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1 Introduction

There are certain strongly correlated electron systems, such as, strange metals in high
Tc superconductors and heavy fermion systems [1–3], which admit Fermi surfaces but the
excitations are not long-lived and thus live outside the regime of the Fermi liquid the-
ory. Techniques of holography [4–7] have been proved to be quite successful in unravelling
various features of such non-Fermi liquids. Especially measurements of Angle Resolved
Photoemission Spectroscopy (ARPES) or Scanning Tunneling Microscopy (STM) can be
compared with holographic spectral functions leading to a test of holographic applications.
Substantial studies of holographic Fermi surfaces have been conducted both in bottom-
up [8–15] and top-down [16–29] approaches (see [30] for a review) over the recent past.
These works mostly deal with the homogeneous states respecting translational invariance,
while on the other hand, there exist real materials, whose ground states are characterised by
spontaneously broken translational symmetry and in particular, there are spatially modu-
lated states featured by charge and spin density waves, such as pseudogap regime of cuprate
superconductors that breaks translational symmetry and some or all the symmetries of the
underlying lattice [31], which calls for similar studies for such kinds of systems.

Studies of holographic models, simulating the effect of breaking of translational sym-
metry in homogeneous models appear in a number of works. Gravitational solutions with
homogeneity are often inflicted with instabilities leading to spatially inhomogeneous so-
lutions as demonstrated in various models in bottom-up [32–50] as well as in top-down
approach [51–54]. In particular, [41] considered a bottom-up model with two U(1) gauge
fields that leads to a pair density wave with coexistence of a superconducting phase and

– 1 –



J
H
E
P
0
9
(
2
0
2
1
)
1
6
0

a charge density wave. Similar inhomogeneous solutions are also obtained for Einstein-
Maxwell-dilaton model [43], axionic system [44], higher derivative gravity model with com-
plex scalar and gauge field [45, 46] and a checkerboard solution, which breaks translation
symmetry spontaneously in two directions [47]. In the top-down approach, a D3-D7 model
has been found to develop instabilities [51] leading to a charge density and a spin density
waves [52]. Instabilities of a similar D2-D8 model have been analysed in [53, 54] and found
to lead to a combination of spin and charge density waves.

The Fermi surfaces of such spatially modulated solutions obtained from a holographic
perspective, have been analysed and several works have appeared on this score [55–61].
Periodic lattices were introduced by considering perturbatively small periodic modulation
of the chemical potential in [55], which was further extended by incorporating the back
reaction on the gravity [56]. These lead to anisotropic Fermi surface as well as a band gap
at the boundary of the Brillouin zone, though the lattice periodicity is introduced manually
and is irrelevant in the infrared. Fermi surfaces have been studied for striped solution ob-
tained in a bottom-up approach with co-existing charge density wave and superconducting
phases [57]. In addition, they introduced a lattice by periodic modulation of the chemical
potential and studied the Fermi surface. They find when the Fermi surface is large enough
and cross the Brillouin zone boundary, it develops a gap, which increases as the strength
of the lattice increases.

The aim of the present work is to study the Fermi surface of the spatially modu-
lated solution obtained in a D2-D8 model. As mentioned above, instability in a D2-D8
model [53, 54] leads to a combination of a charge density wave (CDW) and a spin density
wave (SDW), which was obtained numerically in [62]. As has been shown there that this
solution is thermodynamically stable with respect to the homogeneous solutions and other
instabilities within a domain of the parameter space.

To begin with, we have manually introduced a generic probe fermion in this background
coupled to the gauge field in the fundamental. This spatially modulated solution exhibits
spontaneous breaking of the translational symmetry. In addition, in order to consider the
effect of explicit breaking of the translational symmetry, we have also manually introduced
an ionic lattice simulated by choosing a periodically varying chemical potential.

In the case of generic fermions, we find that the dual theory admits Fermi surface once
the charge is sufficiently large and as the fermionic charge increases, the Fermi surface
crosses the boundary of the Brillouin zone. At the point where two Fermi surfaces intersect,
a gap develops due to Umklapp scattering leading to Fermi pockets (inner part of the Fermi
surface). In the presence of an ionic lattice, the gap widens and study of the spectral density
function at the inner part indicates that a sufficiently large value of the strength of the
ionic lattice will lead to disappearance of Fermi pockets (inner part of the Fermi surface).

Subsequently we study the worldvolume fermions, which couple to the fermionic oper-
ators living in the dual (2+1)-dimensional Yang-Mills theory. A similar study of top-down
fermions appeared in [16] in a linearised approximation. We have studied the spectral func-
tion associated with the fermionic operators dual to the worldvolume fermions. However,
it does not show a Fermi surface.
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We have organised the paper in the following manner. Section 2 consists of a brief
review of the charge and spin density wave solution obtained from the D2-D8 model in [62].
The third section comprises of a discussion of the Dirac equation for the generic fermions
and the numerical techniques employed. In the fourth section we present the results for the
generic fermions. We discuss the worldvolume fermions in the fifth section and the sixth
section consists of the conclusion.

2 D2-D8 model

The model consists of a configuration of a probe D8 brane along with N D2 branes in the
background, which due to instability [51, 54] leads to a spatially modulated solution. In [62]
a numerical solution ensuing from this instability was obtained, which is characterised by a
charge density and a spin density wave and in this section we will review it. If we consider
N to be large and the ‘t Hooft coupling also to be large, gsN � 1, this gravity theory
is holographically dual to a super Yang-Mills (SYM) theory in (2 + 1) dimensions. In
addition, the dual theory also involves charged fermions that follows from the low energy
degrees of freedom of bi-fundamental strings. We will also introduce effect of an underlying
lattice by choosing a chemical potential, which is periodic in the x direction, in which the
translational symmetry is explicitly broken.

The ten-dimensional metric and other fields representing the solution associated with
the N D2 branes are given by [51, 54] as follows:

ds2 = L2
0

[
r5/2(−f(r)dt2 + dx2 + dy2) + r−5/2

(
dr2

f(r) + r2dS2
6

)]
,

dS2
6 = dψ2 + sin2 ψ(dθ2

1 + sin2 θ1dφ
2
1) + cos2 ψ(dξ2 + sin2 ξdθ2

2 + sin2 ξ sin2 θ2dφ
2
2).

f(r) = 1−
(
rT
r

)5
, dilaton: eφ = gs

(
r

L0

)−5/4
,

five-form potential C(5) = c(ψ)L5
0 dΣ2 ∧ dΣ3

(2.1)

where dΣ2 and dΣ3 are the volume forms on the S2 and S3 respectively, ψ takes values
from 0 to π/2, ξ, θ1 and θ2 take values from 0 to π and φ1 , φ2 take values from 0 to 2π.
c(ψ) is given by,

c(ψ) = 5
8

(
sinψ − 1

6 sin(3ψ)− 1
10 sin 5ψ

)
, (2.2)

L0 is given by L5
0 = 6π2gsNl

5
s . The temperature associated with this solution is given

by T = 5
4πL0

r
3/2
T . One may observe that it is not an asymptotically AdS space. For

convenience we set L0 = 1 in what follows.
In this background, we introduce a probe D8 brane along the directions t, x, y, r, θ1,

φ1, ξ, θ2, φ2. Its position along ψ direction varies over r and x and the function ψ(r, x)
represents the embedding. A magnetic field on S2 given by

2πα′Fθ1φ1 = L2
0b sin θ1 (2.3)
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makes this configuration stable. There is a gauge field aµ, with µ = (t, x, y, r), which
depends on the radial direction and x and with a choice of a radial gauge one sets ar = 0.
One can consider a constant magnetic field h along the xy direction, 2πα′Fxy = h which
we choose to be zero for present discussion.

The action is given in the following expression,

S = S1 + S2,

= −T8

∫
d9x e−φ

√
−det(gµν + 2πα′Fµν)− T8

2 (2πα′)2
∫
C(5) ∧ F ∧ F,

(2.4)

where the first term represents DBI action, while the second one is a Chern-Simons term.
For convenience, we trade u for r where u = rT

r . We also scale the worldvolume
coordinates xµ = x̂µr

−3/2
T , the gauge field aµ = rT âµ and the parameter b, b̂ = b

√
rT . In

terms of u and the rescaled coordinates, the action reduces to

S = −Nr2
T

∫
du dx̂

1
u2

√
D(D1 +D2 +D3)−Nr2

T

∫
du dx̂ c(ψ)(â0uâŷx̂ − â0x̂âŷu),

= −Nr2
T

∫
du dx̂

1
u2 [
√
D(D1 +D2 +D3) + u2c(ψ)(â0uâŷx̂ − â0x̂âŷu)],

(2.5)

where in the first and second lines the two terms refer to the DBI action and the Chern-
Simons term respectively and N = 8π3T8V1,1, V1,1 is the volume of spacetime in t and y
direction. D, D1, D2 and D3 are defined as follows:

D = cos6 ψ

(
sin4 ψ + b̂2

u

)
,

D1 = 1
u5 [1 + u2fψ2

u − u4â2
0u + u4fâ2

ŷu
+ fu4â2

x̂u
],

D2 =
ψ2
x̂

u2 −
â2

0x̂
f

+ â2
ŷx̂
,

D3 = −u2â2
0uψ

2
x̂
− u2â2

0x̂ψ
2
u + u2fâ2

ŷu
ψ2
x̂
− u4â2

0x̂â
2
ŷu

+ u2fâ2
ŷx̂
ψ2
u − u4â2

0uâ
2
ŷx̂

+ 2u2â0uâ0x̂ψuψx̂ + 2u4â0uâ0x̂âŷuâŷx̂ − 2u2fâŷuâŷx̂ψuψx̂,

(2.6)

where ψu = ∂ψ
∂u , â0x̂ = ∂â0

∂x̂
, etc. Since âx̂ decouples from the rest of the system we have

dropped it.
The equations of motion ensuing from the above action are nonlinear. Nevertheless,

these partial differential equations in x̂ and u can be solved using numerical techniques.
These equations have the following symmetries: x̂ → −x̂, x̂ → L

2 − x̂ and a reflection
symmetry for h = 0.

With a chemical potential µ(x̂) the boundary conditions at the ultraviolet limit, u = 0
are,

ψ(x̂, 0) = ψ∞, ∂uψ(x̂, 0) = mψ,

â0(x̂, 0) = µ(x̂), ây(x, 0) = 0,
(2.7)

mψ represents mass of the fermion, which we have chosen to be non-zero to avoid instabil-
ities arising from tachyons. ψ∞ is the asymptotic value of the field ψ at u → 0, which we

– 4 –



J
H
E
P
0
9
(
2
0
2
1
)
1
6
0

have chosen to be constant. In order to simulate the effect of a periodic lattice in the x̂
direction, following [57] we have introduced a periodic variation of the chemical potential

µ(x̂) = µ(1 + ai cos px̂), (2.8)

where ai represents the relative strength of the one-dimensional lattice and p represents the
wavevector associated with the lattice. In the present case, we also have an instrinsic wave
vector K = 2π

L . In general, they may be different, but once their values are sufficiently
close there will be a commensurate lock-in, which may lead to greater stability [61]. In the
present discussion we have chosen them to be equal.

A periodic boundary condition is imposed along x̂ direction, so that ψ, a0 and ay are
periodic along x̂ with periodicity L.

At the asymptotic boundary the zeroeth component of the gauge field can be ex-
panded as,

a0(x̂, u) = µ(x̂) + d(x̂)u2 + . . . , (2.9)

where d(x̂) represents the charge density function in the boundary field theory [51, 54].
The average of the charge density over the period is given by

< d >= 1
L

L∫
0

d(x̂) dx̂. (2.10)

while the amplitude is Max(d(x̂)− < d >).
Similarly, ψ has the following expansion

ψ(x̂, u) = ψ∞ +mψu− cψ(x̂)u3 + . . . (2.11)

with cψ(x̂) representing the fermion bilinear in the dual field theory [51, 54]. < cψ > and
Max(cψ(x̂)− < cψ >) represents the average and the amplitude of the spin density wave
in the boundary field theory.

As one may observe, the term
(∂
x̂
â0)2

f in D2 diverges at the horizon, since f vanishes
there. So we set

â0(x̂, 1) = 0. (2.12)

to have â to be a well-defined one-form at the horizon.
In order to numerically solve the partial differential equations following from the action

one can use the pseudospectral method [63]. One consider expansion of ψ, a0 and ay along
u and x̂ direction in terms of suitable functions. Along u and x̂ one chooses Chebyshev
polynomial and Fourier series respectively.

ψ =
N1−1∑
m=0

N2−1∑
n=0

ψ[m,n]Tm(2u− 1) cos 2πnx̂
L

,

â0 =
N1−1∑
m=0

N2−1∑
n=0

a0[m,n]Tm(2u− 1) cos 2πnx̂
L

,

ây =
N1−1∑
m=0

N2−1∑
n=0

ay[m,n]Tm(2u− 1) sin 2πnx̂
L

.

(2.13)
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The collocation points along x̂ direction are distributed uniformly and the points from
u = 0 to u = 1 form the Gauss-Lobatto grid. The ultraviolet boundary conditions (2.7)
reduces the number of the coefficients. Substitution of these expansions in the equations
of motion and evaluating them at collocation points leads to a set of algebraic equations,
which can be solved using Newton-Rhapson method. The choice in [62] is N2 = 9 and
N1 = 11.

The values for the various parameters are determined as follows. As shown in [51, 54],
the asymptotic value of ψ at the boundary u = 0 should be ψ∞ = 0. If at a finite value of
u, ψ(u) vanishes with finite ψ′, self-intersection of D8 brane leads to a conical singularity
leading to tachyonic mode, which can be avoided by choosing non-zero mψ [54]. In [62],
mψ and b are chosen as mψ = 0.5 b = 1.

As explained in [62], with this choice of parameters, one can numerically solve the
equations and evaluate the free energy for different values of the chemical potential and
periodicity. For a given value of the chemical potential, the periodicity corresponds to
the minimum of the free energy. Examining the charge density and the spin density these
solutions are found to be characterised by charge density wave and spin density wave. There
is a domain in the parameter space over which these spatially modulated charge density
wave solutions are thermodynamically stable in comparison to a homogeneous solution.

In what follows, we have set the magnetic field h to be zero and the chemical potential
µ deep inside the region of stability. The periodicity L follows from the minimum of
the free energy. With this solution as the background, we will introduce fermions in the
gravity theory and consider the Dirac equation in the following section. Solving the Dirac
equation numerically we will obtain the spectral density function and study its behaviour.
We will consider the generic fermions as well as the worldvolume fermions in the probe
approximation. We note that due to scaling discussed after (2.4), we will use a scaled
chemical potential. So for a small but non-zero temperature we can scale the chemical
potential appropriately and we expect the approximation to remain valid down to small
temperature.

3 The Dirac equation

Our objective is to study the spectral functions associated with the fermionic operators in
the dual theory. In this section we will introduce generic fermions in the gravity theory
and study the Dirac equation. The Dirac equation with the generic fermions is given by

[Γµ(∇µ − iqaµ)−m]χ = 0, (3.1)

where the gamma matrices are given by Γµ = e µ
a Γa, the covariant derivatives are given

by ∇µχ = [∂µ + 1
4(ωµ)abΓab]χ, q is the charge of the fermions, aµ is the background gauge

field and m is the mass of the Dirac fermions. We will drop the hats in what follows to
avoid the cluttering.

– 6 –
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The expressions for the vielbeins e µ
a follows from the background metric and for our

purpose they are given by

et̄ = r
1/4
T u5/4
√
f

∂t, ex̄ = r
1/4
T u5/4√
1 + u3ψ2

x

∂x, eȳ = r
1/4
T u5/4∂y,

eū = r
1/4
T u3/4√f√ 1 + u3ψ2

x

1 + u3ψ2
x + u2fψ2

u

[
∂u −

u3ψxψu
1 + u3ψ2

x

∂x

]
,

(3.2)

where we have used t̄, x̄, ȳ, ū for the tangent space coordinates, ψu = ∂ψ
∂u , ψx = ∂ψ

∂x .
We have chosen the following gamma matrices [55], and are written in terms of the

Pauli spin matrices as,

Γt̄ =
(
iσ1 0
0 iσ1

)
, Γx̄ =

(
−σ2 0

0 σ2

)
,

Γȳ =
(

0 −iσ2

iσ2 0

)
, Γū =

(
−σ3 0

0 −σ3

)
.

(3.3)

The spin connection (ωµ)ab can be absorbed by making the following redefinition of
the spinors,

χ = r
3/8
T u5/8

(1 + u3ψ2
x)1/4

(
Ψ1
Ψ2

)
, (3.4)

where Ψα, α = 1, 2 is a two-component spinor. Since the background is spatially modulated
in the x direction with a period fixed by Umklapp wavevector K = 2π

L , the momentum
modes that differ by a lattice vector are not independent. In accordance with the Bloch
theorem, we consider the following expansion,

Ψα =
∫
dωdkxdky

2π
∑
l∈Z
F (l)
α (u, ω, kx, ky)e−iωt+i(kx+lK)x+ikyy, α = 1, 2. (3.5)

Here l refers to the different momentum level and kx is restricted to the first Brillouin zone.
We write

Fα(u, x, ω, ky) =
∑
l∈Z
F (l)
α (u, ω, kx, ky)eilKx, (3.6)

where Fα satisfy

Fα(u, x, ω, ky) = Fα
(
u, x+ 2π

K
,ω, ky

)
(3.7)

Since Ψα is a two component spinor, we further split Fα(u, x) as

Fα(u, x) =
(
Aα(u, x)
Bα(u, x)

)
, α = 1, 2. (3.8)

– 7 –
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With these splitting, the Dirac equation can be written as,

∂u

(
A1
B1

)
−
√
u

f

√
1 + u3ψ2

x + u2fψ2
u

1 + u3ψ2
x

(ω + qa0)
(
B1
−A1

)
− u3ψxψu

1 + u3ψ2
x

(∂x + ikx)
(
A1
B1

)

−i
√
u

f

√
1 + u3ψ2

x + u2fψ2
u

1 + u3ψ2
x

(∂x + ikx)
(
B1
A1

)
+ m̃

u3/4√f

√
1 + u3ψ2

x + u2fψ2
u

1 + u3ψ2
x

(
A1
−B1

)

+i
√
u

f

√
1 + u3ψ2

x + u2fψ2
u

1 + u3ψ2
x

(ky − qay)
(
B2
A2

)
= 0,

∂u

(
A2
B2

)
−
√
u

f

√
1 + u3ψ2

x + u2fψ2
u

1 + u3ψ2
x

(ω + qat)
(
B2
−A2

)
− u3ψxψu

1 + u3ψ2
x

(∂x + ikx)
(
A2
B2

)

+i
√
u

f

√
1 + u3ψ2

x + u2fψ2
u

1 + u3ψ2
x

(∂x + ikx)
(
B2
A2

)
+ m̃

u3/4√f

√
1 + u3ψ2

x + u2fψ2
u

1 + u3ψ2
x

(
A2
−B2

)

−i
√
u

f

√
1 + u3ψ2

x + u2fψ2
u

1 + u3ψ2
x

(ky − qay)
(
B1
A1

)
= 0,

(3.9)

where we use m̃ = m

r
1/4
T

. The momentum mode expansion of the different functions Aα and
Bα are given by

Aα =
∑
l∈Z
A(l)
α e

ilKx, Bα =
∑
l∈Z
B(l)
α e

ilKx . (3.10)

The boundary condition for solving these first order linear differential equations can
be obtained from the near horizon limit u→ 1. After substituting the expressions for the
background metric and gauge fields and choosing the near horizon limit one finds that the
different momentum modes are satisfying the following conditions in the leading order,

A(l)
α ∼ (1− u)±

iω
5 a

(l)
α0, B(l)

α ∼ (1− u)±
iω
5 b

(l)
α0. (3.11)

We have chosen the minus sign and impose the in-falling boundary conditions [64] as that
is the correct choice for holographic computation of retarded Green’s function of the dual
theory living at the boundary. Furthermore, the equations at the near horizon limit also
implies

b
(l)
α0 = −ia(l)

α0. (3.12)

In the asymptotic limit near the boundary u→ 0 the Dirac equations (3.9) reduces to
up to the leading order,

∂u

(
Aα
Bα

)
+ m̃u−3/4

(
Aα
−Bα

)
= 0, (3.13)
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which implies the asymptotic behaviour of the fermions are given by

Fα =
(
Aα
Bα

)
∼ aαe4m̃u1/4

(
1
0

)
+ bαe

−4m̃u1/4
(

0
1

)
. (3.14)

This asymptotic behaviour in terms of the momentum level function becomes

F (l)
α =

(
A(l)
α

B(l)
α

)
∼ a(l)

α e
4m̃u1/4

(
1
0

)
+ b(l)α e

−4m̃u1/4
(

0
1

)
. (3.15)

The retarded Green’s function can be obtained from the relation between a(l)
α and b(l)α as

a(l)
α (ω, kx, ky) =

∑
α′,l′

GRα,l;α′,l′(ω, kx, ky)b
(l′)
α′ (ω, kx, ky) . (3.16)

The Green’s function is considered in the momentum basis as in the experiments such as
ARPES, the photoelectrons are in the definite states of momentum. Following [57] we
assume that the dominant response will be in the diagonal momentum channel, though
there will be a mixing with other momentum modes. With this assumption the spectral
density function can be written as

A(ω, kx, ky) =
∑
l∈Z

Im(Tr(GRα,l;α′,l(ω, kx, ky))), (3.17)

where −K
2 ≤ kx ≤ K

2 is chosen to be within the first Brillouin zone and l denotes the
momentum level or Brillouin zone.

In order to compute the Green’s function, we will follow the method explained in [55].
We denote the boundary conditions to be (α, l) by imposing in-falling boundary condition
on the spinor component Ψ(l)

α and setting all other spinor components to be zero. We will
write the solution for a(l)

α with (β, k) boundary condition as a(α, l;β, k) and in this notation
the expression for Green’s function (3.16) can be written as

a(α, l;β, k) =
∑
α′,l′

GR(α, l;α′, l′)b(α′, l′;β, k). (3.18)

Writing a(α, l;β, k) and b(α′, l′;β, k) as matrices a and b, the relation becomes

a = GR.b, GR = a.b−1 (3.19)

Then the spectral weight follows from the Green’s function GR.
We would like to study the spectral function associated with the generic fermions for

the charge density and spin density wave background, which was derived in [62]. The
study of the generic fermions will give us more flexibility and in order to keep the analysis
simple we will further restrict ourselves, to the case of massless fermions. Since we do not
have an analytic solution for that we will employ a numerical procedure to solve the Dirac
equations for different in-falling boundary conditions and from that we will get the spectral
density function in the next section. We will consider the fermions in the probe limit and
will not consider the back reaction on the gravity.
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4 Results

In this section we will consider the spectral function obtained for various parameters in
order to study the Fermi surface. At zero temperature, the Fermi surface appears as a pole
of spectral density function. In the present case, we will assume that the Fermi surface will
reveal itself through peaks of the spectral density function [27].

Following [27] we assume the plot of the spectral density function vs. momentum at
ω → 0 will show a peak at around that value of the momentum k0, which corresponds to
a Fermi surface. The width of the peak should be of the order of the temperature or less.
And finally, at that value of the momentum k = k0, plotting spectral density vs. frequency
ω will show a peak near ω = 0.

With the above criteria, we study the existence and the features of the Fermi surface
in the charge and spin density wave solution that we obtained in the present case of D2-D8
brane. We will begin with the solution in absence of any lattice. Due to spontaneous
breakdown of the translational symmetry the solutions are characterised with a natural
length scale associated with the periodicity of the charge density wave. Given a chemical
potential, the free energy of the solution varies with the periodicity and the latter is deter-
mined by the minimum of the free energy. In the present case, we have chosen the value of
the chemical potential to be µ = 1.6445, which is deep inside the region of stability of the
charge density wave [62]. The value of the period, at that chemical potential for ai = 0, it
turns out to be L = 0.3725, implying the Bloch wave vector is given by K = 16.8676. So
the first Brilluoin zone lies between ±8.331. We have also considered non-zero values of
the strength of the lattice and keeping the chemical potential same the periodicity turns
out to be L = 0.3155 for ai = 0.2. Since the chemical potential remains fixed throughout
the discussion, the variables can be measured in that unit, which will lead to a rescaling.

To begin with we consider how the Fermi surface depends on the charges of the
fermions. We choose a specific value of kx to be kx = 0, a small value of the frequency ω to
be ω = .001 and plotted the spectral function A vs. ky for five different values of charges.
The plots are given in the figure 1(a) in absence of the ionic lattice (ai = 0) and in the
figure 1(b) in presence of the ionic lattice (ai = 0.2).

As one can see from the figures, with the increase of the fermionic charge the peaks are
getting sharper and the heights are increasing. This is a general feature of the holographic
fermions which holds here as well. With charge q sufficiently less, the peak will become quite
shallow and broad indicating absence of the Fermi surface. As the charge increases, position
of the peak in ky moves to the right, in the positive direction. Since kx=0 it can be associ-
ated with the fact that the size of the Fermi circle gets bigger with the increasing charges.

One important topic of interest of the present work is to examine the existence and
behaviour of the Fermi surface. We will begin with the model in absence of the ionic lattice.
For the given periodicity we have chosen the fermionic charge to be q = 9 so that the Fermi
surface occurs near the boundary of the Brillouin zone. We have given a density plot in
the figure 2, where we have plotted the spectral function vs. kx and ky. Since the height
of the peaks varies considerably over the region we have given a logarithmic plot of the
spectral function. We have numerically computed the values for the first Brillouin zone
− π
K ≤ kx ≤

π
K and extended it periodically over kx.

– 10 –
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Figure 1. Plot of spectral function A vs. ky with kx = 0. The peak shifts from right to left with
decreasing charges. We have plotted for q=9 (blue), 8.5 (red), 8 (magenta), 7.5 (brown), 7 (green).
(a) ai = 0 (b) ai=0.2. The height of the plot for q = 9 is truncated so as to get all the peaks visible
in the figure.

As one can observe that the Fermi surface consists of intersecting circles with a small
eccentricity. At the edge of the Brillouin zone, due to eigenvalue repulsion of degenerate
eigenvalues, it opens up a gap in the spectral density. A careful observation would reveal
small gaps at the points where the circles intersect as a consequence of the broken trans-
lational invariance. The density plot also shows a circle around the origin deep inside the
Brillouin zone. With the charge q = 9, the height and sharpness of the associated peaks do
not qualify to be a Fermi surface. However, with increasing charge it will lead to another
Fermi surface. Such nested Fermi surface has been shown in [25].

Since the gaps are not very pronounced in the density plot given in the figure 2, we
have plotted the spectral function vs. ky at the boundary of the Brillouin zone at kx = π

L

in the figure 3. In order to see the variation of the gap we have computed them for several
values of charges as shown in the figure 3. For larger fermionic charges at the boundary, it
shows two adjacent peaks in the value of A. As the charge decreases, the heights of the two
adjacent peaks decreases and the depth of the intermediate region decreases. In the green
plot in figure 3, the intermediate region between the two peaks become quite shallow and
thus the gap is blurred, which does not qualify for the Fermi surface. On the other hand,
for kx = 0 also the heights are decreasing as the charge decreases, but those are sharp
enough to be associated with Fermi surface. This seems to indicate that for sufficiently
small charge the Fermi surface will be depleted near the boundary of the Brillouin zone.

Next we have turned on the ionic lattice and numerically computed the spectral func-
tion, which has been given in a density plot in the figure 4. We have chosen q = 9 once
again, and set the strength of the ionic lattice to be ai = 0.2. Once again we have obtained
intersecting circular Fermi surfaces, which intersects near the boundary of the Brillouin
zone. But this time the gaps are wider and It shows small elliptical shaped Fermi pockets
near the boundary of the Brillouin zone, which are gapped due to the Umklapp scatter-
ing. The gap increases with increasing strength of the ionic lattice, making the Fermi
pockets smaller.
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Figure 2. Density Plot of logarithm of the spectral function A over (kx, ky)-plane in absence of
ionic lattice.
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Figure 3. Plot of spectral function A vs. ky with kx = π
L at the boundary of the Brillouin zone

in absence of ionic lattice with different fermionic charges. q = 8.7 (blue), 8.5 (red), 8.2 (magenta),
8 (brown), 7.7 (Green). The height of some of the plots are truncated so as to get all the peaks
visible in the figure.

We have further plotted the spectral function A vs. kx at ky = 0 in the figure 5 for
increasing values of the strength of the ionic lattice from 0 to 0.2. We have chosen ky = 0
as it corresponds to substantial peak associated with the Fermi pockets. It may be noted
that since we have kept the chemical potential fixed, the period L at which the free energy
reaches the minimum changes with variation of ai. As we vary ai from 0 to 0.2, L varies
from L = 0.3725 to L = 0.3155 and so the boundary of the Brillouin zone gets shifted.
The pairs of peaks that we observe in figure 5 for different strengths of the ionic lattice
are symmetrical around the respective boundary of the Brillouin zones. One can observe
that the height of the spectral function is decreasing with the increasing strength of ionic
lattice. This indicates that for a sufficiently large value of ai, the strength of the ionic
lattice, the Fermi pocket will disappear.
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Figure 4. Density Plot of logarithm of the spectral function A over (kx, ky)-plane in presence of
the ionic lattice with ai = 0.2.
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Figure 5. Plot of spectral function A vs. kx with ky = 0 with different strengths of ionic lattices
ai = 0 (blue), 0.1 (red), 0.2 (brown).

In order to study the behaviour of the energy distribution function, we have plotted the
spectral function with variation of the frequency, (A vs. ω) in the figure 6. The figure 6(a)
and 6(b) correspond to the plots of spectral function outside and inside the Fermi surface
near the boundary. As one can see the peak in A lies at ω ≥ 0 and ω ≤ 0, respectively,
while exactly at the Fermi surface position of the peak coincides with ω = 0, as expected
from the criterion of the Fermi surface. Figure 6(c) describes the behaviour of the spectral
function deep inside the Brillouin zone and far from the Fermi surface. Figure 6(d) is
plotted at the boundary of the Brillouin zone on the Fermi surface.
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Figure 6. Plot of spectral function A vs. w with q = 9 in absence of ionic lattice; (a) kx = 9.8, ky =
3.8 (blue), (b) kx = 9.8, ky = 0 (red), (c) kx = 0, ky = 0 (magenta), (d) kx = 8.43381, ky = 6.287
(brown).

5 The worldvolume fermion

In the last two sections we have analysed the fermionic responses to an inhomogenous so-
lution of charge density wave obtained from a D2-D8 system. The inhomogeneous solution
has a periodicity and using a generic fermion in that background we find that it exhibits
the Fermi surface near the boundary of the Brillouin zone. In addition, as mentioned in the
last section, the density plot also shows a circle near the origin of the k-plane deep inside
the Brillouin zone, which with large enough charge may lead to another Fermi surface.

However, in order to address the response of the fermionic operators in the dual (2+1)
dimensional field theory in the present set up, it is necessary that, instead of considering the
generic fermions, we consider the fermionic fields that arises in the worldvolume theories of
the D8 brane. That will be our concern in the present section and we will be using the same
methodology that we have described for the generic fermions. The worldvolume fermionic
fields couple to the fermionic opertors living in the dual gauge theory and by studying the
behaviour of these fermionic fields we can explore the dynamics of the fermionic operators.
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5.1 The Green’s function

We will begin with the action of the worldvolume fermions of the D8 brane. The general
expression for the action for the worldvolume fermions in (p + 1)-dimensions has been
discussed in [65–67]. The action is given by

SF = Tp
2

∫
dp+1ξe−φ

√
− det(g + F)Ψ̄(1− ΓDp)[(M̃−1)αβΓβDα −4]Ψ (5.1)

where F = dA represents the worldvolume field strength, T−1
p = (2π)p(α′)

p+1
2 gs is the brane

tension, Γα is the pullback of the spacetime gamma matrices Γm, given by Γα = Γm̄e m̄
m ∂αx

m

and for our purpose Ψ is a ten dimensional Majorana spinor in type IIA theory.
The matrix M̃αβ introduces coupling to the metric tensor and the electromagnetic field

strength and for the type IIA theory is given by

M̃αβ = gαβ + Γ11Fαβ (5.2)

where gαβ represents the pull back of the spacetime metric on the worldvolume. The
general expressions for Dm and 4 are discussed in [65]. In the present case, we do not
have any three-form field strength or two-form field strength in the background. We only
need to consider the dilation and the four-form field strength in the background and so the
expressions simplify into the following.

Dm = ∇m −
1

8 · 4!FnpqrΓ
npqrΓm,

4 = 1
2Γm∂mφ−

1
8 · 4!e

φFmnpqΓmnpq

∇m = ∂m −
i

4(ωm)āb̄Γ
āb̄

(5.3)

This gives rise to the Dirac equation

[(M̃−1)αβΓβDα −4]Ψ = 0. (5.4)

In order to analsye the Dirac equation we will segregate the coordinates in the following
manner. The D8 brane is wrapped on a product of four dimensional space (t, x, y, r), an
S2 and an S3 and it is transverse to the direction ψ. We will use xµ, ζi and ηa to denote
coordinates along the four dimensional space, the S2 and the S3 respectively.

xµ = t, x, y, r, µ = 0, 1, 2, 3
ζi = (θ1, φ1), i = 1, 2
ηa = (ξ, θ2, φ2), a = 1, 2, 3.

(5.5)

We choose the ten dimensional gamma matrices in the following manner.
Γµ̄ = σ2 ⊗ 12 ⊗ 12 ⊗ γµ̄, µ̄ = 0, 1, 2, 3

Γψ̄ = σ2 ⊗ 12 ⊗ 12 ⊗ γ5

Γī = σ1 ⊗ σī ⊗ 12 ⊗ 14 ī = 1, 2
Γā = σ1 ⊗ σ3 ⊗ σa ⊗ 14

Γ11 = σ3 ⊗ 12 ⊗ 12 ⊗ 14, ā = 1, 2, 3.

(5.6)

where the µ̄, ψ̄, ī and ā represents the respective tangent space directions.
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The ten dimensional background metric is given in (2.1) and according to that the
Dirac equation (5.4) can be splitted as([

(M̃−1)µνΓνDµ + (M̃−1)ijΓjDi + (M̃−1)abΓbDa
]
− eφ

8
[
(M̃−1)µνΓν 6F4Γµ

+ (M̃−1)ijΓj 6F4Γi + (M̃−1)abΓb 6F4Γa− 6F4
]
− 1

2Γm∂mφ
)

Ψ = 0
(5.7)

where we have used 6 F4 = 1
4!Γ

npqrFnpqr. For the present background solution the totally
antisymmetric four-form field strength can be written as

(F4)t̄x̄ȳū = −5 r
3/2
T

u3/2 . (5.8)

The contributons arising from the two-sphere and the three-sphere can be further
simplified and are written as follows. Since on the three-sphere there is no worldvolume
flux, we have

(M̃−1)abΓbDa = r
1/4
T

u1/4 cosψ
σ1 ⊗ σ3⊗ 6DS3 ⊗ 14,

(M̃−1)abΓb 6F4Γa = 3 6F4,

(5.9)

where 6DS3 is the Dirac operator on the S3 with the round metric.
On the two-sphere there is a magnetic field as given in (2.3) introduced for the stabilty

and we obtain

(M̃−1)ijΓjDi = r
1/4
T

u1/4 sinψ
(1 + ipσ3 ⊗ σ3 ⊗ 12 ⊗ 14)

1 + p2 σ1⊗ 6DS2 ⊗ 12 ⊗ 14,

(M̃−1)ijΓj 6F4Γi = 2(1 + ipσ3 ⊗ σ3 ⊗ 12 ⊗ 14)
1 + p2 6F4,

(5.10)

where in order to make the expressions compact we have introduced p, given by,

p = b̂

2πα′u1/2 sin2 ψ
, (5.11)

and 6DS2 is the Dirac operator on the S2 with the round metric. Substituting the expression
of the four-form field strength (5.8) and the gamma matrices (5.6) we obtain

6F4 = iκ12 ⊗ 12 ⊗ 12 ⊗ γ5, κ = 5r3/2
T

u3/2 . (5.12)

Substituting all these expressions the Dirac equation reduces to[
(gµλ −F

µ
λσ3 ⊗ 12 ⊗ 12 ⊗ 14)[(g −F .g−1.F)−1]λνσ2 ⊗ 12 ⊗ 12 ⊗ γνDµ

+ r
1/4
T

u1/4

[(1 + ipσ3 ⊗ σ3 ⊗ 12 ⊗ 14)
sinψ(1 + p2) σ1⊗ 6DS2 ⊗ 12 ⊗ 14 + 1

cosψσ1 ⊗ σ3⊗ 6DS3 ⊗ 14

]
− iκ8 e

φ
[
− (gµλ −F

µ
λ12 ⊗ 12 ⊗ 12 ⊗ γνγµγ5)[(g −F .g−1.F)−1]λν12 ⊗ 12 ⊗ 12 ⊗ γνγµ

+ 2(1 + ipσ3 ⊗ σ3 ⊗ 12 ⊗ 14)
1 + p2 )12 ⊗ 12 ⊗ 12 ⊗ γνγµγ5

]]
Ψ = 0, (5.13)
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We introduce the two component spinor for the first 2× 2 matrices in the expressions
of the gamma matrices as

λ0 =
(

1
0

)
λ1 =

(
0
1

)
(5.14)

which are eigenvectors of σ3.
Since the Dirac operator involves 6DS3 and 6DS2 , it will be convenient to expand the

spinor in terms of the eigenfunctions of those operators. Eigenfunctions of the Dirac oper-
ators on general spheres have been discussed in [68] and for our purpose we only need the
eigenvalues for S2 and S3. For our convenience we choose a slightly different notation and
for the two-sphere we write

6DS2ξ
(s)
l = i(−1)s(l + 1)ξ(s)

l , s = 0, 1, l = 0, 1, 2, . . . ,

σ3ξ
(s)
l = (−1)sξ(1−s)

l .
(5.15)

Similarly for the Dirac spinors on the three-sphere we write

6DS3η(t)
m = i(−1)t(m+ 3/2)η(t)

m , t = 0, 1, m = 0, 1, 2, . . . (5.16)

We expand the ten dimensional spinor as

Ψ = λα ⊗ ξsl ⊗ ηtm ⊗ χ[α, s, t, l,m] (5.17)

where in this notation, α, s, t = 0, 1, while l,m = 0, 1, 2, . . . and each χ[α, s, t, l,m] repre-
sents a four-dimensional spinor. We substitute this expression in the Dirac equation and
setting the coefficient of each λα ⊗ ξsl ⊗ ηtm equal to zero we obtain the following equation
for χα,s,tl,m .

iNµν̄
1 γν̄Dµχ[1− α, s, t, l,m]

+ i
r

1/4
T

u1/4

{ (−1)s(l + 1)
sinψ(1 + p2)

(
χ[1− α, s, t, l,m] + i(−1)αpχ[1− α, 1− s, t, l,m]

)
+ (−1)t(m+ 3/2)

cosψ χ[1− α, 1− s, t, l,m]
}

− i5gsr
1/4
T

8u1/4

{
−N µ̄ν̄

2 γν̄γµ̄γ5χ[α, s, t, l,m] + 2
(

1 + 1
1 + p2

)
γ5χ[α, s, t, l,m]

+ 2ip
1 + p2 (−1)αγ5χ[α, 1− s, t, l,m]

}

− i 5r
1/4
T

8u1/4

√
f

[
1 + u3ψ2

x

1 + u3ψ2
x + u2fψ2

u

]1/2
(−1)αγūχ[1− α, s, t, l,m] = 0

(5.18)

where, in the above equation we have used

Nµν̄
1 = (g−1)µκ[(−1)αg + F ]κλ[(g −F .g−1.F)−1]λνe ν̄

ν ,

N µ̄ν̄
2 = eµ̄µ(g−1)µκ[g − (−1)αF ]κλ[(g −F .g−1.F)−1]λνe ν̄

ν ,
(5.19)

In order to obtain the spectral density of the fermionic operators living on the boundary
field theory we need to solve these equations with appropriate boundary conditions and
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study the asymptotic behaviours. In terms of u the horizon is located at u = 1 and the
boundary is located at u = 0.

The momentum mode expansion of the different spinor components χ[1− α, s, t, l,m]
are given by

χ[α, s, t, l,m] =
∑
n∈Z

χ[α, s, t, l,m](n)einKx. (5.20)

In the following discussion, we will keep the momentum modes implicit.

• Near horizon behaviour. The necessary boundary conditions follow from the near
horizon behaviour. Taking the near horizon limit u→ 1 of the above equations and keeping
only the leading order terms, we obtain(

∂u −
iω

5(1− u)γt̄γū
)
χ[α, s, t, l,m] = 0 . (5.21)

For the four dimensional gamma matrices γµ we have adopted the following choice [42] as
given below in 2× 2 block form using the Pauli spin matrices .

γ t̄ =
(
iσ1 0
0 iσ1

)
, γū =

(
−σ3 0

0 −σ3

)
, γx̄ =

(
−σ2 0

0 σ2

)
,

γȳ =
(

0 σ2
σ2 0

)
, γ5 = iγ t̄γūγx̄γȳ =

(
0 iσ2
−iσ2 0

)
.

(5.22)

After substituting the expressions for the background metric and gauge fields and choosing
the near horizon limit we obtain,

χ[α, s, t, l,m]1 ∼ A[1, α, s, t, l,m](1− u)±
iω
5 , χ[α, s, t, l,m]2 ∼ B[1, α, s, t, l,m](1− u)±

iω
5

χ[α, s, t, l,m]3 ∼ A[2, α, s, t, l,m](1− u)±
iω
5 , χ[α, s, t, l,m]4 ∼ B[2, α, s, t, l,m](1− u)±

iω
5

(5.23)

We have chosen the minus sign and impose the in-falling boundary conditions [64] as that
is the correct choice for holographic computation of retarded Green’s function of the dual
theory living at the boundary. Furthermore, the equations at the near horizon limit also
implies

B[r, α, s, t, l,m] = −iA[r, α, s, t, l,m]. (5.24)

• Asymptotic behaviour. We can obtain the asymptotic behaviour of the fermions by
considering the u → 0 limit of the equations that we obtain above in (5.18) and keeping
only the leading order terms. In this limit the equations get simplified considerably and
assume the following form,

i(−1)α
(
u∇u −

5
8

)
γūχ[1− α, s, t, l,m] + i(−1)t(m+ 3/2)χ[1− α, 1− s, t, l,m]

+ i
5gs
4 γ5χ[α, s, t, l,m] = 0.

(5.25)
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These equations are first order coupled differential equations and can be disentangled
by making the following linear combinations of verious components of the spionors.

ηA[α, t, a, b] = 1
4[(χ1[1− α, s, t] + (−1)aχ1[1− α, 1− s, t])

+ (−1)b(χ4[α, s, t] + (−1)aχ4[α, 1− s, t])],

ηB[α, t, a, b] = 1
4[(χ3[1− α, s, t] + (−1)aχ3[1− α, 1− s, t])

+ (−1)b(χ2[α, s, t] + (−1)aχ2[α, 1− s, t])].

(5.26)

In terms of the new functions ηA[α, a, b, t], ηB[α, a, b, t] the asymptotic behaviour can
be written as

ηA[α, t, a, b] ∼ u
[
(−1)(t+α+a)(m+ 3

2 )+(−1)b+α 5gs
4 + 5

8

]
,

ηB[α, t, a, b] ∼ u
[
(−1)(t+α+a)(m+ 3

2 )−(−1)b+α 5gs
4 + 5

8

]
.

(5.27)

Expressing the spinor components at the asymptotic limits in terms of linear combinations
of ηA[α, t, , a, b] and ηB[α, t, a, b] we can identify the asymptotic behaviours of the spinor
components. In contrast to the earlier case, where the asymptotic limits of the spinor
components are characterised with two different powers of u, here it will involve four
different powers of u in general.

For the convenience of the numerical computations, we will further introduce the no-
tation that

χ1[α, s, t] = χ1[1, α, s, t], χ3[α, s, t] = χ1[2, α, s, t]
χ2[α, s, t] = χ2[1, α, s, t], χ4[α, s, t] = χ2[2, α, s, t]

(5.28)

We will follow the same method adopted in the last section to compute the Green’s
function. Here the boundary conditions can be denoted by (r, α, s, t), which corresponds
to the in-falling boundary condition on the spinor component χ1[r, α, s, t] and χ2[r, α, s, t]
and setting all other spinor components to be zero. We will write the coefficient of the
having highest negative (positive) power of u in the asymptotic expression of χ2[r, α, s, t]
(χ1[r, α, s, t]) as b[r, α, s, t] (a[r, α, s, t]) with (r′, α′, s′, t′) boundary condition as
b(r, α, s, t; r′, α′, s′, t′) (a(r, α, s, t; r′, α′, s′, t′)) and in this notation the expression for Green’s
function (3.18) can be written as

a(r, α, s, t; r′, α′, s′, t′) =
∑

r′′,α′′,s′′,t′′

GR(r, α, s, t; r′′, α′′, s′′, t′′)b(r′′, α′′, s′′, t′′; r′, α′, s′, t′).

(5.29)
Writing a(r, α, s, t; r′, α′, s′, t′) and b(r′′, α′′, s′′, t′′; r′, α′, s′, t′) as matrices a and b, the re-
lation becomes

a = GR.b, GR = a.b−1 (5.30)

The different components corresponding to different values of r, which essentially cor-
reponds to the upper and lower 2-component spinors are getting entangled through the
equation of motion (5.18). A similar mixing occurs in the case of generic fermions dis-
cussed in the earlier section. Compared to the generic fermions, the world volume fermions
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Figure 7. Plot of spectral function A vs. kx with ky = 0 for worldvolume fermions. From bottom
to top: gs = 0 (red), 0.01 (orange), 0.02 (green), .025 (blue), .03 (magenta), .05 (brown).

are characterised by additional mode indices, α, s, t, l and m. As is evident from the (5.18),
the spinors corresponing to different values of l and m will not get mixed up. If we further
set gs = 0, there will be no mixing among the modes associated with α = 0, 1. However
the modes corresponding s = 0, 1 will get mixed up due to the presence of the flux as well
as the spinor modes coming from S3. In that case, the Green’s function will be diagonal in
α, t, l and m indices and will be a matrix in r, s indices. As we turn on the gs the Green’s
function will have off-diagonal terms in α indices and the different modes will mix up. In
order to evaluate the spectral function we have chosen the trace of the Green’s function in
r, α, t and s indices.

As in section 3, we will assume that the diagonal momentum mode dominates and
furthermore we will keep only the n = 0 modes. Then the spectral functions follow from
the Green’s function GR.

We have solved the Dirac equations numerically and plotted the spectral functions
obtained in the present case in figure 7 for several values of gs keeping l = m = 0. As one
can observe, for small value of gs, it will be similar to gs = 0 and it shows a maximum
around kx = 0 and for the entire range the height is quite small. However, the peak is
quite flat and it does not qualify as a Fermi surface. As gs increases, the maxima at kx = 0
disappears and a pair of maxima develop located symmetrically on both sides of kx = 0.
The overall value of the spectral function also increases with increase of gs.

The eigenvalues of the Dirac operators along S2 and S3 introduces running mass-like
terms in the Dirac equation. In the case of usual Dirac operators, as we have seen in
the last section where generic fermions were discussed, the asymptotic behaviour of the
Dirac equation is determined by the mass terms. In the present case, however, though the
eigenvalues of the Dirac operator along S3 contributes to the asymptotic limit of the Dirac
equation, the one associated with the S2 does not contribute. We have plotted the spectral
function for several values of gs in figure 8 for (a) l = 1, m = 0 and (b) l = 0, m = 1. For
l = 1 it shows a maximum around kx = 0 and qualitatively it remains the same for other
values of gs. For m = 1 once again it shows a maximum at kx = 0 for small gs, which turns

– 20 –



J
H
E
P
0
9
(
2
0
2
1
)
1
6
0

-15 -10 -5 0 5 10 15
Kx

1

2

3

4

Im(G)
l = 1; gs = 0; 0.01; 0.02; 0.05

(a)

-30 -20 -10 10 20 30
Kx

100

200

300

400

500

600
Im(G)

m = 1; gs = 0; 0.01; 0.02; 0.05

(b)

Figure 8. Plot of spectral density A vs. w with gs = 0 (red), 0.01 (orange), 0.02 (green), .05
(brown) (a) l = 1,m = 0, (b) l = 0,m = 1.

into a local mimimum with increase of gs. Though there are maxima, they are too broad
to be qualified as a Fermi surface.

Since the worldvolume fermions of the D8-brane couple to the worldvolume gauge fields
in adjoint representation and since we have a U(1) gauge field the worldvolume fermions are
not charged with respect to the gauge fields. As we have seen in the discussion of generic
fermion for zero charge we cannot expect a Fermi surface. However, there we observed
small and broad peak around the origin and as we mentioned over there, for adequate
value of the charge it may lead to a Fermi surface. Similarly one can expect that once the
fermions have adequate charge, it may lead to a Fermi surface. Since increasing gs can be
considered as including the effect of 1

N terms in the field theory living on the boundary,
if the same behaviour persists, it indicates that the 1

N effects will modify the structure of
the Fermi surface. In order to study it we need to consider at least two D8 branes, so
that it can lead to a gauge group SU(2) to which the worldvolume fermions couple with
non-zero charge.

5.2 The dual operators

In the present subsection we will make an attempt to identify the operators dual to the
fermionic modes of the world volume fermions following [16, 69–71] by comparing the
representations of the components of the world volume fermions and the fields in the dual
theory.

We will begin with the background geometry consisting of N D2 branes on top of
one another extended in x0, x1, x2 direction. As given in [72], various massless modes of
D2-D2 open strings give rise to a U(N) Yang-Mills theory in (2+1) dimensions. The field
contents are: a gauge field Aµ, seven scalar fields XI transforming as a vector under SO(7)
R-symmetry group and eight two-component spinors λ in (2+1)-dimension transforming
as an 8-component spinors of SO(7). All the fields transform in the adjoint representation
under the gauge group U(N).
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Field Spin SU(2)1 SU(2)2 SU(2)3 U(1) U(N)
Xi 0 1 0 0 0 adjoint
Y j 0 0 1

2
1
2 0 adjoint

λ+ 1
2

1
2

1
2 0 0 adjoint

λ− 1
2

1
2 0 1

2 0 adjoint
ψ 1

2 0 0 0 0 fundamental

Table 1. Representations of the fields in the dual theory.

Once we add a probe D8 brane that gives rise to additional massless modes arising
from the D2-D8 and D8-D8 open strings. The lowest modes of the open strings connecting
a Dp-Dq brane in general can be obtained from the zero point energy of the R sector and
NS sector of open string [73, 74], which are given by

aR = 0 , aNS = #ND − 4
8 , (5.31)

where #ND is the number of spatial coordinates of open strings which have the Neumann
boundary condition on one end and the Dirichlet boundary condition on the other end.
In the present case #ND = 8 − 2 = 6 and therefore the lowest modes from the NS
sector are all massive and decouple at low energy. Only massless fermions coming from
the R-sector remain. We denote them as ψ which are two-component spinors in (2+1)-
dimension, transforming in the fundamental representation under U(N) as well as under
U(1) associated with the gauge symmetry of the D2 and D8 branes respectively. In the
probe limit the U(1) associated with the D8 brane will be treated as a global symmetry
and identified with the Baryon number.

In presence of the probe D8 brane the supersymmetry will be completely broken.
Further, since we have considered the D8 brane to be wrapped on an S2 × S3 embeeded
in the S6 transverse to the D2 brane the SO(7) symmetry will get modified. Since the
isometry group of S2 and S3 are SO(3) ' SU(2) and SO(4) ' SU(2)× SU(2) respectively,
we expect the symmetry group will be broken down to SO(7)→ SU(2)1×SU(2)2×SU(2)3,
where the first SU(2) refers to the 2-sphere and the latter two refers to the three-sphere.
The seven scalar fields XI transforming as a vector under SO(7) can be reorganised into
two groups: Xi, i = 3, 4, 5 that transform as a vector under SU(2)1 and is a singlet under
SU(2)2 × SU(2)3; Y j , j = 6, 7, 8, 9 transforming as a singlet under SU(2)1 and is a vector
under SU(2)2 × SU(2)3. Similarly, the fermion λ will split into λ+ and λ−. λ+ (λ−)
transforms as spinor under both of the SU(2)1 and SU(2)2 (SU(2)3) and singlet under
the rest. The representations of the field content are summarised in the table 1. For
convenience we have also introduced λ̃±,aβ = (σ3)βγλ±aγ , where β, γ refer to the SU(2)1
spinor index.

We have expanded the fermionic fields in the world volume theory of the D8 brane in
terms of the eigenspinors of the Dirac operators on S2 and S3. For S2, ξ(s)

l transforms in
the representation (l + 1

2) under the SU(2)1 and as singlet under SU(2)2 × SU(2)3. For
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S3, η(t)
m transforms in the representation (0, m2 ,

m+1
2 ) and (0, m+1

2 , m2 ) respectively under
the group SU(2)1 × SU(2)2 × SU(2)3, for t = 0, 1. Following [16, 71] we can construct
fermionic operators in the dual field theory with appropriate representations. They are
represented by

G+[0, 0, l,m] = ψ̄λ+X lY mψ, G−[0, 1, l,m] = ψ̄λ−X lY mψ,

G+[1, 0, l,m] = ψ̄λ̃+X lY mψ, G−[1, 1, l,m] = ψ̄λ̃−X lY mψ,
(5.32)

where X l = Xi1...il is a symmetrized product of l X operators, Y j1...jm is a symmetrized
product of m Y operators. The first two arguments of the operators refer to s and t

respectively. Referring to the table 1 one can see that under SU(2)1×SU(2)2×SU(2)3, G+

and G− transform in the representations (l + 1
2 ,

m
2 ,

m+1
2 ) and (l + 1

2 ,
m+1

2 , m2 ) respectively.
However, under the U(1) associated with the world volume gauge group of D8 brane they
are singlets, which is consistent with the fact that the world volume fermionic fields on the
D8 brane does not couple to the U(1).

These operators will correspond to certain linear combination of the world volume
fermionic fields with α = 0 and 1, according to the κ-symmetric projection (1 − ΓD8)Ψ.
There is one difference compared to the identification of the operators in [16]. In their
case, they considered wrapping the Dp-brane on a single sphere. Expanding the fermions
in terms of the eigenspinors, for each mode they had two components, denoted by ±.
On the dual field theory side, there are two sets of operators. F , which has operators
sandwiched between (q, ψ) (q and ψ being the massless modes coming from NS and R
sectors respectively of the Dp-Dq strings) and G, which has operators sandwiched between
(ψ,ψ). In the present case the bosonic field analogous to q is massive, supersymmetry
is broken and we have only G-type operators. It seems for the identification of the two
components coming from the two-sphere (s=0,1) (5.32) is the only option.

A check for the identification between operators and the fields could be comparison of
the masses of the fermionic fields on the D8 brane and the weights of the dual fermionic
operators following [16, 71, 75]. The geometry of the present model is not asymptotically
AdS and in fact it is similar to hyperscaling violating Lifshitz geometry. Studying along
the line of [13, 25, 28, 76], one can consider the near horizon limit where it may lead to an
AdS2 geometry. Setting ω = 0 and considering the contribution of the subleading terms in
the Dirac equation at that limit one can compute the weights of the dual operators [13].
In the present case, since it is quite an involved task due to presence of the flux, we are
postponing it for future work.

Let us end this section with a few clarifying remarks. As mentioned in [51, 54] the dual
theory of the D2-D8 brane configurations consists of a fermionic field ψ which transforms in
the fundamental representation of U(N). In general, the dual theory of the Dp-Dq branes
are characterised with fermionic fields transforming in the fundamental representation of
U(N) [16, 69–71]. The case of the D2-D8 brane is different in the sense that the super-
symmetry is broken and there is no massless bosonic field in the fundamental. However,
when we consider the fermionic operators that are dual to the worldvolume fermion they
are singlet under the U(N) as well as under the U(1), the latter is associated with the
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worldvolume gauge theory in the bulk, which appear as a global symmetry in the dual field
theory living on the boundary. In particular, the worldvolume fields are not dual to the
operators in the fundamental of U(N), namely ψ.

We would also like to emphasize that the absence of the Fermi surface associated with
the dual fermionic operators can be attributed to the fact that the worldvolume fermions
(as well as the operators dual to them) are not charged with respect to the worldvolume
gauge group U(1). If we consider, more than one D8 brane it may lead to the Fermi
surface. For example if we consider two D8 branes, the worldvolume gauge group will
be U(2) ' U(1) × SU(2) and we can obtain components of the worldvolume fermion (as
well as the operators dual to them) which are charged under U(1) ⊂ SU(2) and there is
a possibility that it may exhibit the Fermi surface. We hope to extend the present work
along this direction in future.

6 Discussion

In this work we have considered fermionic response of a spatially modulated solution ob-
tained in a top-down approach. Intersecting D2-D8 brane system develops instability and
for a particular region of the parameter space leads to a solution which consists of a charge
density wave and a spin density wave. We set the chemical potential to be inside the region
of stability and consider that gravitational solution as the background. In this background
we introduce fermions and numerically solve the Dirac equations. From the asymptotic
behaviour of the solutions, we obtain the spectral density associated with the fermionic
operators in the dual theory living on the boundary.

We begin with introducing generic fermions assuming they will couple to the world
volume gauge field, keeping the charges flexible. In order to study the Fermi surfaces we
look for appropriate peak of spectral density function. Due to spontaneous breaking of
the translational symmetry, the background solutions are characterised with a periodicity
determined by the minimum of the free energy, which in turn depsends on the chemical
potential. On top of this solution we have also considered simulating an ionic lattice
by introducing periodicity in the chemical potential by hand, which leads to an explicit
breaking of translation symmetry. We find as the fermionic charge increases, the height of
the peak increases. It shows once the fermionic charge is large enough the Fermi surface
materializes. In the present model, plotting the spectral density over momentum plane
we obtain the Fermi surface to be a series of circles distributed over the Brillouin zones.
As the charge increases further, the circular surfaces get bigger, cross the boundary of the
Brillouin zone and intersect. We find at the points of the intersections, they develop gap
leading to the Fermi pockets (inner Fermi surface). In presence of the ionic lattice, the
gap becomes more pronounced leading to a wider separation. The height of the spectral
density plot is also keep on diminishing with the increasing strength of the ionic lattice.
This indicates that for a larger value of the strength of the ionic lattice, the Fermi pockets
(inner Fermi surface) will disappear. Similar study of Fermi surfaces for a charge density
model has appeared in the bottom-up approach [42]. They also obtained similar behaviour
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of Fermi surfaces suggesting these are generic rather than model dependent features of the
charge density wave solutions.

Next we consider the worldvolume fermions in the same background. Since worldvol-
ume fermions transform under the adjoint representation, charge of the usual couping with
the gauge field is zero in this case. Nevertheless, due the structure of the action, the elec-
tromagnetic flux enters the Dirac equation. We studied the plot of spectral function and
find that it shows a maximum around the origin. We also observe that with the increase of
gs the maximum of spectral function, separates into a pair of maxima, moving away from
the kx = 0. If we consider that the increasing values of gs would correspond to 1/N effects
in the dual field theory this may hint at the possible effects of 1/N correction. However,
the maximum does not qualify as a Fermi surface, which is due to the fact that the charge
of the fermions coupling to the gauge field is zero. Nevertheless, one can expect a similar
behaviour will persist for adequate charge. We have also discussed the operators in the
dual field theory.

A natural extension of the present work is to consider the worldvolume fermions in
the D2-D8 intersecting brane model with a gauge group of higher rank, such as SU(2) and
examine the behaviours of the fermions as has been done in [16] in a linearised approx-
imation. Being a top-down approach it is possible to explicitly consider the exact field
theory model dual to it living on the boundary. It will be quite interesting to understand
these features in a field theory set-up in the dual model. It will shed light on the forma-
tion of the Fermi surfaces from the perspective of a field theoretic understanding. The
behaviour of the spectral density function with the variation of the frequency also merits
a field theoretic study.

We can also extend the analysis for the Majorana fermions. Supergravity models
often introduce Pauli coupling, which in holographic models introduces gaps in the Fermi
surface. It may be interesting to study the implications of the Pauli couplings for the
generic fermions in the present model and how it modifies the Fermi surface. Lastly, it
may be mentioned that the spatially modulated solution that we have considered here
is obtained in a probe approximation. One can obtain the full solution by considering
the gravitational back reaction, which may provide a more complete picture of the Fermi
surface in the present context.
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