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Data in the real world is far from being perfect. The appearance of noise is a common issue
that arises from the limitations of data acquisition mechanisms and human knowledge. In
classification, label noise will hinder the performance of almost all classifiers, inducing a
bias in the built model. While label noise has recently attracted researchers’ attention in
standard classification, it has only recently begun to be studied in multiple instance clas-
sification. In this work, we propose the usage of filtering algorithms for multiple instance
classification that are able to reduce the impact of negative instances within the bags. In
order to do so, we decompose the bags to form a standard classification problem that
can be efficiently treated by a specialized noise filter. Such a decomposition is tackled in
different ways, with the aim of exploiting the knowledge offered by the examples from
opposite bags. The bags are then rebuilt, without the identified noise instances. In our
experiments, we show that by applying our approach we can diminish the impact of noise
and even obtain better results at 0% noise level for several classifiers. Our approach sets out
a promising approach to dealing with noise in the bags of multiple instance datasets and
further improve the classification rate of the built models.
� 2021 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the last decade, real-life problems have led to new and extended classification paradigms to be established beyond
standard classification [22]. In machine learning, multiple instance learning (MIL) [23] is a generalization of the classic attri-
bute–value paradigm, where each learning object is composed by many vectors. The generalization of MIL affects several
research areas in Data Science, which have been well studied in standard problems but need a whole new methodological
approach under MIL [5]. One prominent topic of MIL is multiple instance classification (MIC) [2]. In standard classification,
the instances of a dataset are described by a vector of attribute values with an associated label. On the other hand, in MIC, the
samples are bags of instances [1]. Each bag comprises a number of instances with only their input features. This number may
vary from bag to bag. All the instances within a bag correspond to alternative descriptions of the concept represented by the
bag, just like several atomic structures for the same molecule. The instance in the bag does not have an outcome associated
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to it, it only belongs to its respective bags. MIC applications range from image classification in medical domains [20,39],
speech recognition [34] or biometric recognition [11].

The complex nature of MIC datasets have led to the creation of custom algorithms for diverse tasks, from image tracking
[14] to video classification [26], or even the adaptation of preprocessing techniques from standard paradigms, such as feature
selection [5]. While a large set of classifiers have been developed to tackle MIC, there are still open-ended problems that are
well-known in standard classification that require attention in MIC. Among them, learning from noisy data is an important
topic in machine learning that remains open in MIC. Noisy data has attracted a considerable amount of attention and the
research community have developed numerous methods to deal with it [13,48]. Thus, there is a large range of literature
regarding class noise [31] and handling the noise in standard classification problems. These approaches include the devel-
opment of robust algorithms for noise and data preprocessing methods to clean the noise in the data. Although some authors
have analyzed which current MIL classifiers act better against noise [26], or have tried to develop novel noise-tolerant MIL
classifiers [7], the solution has not been tackled yet, constituting an open-ended challenge.

We face the problem of noisy instances within the bags in MIC problems, based on the decomposition of the bags in a
single-instance problem, where a standard well-known noise filter is applied. In [28], we explored the simple MIL-
Filtering bag filter, comprised of the Single Transforming Filter with IPF [24] as a base filter, which showed good potential.

In this paper, we fully tackle this promising preprocessing approach, proposing a whole newmethodology with two novel
bag filtering decomposition approaches: the Nearest Neighbor Transforming Filter and the Nearest Neighbor Multi-Wrapper
Filter. We also use three standard noise filters as base filters: IPF, EF [4] and RNG [36], thus creating and proposing six new
bag filters to be thoroughly compared and analyzed, including the filter of [28] as well.

In order to validate the proposed filters, a wide experimental setting has been carried out. We introduce several noisy
instances in the bags at different levels, ranging from 5% to 20%, over twenty-eight datasets. The performance results of four
different MIL classifiers are compared to evalute the potential of the proposed bag filters, along with performing no filtering
at all. In general, the results show that in most cases, using a MIL noise filter is beneficial. In particular, some of the proposed
filters in this paper are more suited to certain MIL classifiers and noise levels. The benefits are significant from a low noise
level, such as 10% noise onwards, which enables our method to be safely used in many noisy scenarios.

The rest of this paper is organized as follows. First, Section 2 introduces the MIL paradigm along with classification in MIL.
Section 3 presents an introduction to classification with noisy data, both in standard and MIL problems. Section 4 introduces
the proposed filtering methods. Section 5 presents the experimental framework, and Section 6 analyzes the performance
results obtained. Section 7 studies the behavior of the proposed methods in terms of the number of filtered instances. Finally,
Section 8 enumerates the concluding remarks drawn from this work.
2. Classification in multiple instance learning

The multiple instance learning (MIL) paradigm was introduced in the seminal work of [9]. It arose in the context of learn-
ing tasks where there are multiple descriptions for each example of the concept that needs to be learned. For example, it can
be used when we have multiple viewpoints of the same object, when we have one description for each part of an object com-
posed of multiple parts, or when we have observations taken at different points in time of an object that is changing. In each
of these cases, several descriptions can be associated with the same object (i.e., the example).

In MIL terminology, we say that an example is a bag of instances where each instance corresponds to one of the descrip-
tions associated with the example. In order to train a learning algorithm, we use a training set of bags where a supervisor
agent has previously assigned each bag to a class label. While the class label of each training bag is available for the learner,
the class label of each instance remains unknown. Fig. 1 shows the difference between training examples fromMIL and those
from the traditional (single-instance) learning.
Fig. 1. Each example in Single Instance Learning (left) has only one description and a corresponding class label. On the other hand, each example in Multiple
Instance earning (right) has many descriptions and only one class label associated to all of them.
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For the purpose of this paper, we state the following formal description of MIL. In order to carry out the learning task, we
are given a training set of bags. This training set consists of a set of N pairs of data fðX1; y1Þ; . . . ; ðXN; yNÞgwhere Xi is the bag in
the i-th pair and yi is the class label associated to Xi. Each bag Xi is a set that contains an specific numberMi of instances, i.e.,
Xi ¼ fx1; . . . ; xMig. Each instance xj 2 Xi is a vector of dimension S where the k-th component of the vector corresponds to the
value of the descriptive attribute Ak for the instance xj, i.e., 8k 2 f1; . . . ; Sg : xjk 2 Ak. We focus this study on two-class MIL
problems, which have received great attention in the specialized literature, therefore yi 2 f0;1gwhere 0 is the label that rep-
resents the negative class and 1 represents the positive class.

Although multiple instance representation gives us a very natural and flexible way to represent complex learning objects,
solving MIC problems is complicated, since the relationship between instances and bags differs depending on the problem
itself. In some cases, only one instance is needed to label a bag. This assumption is referred as the standard and implies that
the learning process needs to consider that the bag can have both instances representing the concept to learn and others that
do not.

Several authors have proposed a varied kind of classifiers that have has been adapted to deal with MIL problems in clas-
sification. Following Amores taxonomy [2], the classifiers can be categorized as:

� Instance space paradigm: the classifier creates the discriminant function in the instance space.
� Bag space paradigm [6]: the classifier works with the whole bag by means of similarity functions.
� Embedded space paradigm [25]: the classifier transform the original space to a new embedded space, where the bags are
represented as single attribute vectors.

In this study we will select a set of representative classifiers from different categories from the aforementioned taxonomy,
summarized as follows:

� SimpleMI [43] transforms each bag to a onedimensional vector. C4.5 [33] is applied to the transformed dataset.
� MITI [3] is a native decision tree method for MIL problems based on ID3 that expands nodes in a best-first criterion.
� MILR [10] is the logistic regression adaptation to MIL.
� CitationKNN [43] extends the notion of neighborhood by considering not only the nearest neighbor bags, but also the
bags that consider the actual bag as neighbor itself. This extension is coupled with the usage of Hausdorff distance as well.
� MIboost is an extension of AdaBoost that considers the geometric mean of posterior of instances inside a bag (arithmetic
mean of log-posterior) and the expectation for a bag is taken inside the loss function.

The implementation of these methods can be found in the WEKA software framework [10].
While the standard assumption only requires a single instance within the bag to label the latter, it is desirable to examine

whether the other instance are prejudicial or not for the MIL classifiers. In this study we have explored the possibility of
cleaning the bags to improve the performance of MIL classifiers, particularly when the bags are contaminated with noisy
examples that hinder the bag description.
3. Noisy data in MIL classification

This section offers a general overview of noisy data for the classification task in Section 3.1. It is followed by a general
introduction to noise filters in Section 3.2.
3.1. Introduction to noisy data

Real-world data is far from being perfect and accurate [21]. As indicated in [18], the presence of noise in data can affect
the complexity of classification problems. All these imperfections may harm the interpretation of data, the design, size,
building time, interpretability and accuracy of models, as well as making decisions [47].

To diminish the effects of noise, it is crucial to identify the components that can be affected by its presence. In standard
classification, class labels and attribute values are pieces of information that can be affected, thus twomain types of noise are
distinguished in the literature [48]: class noise (or label noise) and attribute noise. Class noise occurs when an instance
belongs to the incorrect class either as a result of contradictory examples [21] or misclassifications [48]. It can be attributed
to several causes, including subjectivity during the labeling process, data entry errors, or inadequacy of the information used
to label each instance. Attribute noise refers to corruptions in the values of one or more attributes in a dataset. Examples of
attribute noise include erroneous attribute values, missing or unknown attribute values and ‘‘do not care” values. As the
identification and reparation of noise has been demonstrated to be beneficial to the classification task [29], tackling the prob-
lem of noise in non-standard classification problems is drawing more and more attention in the specialized literature [32].

If we focus on MIL, we can think of such a paradigm as a way of modeling the data based on a two-level description. At a
basic level, there are instances describing the attribute values. At a higher level, there are bags, each with its own class label.
Noise can be present at both levels: at the bag level, affecting the class labels of bags, and at the instance level, damaging the
attribute values.
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Like label noise in traditional single-instance learning, noise affecting bag labels is caused fundamentally by the erro-
neous labeling of training examples. In the binary case, this means that a bag that does not have any positive instances is
incorrectly labeled as positive, or that a bag, which has at least one positive instance, is incorrectly labeled as negative. How-
ever, we can expect label noise to have a greater impact in MIL than it would in single-instance learning. This is due to the
fact that in MIL each bag that is incorrectly labeled has a misleading effect, not on a single attribute vector, but rather on each
instance of that bag, potentially resulting in (depending on the learning algorithm) a multiplied misleading effect on the
learner.

It is also possible to analyze noise at the instance level in MIL. MIL can be seen as a noise dealing technique for one-tier
noise (noise within only the positive class), where negative instances inside a positive bag can be considered as a kind of
‘‘noisy instances” of the positive concept [27]. A common approach is to estimate the diversity density estimator [30], where
the objective is to build a model which takes the evidence required to classify positive instances from the union of positive
bags into account, filtering out its intersection with negative bags. The frequent existence of several redundant descriptions
for each bag suggests that MIL is more robust than single-instance learning when exposed to the harmful effect of attribute
noise. However, this theoretical analysis needs to be supported by empirical studies.

The instances appearing in bags labeled negatively cannot be used to create the bag’s concept and can actually make the
learning process more difficult. This means that these instances, therefore, function as if they were noise, suggesting that a
third type of noise also exists in MIL involving both levels at the same time –instance level and bag level– and affecting the
presence of instances inside the bags. We call this new type of noise instance noise and we define it in the following way: an
instance inside a bag can be considered noise if the information conveyed by the instance hinders the learning task.

To the best of our knowledge, we have not yet found any proposals in the literature that deal with noise in MIL. We could
use the popular techniques that deal with noise in standard noise as a point of reference. In particular, among data level tech-
niques, noise filters and data correcting methods are the two popular options used as a preprocessing step before training a
(possibly noise-sensitive) learner. Noise Filters [4,24,42] identify and remove noisy instances from the training data. Data
correcting methods [40] aim to correct or repair noisy instances prior to building a learner by relabeling the wrong class
labels. Several studies [48,46] claim that complete or partial noise correction in training data, with test data still containing
noise, improves performance results, as compared to no preprocessing.

Noise filters are more popular than data correcting methods [13] and the current state-of-the-art will be further elabo-
rated in the following section. However, we are interested in making use of the advantages of well-established noise filtering
methods to clean the noisy instances within the bags. Since we focus on the study of instance noise in this paper, we will
briefly present the selected preprocessing filtering algorithms in the next section as it is a key part of our proposal.
3.2. Noise filters

Noise filters are preprocessing mechanisms designed to detect and eliminate instances with class noise in the training set
[4,24]. The advantage of separating noise detection and learning is that noisy instances do not influence the classifier design
[16]. Elimination of instances with class noise has been shown to be advantageous [15], but the elimination of instances with
attribute noise seems to be counterproductive [48], since they still contain valuable information in other attributes which
can help to build the classifier.

Noise filters follow three main paradigms:

1. Some of them are based on the computation of differentmeasures on the data. For instance, Gamberger et al. [16] propose
that eliminating noisy examples reduces the ‘‘Complexity of the Least Complex Correct Hypothesis” value of the training
set.

2. Similarity-based approaches rely on a local neighborhood of the instance in order to identify it as noisy or clean. The well-
known ENN [45] and its extension ENNTh [41] are examples of this approach.

3. Ensemble-based methods collect predictions from different base classifiers in order to estimate the mislabeled examples.
Some of the most popular algorithms are EF [4], CVCF [42], and IPF [24].

Research on noise filters is an active topic nowadays. For example, INFFC [35] was proposed in an attempt to integrate the
classical paradigm of ensemble-based filtering with both an iterative scheme and a metric-based approach. There are also
recent contributions that highlight classification accuracy enhancement after class noise treatment [12]. Another recent
study is that of Sluban et al. [38]. They propose creating a ranking of noisy instances according to the predictions provided
by several different noise detection algorithms. Improvements in the behavior of existent filters is studied in [17], where the
usage of decomposition strategies is shown to be beneficial in improving the behavior of any noise filter.
4. Bag noise filtering for instance noise

Since instance noise in MIL has not been tackled yet, we present two noise filter algorithms that are based upon the same
principle of moving from MIL into a single-instance representation. Once we have a single instance representation, a classic
noise filter is applied and then the filtered data is transformed back into the MIL representation.
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The transformation from MIL to a single instance problem is performed by augmenting each instance’s attribute vector
with the addition of the bag’s class label. This is a common transformation (and initialization) method in instance based clas-
sification algorithms [23].

By following this principle, we propose and describe two novel MIL noise filters: Single Transforming Filter (Section 4.1)
and Nearest Neighbor Transforming Filter (Section 4.2). Section 4.3 briefly describes an extension of the latter where several
filters cooperate to filter noise.

4.1. Single Transforming Filter

In Single Transforming Filter, all of the training bags are converted to the single-instance representation in a single step.
As a result, the information describing which instances belong to which bags (membership information) is lost. The filter
only knows about the class label assigned to each instance, but it doesn’t know if two instances with the same class label
belong to two different bags or to the same bag. The steps of the Single Transforming Filter are shown in Algorithm 1. By
means of the loop of Step 3 we complete the transformation process and set the single-instance representation of the data
in D. We apply the filter (in Step 11) and remove noisy instances (in Step 12) repeatedly until the detected level of noise
(checked in Step 14) falls below a given threshold. Note that when we return to Step 11 to repeat the entire process, D
has been previously updated in Step 12. This filter is similar to the MIL-filtering technique introduced in [28] if IPF is used
as a base filter.

Algorithm 1. Single Transforming Filter

1: function STF (T – training data, d – threshold of filtered instances to stop, F – a standard classification noise filter
2: D fg)
3: for all bags Bi 2 T do
4: Let yi be the label of Bi

5: for all instances bj 2 Bi do
6: Create instance x fbj; yig as a standard classification instance
7: D D [ x
8: end for
9: end for
10: repeat
11: N ¼ FðDÞ, N being the set of noisy instances identified by F
12: D D n N
13: T  T n N
14: until the percent of noisy instances identified in Step (11) < d
15: end function
4.2. Nearest Neighbor Transforming Filter

To test whether the membership information can improve the filtering process of the noisy instances inside the bags or
not, we propose the Nearest Neighbor Transforming Filter. In this case, the transformation of the training bags is not made all
at once, but instead over multiple steps. In each step, only two bags, one from each class, are transformed and then filtered.
The transformation and filtering process is repeated for all the training bags. For each training bag the vote of its nearest
neighbors is used to determine the noisy instances of that bag. In this way, the filter is applied to the whole training set,
taking into account the membership information.

In Algorithm 2 we show an algorithmic description of the Nearest Neighbor Transforming Filter. For each instance
xi 2 Xwe use a variable Ci to count the positive votes of the neighbors of X. A positive vote means that xi has been identified
as noisy by a neighbor. In Step (7) we set the value of each Ci to zero. In Step (3) we need to find the nearest neighbors of X
among the bags of the opposite class. In order to do this, we need to use a distance function defined for bags. Specifically, we
use the Average Hausdorff Distance [44] as the bag-wise distance function and the Euclidean distance to measure the dis-
tance between instances. In Step (5) we perform the transformation process of X and its neighbor Z and set the resulting
single-instance representation in D. After applying the filter in Step (9), we increase the counter Ci to each instance xi that
has been deemed as noisy by F (Step (10)). In Step (14) we consider the removal of each instance xi based on the votes given
by the k nearest neighbors of X. Different approaches can be used to make this decision. For example, the unanimity policy
needs all neighbors to give a positive vote; theminimum policy is when the vote of a single neighbor is enough to remove the
instance, and the majority policy requires more positive votes from the neighbors than negative votes. Each policy defines a
threshold c above which the instance is removed. In the experimental section of this paper we report results using the max-
imum policy. Each of the steps is repeated until the detected level of noise (checked in Step (14)) falls below a given thresh-
old d.
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The noise filter F to be used in these algorithms can be any regular (instance-level) noise filter, such as those introduced in
Section 3.2.

Algorithm 2. Nearest Neighbor Transforming Filter

1: function NNTF (T - training data, k – number of nearest neighbor, c – threshold to remove instances, d – threshold of
filtered instances to stop, F – standard noise filter)

2: for each bag X in T: do
3: Let Nk be the k nearest bags to X with the opposite class.
4: for each bag Z in Nk: do
5: Create a single-instance data set D from the instances in X and Z, assigning the class label of each bag to the

instances of that bag.
6: for each instance xi in X
7: Ci  0
8: end for
9: Apply a regular noise filter F to D.
10: Ci  Ci þ 1 to each instance xi 2 X identified as noisy by F.
11: end for
12: for each instance xi in X do
13: if Ci P c then
14: X  X n xi
15: end if
16: end for
17: end for
18: if the percent of noisy instances identified in Step (9) Pd then
19: Goto Step 2.
20: end if
21: end function
4.3. Nearest Neighbor Multi-Wrapper filter

The operation of the Nearest Neighbor Mult-Wrapper filter (MW) is similar to NNTF. Instead of applying one filter to
detect noisy instances, several filters are used and then a voting scheme is carried out to decide whether an instance is noisy
or not. Algorithm 3 shows the algorithmic description of MW, where the set of filtersF can be any odd combination of stan-
dard noise filters.

Algorithm 3. Nearest Neighbor Multi-Wrapper Filter

1: function MW (T – training data, k – number of nearest neighbor, c – threshold to remove instances, d – threshold of
filtered instances to stop, F – set of standard noise classifiers)

2: for each bag X in T: do
3: Let Nk be the k nearest bags to X with the opposite class.
4: for each bag Z in Nk: do
5: Create a single-instance data set D from the instances in X and Z, assigning the class label of each bag to the

instances of that bag.
6: for each instance xi in X do
7: Ci  0
8: Vi  0
9: end for
10: for each noise filter F 2F

11: Apply a regular noise filter F to D.
12: Ci  Ci þ 1 to each instance xi 2 X identified as noisy by F
13: if Ci P c
14: Vi  Vi þ 1
15: end if
16: end for
17: end for

(continued on next page)
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18: for each instance xi in X do
19: if Vi P a then
20: X  X n xi
21: end if
22: end for
23: end for
24: if the percent of noisy instances identified in Step (9) Pd
25: Goto Step 2.
26: end if
27: end function

By using MWwe want to examine whether the knowledge of diverse noisy instances from several filters is compatible. In
this study, we will use the set of EF [4], IPF [24] and RNG [36] filters, which are all different in nature, as indicated in
Section 3.2.

5. Experimental framework

In this section we present the details of the experimental framework used to validate our proposal. In Section 5.1 we pre-
sent the datasets used in the experimentation. Section 5.2 details the parameters utilized to analyze the effect of filtering.
Finally, Section 5.3 describes the statistical tests that support the conclusions made in the analysis.

5.1. Datasets

In order to check the validity of our proposal, we have used twenty-eight multiple instance datasets with bags belonging
to two different classes. These datasets belong to different real-world domains: bioinformatics, text recognition and image
classification. They are described in Table 1 and are aimed at offering a representative test-bed for our proposal. The number
of bags with their instances are indicated. We also show the number of positive and negative bags contained in each dataset.

To validate the behavior of our proposal in different noisy scenarios, we have introduced several levels of noise in the
aforementioned datasets. From each bag of each training partition, a percentage of instances were randomly taken and
replaced by instances from bags labeled with the opposite class label. Test partitions in datasets remained identical to
Table 1
Datasets.

Name attrs -inst +inst inst -bags +bags bags

Musk1 166 269 207 476 45 47 92
Musk2 166 6598 5581 12179 62 39 101
Atoms 10 545 1073 1618 63 125 188
Bonds 16 1040 2955 3995 63 125 188
Chains 24 1233 4116 5349 63 125 188
Elephant 230 629 762 1391 100 100 200
Fox 230 673 647 1320 100 100 200
Tiger 230 676 544 1220 100 100 200
TREC1 320 1644 1580 3224 200 200 400
TREC2 303 1629 1715 3344 200 200 400
TREC3 324 1620 1626 3246 200 200 400
TREC4 306 1637 1754 3391 200 200 400
TREC7 300 1621 1746 3367 200 200 400
TREC9 299 1616 1684 3300 200 200 400
TREC10 303 1635 1818 3453 200 200 400
WIR7 303 1713 1710 3423 58 55 113
WIR8 303 1713 1710 3423 58 55 113
WIR9 301 1713 1710 3423 58 55 113
Corel01vs02 9 354 484 838 100 100 200
Corel01vs03 9 310 484 794 100 100 200
Corel01vs04 9 759 484 1243 100 100 200
Corel01vs05 9 200 484 684 100 100 200
Corel02vs03 9 310 354 664 100 100 200
Corel02vs04 9 759 354 1113 100 100 200
Corel02vs05 9 200 354 554 100 100 200
Corel03vs04 9 759 310 1069 100 100 200
Corel03vs05 9 200 310 510 100 100 200
Corel04vs05 9 200 759 959 100 100 200
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the originals, i. e., without introducing noise. The procedure to introduce noise is as follows: for each bag in the training par-
tition, a x% number of instances were substituted by instances from bags of the opposite class chosen at random. In this way,
we ensure that each bag contains a level of noise of x% each. We have considered 5%; 10%; 15% and 20% noise levels.

The performance of the classifiers is evaluated by means of the accuracy. We have applied a 5-fold cross validation to
obtain the accuracy of the methods.

5.2. Parameters

In this section we present the parameters, both filters and classifiers, used by the methods.
Table 2 shows the parameters used in our experimentation for the classification methods. They have been chosen from

the recommended values indicated by their respective authors.
Table 3 contains the parameters utilized by the base filters (EF, IPF and RNG). Since the proposed MIL filters can be con-

sidered to be wrappers around these base filters, we have written the acronyms of Simple Transforming Filter (SW), Nearest
Neighbor Transforming Filter (NN) and Nearest Neighbor Multi-Wrapper (MW) using ‘W’ for wrapper. Thus, the combina-
tions of filters that we will consider in our experiments are those indicated in Table 4.

5.3. Statistical tests

To properly analyze these performance results, Friedman’s Statistical Test is used [8]. Friedman test [37] is a non-
parametric test equivalent of the repeated-measures ANOVA. Under the null hypothesis, it states that all the algorithms
are equivalent, so a rejection of this hypothesis implies the existence of differences among the performances of all the algo-
rithms studied.

After this, a post hoc test could be used in order to find whether the control or proposed algorithm presents statistical
differences with the compared methods. In this paper we will consider Holm’s test, as it is able to adjust the p-values to
the considered number of algorithms.

The usage of non-parametrical statistical tests is recommended in these types of comparisons since the conditions to
apply parametrical tests are not usually fulfilled [19].
6. Analysis on the effect of filtering in classification accuracy

In this section, we study how the noise affects the performance of the MIL classifiers presented in Section 2. The results of
filtering with the proposed techniques will be also analyzed, focusing on whether the application of the novel filters help the
filters to overcome the negative effects induced by noise. Table 5 shows the accuracy results for the separate classifiers after
applying the different filters and the no-filter strategy.

In the case of 0% noise level, we aim to check whether the application of the proposed noise filter is safe, that is, the accu-
racy achieved after applying the filter is at least comparable to not filtering (NF). The results indicate that NF is the best
option for SimpleMI and CitationKNN. However, other filters are beneficial even when no artificial noise is added, showing
better results for MITI, MILR and MIBoost. Please note that the later are more sophisticated classifiers, thus suggesting that
they are able to benefit more from the filtering of the original datasets. This may also suggest that the original bags contain
significant amounts of negative examples that hinder the bag description label, prior to adding any extra amount of artificial
noise.

At a 5% noise level, the NF option is only suitable for SimpleMI. Since the amount of noise is still low, the bag codification
is only slightly altered and allows C4.5 to cope with these changes. Please remember that C4.5 embedded in SimpleMI is
done so by applying pruning, thus making it robust to small amounts of noise. For the other classifiers, the application of
a filter is recommended to overcome the negative effects of noise. Except for MITI, using IPF as a base filter is the best tech-
nique in terms of accuracy.

At a 10% noise level onward, NF is never the best option in terms of average accuracy. Thus, from medium to high intra-
bag noise levels, the application of noise filters is necessary to alleviate the hindering effects of negative examples in the
bags. Even at a 10% noise level, where the probability of maintaining positive examples in the bags is remarkable, introducing
new negative examples severely spoils the relationship with the bag label. Thus, applying noise filters is recommended when
the description of the bags is not accurate enough.
Table 2
Parameters used by the MIL classifiers.

Method Parameters

SimpleMI confidence: 0.25, pruning: true
MITI split: Gini, n: 0.5
MIBoost classifier: C4.5, iterations: 10
CitationKNN references: 1, citers: 1, rank Hausdorff distance: 1
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Table 3
Parameters used by the filters.

Method Parameters

EF Voting scheme: consensus, C: 4, KEF : 1, distance: HVDM,
prune: true, confidence: 0.1, itemsPerLeaf: 2

IPF Voting scheme: majority, C: 5, KIPF : 3, PIPF : 1%
RNG graph order: 1st order, selection: edition, distance: Euclidean

SW filter c: 3, d: 1%
NN filter k: 5, c: 3, d: 1%
MW filter k: 5, c: 3, d: 1%, filter voting: simple (a ¼ 1)

Table 4
Combinations of base filters and proposed MIL filtering techniques used in the experiments.

EF IPF RNG

Simple Transforming Filter SW-EF SW-IPF SW-RNG
Nearest Neighbor Transforming Filter NN-EF NN-IPF NN-RNG
Nearest Neighbor Multi Wrapper Filter MW
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To better support our analysis, results from the application of Friedman’s statistical tests are available in Table 6. In this
table, the best ranked algorithm is denoted as Control, while the rejection of the null-hypothesis of equality is codified by
using ‘+’, ‘*’ and ‘=’ symbols. A ‘+’ indicates that the null-hypothesis is rejected with a p� value 6 0:05, a ‘*’ denotes that the
null-hypothesis is rejected with a p� value 6 0:1 and ‘=’ indicates that the null-hypothesis is not rejected with a desirable a
level.

Since the statistical tests are performed over the accuracy results, some conclusions are similar to those we have drawn
from the averaged accuracy scores: the application of NF is allegedly the best choice for CitationKNN and SimpleMI, but with
a similar performance to other filters as SW-IPF and SW-EF. Therefore, we may consider the last two to be techniques that
are safe for use with the aforementioned classifiers even when the amount of noise is unknown.

By focusing on the most frequent control algorithm, SW-IPF emerges as the preferred filter for MIBoost, SimpleMI (from
5% noise onward). Other classifiers such as MILR, MITI and Citation KNN show SW-IPF as the best choice in some cases. How-
ever, for the latter, even when SW-IPF is not the best algorithm, it is not significantly worse than the control technique, thus
indicating its versatility for all the considered classifiers.

The selected base filter does not determine the good or bad behavior of the filtering process. For instance, while SW-IPF
offers an outstanding performance, NN-IPF is not able to achieve the same behavior. When considering to EF as the base fil-
ter, NN-EF is not able to filter as accurately as SW-EF, indicating that the nearest neighbor technique is not well suited to this
base filter or RNG, which also performs worse when used in the NN wrapper. Finally, we must mention that the combination
of several filters is not a good choice either.
7. Instances removed per filter

While in the previous section we have focused on the performance impact of applying the proposed filters to eliminate
negative instances within the bags, in this section we will study how these improvements relate with the amount of
instances removed per each filter. Standard assumption in MIL hold that only a single positive instance is necessary to label
the entire bag. Thus, removing other instances from the bag would help to obtain a more accurate description of the label
itself, maybe rewarding aggressive filters.

Fig. 2 depicts the average amount of instances removed per each filter in each noise level. We observe that the amount of
the average number of filtered instances vary greatly among the approaches. We may notice that the filtering strategy, SW or
NN, has little impact on the amount of instances eliminated, but such a behavior is mainly dictated by the base filter used.
For instance, RNG is an aggressive instance filter that removes a high number of instances. This behavior has been already
observed in other related studies [29] and may cause the poor performance of NN-RNG: the over-filtering that RNG causes
will remove positive instances from the bag that help to identify its label. Please note that SW-RNG is not as aggressive as
NN-RNG, but still removes too many instances.

On the other hand, as we can observe in Fig. 2, IPF is the most conservative base filter. From the analysis in the previous
sections, we also stated that SW-IPF is the best performing filter. By relating such good behavior with the amount of removed
instances, SW-IPF cam be considered a balanced approach that removes a percentage of instances in the interval ½12;22�%.
This amount is the approximate mid-point with respect to the percentages of MW and NN-IPF, being the most and least
aggressive filters respectively. This successful balanced behavior provides two important hints when cleaning the intra-
bag noise:
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Table 5
Accuracy results for the different MIL classifiers after applying the noise filtering techniques. Best average result for each classifier and noise level is stressed in
bold.

SimpleMI MITI MILR CitationKNN MIBoost

0% noise
NF 81.3605 77.4718 79.0508 72.4096 77.9908
SW-EF 79.2204 78.9251 79.3228 70.5946 78.9641
SW-IPF 80.5469 78.1800 78.7053 71.0911 81.7616
SW-RNG 78.4593 76.3976 77.5097 70.4366 78.7432
NN-EF 72.7608 73.6568 73.7986 65.2045 73.6199
NN-IPF 78.8171 77.1101 79.3617 71.8459 78.8491
NN-RNG 69.9011 71.9679 70.0943 60.2924 70.5762
MW 68.4639 71.4899 69.6220 60.3371 69.5003

5% noise
NF 80.3384 76.6913 78.9554 71.5890 78.7612
SW-EF 77.6164 77.4889 78.5689 70.1127 79.0222
SW-IPF 80.1162 77.4428 78.1244 70.0040 80.9387
SW-RNG 78.2087 77.1990 77.7499 70.2344 78.7501
NN-EF 72.0620 72.4508 73.5859 64.9949 73.8404
NN-IPF 78.3623 76.0166 79.1798 72.0762 79.3059
NN-RNG 69.7148 71.5022 70.2754 60.0245 70.7421
MW 68.8596 70.4046 69.0959 60.1741 69.9353

10% noise
NF 78.3608 74.9637 78.0317 69.7762 77.8180
SW-EF 76.0307 77.1759 76.1376 69.0320 78.7806
SW-IPF 79.8879 77.2747 78.5287 70.4955 80.6538
SW-RNG 78.2395 77.8612 77.4804 70.2023 77.9253
NN-EF 69.7500 70.8044 70.7473 63.5300 73.3847
NN-IPF 78.4198 75.5215 77.1174 70.1674 78.6762
NN-RNG 68.1038 68.9722 69.4192 59.8296 69.5985
MW 68.2312 68.8837 67.2414 60.3938 69.2206

15% noise
NF 78.4201 72.3480 76.5043 69.1492 77.2428
SW-EF 74.6524 76.7261 76.6247 68.9719 76.5968
SW-IPF 79.2590 77.1180 78.8736 70.5464 80.4784
SW-RNG 77.8274 76.9029 77.2670 70.1241 77.9913
NN-EF 68.8008 70.9612 70.2904 63.3435 72.9865
NN-IPF 77.1075 75.2210 76.8067 69.8081 78.6054
NN-RNG 66.8640 69.1302 68.5310 60.0920 69.3150
MW 65.4844 68.2144 66.0521 60.6745 68.5245

20% noise
NF 75.9204 69.1155 75.3476 67.9075 77.3866
SW-EF 72.5281 76.2914 74.6974 67.5939 77.3676
SW-IPF 78.3870 76.4976 78.2482 69.6947 80.1285
SW-RNG 78.2395 77.8612 77.4804 70.2023 77.9253
NN-EF 64.9703 69.1849 68.2730 60.5141 71.2693
NN-IPF 74.8545 72.6955 75.2751 68.2820 76.9014
NN-RNG 64.7350 67.8457 66.5601 58.6045 67.6538
MW 64.7910 67.3017 65.1009 59.0818 67.0583

J. Luengo, D. SÃnchez-Tarragœ, R.C. Prati et al. Information Sciences 579 (2021) 388–400
� Even when the standard assumption holds, removing too many instances (possibly affecting positive instances as well)
will hinder the classifier’s performance. Keeping as many positive instances as possible is a feature that a good filter
should exhibit.
� The average number of instances removed by good filters is more than the amount of artificially instances introduced in
the bags. Since the application of the filters is beneficial, the bags should naturally contain a significant amount of neg-
ative examples that can be removed to improve the classification rate.

The reader may notice that these two objectives are contradictory, as we want to remove as many negative instances as
we can before diminishing the relationship with the bag label given by the set of positive examples. Since the true distribu-
tion of positive instances is unknown, the more instances that are removed, the greater the probability of eliminating pos-
itive instances, thus the two points are the complete opposite.

From the results presented in this section, we may conclude that, among the algorithms investigated in this paper, SW-IPF
is the best approach both in terms of performance and accurate negative instance removal.
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Table 6
Friedman results for each classifier with Holm’s post hoc test. Control denotes the best ranked algorithm, a ‘+’ indicates a p� value 6 0:05, a ‘*’ denotes a
p� value 6 0:1 and a ‘=’ is used to indicate a p� value > 0:1. Colors are adjusted to help identify the cases where the control algorithm is significantly better
than the others.
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8. Concluding remarks

This paper tackles the problem of noise within the bags in MIC. While the standard assumption indicates that negative
instances that do not contribute to the actual bag label may be present in the bags, analysis on whether the quantity or addi-
tion of such negative instances have an adverse impact on the knowledge extracted are still pending.

To alleviate the problem of having additional or transferred negative instances in the bags, we propose the application of
noise filters to eliminate allegedly negative examples. In order to do so, two main approaches are carried out. On the one
hand, we transform the MIL problem to a standard classification problem, where state-of-the-art techniques have demon-
strated their good behavior. We then apply a base class label filter and finally rebuild the MIL problem without the noisy
instances. On the other hand, we aim to exploit the similarity information between positive and negative bags. Thus, our goal
is to help the base filters to identify negative examples by providing examples from the negative bags.

By studying the results in terms of accuracy for a varied set of representative MIL classifiers, we have observed that the
base standard filter has strong influence on the performance results. We have also noted that converting the MIL problem to
a standard problem to deal with the noisy examples is a valid strategy to improve the results when the negative instances
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Fig. 2. Average amount of instances removed per filter in each noise level.
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populate the bags. In particular, the combination of the Simple Wrapper strategy with IPF filter (SW-IPF) is the most success-
ful technique, as it is able to safely work at 0% noise, and stands out from all the classifiers used to evaluate our proposal
when noise is added. We have also shown that even at 0% induced noise, the removal of (negative) instances helps the clas-
sifiers to better identify the characteristics of positive bags.

This study opens the door to interesting questions and future efforts. Since noise filtering helps classifiers to improve the
classification in MIL, it would be more efficient to create native MIL filters to deal with intra-bag noise, where the conversion
to a standard classification problem is not needed. The exploitation of the information shared between positive bags also
needs further analysis, as it could deliver better noise identification accuracy.
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