x(Ê)P( dÊ) =

⁄

A
x

Õ(Ê)P( dÊ).
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It is denoted as x
Õ = E[x | F

Õ].

We also recall Radon-Nikodym theorem from the measure theory:

Theorem A.2.1 (Radon-Nikodym). Let µ and ‹ be two finite measures on a measurable
space (�, F) such that µ is absolutely continuous with respect to ‹ (i.e. ‹(X ) = 0
implies µ(X ) = 0 for every measurable set X ) and ‹ is positive. Then, there is a unique
measurable function f : � æ R such that

µ(X ) =
⁄

X
f d‹,

for any measurable set X µ �.

Let y be a Y-valued random variable on a probability space (�, F , P). We denote
by Fy µ F the ‡-algebra consisting of all elements of the form y

≠1(A) with A œ B(Y)
such that Fy = {y

≠1(A) | A œ B(Y)} and Fy is called the ‡-algebra generated by y.





Appendix B

An introduction to semigroup
theory

SHORT INTRO HERE

B.1 Operator semigroups
We give basic definitions and properties for operators as generators of semigroups.
In the next chapter, we give statements of some theorems concerning covvergence of
Markov processes and we work with stochastic semigroups in L

1 spaces.
Semigroups of linear operators are solutions of the initial value problem for the dif-

ferential equation u
Õ(t) = Au(t), where A is a linear operator acting on a Banach space.

They are particularly important when studying continuous-time Markov processes. We
assume that (K, Î · Î) is a real Banach space, that is K is a real vector space and the
norm Î · Î is a non-negative function defined on K satisfying:

• ÎfÎ = 0 if and only if f = 0,

• ÎcfÎ = |c|ÎfÎ for all c œ R and f œ K,

• Îf + gÎ Æ ÎfÎ + ÎgÎ for all f, g œ K,

• The metric space (K, fl) with fl = Îf ≠ gÎ is complete.

A linear operator A on K

• is a linear mapping A : D(A) æ K, where D(A) is a linear subspace of K , called
the domain of A.
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• is said to be bounded if D(A) = K and the norm of A, ÎAÎ = sup
ÎfÎÆ1

ÎAfÎ, is finite.

Note that a linear operator A with D(A) = K is bounded if and only if it is
continuous, i.e. the mapping f ‘æ Af is continuous for all f œ K.

• is a contraction if ÎAÎ Æ 1.

• is said to be densely defined if its domain D(A) is dense in K, so that every
f œ K is a limit of a sequence of elements from D(A).

• is closed if its graph {(f, Af) : f œ D(A)} is a closed set in the product space
K ◊ K or equivalently if fn œ D(A), n Ø 1,

lim
næŒ

fn = f, and lim
næŒ

Afn = g,

then f œ D(A) and g = Af.

• is said to be invertible if there is a bounded operator A
≠1 on K such that

A
≠1

Af = f for all f œ D(A) and A
≠1

g œ D(A) and A
≠1

Ag = g for all g œ K.

We denote by K
ú the space of all continuous linear functionals – : K ‘æ R. It is a real

Banach space with the norm

Î–Î = sup
ÎfÎÆ1

|–(f)|, – œ K
ú
,

and it is called the dual space of K . We use the duality notation È–, fÍ := –(f)
for f œ K, – œ K

ú. In particular, the Hahn–Banach theorem allows us to extend a
nonzero continuous functional defined on a closed linear subspace of K to a continuous
functional on the whole Banach space K .

The adjoint operator A
ú of a densely defined linear operator A is a linear operator

from D(Aú) µ K
ú

æ K
ú defined as follows:

Let – œ D(Aú) if there exists — œ K
ú such that

È–, AfÍ = È—, fÍ, f œ D(A),

where we set — = A
ú
–.

Let S(t) : K æ K be a bounded linear operator for each t Ø 0. The family (St)tØ0

is called a semigroup if it satisfies the semigroup properties:

(i) S0 = I, where I is the identity operator, i.e. If = f for f œ K,



B.1 Operator semigroups 185

(ii) Ss+t = SsSt, for all s, t Ø 0.

A semigroup (St)tØ0 is said o be strongly continuous or a C0-semigroup if for each
f œ K,

ÎStf ≠ fÎ æ 0 as t æ 0.

The infinitesmall generator (or shortly generator) of (St)tØ0 is the operator L with
domain D(L) µ K defined as

D(L) =
;

f œ K : lim
tæ0

1
t
(Stf ≠ f) exists in K

<
,

Lf = lim
tæ0

1
t
(Stf ≠ f), f œ D(L).

If (St)tØ0 is a strongly continuous semigrup with generator (L, D(L)) then the following
hold:

(i) There exist constants “ œ R and M Ø 1 such that

ÎStÎ Æ Me
“t

, t Ø 0.

(ii) For each f œ K the mapping [0, Œ) – t ‘æ Stf œ K is continuous.

(iii) If f œ K then
⁄ t

0
Ssf ds œ D(L) and Stf ≠ f = L

⁄ t

0
Ssf ds, t > 0.

(iv) If f œ D(L) then Stf œ D(L),

d
dt

Stf = StLf = LStf and Stf ≠ f =
⁄ t

0
SsLf ds, t Ø 0.

We say that ⁄ œ R belongs to the resolvent set fl(A) of a linear operator A, if the
operator ⁄I ≠ A : D(A) æ K is invertible. The operator R(⁄, A) := (⁄I ≠ A)≠1 for
⁄ œ fl(A) is called the resolvent operator of A at ⁄.

After some preliminary definition and introducing the notation; next, we give most
commonly used examples of semigroups:
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B.1.1 Uniformly continuous semigroups

We suppose that A is a bounded operator on a Banach space K. For all f œ K and
t Ø 0, we have

lim
næŒ

Œÿ

n=0

t
n

n!A
n
f = e

At
f,

for a Cauchy sequence. Then the family of operators

St = e
At =

Œÿ

n=0

t
n

n!A
n

defines a semigroup.

Lemma B.1.1. The semigroup given by St = e
At = qŒ

n=0
tn

n! A
n is strongly and

uniformly continuous.

Proof. Since we have

ÎStf ≠ fÎ =
.....

Œÿ

n=0

t
n

n!A
n

≠ f

..... =
.....

Œÿ

n=1

t
n

n!A
n

..... Æ

Œÿ

n=1

t
n

n!ÎAÎ
n
ÎfÎ

=
A Œÿ

n=0

t
n

n!ÎAÎ
n

≠ 1
B

ÎfÎ = (eÎAÎt
≠ 1)ÎfÎ.

We obtain
ÎSt ≠ IÎ Æ e

ÎAÎt
≠ 1,

and then
lim
tæ0

ÎSt ≠ IÎ = 0,

which implies that the semigroup is uniformly continuous.

Lemma B.1.2. The generator of the semigroup (St)tØ0 is A.

Proof. This is true since we have

ÎStf ≠ f ≠ tAfÎ =
.....

Œÿ

n=0

t
n

n!A
n
f ≠ f ≠ tAf

..... =
.....

Œÿ

n=2

t
n

n!A
n
f

..... Æ

Œÿ

n=2

t
n

n!ÎAÎ
n
ÎfÎ

=
A Œÿ

n=0

t
n

n!ÎAÎ
n

≠ 1 ≠ tÎAÎ

B

ÎfÎ = (eÎAÎt
≠ 1 ≠ tÎAÎ)ÎfÎ.

Lemma B.1.3. Uniformly continuous semigroups have bounded generators.
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Proof. Since (St)tØ0 is a unifromly continuous semigroup, the function [0, Œ) – t ‘æ

St œ BL(K) is continuous, where BL(K) is the space of all bounded linear operators
on the Banach space K. Moreover, BL(K) is also a Banach space when equipped with
the operator norm. We have

lim
tæ0

Tt = I where Tt = 1
t

⁄ t

0
Ss ds, (B.1)

since S : [0, Œ) æ BL(K) is continuous. Then (B.1) implies that there is a ” > 0 such
that for 0 Æ t < ” we have ÎTt ≠ IÎ Æ 1/2 so that the operator Tt is invertible for a
su�ciently small t > 0. Since for any f œ K we have

1
t
(Stf ≠ f) = LTtf,

and the linear operator LTt is bounded and therefore

ÎLfÎ = ÎLTtT
≠1
t fÎ Æ ÎLTtÎÎT

≠1
t ÎÎfÎ.

Thus D(L) = K and L is bounded.

However, not every semigroup is strongly continuous. We give an example of
semigroups depending on the Banach space it is defined on, it might not be strongly
continuous.

B.1.2 Translation semigroups

We suppose K to be either the space of Lebesgue integrable functions L
1(R) on R or

the space of bounded functions B(R) on R. We define a semigroup on (St)tØ0 on K by

Stf(x) = f(x ≠ t), x œ R, t Ø 0. (B.2)

It is a semigroup of contractions on L
1(R) since we have

ÎStfÎ =
⁄

R
|f(x ≠ t)| dx =

⁄

R
|f(x)| dx = ÎfÎ.

Lemma B.1.4. The translation semigroup given by (B.2) is strongly continuous in
L

1(R).
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Proof. We take f œ Cc(R), the space of continuous functions with compact support
and we have

lim
tæ0

f(x ≠ t) = f(x), for every x œ R.

Then we have

lim
tæ0

ÎStf ≠ fÎ =
⁄

R
lim
tæ0

|f(x ≠ t) ≠ f(x)| dx = 0, for every f œ Cc(R),

by the Lebesgue dominated convergence theorem. Since Cc(R) is dense in L
1(R), then

the semigroup is strongly continuous on L
1(R).

Lemma B.1.5. The generator of the translation semigroup (B.2) on L
1(R) is Lf =

≠f
Õ with domain

D(L) = {f œ L
1(R) : f is absolutely continuous and f

Õ
œ L

1(R)}.

Proof. We denote the generator of the translation semigroup (B.2) by L̃, with the
domain D(L̃). Take f œ D(L̃) such that

lim
tæ0

1
t
(Stf ≠ f) = g œ L

1(R).

For every compact interval [a, b] µ R we have
-----

⁄ b

a

1
t
(f(x ≠ t) ≠ f(x)) dx ≠

⁄ b

a
g(x) dx

----- Æ

....
1
t
(Stf ≠ f) ≠ g

.... ,

which implies
lim
tæ0

⁄ b

a

f(x ≠ t) ≠ f(x)
t

dx =
⁄ b

a
g(x) dx.

Also for all su�ciently small t > 0 we obtain
⁄ b

a

1
t
(f(x ≠ t) ≠ f(x)) dx = 1

t

⁄ a

a≠t

1
t
f(x) dx ≠

1
t

⁄ b

b≠t
f(x) dx.

Morever, since
lim
tæ0

1
t

⁄ b

b≠t
f(x) dx = f(b), for a.e. b œ R,

we obtain ⁄ b

a
g(x) dx = f(a) ≠ f(b) for a.e. a, b œ R.

Therefore f is absolutely continuous and its derivative is equal to ≠g in L
1(R) which

is integrable. This implies that the operator L is an extension of the generator L̃. We
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have 1 œ fl(L̃). Furthermore, since the general solution to the di�erential equation
f(x) + f

Õ(x) = 0 is f(x) = ce
≠t for x œ R and a constant c, then I ≠ L is one to one.

It only remains to show that L̃ = L. For k œ D(L), take h = k ≠ Lk. Since
1 œ fl(L̃), the operator (I ≠ L̃) is invertible. Therefore we can find d œ D(L̃) such that
h = d ≠ L̃d. Since L̃ µ L, we have k ≠ Ak = d ≠ Ãd = d ≠ Ad. Being I ≠ A one to
one makes k = d, showing that D(A) µ D(L̃). Thus L̃ = L.

Now, we consider the same semigroup given by (B.2) on the space B(R). It is a
semigroup of contractions on B(R) since we have

ÎStfÎv = sup
xœR

|Stf(x)| Æ sup
xœR

|f(x)| = ÎfÎv.

Lemma B.1.6. The translation semigroup given by (B.2) is not strongly continuous
on B(R).

Proof. We take f(x) = [0,1)(x), x œ R where A the indicator function defined on a
set A:

A(x) =

Y
]

[
1 if x œ A,

0 if x /œ A.

We have

|Stf(x) ≠ f(x)| = | [t,1+t)(x) ≠ [0,1)(x)| = | [1,1+t)(x) ≠ [0,1)(x)|, for t œ (0, 1), x œ R,

so that
ÎSf ≠ fÎv = sup

xœR
|Stf(x) ≠ f(x)| = 1 for all t œ (0, 1).

Remark B.1.1. Note that for a semigroup St on a Banach space K, we define

K0 = {f œ K : lim
tæ0

ÎStf ≠ fÎ = 0}

is a closed linear subspace of K and St(K0) ™ K0 for all t Ø 0. This implies that St is
a strongly continuous semigroup on the Banach space K.

For the translation semigroup on K = B(R), the subspace K0 contains all uniformly
continuous functions on R.

Now, we state the first major result in abstract theory of contraction semigroups
developped by Hille and Yosida independently:
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Theorem B.1.2 (Hille-Yosida). A linear operator L with a domain D(L) on a Banach
space K is the generator of a contraction semigroup if and only if D(L) is dense in K,
the resolvent set fl(L) of L contains (0, Œ), and for every ⁄ > 0

Î⁄R(⁄, L)Î Æ 1.

In that case, the semigroup (St)tØ0 with generator L is given by

Stf = lim
⁄æŒ

e
⁄t

Œÿ

n=0

⁄
n
t
n

n! (⁄R(⁄, L))n
f, f œ K, t Ø 0.

Proof. For the proof we refer to [56].

Remark B.1.3. By using Hille-Yosida Theorem, to check that an operator L with a
dense domain is the generator, we need to show that for each ⁄ > 0 and g œ K there
exists a unique solution f œ D(L) of

⁄f ≠ Lf = g and ⁄ÎfÎ Æ ÎgÎ.

B.2 Stochastic semigroups
In this subsection, we introduce stochastic semigroups and provide characterizations of
their generators. By definition, they are strongly continuous semigroups of stochastic
operators on L

1 spaces.
We consider the Banach space K = L

1 = L
1(�, F , µ) where (�, F , µ) is a ‡≠finite

measure space equipped with the norm

ÎfÎ =
⁄

�
|f(x)|µ( dx), f œ L

1
.

Any f can be written as the di�erence of two non-negative functions f = f
+

≠ f
≠,

where the positive part of f is defined as

f
+ = max{0, f},

whereas the negative part of f is defined as

f
≠ = (≠f)+ = max{0, ≠f}.
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We define the positive cone as the following;

L
1
+ := {f œ L

1 : f Ø 0}.

A linear operator A : D(A) æ L
1 is said to be positive if Af Ø 0 for f œ D(A)+,

where D(A)+ = D(A) u
L

1
+, and we write A Ø 0. Norm of the bounded (positive and

everywhere defined) operator is determined by values on the positive cone:

Proposition B.2.1. Let A be a linear operator with D(A) = L
1. If

Î(Af)+
Î Æ Îf

+
Î, f œ L

1
,

then A is positive. If A is positive then A is a bounded operator and

ÎAÎ = sup
fØ0,ÎfÎ=1

ÎAfÎ.

Proof. We have (Af)≠ = (≠Af)+ = (A(≠f))+. If f Ø 0 then since f
≠ = 0 we have

Î(Af)≠
Î = Î(A(≠f))+

Î Æ Î(≠f)+
Î = Îf

≠
Î = 0.

Therefore Af = (Af)+
Ø 0. Also, |Af | Æ A|f | holds since for any f œ L

1, we have
≠|f | Æ f Æ |f |. Thus, we obtain ÎAfÎ Æ ÎA|f |Î.

Let – = sup ÎA|f |Î, then – Æ ÎAÎ. Since |f | Ø 0, we see that

ÎAfÎ Æ ÎA|f |Î Æ –ÎfÎ for any f œ L
1
,

which proves that ÎAÎ = –.
Suppose that A is not bounded. Then we can find a sequence fn œ L

1
+ such that

ÎfnÎ = 1 and ÎAfnÎ Ø n
3 for every n. Since non-negative and integrable f is defined

by
f =

Œÿ

n=1

fn

n2

we have that f Ø
fn

n2 , which implies that n
2
Af Ø Afn for all n Ø 1. Thus we have for

any n

n
3

Æ ÎAfnÎ Æ n
2
ÎAfÎ,

which is impossible, since ÎAfÎ < Œ.
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A family (St)tØ0 of linear operators on L
1 is called a substochastic semigroup

(stochastic and positive semigroup) if St is a substochastic (stochastic and positive)
operator on L

1 for every t and (St)tØ0 is a strongly continuous semigroup. Therefore,
a substochastic semigroup is a positive contraction semigroup on L

1. Now we look
at the generators of substochastic and stochastic semigroups. If a linear operator L

with the domain D(L) is the generator of a substochastic semigroup (St){tØ0} then the
resolvent operator of L at each ⁄ > 0 is positive (resolvent positive). It means that for
all ⁄ > 0 and f œ L

1
+ we have

R(⁄, L)f =
⁄ Œ

0
e

≠⁄t
Stf dt Ø 0.

We recall that a stochastic operator is a substochastic operator which preserves the L
1

norm on the positive cone. Then we state the following theorems about the generators
of substochastic and stochastic semigroups without the proofs:

Theorem B.2.2. A linear operator L with the domain D(L) is the generator of a
substochastic semigroup on L

1 if and only if D(L) is dense in L
1, L is resolvent positive

and ⁄

�
Lf(x)µ( dx) Æ 0 for all f œ D(L)+.

Similarly,

Corollary B.2.1. A linear operator L with the domain D(L) is the generator of a
substochastic semigroup on L

1 if and only if D(L) is dense in L
1, L is resolvent positive

and ⁄

�
Lf(x)µ( dx) = 0 for all f œ D(L)+.

B.2.1 Transition semigroups

A stochastic semigroup (St)tØ0 corresponds to a transition function P = {P (t, ·) = t Ø

0} if for each t > 0 the adjoint operator P
ú(t) of P (t) is given by

P
ú(t)g(x) =

⁄

�
g(y)P (t, x, dy), g œ L

Œ
.

Each transition kernel P (t, ·) satisfies
⁄

B
P (t)f(x)µ( dx) =

⁄

�
P (t, x, B)f(x)µ( dx), B œ F , f œ L

1
+.
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If a stochastic semigroup (St)tØ0 corresponds to the transition function P induced by
a Markov process X = {Xt : t Ø 0}, i.e.

P (t, x, B) = Px0(Xt œ B), x œ �, B œ F , (B.3)

where Px is the distribution of Xt starting at x0, then Stf is the density of Xt if the
distribution of X0 has a density f .

We make a relation between a stochastic semigroup (St)tØ0 to the transition
semigroup (Tt)tØ0 on B(�) associated to a homogeneous Markov process X = {Xt :
t Ø 0} with transition function P = {P (t, ·) : t Ø 0}. The transition semigroup (Tt)tØ0

on the Banach space B(�) with supremum norm Î · Îu associated to the process X is
given by

Ttg(x) = Ex(g(Xt)) =
⁄

�
g(y)P (t, x, dy)), g œ B(�).

If the following holds for all f œ L
1
+ and all g œ B(�);

⁄

�
T (t)g(x)f(x)µ( dx) =

⁄

�
g(x)P (t)µ( dx), (B.4)

then (B.3) holds and (St)tØ0 corresponds to the transition function P . The transition
(Tt)tØ0 semigroup on B(�) is strongly continuous on the closed subspace of B(�)

B0(�) = {g œ B(�) : lim
tæ0

ÎTtg ≠ gÎu = 0}

and Ttg œ B0(�) for g œ B0(�). The generator L with the domain D(L) of the
semigroup (Tt)tØ0 is densely defined in B0(�). Moreover, the adjoint S

ú(t) of the
operator S(t) is a contraction on L

Œ for each t.
⁄

�
S

ú
t g(x)f(x)µ( dx) =

⁄

�
g(x)Stf(x)µ( dx), g œ L

Œ
, f œ L

1
,

and (Sú
t )tØ0 is a semigroup on L

Œ, called the adjoint semigroup.

B.3 Markov semigroups
We consider the ‡-finite measure space (�, F , µ) and a subset D µ L

1(�, F , µ) con-
taining all densities

D =
Ó
f œ L

1 : f Ø 0, ÎfÎ = 1}
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Then a linear mapping M : L
1

æ L
1 is called as Markov operator if M(D) µ D.

Markov operators can be defined by means of transition probability functions. We
recall that if P (x, A) is a transition probability function on (�, F) if

• P (x, ·) is a probability measure on (�, F) and

• P (·, B) is a measurable function for every B œ F .

We also assume that if µ(B) = 0 then P (x, B) = 0 for µ-almost every x so that for
every f œ D, the measure

s
� f(x)P (x, B)µ( dx) is absolutely continuous with respect

to the measure µ. Then Mf where M : L
1

æ L
1 defines a Markov operator. We also

define the adjoint of M as M
ú : L

Œ
‘æ L

Œ such that;

M
ú
g(x) =

⁄
g(y)P (x, dy).

Not every Markov operator has an adjoint. But if we take � to be a Polish space
which is a complete and separable metric space, then F = B(�) is the ‡-algebra of
Borel subsets of � and µ corresponds to the probability measure on �. Then every
Markov operator on L

1(�, B(�), P) is given by a transition probability function. A
family of Markov operators (Mt)tØ0 is called a Markov semigroup if

• M0 = Id,

• Mt+s = MtMs for t, s Ø 0,

• for every f œ L
1 the function t ‘æ Mtf is continuous.




