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A new analytical formulation for the modeling of piezoresistive fiber-reinforced composites with
percolation-type behavior is presented in this work. Firstly, we develop a closed-form solution of the
electrical conductivity of oriented short-fiber reinforced composites by using generalized spherical
harmonics series expansions of a Mori-Tanaka (MT) model. Piezoresistive effects are accounted for by
means of three distinct mechanisms, namely filler reorientation, volume expansion, and breakage/for-
mation of conductive paths. Then, this solution is used to derive simple analytical formulas to estimate
the linear piezoresistivity coefficients. To illustrate the potentials of the proposed formulation, numerical
results and discussion are presented on its application to the modeling of the piezoresistive composites
doped with carbon nanotubes (CNTs). The presented formulation is also inlaid in a standard 3D finite
element code to simulate the electromechanical response of full-scale CNT-based structural elements.
The reported results demonstrate the capabilities of the proposed formulation to link the microstructural
properties of short-fiber composites with the macroscopic response of structural systems with
extraordinarily fast computation times and accuracy.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recent advances in the field of piezoresistive composites have
opened vast new opportunities for the development of a number of
innovative smart structures such as self-diagnostic structural sys-
tems [1], artificial skins in robotics [2], biomedical implants [3], soft
electronics [4], and human motion detection [5], just to mention a
few. In this context, carbon-based nanomaterials, including CNTs,
graphene nanoplatelets (GNPs), carbon nanofibers (CNFs), carbon-
black (CB), Graphene oxide (GO), and CNT bucky papers (CNT-BP),
have attracted particular interest owing to their excellent electro-
thermo-chemical properties [6]. When doped into an insulating
or poorly conductive matrix material such as polymer or cement,
the resulting composite becomes piezoresitive. The working
e Ingeniería, Department of
dad de Sevilla, Camino de los

ier Ltd. This is an open access arti
principle of these composite materials lies in the formation of a
network of electrically conductive fillers sensitive to the application
of external mechanical strains. Hence, electrical resistivity mea-
surements can be directly related to the underlying strain state of
the material, being possible to manufacture mechanical load-
bearing sensors. Given the far-reaching possibilities of these com-
posites, there is an increasing need for accurate but computation-
ally efficient and easily implementable constitutive models capable
of investigating the macroscopic response of full-scale applications.

Large research efforts have been exerted to identify and char-
acterize the electrical transport properties of these composites. In
general, both theoretical and experimental evidences agree to
attribute the electrical conductivity of carbon-based composites to
three different contributions [6]: (i) the intrinsic conductivity of the
constituent phases; (ii) the formation of electrically conductive
paths between fibers; and (iii) tunneling/hopping of electrons
among disconnected fibers. The relative contributions of conduc-
tive networking and electron hoppingmechanisms are governed by
a percolation-type behavior [7]. In this light, the overall electrical
cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
mailto:fburoni@us.es
http://crossmark.crossref.org/dialog/?doi=10.1016/j.carbon.2021.08.083&domain=pdf
www.sciencedirect.com/science/journal/00086223
www.elsevier.com/locate/carbon
https://doi.org/10.1016/j.carbon.2021.08.083
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.carbon.2021.08.083
https://doi.org/10.1016/j.carbon.2021.08.083


F.C. Buroni and E. García-Macías Carbon 184 (2021) 923e940
conductivity of these composites typically exhibits a sudden in-
crease of several orders of magnitude when the filler loading rea-
ches a critical concentration, named the percolation threshold. This
critical concentration relates the onset of the conductive
networking mechanism. Hence, the overall electrical conductivity
below percolation is governed by the sole contribution of the
electron hopping mechanism, while both conductive networking
and electron hopping mechanisms contribute after percolation. A
variety of modeling techniques to unveil the role of the micro-
structural properties of these composites in their overall electrical
conductivity have been proposed in the literature. These include
analytical percolation models [8,9], micromechanics approaches
based upon the mean-field homogenization (MFH) theory [10e13],
equivalent lumped-element circuit models [14e16], and numerical
Monte Carlo simulation methods [17,18]. Then, the piezoresistive
properties of these composites are ascribed to strain-induced al-
terations of these electrical transport mechanisms. Specifically,
three distinct mechanisms are commonly highlighted in the liter-
ature [19e21]: (i) volume expansion, (ii) filler reorientation, and
(iii) changes in the inter-particle properties. Among the research
works coping with the simulation of such strain-induced effects, it
is worth noting the pioneering works by Hu et al. [22] and Alamusi
and Hu [23] who proposed a 3D resistor networkmodel to estimate
the piezoresistive properties of CNT/polymer composites.
Following these contributions, most subsequent research works
simulate the electrical contact resistance among CNTs following the
generalized Simmon's formula [24]. Furthermore, many modeling
approaches reported later include the fiber reorientation effects
through different versions of the rigid-body reorientation model
set out by Taya et al. [25]. A noteworthy contribution was made by
Tallman and Wang [21] who proposed an analytical formulation
based upon a simplified excluded volume approach for CNT-based
composites under arbitrary dilations. Their results reproduced
some of the experimental evidence on piezoresistive carbon-based
composites. On one hand, the strain sensitivity of CNT-reinforced
composites can be assimilated by a linear range followed by a
non-linear one. On the other hand, those authors showed that both
the strain sensitivity and the relevance of the non-linear effects
increases as the CNT content approaches the percolation threshold.
Another important contribution was due to Feng and Jiang [20,26]
who proposed a mixed Mori-Tanaka MFH approach for the
modeling of the uni-axial and bi-axial strain self-sensing properties
of CNT/polymer composites. Later extended by García-Macías and
co-authors [27] for arbitrary principal strains, this approach has
proved proficient to include the main mechanisms leading the re-
sistivity properties of CNT-based composites within an analytical
and sound approach. Following these efforts, a considerable num-
ber of analytical [1,28,29,68] and numerical simulation techniques
[30e32] for the modeling of the piezoresistivity properties of
percolation-type composites have been recently proposed in the
literature.

Amongst the previously mentioned modelling schemes,
micromechanics approaches based upon the MFH theory offer an
excellent trade off between accuracy and computational efficiency.
The mean-field scheme solves the boundary value problem asso-
ciated with the homogenization of composite materials in analyt-
ical terms. To do so, the micro-fields within each constituent (e.g.
strain, stress, electric field or current density) are approximated by
their volume averages [55]. Then, different assumptions upon the
interaction between the micro-constituents give origin to different
MFH techniques [66]. Specifically, the MT model has proved suit-
able for composite materials doped with moderate to low filler
contents, finding a number of applications in the literature to
elastic [69], electrically conductive [68], or piezoelectric composites
[67], just to mention a few. The main advantage of MFH relies in the
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fact that estimates are formulated in analytic tensorial terms,
allowing to establish functional relations between the micro-
mechanical properties without involving computationally
burdensome virtual testing of numerical representative volume
elements (RVEs). In the realm of piezoresistive fiber-reinforced
composites, these techniques have proved proficiency to repro-
duce the primary mechanisms governing the strain-sensing prop-
erties within a computationally inexpensive analytical framework
and with minimal support from experimentation [20,27]. These
include the consideration of volume expansion effects under the
assumption of inextensible fillers, breakage/formation of conduc-
tive paths through variations of the percolation threshold, variation
of the inter-particle properties, and filler-reorientation [10,13,25].
Feng and Jiang [20] extended the rigid-body reorientation theory
by Taya et al. [25] and showed that filler reorientation effects can be
simulated in mathematical terms by means of strain-dependent
Orientation Distribution Functions (ODFs). Specifically, those au-
thors presented closed-form expressions of the reorientation ODF
for the case of laterally unconstrained axial stretching. Afterward,
García-Macías and co-authors [27] proposed a generalization of
these ODFs for the consideration of arbitrary principal strains.
Interestingly, those authors also showed that these ODFs can be
also used to estimate the effects of strain upon the percolation
threshold through stochastic percolation models such as the one
proposed by Komori andMakishima [33]. These probability density
functions are used to weight the orientational averages involved in
the MFH theory throughout the space of all filler orientations. Such
orientational averages usually require the implementation of nu-
merical integration techniques. These approximations introduce
numerical integration errors and, more importantly, diminish the
computational efficiency of the homogenization when applied to
the analysis of macrostructural elements.

In view of the aforementioned limitations related to the MFH of
piezoresistive fiber-reinforced composites, this work is aimed at
developing a fully analytical approach based upon the closed-form
integration of the kernels involved in the MT method through
spherical harmonics expansions. According to the celebrated Peter-
Weyl theorem [34], kernel functions belonging to the special
orthogonal group can be expanded in generalized spherical har-
monics series. Consequently, by exploiting the orthogonality
properties of generalized spherical harmonics functions [35], in-
tegral averaging can be conducted in a direct way by the harmonic
series expansionmethod [36,37]. This powerful technique has been
successfully applied in several works to estimate the effective
properties of composite materials, mainly for textured polycrystals
[38e42] and short-fiber composites [43e45], as well as some
recent applications to composites with piezoelectric polycrystalline
inclusions [46e51]. In this light, the harmonic series expansion
method is used in this work to derive a closed-form formulation of
the electrical conductivity and piezoresistivity of random fiber/
matrix composites. The proposed approach incorporates the major
microstructural properties of piezoresistive composites with
percolation-type behavior, including the geometrical and physical
properties of the constituents, percolative and non-percolative
phases, as well as strain sensitivity through three distinct mecha-
nisms, namely filler reorientation, volume expansion, and
breakage/formation of conductive paths. Thanks to its closed-form
definition and for the first time in the literature, simple explicit
formulas of the piezoresistivity coefficients of percolative and non-
percolative composites with arbitrarily shaped inclusions are
derived by direct linearization of the proposed formulation. To
illustrate the potentials of the present formulation, numerical re-
sults and discussion are presented on its application to the
modeling of CNT-based composites. Finally, the proposed approach
is also implemented in a standard 3D finite element code to
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simulate the electromechanical response of a full-scale CNT-based
structural element, reporting extraordinarily fast computation
times and accuracy. Computer codes in MATLAB and Python lan-
guages with the implementation of the developed formulation are
provided in Supplementary Material 2 as an open-source tool for
the scientific community.

The work is organized as follows. Section 2 introduces a
micromechanical model for electrical conductivity of random fiber
composites accounting for the percolation phenomenon. In Section
3 we develop an analytical solution for the composite conductivity
by using generalized spherical harmonics series expansions. In this
light, we provide all the components for the effective conductivity
tensor in terms of the strain state and the volume fraction, micro-
conductivities and aspect ratio of the filler. Section 4 presents
simple algebraic expressions for the linear piezoresistive constants,
including the possibility that fibers form percolating networks. In
Section 5, the derived formulation is illustrated in detail with its
application to the modeling of CNT-based composites, and Section
6 summarizes the key findings and conclusions of this work.
Additional contributions are presented in the supplementary
materials.
2. Micromechanical model for conductivities

Let us consider a RVE as sketched in Fig. 1 (a) consisting of a
matrix phase and a statistically representative population of
randomly oriented cylindrical inclusions. In general, the orientation
of each inclusion with respect to a fixed reference xi (i ¼ 1, 2, 3) can
be described with three Euler angles j, q, and 4 following the
convention used by Roe [52]. According to the percolation theory,
the electrical conductivity of the composite experiences an expe-
ditious increase when the filler content reaches a critical concen-
tration, the so-termed percolation threshold fc. Below percolation,
fillers are distant and electrons can only be transferred by quantum
tunneling effects or through the matrix phase (in general, consid-
erably less conductive than the fillers). Above the percolation
threshold, fillers can touch each other forming micro-scale elec-
trically conductive paths. The use of MFH, while based upon some
simplifying assumptions, allows to estimate the effective properties
of these composites with reasonable computational costs. In
particular, the MT method [53] has been shown accurate to esti-
mate the effective properties of composites doped with a wide
Fig. 1. (a) Schematic of the conductive mechanisms governing the electrical conductivity of
embedded filler under a tri-axial strain state (ε1, ε2, ε3). (A colour version of this figure can
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variety of inclusions at low tomoderate filler concentrations. In this
light, a multi-inclusion non-linear extension of the MT method has
been previously proposed in the literature to accommodate the
contribution of both percolated and non-percolated inclusions as
[13,19]:

sð3Þ ¼ sm þ ð1� xð3ÞÞhf ð3ÞðsNPð3Þ � sm ÞANPð3Þ i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Non�percolating

þ xð3Þhf ð3ÞðsPð3Þ � sm ÞAPð3Þ i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Percolating

; (1)

where the first term, sm, is the conductivity tensor of the matrix,
which is represented dassuming isotropic behaviord by a diago-
nal matrix smdij (i, j ¼ 1…3), with dij denoting the Kronecker delta.
Second and third terms account for the non-percolating and the
percolating mechanisms, respectively. Thus, sNP and sP are the
conductivity tensors of the fibres which, in this work, are consid-
ered as transversely isotropic. Operator C,D is the orientation
average of the fibres weighted by an orientation probability density
function, which is rigorously defined below. Term xð3Þ denotes the
fraction of percolated fillers, that is to say, the fraction of fillers
touching each other forming conductive microscopic paths. As
previously indicated, the overall conductivity of composites loaded
with fibre volume fractions below the percolation threshold,
fð3Þ< fcð3Þ, the non-percolating mechanism governs the overall
conductivity of the composite and, therefore, the fraction of
percolated fibres, xð3Þ, is null. Conversely, once percolation starts,
fð3Þ � fcð3Þ, a rising number of fibres starts forming conductive
networks and both the percolating and the non-percolating
mechanisms act simultaneously. Provided a model for fcð3Þ (see
Section 4.2), parameter xð3Þ can be approximately estimated as [54]:

xð3Þ ¼

8>><
>>:

0; 0 � fð3Þ< fcð3Þ

fð3Þ1=3 � f 1=3c ð3Þ
1� f 1=3c ð3Þ

; fcð3Þ � fð3Þ � 1:
(2)

Tensors ANP and AP in Eq. (1) denote the concentration tensors.
When conductive networks mechanism starts, several fibres are
electrically connected in a continuous conductive path as sketched
in Fig. 1 (a). This effect can be modeled by considering fillers with
fiber-reinforced composite. (b) Deformable cubic cell of size l0 � l0 � l0 containing an
be viewed online.)
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infinite aspect ratio s (length-to-diameter) [13]. Therefore, ANP is
computed considering the actual filler's aspect ratio, while AP

tensor corresponding to conductive networks are defined with s/
∞ as detailed before. The concentration tensor A is computed by
Ref. [45].

A ¼ Adil
�
ð1� f ÞIþ fAdil

��1
; (3)

with

Adil ¼
�
I þ Ss�1

m

�
sf � sm

���1
; (4)

where I is the 3 � 3 identity matrix and S is the shape-dependent
Eshelby's tensor. For transversely isotropic fibers aligned with
local x03-axis, conductivity is sf ¼ diag(sT, sT, sL) and S¼ diag(S11, S11,
S33) with components [55].

S11 ¼ s

2
�
s2 � 1

�3
2

2
64s�s2 � 1

�1
2 � cosh�1ðsÞ

3
75; (5)

and

S33 ¼ 1� 2S11; (6)

being s (s > 1) the aspect ratio length-to-diameter of the fiber.
Note that the dependency on the small strain tensor, 3, in the

MT'smodel in Eq. (2) results in non-linearities in the strain-induced
variations of the effective electrical conductivity. Thus, a key point
to achieve accurate estimates of the piezoresistivity properties is to
establish the influence of external strains upon three different as-
pects: (i) mechanical strains alter the volume of the composite
which modifies the volume fraction of the fillers f and, as a result,
the fraction of percolated fibers x from Eq. (2); (ii) fillers experience
reorientation, which modifies the spatial distribution of the fibers
and, in consequence, introduces anisotropy in the conductivity; and
(iii) as a result of the latter mechanism, external strains also modify
the percolation threshold. Note that the reorientation of the fillers
decreases the randomness of the filler distribution which, as dis-
cussed in further details hereafter, can be formally described by an
Orientation Distribution Function (ODF). An ODF is a probability
density function (PDF) describing the orientation of the fillers in the
composite in probabilistic terms. In this light, the work by Kumar
and Rawal [59] demonstrated that minimum percolation thresh-
olds are attained for randomly oriented fillers (uniform ODF), while
the percolation threshold increases as the fillers tend to align in a
certain preferred orientation. Therefore, it can be concluded that
the reorientation of the fillers reduces the likelihood of forming
conductive paths or, alternatively, it leads to increments in the
percolation threshold fc.

It is assumed that the filler remains inextensible since it is often
considerably stiffer than that host matrix. In this way, the defor-
mation of the composite is mainly sustained by the matrix and,
therefore, the strain-induced volume expansion alters the un-
strained fibre volume fraction f0 as follows [10]:

fð3Þ ¼ f0
ε1ε2ε3

¼ f0
trð3Þ þ detð3Þtrð3�1Þ þ detð3Þ þ 1

; (7)

with ε1 ¼ ε1 þ 1, ε2 ¼ ε2 þ 1 and ε3 ¼ ε3 þ 1 being ε1, ε2 and ε3 the
three principal strains; det(,) and tr(,) denote the determinant and
trace operators, respectively. Note that fð3Þ is a function invariant
under orthogonal transformations and it accounts for second-order
volume changes.
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The fiber reorientation is also modeled under the assumption
that the filler is considerably stiffer than the matrix, so it remains
inextensible [10]. Such an assumption allows to simulate the strain-
induced reorientation of the fillers in the RVE following the
deformable cubic cell model proposed by Taya et al. [25] and Feng
and Jiang [20] for uni-axial strain states and later extended for
three-dimensional (3D) strain states by García-Macías et al. [10].
According to this model, let us consider a deformable cubic cell of
side l0 loaded with an embedded fiber before and after the appli-
cation of a 3D principal strain state (ε1, ε2, ε3) as shown in Fig. 1 (b).
The orientation of the fiber Da after the application of the me-
chanical strain is defined by a rotation Ra from its initial orientation
with respect to the fixed reference xi (i ¼ 1, 2, 3). In this light, the
distribution of filler orientations after the application of a me-
chanical strain can be mathematically described by an ODF. This
function is defined such as w : SOð3Þ/R�0, R1w(R) describes the
probability density of finding R to be the fiber orientation after the
application of the macroscopic deformation. The term R�0 denotes
the set of positive real numbers including zero and SO(3) is the
special orthogonal group. In this work, SO(3) is parametrized with
the three Euler angles g ¼ (j, q, 4). Following García-Macías et al.
[10] the ODF after the application of deformations characterized by
the principal strains is given in term of Euler's angles by:

wðε1; ε2; ε3jj; qÞ ¼
ε
2
1ε

2
2ε

2
3h

ε
2
1ε

2
2cos

2qþ ε
2
3

�
ε
2
1sin

2jþ ε
2
2cos

2j
�
sin2q

i3=2:
(8)

Note that the geometrical revolution symmetry of fiber implies
that w is independent of the third Euler's angle 4. In addition, the
ODF in Eq. (8) takes the value 1 in the absence of strains
(ε1 ¼ ε2 ¼ ε3 ¼ 0), which dafter appropriate normalizationd cor-
responds to the initial assumption of randomly dispersed fillers in
the RVE.
3. Analytical solution for conductivities

While the previous formulation is presented in analytical terms,
the orientational averages in Eq. (1) require the implementation of
numerical integration techniques given the dependency upon the
Euler angles provided by the ODF in Eq. (8). This numerical inte-
gration slows down the estimation of the effective electrical
properties of the composite, and suffers from numerical integration
errors. In order to tackle these limitations, this section presents an
analytical solution of Eq. (1) by means of a generalized spherical
harmonics series expansion of the previously introduced MT
model. To this aim, let us recast the orientational averages of the
tensors in Eq. (1) as follows:

Cf
�
sf � sm

�
A D ¼ CSD: (9)

The orientational average in equation (9) is defined by the inte-
gration over the rotation group as

CSDd8p2
ð

SOð3Þ
SðgÞwðgÞdg; (10)

where the ODF w is normalized such as

8p2
ð

SOð3Þ
wðgÞdg ¼ 1: (11)

According to the transformation law for second-order tensors, S
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in the global coordinate system xi (i ¼ 1…3) can be expressed in
terms of the components of S for a fiber fixed to the x03-axis of the
local coordinate system x0i (i ¼ 1…3) as

SijðgÞ ¼ UimðgÞUjnðgÞS0
mn; (12)

where the components of U in terms of the Euler angles is

Uðj; qÞ ¼
0
@ cosq cosj �sinj cosj sinq

cosq sinj cosj sinq sinj
�sinq 0 cosq

1
A; (13)

with 0� j < 2p and 0� q� p. By substituting Eq. (12) into (10), and
with variable change, zd cos q, the components of the average in
terms of (j, z, 4) are

�
Sij

� ¼
ð2p
0

ð2p
0

ðþ1

�1

wðz;jÞU52
imjnðz;jÞdzdjd4S

0
mn ¼

D
U52
imjn

E
S

0
mn;

(14)

where we have applied the normalized Haar measure dg in the
Euler's space given by

dg ¼ 1
8p2 sinq dqdjd4; (15)

which ensures invariant integration over the rotation group. The
fourth-order matrixU52 condenses the dyadic product ofU in (12),
and it possesses major symmetries only (minor symmetries are not
present because U is non-symmetric). Thus, the average CSD can be

computed once the average of each of the components CU52
imjnD is

obtained.
It is well-known [35] that generalized spherical harmonics

Tmn
l ðj; q;4Þde�imjPmn

l ðcosqÞe�in4; (16)

form a complete orthogonal basis for the Hilbert space L2(SO(3)),
which is the set of all square integrable complex-valued functions
on the rotation group with inner product defined by

ðF1; F2Þ ¼
ð

SOð3Þ
F1ðgÞF*2ðgÞdg; F1; F22L2ðSOð3ÞÞ; (17)

where * denotes the complex conjugate. In definition (16), i ¼
ffiffiffiffiffiffiffi
�1

p

and

Pmn
l ðzÞ ¼ ð�1Þl�min�m

2lðl�mÞ!



ðl�mÞ!ðlþnÞ!
ðlþmÞ!ðl�nÞ!

�
1
2�

ð1� zÞ�ðn�mÞ
2

ð1þ zÞðnþmÞ
2

dl�n

dzl�n

h
ð1� zÞl�mð1þ zÞlþm

i
;

(18)

is the associated Legendre function which can be either real or
purely imaginary, according to whether m þ n is even or odd,
respectively. Then, a generalization of the function Pmn

l can be
expressed as [52].

ZlmnðzÞdin�m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2

r
Pmn
l ðzÞ; (19)

which is always real-valued. Hence, it is simple to show that
e�imjZlmn(z)e�in4 form a complete orthogonal basis for the subspace
of square integrable real-valued functions of SO(3). Thus, according
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to the Peter-Weyl theorem [34], both a general ODFw(z, j, 4) and a
general real function F(z, j, 4) can be expanded in series of
generalized spherical harmonics as follows [52]:

wðz;j;4Þ ¼
X∞
l¼0

Xl

m¼�l

Xl

n¼�l

WlmnZlmnðzÞe�imje�in4; (20)

and

Fðz;j;4Þ ¼
X∞
l¼0

Xl

m¼�l

Xl

n¼�l

FlmnZlmnðzÞe�imje�in4: (21)

Applying inner product (17), the coefficients of the expansions in
Eqs. (20) and (21) are [37,52].

Wlmn ¼ 1
4p2

ð2p
0

ð2p
0

ðþ1

�1

wðz;j;4ÞZlmnðzÞeimjein4dzdjd4; (22)

the so-called texture coefficients, and

Flmn ¼ 1
4p2

ð2p
0

ð2p
0

ðþ1

�1

Fðz;j;4ÞZlmnðzÞeimjein4dzdjd4: (23)

All the information about the ODF is contained in the texture
coefficients, which are complex quantities satisfying

Wlmn ¼ ð � 1ÞmþnW*
lmn; (24)

due to the symmetry properties of Zlmn(z) [52]. In Eq. (24), notation
m ¼ �m is adopted.

From the normalization condition (11), the first (untexture)
coefficient become

W000 ¼ 1
4

ffiffiffi
2

p
p2

: (25)

Expansion coefficients Flmn are complex and typically involve
integration of simple trigonometric functions and the generalized
spherical harmonics.

The most remarkable aspect of this theory is that the average of
a general real function CFD can simply be computed by the expan-
sion [36,37].

CFD ¼ 4p2
XR
l¼0

Xl

m¼�l

Xl

n¼�l

FlmnWlmn; (26)

where dfrom the truncation theorem by Ferrari and Johnson
[42]d R ¼ 2, i.e. the rank of S. Then, for each of the real functions
that are components of U52, their average can be computed by
expansions similar to the one in Eq. (26). Therefore, we compute

the corresponding coefficients Flmn for each of the U52
imjn in Eq. (14)

through Eq. (23); and the texture coefficients Wlmn for the ODF
given by Eq. (8) through Eq. (22). The property (24) has been used
to simplify the expressions to their real form. Finally, we obtain that
the non-zero components of the effective conductivity obtained
from an homogenization method with structure like s ¼ sm þ CSD,
are given by
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s11 ¼ sm þ 1
15

�
4

ffiffiffi
5

p
p2ðS11 �S33Þ

� ffiffiffi
2

p
W200 � 2

ffiffiffi
3

p
W220

�

þ 5ð2S11 þS33Þ
�
;

(27)

s22 ¼ sm þ 1
15

�
4

ffiffiffi
5

p
p2ðS11 �S33Þ

� ffiffiffi
2

p
W200 þ 2

ffiffiffi
3

p
W220

�

þ 5ð2S11 þS33Þ
�
;

(28)

and

s33 ¼ sm þ 1
15

�
8

ffiffiffiffiffiffi
10

p
p2W200ðS33 �S11Þ þ 5ð2S11 þS33Þ

�
(29)

It can be shown that W200 and W220 are real functions and,
furthermore, they are the only two non-zero texture coefficients for
the ODF in Eq. (8), whose explicit expressions are presented in the
Fig. 2. Texture coefficient, WðnÞ
200, of n-th order for the strain state ε2 ¼ ε3, ε1 ¼ 1:01 as

Wð1Þ
200 ¼ �

iε1ε2ε23
ffiffiffiffiffiffiffiffiffi
ε
2
1ε

2
2

q
ð�16ε3ðε1 þ ε2Þ þ ε1ð32ε2 � 23Þ � 23ðε2 � 2ε3ÞÞ

28
ffiffiffiffiffiffi
10

p
p

�
log

�
� iε1

ε2


� log

�
iε1
ε2

 ; (31)
next subsection. Indeed, CSD tensor is a diagonal matrix since
W210 ¼ 0, so no cross conductivity can be induced by the principal
strains.

Note that effective conductivities have, in general, orthotropic
symmetry according to the three modes of principal deformation.
In case that the deformation is such that texture coefficient W220

vanishes, symmetry reduces to transversely isotropic with the axis
of isotropy corresponding to the principal strain ε3. This is the case
for deformations such as ε1 ¼ ε2. (Note that this is not the only case.
There are very particular combinations of deformations that also
produceW220¼ 0, however they are not of particular interest in this
work). Alternatively, if ε2 ¼ ε3, then W220 ¼ ffiffiffiffiffiffiffiffi

3=2
p

W200 and the
isotropy axis is given by ε1; and if ε1 ¼ ε3, then W220 ¼ �ffiffiffiffiffiffiffiffi
3=2

p
W200 and the isotropy axis is given by ε2. When no defor-

mation takes place, that is, ε1 ¼ ε2 ¼ ε3 ¼ 1, texture coefficients
become null, W200 ¼ W220 ¼ 0, and hence the behavior is isotropic
as expected, and the effective conductivity is given by the product
of the identity matrix by the scalar

s0 ¼ sm þ 1
3
ð2S11 þS33Þ: (30)

It is worth noting that Dunn and Ledbetter [45] solved this
problem for textured short-fiber composites in the context of
thermal conductivity using the same mathematical technique
proposed herein. Nevertheless, those authors presented no final
expression.

Expressions (27)e(30) are the building blocks for the con-
struction of analytical solutions for more complex MT's models like
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the one previously introduced in Eq. (1).

3.1. Determination of W200 and W220

In order to have a fully analytical solution for the conductivities,
it is necessary to determine an analytical solution for the texture
coefficients. As previously mentioned, the only two non-zero
texture coefficients for the ODF in Eq. (8) are W200 and W220,
which can be computed by integration of the functionwðε1; ε2; ε3jj;
qÞd equation (8) after normalization (11)d in equation (22). Since
we are interested in small strains, the strategy to compute this
integrals is to expand the kernels in Taylor's series around ε1 ¼ ε2 ¼
ε3 ¼ 1. This allows us to find closed-form expressions for the

texture coefficients, WðnÞ
200 and WðnÞ

220, with various orders of

approximation by retaining the desired n-th order terms, ðε1 � 1Þn,
ðε2 � 1Þn and ðε3 � 1Þn, in the Taylor's expansions. First-order
approximation for texture coefficients results in

and
Wð1Þ
220 ¼

i
ffiffiffi
3
5

q
ε1ε2ε

2
3ð16ε3 � 23Þðε1 � ε2Þ

ffiffiffiffiffiffiffiffiffi
ε
2
1ε

2
2

q

56p
�
log

�
� iε1

ε2


� log

�
iε1
ε2

 : (32)

The second-order approximation, instead, results in

and
All the integrals have been done using Mathematica software [56].
a function of ε3. (A colour version of this figure can be viewed online.)
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(33)

F.C. Buroni and E. García-Macías Carbon 184 (2021) 923e940
Due to space limitations, explicit expressions for higher order are
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:

(34)
not presented.

Fig. 2 shows the texture coefficient WðnÞ
200 (n ¼ 1, …, 4) for the

strain state ε2 ¼ ε3, ε1 ¼ 1:01 as a function of ε3. The behavior of the

texture coefficientWðnÞ
220 (n¼ 1,…, 4) for the same deformation state

is shown in Fig. 3. In both coefficients, it is shown that until z 2%
strains, first-order approximations are in perfect agreement with
those of superior order, meanwhile second-order approximations
Table 1
Material parameters used in computations.

sm (Sm�1) sL (Sm�1) sT (Sm�1)

1.036 � 10�10 3.5481 � 102 3.5481 � 102

Fig. 3. Texture coefficient, W ðnÞ
220, of n-th order for the strain state ε2 ¼ ε3, ε1 ¼ 1:01 as

a function of ε3. (A colour version of this figure can be viewed online.)
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are in perfect agreement with those of superior order until z 10%
strains. Although we are interested in the linear part of the
behavior, to be consistent with the second-order strain-induced
volume changes affecting the effective volume fraction given by Eq.
(7), our non-linear model includes second-order strain approxi-

mations for the texture. Therefore, Wð2Þ
200 and Wð2Þ

220 are selected all
throughout the remainder of the document. However, note that
after linearization dpresented in next sectiond, any order texture
solution derives in the same linearized piezoresistive coefficients.

3.2. Validating of the analytical procedure

In order to validate the previously introduced analytical
formulation, effective conductivities given by

s ¼ sm þ Cf0
�
sf � sm

�
A D; (35)

are considered herein. The material properties in Table 1 have been
used for the computations. Arbitrarily, the strain state ε2 ¼ ε3, ε1 ¼
1:01 is set. Fig. 4 shows the dimensionless conductivities s0/sjj � 1
(j ¼ 1, 2, no sum) as a function of ε3, being s0 the effective con-
ductivity under no deformation. Second-order analytical pre-
dictions are compared to results obtained by García-Macías et al.
[10] via numerical integration showing excellent agreement.
Although not shown here, expression (29) for s33 has been also
f0 S11 ¼ S22 S33

0.01 0.499968 6.43526 � 10�5



Fig. 4. Dimensionless conductivities for the strain state ε2 ¼ ε3, ε1 ¼ 1:01 as a function of ε3. Term s0 corresponds to the effective conductivity under no deformation. (A colour
version of this figure can be viewed online.)
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validated.

4. Formulas for linearized piezoresistivities

The relative electrical resistivity change is normally a non-linear
function of the strain. Under the hypothesis of small deformations,
these two quantities are linearly related as

0
BBBBBB@

Dr11=r0
Dr22=r0
Dr33=r0
Dr23=r0
Dr13=r0
Dr12=r0

1
CCCCCCA

¼

0
BBBBBB@

l11 l12 l12 0 0 0
l12 l11 l12 0 0 0
l12 l12 l11 0 0 0
0 0 0 l44 0 0
0 0 0 0 l44 0
0 0 0 0 0 l44

1
CCCCCCA

0
BBBBBB@

311
322
333
2323
2313
2312

1
CCCCCCA
;

(36)

where 3ij are the components of the small strain tensor, Drij are the
changes in the components of the resistivity tensor r ¼ s�1, and r0
is the resistivity of the composite in the absence of strains. Six-
dimensional matrix l is known as the piezoresistivity of the com-
posite which, by following previous works [10,27,57,58], it is in
principle assumed to have a cubic symmetry with three indepen-
dent components, that is l11, l12 and l44.

This section introduces compact closed-form expressions for all
the components of the piezoresistivity matrix in term of micro-
mechanical parameters of the composite. To this end, we use the
analytical model for conductivities in term of strains derived in the
previous section. Then piezoresistivities are accomplished after a
linearization procedure.

4.1. Composites without percolating network (x ¼ 0)

We firstly consider the simpler case when no percolating net-
works are formed, that is x ¼ 0, or, alternatively, the filler volume
fraction is in the range 0 � fð3Þ< fcð3Þ. Then, only first and second
terms remain in the model of equation (1). The methodology
described in Section 3 provides us with an analytical solution for
the conductivities dhence for piezoresistivitiesd in terms of the
l11 ¼
f0
�
5A2sTmðS33sLm þ smÞ � 4AsLmsTm þ 2BsLmðsTmð5BS11 þ 2

5sLmsTmðAf0 þ 2Bf0 þ 3Þ

930
microstructural geometrical andmaterial parameters, as well as the
strain state. The three piezoresistivity coefficients can be obtained
by two virtual experiments, namely a laterally constrained uni-
axial stretching and a pure distortion. Note that after replacing
the texture coefficients dEqs. (33) and (34)d in Eqs. 27e29,
effective conductivities are available for any arbitrary strain tensor
since the texture coefficients and the volume fraction (7) are given
in terms of the three (invariant) principal strains.

The first virtual experiment consists in a laterally constrained
uni-axial stretching in xn-direction, that is,

ε1 ¼ 3n and ε2 ¼ ε3 ¼ 3t ¼ 0: (37)

In this case,

Drnn
r0

¼ s0
snn

� 1 ¼ lnð3nÞ; (38)

and

Drtt
r0

¼ s0
stt

� 1 ¼ ltð3nÞ; (39)

where t refers to a perpendicular direction to xn-direction.
Introducing the strain state in Eq. (37) into Eqs. (33) and (34),

and afterward in Eqs. (27) and (30), we arrive from (38) to the
analytical non-linear function ln(3n) that relates the change in the
relative resistivity in the xn-direction under a laterally constrained
stretching in the xn-direction. Following the same procedure but
with equations (28) and (39), we obtain the non-linear function
lt(3n) that relates the change in the relative resistivity in the xt-di-
rection when a laterally constrained stretching in the xn-direction
takes place. For illustrative purposes, Figs. 5 and 6 show these two
functions for a composite with the material parameters summa-
rized in Table 1. Then, simple linearization of ln and lt at 3n¼ 0 leads
to
and
respectively, where
Þ þ 5BsmÞ
�
; (40)



l12 ¼
f0
�
5A2sTmðS33sLm þ smÞ þ 2AsLmsTm þ 2BsLmðsTmð5BS11 � 1Þ þ 5BsmÞ

�
5sLmsTmðAf0 þ 2Bf0 þ 3Þ ; (41)

Fig. 5. Relative change in the resistivity in the xn-direction as a function of 3n for a
composite material without percolating networks (x ¼ 0). (A colour version of this
figure can be viewed online.)

Fig. 6. Relative change in the resistivity in the xt-direction (perpendicular to xn-di-
rection) as a function of 3n for a composite material without percolating networks
(x ¼ 0). (A colour version of this figure can be viewed online.)

Fig. 7. Relative change in the cross resistivity (between xt-direction and xn-direction)
as a function of the shear strain 23nt for a composite material without percolating
networks (x ¼ 0). (A colour version of this figure can be viewed online.)
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A ¼ sLm
ð1� f0ÞS33sLm þ sm

; (42)

B ¼ sTm
ð1� f0ÞS11sTm þ sm

; (43)

with sLm ¼ sL� sm and sTm¼ sT � sm. Note that any alternative uni-
axial stretching deformation leads to the same results, showing
that l11 ¼ l22 ¼ l33 and l12 ¼ l13 ¼ l23. Additionally, it also can be
shown that l12 ¼ l21, l13 ¼ l31 and l23 ¼ l32, that is, piezoresistivity
matrix l dfor this isotropic composited is symmetric. This is not
trivial since, unlike the elasticity tensor, there is no energetic ar-
guments that guarantee such a symmetry.

In order to derive the third piezoresistive constant l44, a second
experiment with a pure distortion is required. For instance,
931
ε1 ¼ �3nt ; ε2 ¼ 3nt and ε3 ¼ 0: (44)

Then,

Dr11
r0

¼ s0
s11

� 1 ¼ l1ð3ntÞ; (45)

and

Dr22
r0

¼ s0
s22

� 1 ¼ l2ð3ntÞ; (46)

where l1(3nt) and l2(3nt) can be obtained with the same procedure
described above but now for the strains in Eq. (44). The change in
the resistivity represented by these two functions corresponds to a
principal system. But we need it in the systemwhere the only non-
zero strain is 3nt in order to solve the system in Eq. (36). Taking into
account the tensorial nature of the conductivities (as a second-
order tensor not in the vectorial representation (36)), snt can be
computed after an appropriate coordinate transformation. After
that, the relative change in the cross resistivity is obtained as

Drnt
r0

¼ s0
snt

� 1 ¼ lntð3ntÞ: (47)

Fig. 7 shows the evolution of lnt as a function of 23nt along with its
linearization at 3nt ¼ 0, which reads

l44 ¼ � 3f0ðA � BÞ
5ðAf0 þ 2Bf0 þ 3Þ: (48)

Again, it can be shown that l44 ¼ l55 ¼ l66.
As a corollary of the results above, it is shown that the piezor-

esistive behavior of composites doped with randomly oriented
fillers is indeed isotropic as the fulfillment



Table 2
Comparison of the analytical linear piezoresistivity coefficients and the numerical
ones for a composite material without percolating networks (x ¼ 0).

l11 l12

Compression (García-Macías et al. [10]) 0.192052 1.326842
Tension (García-Macías et al. [10]) 0.206883 1.430713
Present work 0.206586 1.383820

Fig. 8. Percolation threshold as a function of strain 3n for a fiber-reinforced composites
with filler aspect ratio s ¼ 100. Points correspond to the solution obtained by the
numerical integration of I while the solid line corresponds to the analytical interpo-
lation solution of I. (A colour version of this figure can be viewed online.)

Fig. 9. Relative change in the resistivity in the xn-direction as a function of 3n for a
composite material with percolating networks (x > 0). (A colour version of this figure
can be viewed online.)
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l44 ¼ l11 � l12
2

(49)

can be proven from Eqs. (40), (41) and (48). Therefore, there is no
need to use the pure distortion virtual experiment in Eq. (44), being
possible to achieve a complete description of the piezoresistive
behavior of the composite in Eq. (36) using one single uni-axial
stretching test like the one in Eq. (37).

Table 2 presents a comparison of the estimates of l11 and l12
with the results obtained with the numerical algorithm proposed
by García-Macías et al. [10], showing very good agreements.

4.2. Composites with percolating networks (x > 0)

In this section, we consider composites with percolating net-
works of fibres by adding the third term in equation (1). The
challenge in this model is that the effect of the reorientation of the
fibres induced by external deformations modifies the percolation
threshold fc. Consequently, the parameter x in (1) also depends on
the strains because both f(3) and fc(3) are also functions of the
strains as shown in Eqs. (7) and (2).

In order to account for this dependency of the strains in the
percolation threshold, we follow the idea by García-Macías and co-
authors [10], who exploited the strain-dependency of the ODF in
Eq. (8) within the percolation theory set out by Komori and
Makishima [33]. According to the reformulation developed by
Kumar and Rawal [59], the percolation threshold for rod-like fiber-
reinforced composites can be estimated as:

fcð3nÞ ¼ p

5:77sIð3nÞ; (50)

being

I ¼
ðp
0

ðp
0

Jðq;jÞŵðq;jÞsinqdqdj; (51)

with

Jðq;jÞ ¼
ðp
0

ðp
0

sintðq; q0
;j;j

0 Þŵðq0
;j

0 Þsinq0
dq

0
dj

0
; (52)

and

sint ¼
h
1� ðcosq cosq0 þ cosðj� j

0 Þsinqsinq0 Þ2
i1=2

: (53)

Note that the strain-dependency is introduced in Eq. (50)
through the ODF ŵ, which is the same fiber ODF w previously
introduced in Section 3, but normalized such that

ðp
0

ðp
0

ŵðq;jÞsinqdqdj ¼ 1: (54)
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In this work, the inverse of the I(3n) is approximated for a simple
stretching (3n) as a linear combination of a log(,) function and a
linear function as follows:

I�1ð3nÞ ¼ 1:27327þ 0:254573n�
0:25461logð3n þ 1Þ: (55)

Fig. 8 shows the percolation threshold function fc (Eq. (50)) for a
fiber with aspect ratio s¼ 100 obtained by numerical integration of
I (denoted with scatter points), and with the solution (55) for I
(denoted with solid line), showing an excellent agreement for a
wide range of deformations.

Following the same previous virtual experiment consisting in a
laterally constrained uni-axial stretching in xn-direction, i.e.

ε1 ¼ 3n and ε2 ¼ ε3 ¼ 3t ¼ 0; (56)

the two functions ln(3n) and lt(3n) for relative changes in resistivity
can be computed via analytical solution of the conductivity
considering now the complete solution in Eq. (1), i.e., by adding the
third percolating term. In this case, x in equation (2) is evaluated
with the percolation threshold by the Komori-Makishima model in
Eq. (50) through the proposed analytical interpolation in Eq. (55).
Figs. 9 and 10 show these two functions for a composite with the
material parameters summarized in Table 1. Recall that, in order to



Fig. 10. Relative change in the resistivity in the xt-direction (perpendicular to xn-di-
rection) as a function of 3n for a composite material with percolating networks (x > 0).
(A colour version of this figure can be viewed online.)

Table 3
Comparison of the analytical linear piezoresistivity coefficients and the numerical
ones for a composite material with percolating networks (x > 0).

l11 l12

Compression (García-Macías et al. [10]) 0.99785 2.14837
Tension (García-Macías et al. [10]) 1.07622 2.32250
Present work 1.02751 2.22751
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model conductive networks, the Eshelby's tensor for the perco-
lating term AP is always set for infinite long fibers. Therefore, after
the proper limiting process in (5), the Eshelby's components
become S11 ¼ S22 ¼ 1/2 and S33 ¼ 0. Moreover, for this example, the
conductivity tensor is set equal for both the percolating (sP) and the
non-percolating (sNP) mechanisms. Nevertheless, this is not
necessary for our formulation as shown in the last section.

Then, from linearization of ln and lt at 3n ¼ 0, we arrive to
closed-form formulas for the piezoresistivity coefficients l11 and
l12, which account for the percolation mechanism. Although they
remain still quite simple, these expressions dand the non-
percolating counterpart (Eq. (40) and (41))d are presented in
Fig. 11. Qualitative schema of (a) the x(f0) function when 3n ¼ 0; (b) the x(3n) function when
viewed online.)
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Supplementary Material 1 due to space constraints. Additionally,
Matlab [60] and Python [61] codes are also provided as
Supplementary Material 2 with both solutions.

Table 3 presents a comparison of the analytical estimates of the
piezoresistivity coefficients l11 and l12 and the numerical coun-
terparts following the approach by García-Macías et al. [10],
showing once again very good agreement.

4.3. Onset of the percolation phenomenon

The conductivity model in Eq. (1) dand hence the piezor-
esistivity modeld is a piecewise function depending if the perco-
lation phenomenon takes place or not, or alternatively, if fillers can
touch each other forming micro-scale electrically conductive paths
or not. This switch on-off percolation interplay is taken into ac-
count through parameter, x, i.e. the fraction of percolated fibres.
According to Eq. (2), percolation occurs when x > 0. Parameter x can
be modeled as a piecewise function as reported in Eq. (2). Thus,
considering a simple stretching deformation state, x depends on the
strain, 3n, and the aspect ratio of the fiber, s. When there is no

deformation, there exists a critical volume fraction f *0 for which
composites doped with filler volume fractions (f0) below this crit-
ical value never percolate. This critical value is nothing else but the
percolation threshold for 3n ¼ 0, that is

f *0 ¼ fcð0Þ ¼ 0:693257
s

; (57)

and then x > 0 for f0 > f *0. Specifically, the piecewise functional
relationship between x and f0 and s when 3n ¼ 0 is given by

xðf0; sÞ ¼

8>><
>>:

0; 0 � f0 � f *0

ðf0Þ1=3 � 0:885044ðsÞ�1=3

1� 0:885044ðsÞ�1=3 ; f0 > f *0:
(58)

Fig. 11 (a) qualitatively shows the functional relationship (58)
between x and f0 (for a given aspect ratio s); together with the

critical value f *0 and an arbitrary unstrained volume fraction, f 10 > f *0.
Fig. 11 (b) shows that fibers with a given aspect ratio s and with a
f0 ¼ f *0; and (c) the x(3n) function when f0 ¼ f 10. (A colour version of this figure can be



Table 4
Material parameters used for the modeling of CNT/epoxy composites.

Mass of electron ðmÞ 9.10938291 � 10�31 kg
Electric charge of an electron ðeÞ �1.602176565 � 10�19 C
Reduced Planck's constant ðZÞ 6.626068 � 10�34m2kg/s
Electrical conductivity of epoxy ðsmÞ 1.036000 � 10�10 S/m
Electrical conductivity of CNTs

�
sL ¼ sT ¼ sc

�
102e107 S/m

Length of CNTs 3.27 mm
Diameter of CNTs 10.15 nm
Strain range �5/5%
Mass density of CNTs ðrcÞ 1.39 g/cm3

Mass density of epoxy ðrmÞ 1.12 g/cm3

Height of the potential barrier ðlÞ 0.5 eV
Cut-off inter-particle distance ðdcÞ 1.87 nm
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volume fraction f *0 could percolate for compression strains, but not
for tension, resulting in discontinuous piezoresistivity coefficients

at that point. The same kind of fiber with a volume fraction like f 10 is
in percolation for a range of positive strains as sketched in Fig. 11
(c). However, for a critical value of the strain, 3*nðf0Þ, eventually
the percolation mechanism disappears. In any case, it is pictured
that the fraction of percolated fibres decreases with 3n.

In order to illustrate the shift in the piezoresistivity coefficients

at the percolation threshold f *0, Fig. 12 shows the piezoresistivity
coefficients l11 and l12 as a piecewise function of the unstrained
volume fraction f0 for the same composite of Section 4.2. It is noted
that the strain-sensitivity of the compositemonotonically increases
as the volume fraction approaches the unstrained percolation
threshold, where maximum piezoresistivity coefficients are found.

Beyond f *0, the piezoresistivity coefficients monotonically decrease
until reaching an stable value.
5. Application to strain-sensing carbon nanotube composites

In this last section, the potentials of the derived analytical
formulation are illustrated with its application to the modeling
CNT-based composites. The use of CNTs as nanoscale inclusions has
engaged growing interest in recent years due to their vast potential
for the development of multifunctional and smart materials. Many
research works have reported the exceptional physical properties
of CNTs, including elastic moduli greater than 1 TPa and ultimate
tensile strengths around 150 GPa, electrical conductivities between
1000 and 200000 S/cm, high aspect ratio (z100e1000), lightness
and excellent thermochemical stability [62].

We center our attention on the implementation of the micro-
mechanics modeling of the electrical conductivity and the piezor-
esistive behavior of CNT-based composites previously proposed in
Refs. [13,19,20,27] to the newly proposed analytical approach
above. Such a model distinguishes two different mechanisms
governing the electrical conductivity of these composites, namely
the electron hopping and the conductive networking mechanisms.
The electron hopping mechanism relates a quantum tunneling ef-
fect through which electrons can migrate between proximate non-
connected fillers. Such an effect dominates the electrical conduc-
tivity of the composite at low CNT concentrations. With increasing
filler loadings (above the percolation threshold), the separation
among the tubes decreases until adjacent fibers touch one another
forming microscale conductive paths. Note that the contributions
Fig. 12. Piezoresistivities coefficients, l11 and l12 as a function of the unstrained vol-
ume fraction f0. A sudden shift is observed at percolation threshold f *0. (A colour
version of this figure can be viewed online.)
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of the electron hopping and the conductive networking mecha-
nisms describe the percolating and non-percolating phases in the
MT's model in Eq. (1). Therefore, CNT-based polymer composites
fall within the scope of the proposed analytical approach.

A concise description of the micromechanics modeling of CNT-
based composites is presented in Appendix 7, although interested
readers may find further details in Refs. [13,19,20,27]. Computer
codes in MATLAB [60] and Python [61] languages with the imple-
mentation of the micromechanics model in the developed analyt-
ical approach are also provided in the Supplementary Material 2. It
is important to remark that, although CNTs present substantially
larger aspect ratios than other conductive fillers such as e.g. carbon
fibers, the schematic RVE representation in Fig. 1 remains theo-
retically correct. This is due to the fact that the geometry of the
fillers is encapsulated in the Eshelby's tensor S, and no fundamental
modifications need to be addressed in the theoretical formulation
from Eq. (1). Another topological aspect of CNTs that does require
especial consideration concerns the circumstance that CNTs usually
acquire certain degree of waviness during mixing because of their
low bending stiffness (see Fig. 18 in Appendix A). Nevertheless, as
reported by Feng and Jiang [26] and García-Macías et al. [19], filler
waviness can be readily introduced in the presented micro-
mechanics approach through equivalent straight fillers with
waviness-dependent aspect ratio and volume fraction. The incor-
poration of waviness effects does not alter the structure of the
presented solutions, so specific results and discussion are omitted
hereafter for simplicity. Nonetheless, interested readers can find
further details in Appendix A.

The material parameters used in the subsequent numerical re-
sults are collected in Table 4, and taken from the author's experi-
ence and literature data for CNT/epoxy composites. Filler contents
are typically reported in practice in terms of mass content wt,
which may be related to the filler volume fraction by the following
relation:

f ¼ rm wt
rm wt þ ð1�wtÞrc

; (59)

with rm and rc being themass densities of the matrix phase and the
CNTs given in Table 4, respectively.

Fig. 13 shows the analytical estimates of the effective electrical
conductivity of CNT/based composites considering different elec-
trical conductivities of CNTs sc. Additionally, the analytical results
obtained without considering the contribution of the conductive
networksmechanism (i.e. x¼ 0) are also depictedwith dashed lines
for illustrative purposes. It is clearly noted in this figure that, after
percolation, the effective electrical conductivity of the composite is
majorly dominated by the conductive networking mechanism.

The effect of strain upon the contribution of the conductive
networking mechanism is investigated in Fig. 14 for an epoxy/CNT



Fig. 13. Effective electrical conductivity of CNT/epoxy composites for varying electrical
conductivities of the CNTs sc. (A colour version of this figure can be viewed online.)
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composite doped with 1% CNT mass content. Fig. 14 (a) shows the
relative variation of the percolation threshold fc using the analytical
interpolation approach presented in Section 4.2 for laterally con-
strained uni-axial strain conditions. It is noted in this figure that
either compression or tension strains lead to increasing percolation
threshold as a result of the strain-induced loss of randomness in the
nanofillers orientation distribution. On the other hand, Fig. 14 (b)
depicts the variation of the fraction of percolated CNTs x as a
function of the applied strain under laterally constrained condi-
tions. It is observed in this figure that the amount of percolated
CNTs decreases with increasing strain under tensile strains. In this
case, the strain-induced increase of the percolation thresholds adds
up with the breakage of electrically conductive paths as a result of
the volume expansion. Conversely, under compressive strains,
these twomechanisms generate opposite effects [27]. Although the
percolation threshold increases with higher compressive strains,
the increase of the effective filler volume fraction dominates the
small range of deformation and, therefore, increasing compression
implies larger numbers of conductive paths.
Fig. 14. Variation of the percolation threshold fc (a) and the normalized percentage of percola
CNT wt). (A colour version of this figure can be viewed online.)
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The results of the modeling of the piezoresistive behavior of
CNT/epoxy composites are reported in Figs. 15 and 16. Fig. 15 shows
the relative change in resistivity in the xn-direction (a) and in the xt-
direction (b) of CNT/epoxy composites subjected to a laterally
constrained uni-axial stretching virtual test. In this figure, the role
exerted by the considered piezoresistive mechanisms can be
comprehended. Firstly, it is clear that the conductivity of the
composite increases for increasing compressive strains, while the
opposite behavior is found for tensile strains. This behaviour is
ascribed to the strain-induced volume expansion effects, which
becomes dominant for CNT-based composites. Although the
percolation threshold increases (i.e. the breakage of conductive
paths takes place) both under compression and tension as shown in
Fig. 14 (a), the effect of the volume expansion becomes predomi-
nant for the considered range of deformation. Indeed, only some
slight differences can be observed for compression and stretching
strains. After a closer inspection of the results and the analysis of
the piezoresistivity coefficients reported below, it is concluded that
the strain sensitivity under tensile strains is slightly higher than
under compression strains. These differences, which have been also
observed previously in experiments (see e.g. Ref. [63]), are justified
by the different signs of the considered strain-induced effects un-
der tension and compression. Note that, when the composite is
subjected to stretching, both the volume expansion and filler
reorientation decrease the overall electrical conductivity of the
composite. Conversely, when compression takes place, the volume
expansion (the dominant mechanism) tends to increase the elec-
trical conductivity while the filler reorientation induces the oppo-
site effect, with the subsequent smaller strain sensitivity. For a
detailed analysis and further discussion of the roles played by the
considered mechanisms upon the electrical conductivity of CNT-
based composites, readers are referred to Ref. [27]. Finally, in or-
der to characterize the piezoresistivity coefficients, and given the
difficulties involved in obtaining compact expressions in this
particular case study, a least squares linear regression is adjusted in
the strain range leading to a coefficient of determination of 0.9999
likewise references [10,27]. Then, the piezoresistivity coefficients
l11 and l12 are computed as the slope of the regression of their
corresponding strain-sensitivity curves. The piezoresistivity
ted CNTs x (b) with respect to the strain level under laterally constrained conditions (1%



Fig. 16. Piezoresistivity coefficients of CNT/epoxy composites versus filler mass concentration under laterally constrained uni-axial compression/stretching for different filler
conductivities sc. Solid and dashed lines stand for piezoresistivity coefficients computed for tension and compression strains. (A colour version of this figure can be viewed online.)

Fig. 15. Relative change in the resistivity in the xn-direction (a) and in the xt-direction (b) as a function of 3n for a CNT/epoxy composite loaded with 1% CNT wt. (A colour version of
this figure can be viewed online.)
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coefficients are computed by fitting separately the electrical resis-
tance variations under compression and traction strains.

Following the previous analysis for filler mass contents ranging
between 0 and 5%, Figs. 16 (a) and (b) depict the piezoresistivity
coefficients l11 and l12 as functions of the filler concentration,
respectively. Theoretical predictions in Fig. 16 (a) are compared
against experimental data reported by Sanli and co-authors in
Ref. [70] for epoxy/MWCNT composites. Note that those authors
investigated the piezoresistive properties of standard dog-bone
samples, where the longitudinal piezoresistive behaviour l11 is
assessed. The comparison demonstrates the proposed approach is
capable to reproduce the decreasing tendency of l11 after the
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percolation threshold, with close theoretical/experimental agree-
ments when considering the electrical conductivity of CNTs as
sc ¼ 104 Sm�1. In these figures, the piezoresistivity coefficients
computed under tension and compression strains are depictedwith
solid and dashed lines, respectively. As anticipated above, the pie-
zoresistivity coefficients considering tensile strains are slightly than
those obtained for compression strains. Nonetheless, such differ-
ences are small enough that a common piezoresisitvity coefficient
can be assumed, for instance the mean value. It is also noticeable
that more conductive fillers generally lead to larger piezoresistivity
coefficients. It is also noted that, alike the results previously re-
ported in Fig. 12, the piezoresistivity coefficients reach maximum



Fig. 17. Contour plot of the hydrostatic part of the relative change in the electrical resistivity tensor in a toy example of a solid 3D wind turbine blade made of CNT/epoxy composite
(sc ¼ 104 S/m, 1 wt%). (A colour version of this figure can be viewed online.)

Fig. 18. SEM picture of MWCNTs in aqueous suspension after mechanical mixing.

F.C. Buroni and E. García-Macías Carbon 184 (2021) 923e940
values at the percolation threshold. In addition, the transverse
piezoresistivity coefficient l12 also exhibits here larger values
compared to the longitudinal coefficient l11 along the whole range
of filler concentrations. This behavior finds an explanation in the re-
orientation effect. For instance, in the case of tensile strains, fillers
tend to align in the direction of the strain and, thus, the longitudinal
resistivity experiences comparatively smaller reductions. Never-
theless, a closer inspection reveals that l11 and l12 have similar
orders of magnitude for all the consider filler contents, being the
shear piezoresistivity coefficient l44 around two orders or magni-
tude smaller according to Eq. (49). This evidence supports the
extended conception of CNT-based composites as volumetric strain
sensors, being possible to obtain reasonable approximations ac-
counting for one single piezoresistivity coefficient, i.e. l11 z l12 and
l44 ¼ 0. Hence, a reasonable approximation may be to consider
l11 ¼ l12 ¼ l, with l being the average value of the analytical pie-
zoresistivity coefficients reported in Eqs. (SM3) and (SM4) in the
Supplementary Material 1. Under such an approximation, the ele-
tromechanical relation in Eq. (36) for the spherical part is:

Drii
3ro

¼ l11 þ 2l12
3

3iizl3ii: (60)

Finally, in order to demonstrate the potential of the developed
analytical approach for the modeling of 3D macroscopic structural
elements, it has been inserted into a standard solid FEM code
developed in MATLAB environment. In particular, as a toy example
of a geometrically complex structure requiring a considerable mesh
density, a solid wind turbine blade has been modeled. The wind
turbine blade is approximately 50 cm long and has a variable width
ranging from 10 cm to 3 cm, with a solid cylindrical axis with a
diameter of 6 cm, and an aerodynamic curved blade. The FEM code
incorporates the micromechanics model of CNT-based composites
implemented in the analytical approach presented in Section 3 and
provided in the Supplementary Material 2. The blade has been
meshed with four-nodes linear tetrahedral elements with 0.9 cm
long edges on average. The discretization amounts to 2248 nodes
and 7833 elements. The material properties of the blade has been
defined according to the parameters reported in Table 4 with CNT
electrical conductivities of sc ¼ 104 S/m and dispersed at a mass
concentration of 1 wt%. The mechanical properties of the material
are assumed elastic isotropic with a Young's modulus of 3.0 GPa
and a Poisson's ratio of 0.3. The blade has been simulated consid-
ering fixed boundary conditions at the external face of the axis, and
a static imposed displacement of 2.5 cm along the transverse di-
rection of the blade. The code extracts the hydrostatic part of the
tensor of relative variations of the electrical conductivity of the
material at every Gauss integration point according to Eq. (60) as
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shown in the contour plot in Fig. 17. The determination of the
strain-induced effects upon the conductivity is completely analyt-
ical according to Section 3 except for the determination of the
percolation threshold, which has been computed by direct nu-
merical integration of the Komori-Makishima model in Eq. (50)
using the Simpson's rule. Nevertheless, given the similarity be-
tween l11 and l12 reported above, the same simulation using the
approximation from Eq. (60) reports very similar results, achieving
maximum relative errors below 0.9% with extremely low compu-
tational burden.
6. Conclusions

In this work, an analytical micromechanics approach for the
modeling of the electrical conductivity and piezoresistivity of
short-fiber reinforced composites with percolation-type behavior
has been presented. The formulation accounts for two distinct
mechanisms, percolating and non-percolating phases, that
contribute to the overall conductivity of the composites. These two
mechanisms are included in a multi-inclusion expansion of the MT
model, and the effects of external mechanical strains are included
by means of three different phenomena: (i) volume expansion; (ii)
filler reorientation; and (iii) variation of the percolation threshold.
Second-order closed-form solutions of the strain-dependent
effective electrical conductivity and the linear piezoresistivity co-
efficients have been derived by means of generalized spherical
harmonics series expansions of the MT model. The presented
theoretical derivations have demonstrated that, under the



F.C. Buroni and E. García-Macías Carbon 184 (2021) 923e940
assumptions of small strains and inextensible fibers, the piezor-
esistivity matrix of randomly oriented short-fiber composites is
symmetric and it presents isotropic behavior. As a consequence, it
has been proved that one single stretching test suffices to fully
characterize all the piezoresistivity coefficients. The derived for-
mulas are available in MATLAB and Python languages as part of the
supplementary material as a tool for free use of the community.

The proposed formulation has been applied to the modeling of
composites doped with CNTs, incorporating the electron hopping
or quantum tunneling mechanism and the formation of electrically
conductive microscopic conductive paths as non-percolating and
percolating phases, respectively. Numerical results and discussion
have been presented to demonstrate the accuracy of the proposed
formulation, and an illustrative toy example of the electrome-
chanical modeling of a 3D CNT/epoxy macroscopic structure has
been reported. The numerical results evidence the computational
efficiency of the proposed approach, being possible to link the
electromechanical response of macroscopic structural systemswith
the microstructural properties of the composites. It is important to
remark that the presented formulation is suitable for short-fibers or
any other doping filler conceivable as inclusions with prolate ge-
ometry and transversely isotropic conductivity. Nonetheless, the
formulation can be also extended to other types of inclusions by
adequately modifying the Eshelby's tensor in Eq. (4). For instance,
the expression of the Eshelby's tensor for oblate inclusions could be
incorporated to model graphene nanoplatelet (or graphene nano-
sheet) fillers. Overall, the presented formulation is envisaged to
offer vast potentials for the analysis of macroscopic response of
short-fiber reinforced composite structures, including among
others the consideration of heterogeneous dispersions of fillers,
functionally graded materials, material optimization, and uncer-
tainty propagation analyses.
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Appendix A. Summary of the CNT-nanocomposite model

The micromechanics modeling of the electrical conductivity of
CNT-based composites previously developed in Refs. [13,19,20,27]
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and used in Section 5 is concisely overviewed herein. Two different
mechanisms have been recognized to govern the electrical con-
ductivity of these composites, namely electron hopping and
conductive networking. The electron hopping mechanism is char-
acterized by a quantum tunneling effect through which electrons
can migrate between proximate non-connected fillers. Such an
effect governs the electrical conductivity of the composite at low
CNT concentrations. With increasing CNT concentration, the sepa-
ration distance among CNTs decreases until adjacent fibers touch
one another resulting in a continuous electrically microscale
conductive path.

For the sake of clarity in the subsequent derivations, subscript c
is used to relate the corresponding magnitudes to the electron
hopping (EH) and the conductive networking (CN) mechanisms.
Recall that, as previously indicated in Section 2, the quantities
associated with the electron hopping (non-percolating) mecha-
nism are defined with the real fillers aspect ratio, while quantities
corresponding to conductive networking (percolating) mechanism
are defined with an infinite aspect ratio (s / ∞).

The probability of occurrence of the electron hopping mecha-
nism is highly dependent on the distance between tubes. The
average separation distance dað3Þ between adjacent CNTs has been
reported to follow a power-law description [13]:

da;cð3Þ ¼

8><
>:

dc c ¼ EH

dc

�
fcð3Þ
f ð3Þ

1=3

c ¼ CN
(61)

with dc being the maximum possible separation between two CNTs
that permits the tunneling penetration of electrons, often termed
the cut-off distance. A value of dc ¼ 1.8 nm in chosen in most
polymer matrix materials [64]. This effect can be simulated by
means of a continuum interphase layer surrounding the nanotubes.
The electrical contact resistance of the interfaces of the CNTs can be
estimated by the generalized Simmons formula [24] as follows:

Rint;c
�
3; da;cð3Þ

� ¼ da;cð3ÞZ2
ae2ð2 mlÞ1=2

exp


4pda;cð3Þ

Z
ð2 mlÞ1=2

�
;

(62)

where m and e are the mass and the electric charge of an electron,
respectively, l is the height of the tunneling potential barrier (taken
as 5.0 eV as a common value for polymer composites [13]), a is the
contact area of the CNTs and Z stands for the reduced Planck's
constant. Hence, the conducting inter-phases around the CNTs can
be defined with a thickness t and an electrical conductivity sint
given by Ref. [65]:

tc ¼ 1
2
da;cð3Þ; sint;c ¼ da;cð3Þ

aRint;c
�
3; da;cð3Þ

� (63)

The interphase layer is often accounted for by an effective
composite solid cylinder model. The conductivity tensor of the
equivalent solid cylinder, sc, is defined as transversely isotropic in

the local coordinate system with effective longitudinal ~sL and

transverse ~sT electrical conductivities. By applying Maxwell's

equations and the law-of-mixture rule, ~sL and ~sT can be written as
[13]:



~sLcð3Þ ¼
ðLþ 2tcð3ÞÞsint;cð3Þ

h
sLcr

2
c þ sint;cð3Þ

�
2rctcð3Þ þ t2cð3Þ

� i
2sLcr2c tcð3Þ þ 2sint;cð3Þ

�
2rctcð3Þ þ t2cð3Þ

�
tcð3Þ þ sint;cð3ÞL

�
rc þ tcð3Þ

�2; (64a)

~sTcð3Þ ¼
sint;cð3Þ
Lþ 2tcð3Þ

2
4L 2r2cs

T
c þ �

sTc þ sint;cð3Þ
��

t2cð3Þ þ 2rctcð3Þ
�

2r2csint;cð3Þ þ
�
sTc þ sint;cð3Þ

��
t2cð3Þ þ 2rctcð3Þ

�þ 2tcð3Þ
3
5 (64b)
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with sLc and sTc being the longitudinal and transverse electrical
conductivities of the CNTs. Given that the dimensions of the
equivalent composite cylinders are larger than the original CNTs,
the volume fraction of the inclusions must be updated. The volume
fraction feff of the effective solid fillers, i.e. fillers and interphases,
reads:

feff ;cð3Þ ¼
�
rc þ tcð3Þ

�2�Lþ 2tcð3Þ
�

r2c L
f ð3Þ (65)

with L and rc being the length and the radius of the CNTs.
This formulation can be readily implemented in the theoretical

formulation presented in Section 3 by considering the electrical
conductivities given by Eq. (64). To do so, note that simply one
should consider the electron hopping and the conductive
networking (s / ∞) mechanisms as the non-percolating and the
percolating phases of the model.

Finally, it is important to remark that the previous formulation
assumes CNTs as straight fibers. Such an hypothesis may be unre-
alistic in many cases, since CNTs usually take curved geometries
during the mixing procedure due to their low bending stiffness and
high aspect ratio. An example of this is given in Fig.18, which shows
a scanning electron microscope (SEM) picture of multi-walled CNTs
(MWCNTs) in water suspension. In this light, several geometrical
approaches to model the waviness effects of CNTs can be found in
the literature, including planar sinusoidal curves, helixes, and
polylines with straight segments [71]. Nonetheless, these curved
geometries can be straightforwardly introduced into the presented
micromechanics formulation following the equivalent straight fiber
approach by Takeda and co-authors [64]. The basic idea is that wavy
CNTs of length Lwavy can be converted to equivalent straight fibers
of length Lstr with the capability of: (i) conducting the same electric
flux; and (ii) transporting the same amount of electric charges. The
first condition implies that, when subjected to a potential differ-
ence DV, the electrical flux J remains the same for both wavy and
equivalent straight fillers. This relation can be approximated as
[54]:

J ¼ sc
DV
Lwavy ¼ sstrc

DV
Lstr

; (66)

which leads to the effective electrical conductivity of the equivalent
straight fibers as sstrc ¼ ksc, with k ¼ Lstr/Lwavy being their lengths
ratio. On the other hand, the second condition imposes the same
electrical charge through the wavy and the equivalent straight
fillers and, therefore, the same electrical resistance, i.e. Rstrcnt ¼ Rwavy

cnt .
On this basis, considering CNTs as ideal cylindrical conductors, it is
trivially extracted that wavy and equivalent straight CNTs must
have the same cross-section. Therefore, the volume fraction of the
equivalent straight fibers can be computed as fstr¼ kf. It follows that
waviness ratio k suffices to determine the electrical conductivity
tensor of the equivalent straight fillers. Note that the length of the
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equivalent straight fibers Lstr, and thus k, depends upon the
considered wavy geometry. Interested readers can find the explicit
micromechanics formulation of the electrical conductivity of CNT-
based composites considering helical wavy geometries in Ref. [19].

Appendix B. Supplementary data

Supplementary Material 1 of this article can be found online at
https://doi.org/10.1016/j.carbon.2021.08.083
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