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Abstract. The present status of the field theoretical model studies of
the deep inelastic scattering induced by (anti)neutrino on the nuclear
targets in a wide range of Bjorken variable x and four momentum trans-
fer square Q2, has been reviewed [1,2,3,4,5,6]. The effect of the nonper-
turbative corrections such as target mass correction and higher twist
effects, perturbative evolution of the parton densities, nuclear medium
modifications in the nucleon structure functions, nuclear isoscalarity
corrections on the weak nuclear structure functions have been dis-
cussed. These structure functions have been used to obtain the dif-
ferential scattering cross sections. The various nuclear medium effects
like the Fermi motion, binding energy, nucleon correlations, mesonic
contributions, shadowing and antishadowing corrections relevant in the
different regions of x and Q2 have been discussed. The numerical re-
sults for the structure functions and the cross sections are compared
with some of the available experimental data including the recent re-
sults from MINERvA. The predictions are made in argon nuclear target
which is planned to be used as a target material in DUNE at the Fer-
milab.

1 Introduction

In recent years the need for a better understanding of neutrino interaction cross sec-
tion with nucleon and nuclear targets in the few GeV region of (anti)neutrino energies
has been emphasized in order to reduce the systematic uncertainty in the analysis
of neutrino oscillation parameters of the Pontecorvo-Maki-Nakagawa-Sakata matrix
(PMNS matrix). The lack in the understanding of (anti)neutrino-nucleon/nucleus
cross section adds to 25-30% uncertainty to the systematics and a considerable re-
duction in this uncertainty is required for a precise measurement of PMNS matrix or
in the study of CP violation in the leptonic sector or in the determination of the neu-
trino mass hierarchy (normal or inverted). In the few GeV region of (anti)neutrino
energies the contribution to the total (anti)neutrino cross section comes from the
quasielastic, inelastic as well as the deep inelastic scattering processes on the nuclear
targets. In this review, we shall focus on the understanding of nuclear medium effects
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in the weak interaction induced deep inelastic scattering(DIS) processes in a theoret-
ical model using field theory. For the details on the current status readers are referred
to Ref.[7].

There is intrinsic interest to understand DIS processes induced by the charged lep-
tons and (anti)neutrinos on nucleons and nuclear targets as they are important tools
to study the quark parton structure of the free nucleons and the nucleons when they
are bound in a nucleus. The observation of EMC (European Muon Collaboration) ef-
fect in the DIS of muon from iron target showed that the quark parton distributions of
free nucleons are considerably modified when they are bound in a nucleus which was
later confirmed in several other experiments by using electron, muon, (anti)neutrino
and other particle beams on the various nuclear targets. The DIS experiments done
with lepton beams make measurements of the DIS cross sections which are expressed
in terms of the nucleon structure functions. These structure functions are determined
by making Rosenbluth-like separations of the measured cross section. The electro-
magnetic DIS cross section induced by the charged leptons are generally expressed
in terms of the two structure functions FEM

iN (x,Q2) (i = 1, 2), which are functions

of the Bjorken scaling variable x = Q2

2MNν (0 ≤ x ≤ 1); and Q2 (where Q2 ≥ 0,
is the four momentum transfer square and ν is the energy transferred to the target
i.e. ν = Eν − El, Eν(El) is the energy of the incoming(outgoing) lepton, and MN

is the nucleon mass). For the weak DIS process induced by (anti)neutrinos the cross
sections are given in terms of three structure functions FWeak

iN (x,Q2) (i = 1, 2, 3),
in the limit of the vanishing lepton mass. However, in the case of DIS induced by
the weak charged current of νµ and ντ , where the lepton mass in the final state
could be non-negligible as compared to Q2 in some kinematic regions, then two ad-
ditional structure functions FWeak

4N (x,Q2) and FWeak
5N (x,Q2) also contribute to the

cross sections. In the exact limit of Bjorken scaling i.e. ν → ∞, Q2 → ∞, such that

x = Q2

2MNν , remains fixed, the structure functions scale and become functions of only
one variable x. These structure functions are not all independent when calculated in
the quark-parton model and satisfy certain relations given by Callan-Gross [8] and
Albright-Jarlskog [9]. Consequently, the electromagnetic cross sections are given in
terms of only one structure function chosen to be FEM

2N (x,Q2) while the weak cross
sections are given in terms of two structure functions taken to be FWeak

2N (x,Q2) and
FWeak
3N (x,Q2).

The study of the nucleon structure functions gives important information about
the structure of the nucleon and provides opportunity to test the predictions of the
perturbative Quantum Chromodynamics(QCD). Depending upon the kinematic re-
gion of the centre of mass energy (W ) and the four momentum transfer square(Q2),
it can also provide some important information about the non-perturbative QCD.
In case of the electromagnetic(EM) DIS reactions induced by electrons and muons
there is considerable experimental data on the EM nucleon structure functions viz.
FEM
1N (x,Q2) and FEM

2N (x,Q2) and the nuclear structure functions FEM
1A (x,Q2) and

FEM
2A (x,Q2) enabling us to study the nuclear medium effects on the electromagnetic

nucleon structure functions by making a comparative study. This is not so in the case
of weak nucleon structure function FWeak

1N (x,Q2), FWeak
2N (x,Q2) and FWeak

3N (x,Q2),
where there is almost no experimental data on free nucleons. The weak nucleon struc-
ture functions have to be extracted from the (anti)neutrino DIS experiment on heavy
nuclear targets like freon, freon-propane, etc. MINERvA at Fermilab [10] has per-
formed experiment with νµ and ν̄µ beams in the wide range of x and Q2 using several
nuclear targets like carbon, iron, lead, etc. and the aim is to understand nuclear
medium effects by doing EMC kind of measurements. Theoretically, a better under-
standing of nuclear medium effects on the weak structure functions is also required.
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Generally there are two approaches in order to understand the medium effects in
the weak nuclear structure functions, one is phenomenological and the other is theo-
retical. In the phenomenological analysis, the general approach is that nuclear parton
distribution functions(PDFs ) are obtained using the charged lepton-nucleus scatter-

ing data and analyzing the ratio of the structure functions e.g.
FEM

2A

FEM
2A′

,
FEM

2A

FEM
2D

, where A,A′

represent any two nuclei and D stands for the deuteron, nuclear correction factor is
determined. The same correction factor is then used for the weak structure functions
FWeak
1A (x,Q2) and FWeak

2A (x,Q2). For FWeak
3A (x,Q2), the information is inferred from

(anti)neutrino scattering data [11,12,13]. The other phenomenological approach is to
directly extract the nuclear PDFs by analyzing the experimental data i.e. without
using nucleon PDFs or nuclear correction factor. This approach has been recently
used by nCTEQ [14] group in getting FEM

2A (x,Q2), FWeak
2A (x,Q2) and FWeak

3A (x,Q2)
nuclear structure functions by analyzing together the charged lepton-A DIS data and
Drell-Yan p-A data sets, and separately analyzing ν(ν̄) − A DIS data sets. Their
observation is that the nuclear medium effects on FEM

2A (x,Q2) in electromagnetic
interaction are different from FWeak

2A (x,Q2) in the weak interaction specially at low
x.

On the other hand, theoretically, there have been very few calculations to study
nuclear medium effects in the weak structure functions. One is by us (Aligarh-Valencia
collaboration [1,2,3,4,5,6,15]), and the other is by Kulagin and Petti [16,17]. The
present review is based on our theoretical works performed in the last several years [1,
2,3,4,5,6,15], on the electromagnetic and weak interaction induced DIS processes on
the free nucleon and nuclear target in the wide region of x and Q2. Recently we
have extended our study for ντ/ν̄τ scattering on the free nucleon and obtained the
structure functions as well as the differential and total scattering cross sections by
including various perturbative and non-perturbative effects [6]. Work is in progress to
understand nuclear medium effects in ντ (ν̄τ )-nucleus interactions and will be reported
elsewhere.

In the present paper, we review the work on the nuclear medium effects in the
structure functions using a microscopic approach based on field theoretical formal-
ism [18]. A relativistic nucleon spectral function has been used to describe the energy
and momentum distribution of the nucleons in nuclei [19]. This is obtained by us-
ing the Lehmann’s representation for the relativistic nucleon propagator and nuclear
many body theory is used to calculate it for an interacting Fermi sea in nuclear
matter. A local density approximation is then applied to translate these results to
finite nuclei. Furthermore, we include the contributions of meson clouds and include
the pion and rho contributions in a many body field theoretical approach. For the
shadowing and anti-shadowing corrections which have been found to be effective in
the low region of x(x ≤ 0.2), we follow the works of Kulagin and Petti [16,17]. In
the present work the numerical results for various structure functions and the cross
sections have been presented and compared with experiments. Predictions have been
made for 40Ar, relevant for the upcoming DUNE experiment[20] at the Fermilab.

The plan of the paper is the following. In section-2, we describe, in brief the
formalism for calculating νl(ν̄l)-nucleon scattering cross section and in section-3 we
discuss the nuclear medium effects in the evaluation of structure functions and dif-
ferential scattering cross section for νl(ν̄l)-nucleus scattering. In section-4, we present
and discuss the results and section-5, summarizes our study.
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2 Formalism

2.1 (Anti)neutrino-nucleon cross section and the structure functions

The basic reaction for the (anti)neutrino induced charged current deep inelastic scat-
tering process on a free nucleon target is given by

νl(k)/ν̄l(k) +N(p) → l−(k′)/l+(k′) +X(p′); l = e/µ/τ, N = n, p, (1)

where k and k′ are the four momenta of incoming and outgoing lepton, p and p′ are
the four momenta of the target nucleon and the jet of hadrons produced in the final
state, respectively. This process is mediated by the W -boson (W±) and the invariant
matrix element corresponding to the reaction given in Eq.1, is written as

− iM =
iGF√

2
lµ

(
M2

W

q2 −M2
W

)

〈X |Jµ|N〉 , (2)

where GF is the Fermi coupling constant, MW is the mass of W boson, and q2 = (k−
k′)2 is the four momentum transfer square. lµ is the leptonic current and 〈X |Jµ|N〉
is the hadronic current for the neutrino induced reaction.

The general expression of the double differential scattering cross section (DCX)
corresponding to the reaction given in Eq. 1 (depicted in Fig. 1) in the laboratory
frame is expressed as:

d2σ

dxdy
=

yMN

π

Eν

El

|k′|
|k|

G2
F

2

(
M2

W

Q2 +M2
W

)2

Lµν Wµν
N , (3)

where x and y are the scaling variables which lie in the following ranges:

X

2

dσ ∼ ∼ Lµν W
µν
N

X(p′)

W
+ (q)/W

− (q)

N(p)

ν
l (k)/ν̄

l (k)

l− (k
′ )/l

+ (k
′ )

Fig. 1. νl(ν̄l) − N inclusive scattering, where the summation sign represents the sum
over all the hadronic states such that the cross section(dσ) for the deep inelastic scattering
∝ LµνW

µν
N .

m2
l

2MN(Eν −ml)
≤ x ≤ 1; a− b ≤ y ≤ a+ b, (4)

with

a =
1−m2

l

(
1

2MNEνx
+ 1

2E2
ν

)

2
(

1 + MNx
2Eν

) , b =

√
(

1− m2

l

2MNEνx

)2

− m2

l

E2
ν

2
(

1 + MNx
2Eν

) , (5)
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where ml is the charged lepton mass. The leptonic tensor Lµν is given by

Lµν = 8(kµk
′

ν + kνk
′

µ − k.k′gµν ± iǫµνρσk
ρk′σ) , (6)

with +ve sign for antineutrino and -ve sign for neutrino in the antisymmetric term.
The hadronic tensor Wµν

N is written in terms of the weak nucleon structure func-
tions WiN (ν,Q2) (i = 1− 6) as

Wµν
N =

(
qµqν

q2
− gµν

)

W1N (ν,Q2) +
W2N (ν,Q2)

M2
N

(

pµ − p.q

q2
qµ

)

×
(

pν − p.q

q2
qν
)

− i

2M2
N

ǫµνρσpρqσW3N (ν,Q2) +
W4N (ν,Q2)

M2
N

qµqν

+
W5N (ν,Q2)

M2
N

(pµqν + qµpν) +
i

M2
N

(pµqν − qµpν)W6N (ν,Q2) . (7)

The contribution of the term with W6N (ν,Q2) vanishes when contracted with the
leptonic tensor. In the limit of highQ2 and ν, the structure functionsWiN (ν,Q2); (i =
1−5) are generally expressed in terms of the dimensionless nucleon structure functions
FiN (x), i = 1 − 5. However, as we move towards the region of low and moderate
Q2, the dimensionless nucleon structure functions show x as well as Q2 dependence.
Hence, FiN (x,Q2), i = 1− 5 are defined as

F1N (x,Q2) = W1N (ν,Q2), F2N (x,Q2) =
Q2

2xM2
N

W2N (ν,Q2), F3N (x,Q2) =
Q2

xM2
N

W3N (ν,Q2),

F4N (x,Q2) =
Q2

2M2
N

W4N (ν,Q2), F5N (x,Q2) =
Q2

2xM2
N

W5N (ν,Q2). (8)

The expression for the differential scattering cross section for the νl/ν̄l−N scattering
given in Eq. 3 is written by using Eqs. 6 and 8 as:

d2σ

dxdy
=

G2
FMNEν

π(1 + Q2

M2

W

)2

{[

y2x+
m2

l y

2EνMN

]

F1N (x,Q2) +
[(

1−
m2

l

4E2
ν

)

−

(

1 +
MNx

2Eν

)

y
]

F2N (x,Q2)

±

[

xy
(

1−
y

2

)

−
m2

l y

4EνMN

]

F3N (x,Q2) +
m2

l (m
2
l +Q2)

4E2
νM

2
Nx

F4N (x,Q2)−
m2

l

EνMN
F5N (x,Q2)

}

. (9)

In general, the dimensionless nucleon structure functions are derived in the quark-
parton model assuming Bjorken scaling in which they scale and are functions of only
one variable x. In this limit, these structure functions obey Callan-Gross [8] and
Albright-Jarlskog [9] relations

F1(x) =
F2(x)

2x
; F5(x) =

F2(x)

2x
,

and at the leading order, the structure functions are written in terms of the parton
distribution functions qi(x) and q̄i(x) as:

F2(x) =
∑

i

x[qi(x) + q̄i(x)] ; xF3(x) =
∑

i

x[qi(x) − q̄i(x)] ; F4(x) = 0. (10)

For example, in the case of ν(ν̄)-proton scattering above the charm production thresh-
old, F2,3(x) are given by:

F ν
2p(x) = 2x[d(x) + s(x) + ū(x) + c̄(x)] ; F ν̄

2p(x) = 2x[u(x) + c(x) + d̄(x) + s̄(x)];

xF ν
3p(x) = 2x[d(x) + s(x) − ū(x) − c̄(x)] ; xF ν̄

3p(x) = 2x[u(x) + c(x)− d̄(x)− s̄(x)] (11)
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and for the ν(ν̄)-neutron scattering F2,3(x) are given by

F ν
2n(x) = 2x[u(x) + s(x) + d̄(x) + c̄(x)] ; F ν̄

2n(x) = 2x[d(x) + c(x) + ū(x) + s̄(x)];

xF ν
3n(x) = 2x[u(x) + s(x)− d̄(x) − c̄(x)] ; xF ν̄

3n(x) = 2x[d(x) + c(x) − ū(x) − s̄(x)]. (12)

For an isoscalar nucleon target, we use

FiN =
Fip + Fin

2
. (i = 1− 5) (13)

In the present formalism we have performed numerical calculations in the three(u,
d and s) as well as four(u, d, s and c) flavor schemes by taking u, d and s to be mass-
less and the charm quark to be massless as well as massive. In the region of low
and moderate Q2, the perturbative and nonperturbative QCD corrections such as Q2

evolution of parton distribution functions from leading order to higher order terms
(next-to-leading order (NLO), next-next-to-leading order (NNLO), ...), the effects of
target mass correction due to the massive quarks production (e.g. charm, bottom,
top) and higher twist (twist-4, twist-6, ...) because of the multiparton correlations,
become important. These nonperturbative effects are specifically important in the
kinematical region of high x and low Q2. The Q2 evolution of structure functions is
determined by the DGLAP evolution equation [21,22,23,24]. The parton distribution
functions for the nucleon have been determined by various groups and we have taken
the parameterization of MMHT [25] in our numerical calculations up to NNLO follow-
ing Ref. [26,27,28]. The nonperturbative higher twist effect is incorporated by using
the renormalon approach [29] and the target mass correction is included following
the works of Schienbein et al. [30]. The incorporation of the contribution from gluon
emission induces the Q2 dependence of the nucleon structure functions. The details
of the discussion are given in Ref. [5].

2.2 (Anti)neutrino-nucleus cross section and structure functions

The differential scattering cross section for the charged current inclusive νl/ν̄l-nucleus
deep inelastic scattering process (depicted in Fig. 2):

νl/ν̄l(k) +A(pA) → l−/l+(k′) +X(p′A) (14)

is expressed in terms of the leptonic tensor Lµν and the nuclear hadronic tensor Wµν
A

as:

d2σA

dxdy
=

(
G2

F yMNEν

2πEl

)(
M2

W

M2
W +Q2

)2 |k′|
|k| Lµν Wµν

A , (15)

where the physical quantities have their usual meanings. The expression of Lµν is
given by Eq.6. The nuclear hadronic tensor Wµν

A is written in terms of the weak
nuclear structure functions WiA(νA, Q

2) (i = 1− 6) as:

Wµν
A =

(
qµqν

q2
− gµν

)

W1A(νA, Q
2) +

W2A(νA, Q
2)

M2
A

(

pµA − pA.q

q2
qµ

)

×
(

pνA − pA.q

q2
qν
)

± i

2M2
A

ǫµνρσpAρqσW3A(νA, Q
2) +

W4A(νA, Q
2)

M2
A

qµqν

+
W5A(νA, Q

2)

M2
A

(pµAq
ν + qµpνA) +

i

M2
A

(pµAq
ν − qµpνA)W6A(νA, Q

2) , (16)
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X(p′)

W
+ (q)/

W
− (q)

A(p)

νl(k)/ν̄l(k)
l
− (k

′ )/
l
+ (k

′ )

Fig. 2. Feynman diagrams for the νl/ν̄l; (l = e, µ, τ ) induced DIS process off nuclear target
(A).

whereMA is the mass of the nuclear target. The nuclear structure functionsWiA(νA, Q
2) (i =

1−5) are written in terms of the dimensionless nuclear structure functions FiA(xA, Q
2) (i =

1− 5) as:

F1A(xA, Q
2) = W1A(νA, Q

2) ; F2A(xA, Q
2) =

Q2

2xM2
A

W2A(νA, Q
2) ; F3A(xA, Q

2) =
Q2

xM2
A

W3A(νA, Q
2);

F4A(xA, Q
2) =

Q2

2M2
A

W4A(νA, Q
2) ; F5A(xA, Q

2) =
Q2

2xM2
A

W5A(νA, Q
2), (17)

where νA(=
p
A
·q

M
A

(= q0) ) is the energy transferred to the target in the Lab frame and

xA(= x/A) is the Bjorken scaling variable given by:

xA =
Q2

2pA · q =
Q2

2p0Aq
0
=

Q2

2A MNq0
=

x

A
. (18)

The expression for the differential cross section for the νl/ν̄l − A scattering can
be obtained using Eqs. 6, 16 and 17 in Eq. 15 as

d2σA

dxdy
=

G2
FMNEν

π(1 + Q2

M2

W

)2

{[

y2x+
m2

l y

2EνMN

]

F1A(x,Q
2) +

[(

1−
m2

l

4E2
ν

)

−

(

1 +
MNx

2Eν

)

y
]

F2A(x,Q
2)

±

[

xy
(

1−
y

2

)

−
m2

l y

4EνMN

]

F3A(x,Q
2) +

m2
l (m

2
l +Q2)

4E2
νM

2
Nx

F4A(x,Q
2)−

m2
l

EνMN
F5A(x,Q

2)
}

.(19)

For νe/ν̄e and νµ/ν̄µ charged current interactions, in the limit ml → 0, only the
first three terms of Eq. 19, i.e. the terms with F1A(x,Q

2), F2A(x,Q
2) and F3A(x,Q

2)
structure functions would contribute. We consider the scattering process in the lab-
oratory frame, where target nucleus is at rest i.e. pA = (p0A, pA = 0) and the
momentum of the nucleon in the nucleus (pN) is non-zero and the motion of such
nucleons corresponds to the Fermi motion.

If the momentum transfer is along the Z-axis then qµ = (q0, 0, 0, qz) and the
Bjorken variable xN is written as:

xN =
Q2

2pN · q =
Q2

2(p0Nq0 − pzNqz)
. (20)

The nuclear medium effects such as Fermi motion, binding, nucleon correlations incor-
porated through nucleon spectral function, meson cloud contribution and shadowing
effect are discussed in the following subsections 2.2.1, 2.2.2 and 2.2.3.
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νl(k)

νl(k)

W+(q)

W+(q)

N (p)
X(p′)l−(k′)

W+(q)

W+(q)

X

Πµν

(a) (b)

Fig. 3. Diagrammatic representation of (a) the neutrino (νl) self-energy and (b) the inter-
mediate vector boson (W ) self-energy.

2.2.1 Effect of Fermi motion, binding and nucleon correlation

We start by writing the scattering cross section (dσA) for small elemental volume (dV )
inside the nucleus in terms of the probability of neutrino interaction with a bound
nucleon per unit time (Γ ). Probability times the differential of area (dS) defines the
cross section [18], i.e.

dσA = ΓdtdS = Γ
Eν

| k |d
3r,

[

∵ dtdS =
dV

v
=

Eν

| k |d
3r
]

(21)

where v is the velocity of the incoming neutrino. Γ is related to the imaginary part
of the νl self energy (Σ(k)) as [18]:

− Γ

2
=

mν

Eν(k)
ImΣ(k). (22)

It may be pointed out that the neutrino self energy Σ(k) has two parts, the real part
of “neutrino self energy” modifies the lepton mass and imaginary part i.e. ImΣ(k)
gives information about the total number of neutrinos interactions that yield the final
state leptons and hadrons.

From Eq.21 and Eq.22, we get

dσA = −2
mν

| k |ImΣ(k)d3r. (23)

Σ(k) is evaluated corresponding to the diagram shown in Fig.3 (left panel) us-
ing the Feynman rules and on applying the Cutkowsky rules the imaginary part of
neutrino self energy is obtained as [3]:

ImΣ(k) =
GF√
2

4

mν

∫
d3k′

(2π)4
π

E(k′)
θ(q0)

(
MW

Q2 +M2
W

)2

Im[LWI
µν Πµν(q)], (24)

where Πµν(q) is the W -boson self-energy (as shown in Fig. 3(b)), which is gener-
ally written in terms of the nucleon propagator (Gl) and meson propagator (Dj)
corresponding to Fig. 3(b), as:

Πµν(q) =

(
GFM

2
W√

2

)

×
∫

d4p

(2π)4
G(p)

∑

X

∑

sp,sl

N∏

i=1

∫
d4p′i
(2π)4

∏

l

Gl(p
′

l)
∏

j

Dj(p
′

j)

< X |Jµ|N >< X |Jν|N >∗ (2π)4 δ4
(

k + p− k′ −
N∑

i=1

p′i

)

, (25)
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where sp and sl are the spin of the initial state nucleon and the final state fermions,
the indices l and j are respectively, for the fermions and bosons in the final hadronic

state, < X |Jµ|N > represents the hadronic current and δ4(k + p − k′ −
∑N

i=1 p
′
i)

ensures the conservation of four momentum. G(p) gives the information about the
propagation of the nucleon from the initial state to the final state or vice versa.

To obtain the relativistic nucleon propagator G(p0,p) in a nuclear medium we
start with the relativistic free nucleon Dirac propagator G0(p0,p) which is written in
terms of the Dirac spinors u(p) and v(p). This includes the contribution from positive
and negative energy components of the nucleon and the negative energy contribution
is suppressed while the positive energy contribution survives [18,19]. Considering only
the positive energy part of the nucleon propagator G0(p0,p), we write

G0(p0,p) =
6 p+MN

p2 −M2
N + iǫ

+ 2 iπθ(p0)δ(p2 −M2
N )n(p)(6 p+MN ). (26)

In the nuclear medium considered as an interacting Fermi sea, G(p0,p) is written
in terms of the nucleon self energy ΣN(p0,p), which contains all the information on
single nucleon. Then in nuclear medium the interaction is taken into account through
Dyson series expansion, which is in principle an infinite series in perturbation theory.
This perturbative expansion is summed in a ladder approximation as [18]:

G(p) =
MN

E(p)

∑

r ur(p)ūr(p)

p0 − E(p)−∑

r ūr(p)ΣN (p0,p)ur(p)
MN

E(p)

. (27)

One may notice from the expression for the nucleon propagator G(p) given in Eq.27
that it contains nucleon self energy ΣN (p0,p). The nucleon self-energy is written
using the techniques of the standard Many-Body Theory [19]. The inputs required
for the NN interaction are incorporated by relating them to the experimental elastic
NN cross section. Furthermore, RPA-correlation effect is taken into account using
the spin-isospin effective interaction as the dominating part of the particle-hole (ph)
interaction. Using the modified expression for the nucleon self energy, the imaginary
part of it is obtained [31]. These considerations lead to a dressed nucleon propagator
in the nuclear matter which is given by [18,19]:

G(p) =
MN

E(p)

∑

r

ur(p)ūr(p)

[∫ µ

−∞

dω
Sh(ω,p)

p0 − ω − iη
+

∫ ∞

µ

dω
Sp(ω,p)

p0 − ω + iη

]

, (28)

where the expressions for the hole Sh(ω,p)(for p0 ≤ µ) and the particle Sp(ω,p)(for
p0 ≥ µ) spectral functions and the nucleon self energy ΣN (p0,p) are taken from
Ref. [19]. For an inclusive process, only the hole spectral function contributes. In the

above expression, µ is the chemical potential given by µ =
p2

F

2M + ReΣN
[

p2

F

2M , pF

]

and ω = p0 −MN is the removal energy. η is the infinitesimal quantity i.e. η → 0. pF
is the Fermi momentum of the nucleon in the nucleus. In the local Fermi gas model
the Fermi momentum is a function r, the point at which the interaction in the nucleus

takes place and is given by p
F
(r) =

[
3
2π

2ρ(r)
]1/3

, where ρ(r) is the nucleon charge
density inside the nucleus, the parameters of which are determined from electron
scattering experiments [32]. The spectral function for an isoscalar nuclear target is
normalized to the number of nucleons (A) in the nucleus i.e.

4

∫

d3r

∫
d3p

(2π)3

∫ µ

−∞

Sh(ω,p, ρ(r)) dω = A. (29)
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Some of the properties of the spectral function may be found in the appendix of
Ref. [31].

Then using Eqs. 23 and 24 the expression for the differential cross section is written
as

dσA

dxdy
= −G2

F MN y

2π

El

Eν

|k′|
|k|

(
M2

W

Q2 +M2
W

)2

Lµν

∫

ImΠµν(q)d3r. (30)

Comparing Eq.30, with Eqs.15, 25 and 28, the nuclear hadronic tensor (for isospin
symmetric nucleus) can be expressed in terms of the nucleon hadronic tensor and the
hole spectral function and is given as [31]

Wµν
A = 4

∫

d3r

∫
d3p

(2π)3
MN

E(p)

∫ µ

−∞

dp0Sh(p
0,p, ρ(r))Wµν

N (p, q), (31)

a factor of 4 is because of the spin-isospin degrees of freedom of the nucleon.

For a non-isoscalar nuclear target like 56Fe and 208Pb, the spectral functions for
the proton (Z) and neutron (N = A − Z) numbers in a nuclear target which are

the function of local Fermi momenta p
Fp,n

(r) =
[
3π2ρp(n)(r)

]1/3
, are normalized

separately such that

2

∫

d3r

∫
d3p

(2π)3

∫ µp

−∞

Sp
h(ω,p, ρp(r)) dω = Z , (32)

2

∫

d3r

∫
d3p

(2π)3

∫ µn

−∞

Sn
h (ω,p, ρn(r)) dω = N , (33)

where the factor of 2 is due to the two possible projections of nucleon spin, µp(µn) is
the chemical potential for the proton(neutron), and Sp

h(ω,p, ρp(r)) and Sn
h (ω,p, ρn(r))

are the hole spectral functions for the proton and neutron, respectively. The proton
and neutron densities ρp(r) and ρn(r) are related to the nuclear density ρ(r) as [3,
31]:

ρp(r) =
Z

A
ρ(r) ; ρn(r) =

(A− Z)

A
ρ(r).

Hence for a nonisoscalar nuclear target, the nuclear hadronic tensor is written as

Wµν
A = 2

∑

τ=p,n

∫

d3r

∫
d3p

(2π)3
MN

EN (p)

∫ µτ

−∞

dp0Sτ
h(p

0,p, ρτ (r)) W
µν
τ (p, q). (34)

To evaluate the weak dimensionless nuclear structure functions by using Eq.31,
the appropriate components of nucleon (Wµν

N in Eq.7) and nuclear (Wµν
A in Eq.16)

hadronic tensors along the x, y and z axis are chosen. For example, the expression
of F1A,N (xA, Q

2) is obtained by taking the xx components, F2A,N (xA, Q
2) by taking

the zz components, F3A,N (xA, Q
2) by taking the xy components, etc. [5], and for an

isoscalar nuclear target, the expressions for the three nuclear structure functions viz.
FiA,N (xA, Q

2) i = 1− 3 i.e. for the massless leptons as are obtained as:

FiA,N (xA, Q
2) = 4

∫

d3r

∫
d3p

(2π)3
MN

EN (p)

∫ µ

−∞

dp0 Sh(p
0,p, ρ(r)) × fiN (x,Q2), (35)
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νl(k)

l−(k′)

νl(k)

W+(q)

W+(q)

p
X

(a)

X(p′) +

νl(k)

l−(k′)

νl(k) W+(q)

W+(q)

p

+
l−(k′)

p

X(p′)

νl(k)

νl(k)
W+(q)

W+(q)

νl(k)

νl(k)
W+(q)

W+(q)

l−(k′) X(p′) +......................

π, ρ, ...

π, ρ, ....

π, ρ, ....

(b)

Fig. 4. Neutrino self energy diagram accounting for neutrino-meson DIS (a) the bound
nucleon propagator is substituted with a meson(π or ρ) propagator with momentum p rep-
resented here by dashed line (b) by including particle-hole (1p–1h), delta-hole (1∆–1h),
1p1h− 1∆1h, etc. interactions.

where

f1N (x,Q2) = AMN

[

F1N (xN , Q2)

MN
+

(
px

MN

)2
F2N (xN , Q2)

νN

]

, (36)

f2N (x,Q2) =

[

Q2

(qz)2

( |p|2 − (pz)2

2M2
N

)

+
(p0 − pz γ)2

M2
N

(
pz Q2

(p0 − pz γ)q0qz
+ 1

)2
]

×
(

MN

p0 − pz γ

)

× F2N (xN , Q2), (37)

f3N (x,Q2) = A
q0

qz
×
(
p0qz − pzq0

p · q

)

F3N (xN , Q2). (38)

Similar expression is obtained for a non-isoscalar nuclear target [5].
The nonperturbative effects of the target mass corrections and the higher twist [29]

have been incorporated in the free nucleon structure functions and then we have con-
voluted these nucleon structure functions with the spectral function in order to eval-
uate the nuclear structure functions (Eq.35). Using the nuclear structure functions,
we have obtained the differential scattering cross sections for the νl(ν̄l)−A, l = e, µ
DIS process (Eq.19).

The calculations are performed in the four flavor MS-bar scheme. We have con-
sidered two cases: (i) In the case of massless leptons (e±, µ±), all the four quarks,
i.e., u, d, s and c are treated to be massless while (ii) For massive lepton (τ±), light
quarks u, d and s are treated as massless but charm quark c as a massive object for
which we define

FiA(x,Q
2) = F

nf=4
iA (x,Q2) = F

nf=3
iA (x,Q2)

︸ ︷︷ ︸

for massless(u, d, s) quarks

+ F
nf=1
iA (x,Q2)

︸ ︷︷ ︸

for massive charm quark

. (39)

The nucleons which are bound inside the nucleus may interact with each other via
meson exchange such as π, ρ, etc. This mesonic effect has been incorporated and is
discussed in the next sub-subsection 2.2.2.

2.2.2 Effect of mesonic cloud contribution

Associated with each bound nucleon there are virtual mesons (pion, rho meson, etc.)
and because of the strong attractive nature of the nucleon-nucleon interaction, the
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probability of a W -boson interaction with the mesonic cloud becomes high. We have
discussed the π and ρ meson contributions in our earlier works [3,4,5,31,33]. The
contribution from heavier mesons like ω meson are expected to be very small due
to their significantly higher masses. The mesonic contribution is significant in the
intermediate region of x (0.2 < x < 0.6). For the medium nuclei like 4He, 12C, etc.,
mesonic contribution is small [34] while it becomes pronounced in heavier nuclear tar-
gets [2] such as 56Fe, 208Pb, etc. To incorporate the mesonic effect we draw a diagram
similar to Fig.3, but here a nucleon propagator is replaced by a meson propagator.
The meson propagator corresponds to the virtual mesons arising due to the nuclear
medium effects and can arise through the particle-hole (1p–1h), delta-hole (1∆–1h),
2p− 2h, etc. interactions as shown in Fig.4 [19].

The mesonic structure functions FiA,a(xa, Q
2), (i = 1, 2; a = π, ρ) are obtained

as [5]:

FiA,a(xa, Q
2) = −6κ

∫

d3r

∫
d4p

(2π)4
θ(p0) δImDa(p) 2ma fia(xa), (40)

where

f1a(xa) = AMN

[
F1a(xa)

ma
+

|p|2 − (pz)2

2(p0 q0 − pz qz)

F2a(xa)

ma

]

, (41)

f2a(xa) =

[

Q2

(qz)2

( |p|2 − (pz)2

2m2
a

)

+
(p0 − pz γ)2

m2
a

×
(

pz Q2

(p0 − pz γ)q0qz
+ 1

)2
]

×
(

ma

p0 − pz γ

)

F2a(xa). (42)

In Eqs. 40 and 41, κ = 1(2) for pion(rho meson), ν = q0(γp
z
−p0)

ma
, xa = − Q2

2p·q , ma is

the mass of the meson(π or ρ). Da(p) is the meson(π or ρ) propagator in the nuclear
medium and is written as

Da(p) = [p20 − p 2 −m2
a −Πa(p0,p)]

−1 , (43)

with

Πa(p0,p) =
f2

m2
π

Cρ F 2
a (p)p

2Π∗

1− f2

m2
π
V ′
jΠ

∗
, (44)

where Cρ = 1(3.94) for pion(rho meson). Fa(p) =
(Λ2

a−m2

a)
(Λ2

a−p2) is the πNN or ρNN form

factor, Λa=1 GeV [15,31] and f = 1.01. V ′
j is the longitudinal(transverse) part of

the spin-isospin interaction for pion(rho meson), and Π∗ is the irreducible meson self
energy that contains the contribution of particle-hole and delta-hole excitations. For
the pions, we have used the PDFs parameterization given by Gluck et al.[35] and for
the ρ mesons same PDFs as for the pions have been used as there is no available
explicit parameterization for the ρ−meson PDFs in the literature.

2.2.3 Shadowing and Antishadowing effects

In this work the shadowing and antishadowing effects are taken into consideration
following the works of Kulagin and Petti [16,17] who have used the original Glauber-
Gribov multiple scattering theory. For example, with these effects, the nuclear struc-
ture function is given by

FiA,shd(x,Q
2) = δR(x,Q2)× FWI

iN (x,Q2) i = 1− 3, (45)
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Fig. 5. Results for the free nucleon weak structure functions FiN (x,Q2);(i = 1− 5)(Top to
Bottom) at the different values of Q2= 2 GeV2(Left) and 5 GeV2 (Right) are shown. These
results are obtained at NLO by using MMHT nucleon PDFs parameterization [25]. The
results are shown without the TMC effect (double dashed-dotted line), with the TMC effect
in the 3-flavor(nf3) scheme (dashed-dotted line) as well as four flavor(nf4) scheme(dotted
line), with TMC and HT effects in the 3-flavor(nf3) scheme (dashed line) as well as four
flavor(nf4) scheme(solid line).

where the expression for δR(x,Q2) used in the present numerical calculations is given
in Ref. [17].

Now, using the present formalism, we have presented the results for the weak
structure functions and scattering cross sections for both the free nucleon and nuclear
targets in the next section.

3 Results and Discussion

First, we present the results for the free nucleon weak structure functions FiN (x,Q2);(i =
1− 5), and using them the results for the total scattering cross section σ(Eν) are ob-

tained and presented for σ(Eν)
Eν

vs Eν in the limit ml 6= 0.
Then we have presented the results for the weak nuclear structure functions

FiA(x,Q
2);(i = 1 − 3) in the limit ml = 0, when the calculations are performed
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E

vs E for ν/ν̄τ interactions on a free nucleon target, with a center of mass energy
(W ) cut of 1.4 GeV(dashed line) and 2 GeV(solid line), for tau type neutrinos(Top panel) and
antineutrinos(Bottom panel) with the TMC [36] and higher twist [29] effects. These results
are compared with the results of various theoretical models available in the literature [37,38,
39,40,41,42,43,44] as well as with the Monte Carlo generators GENIE [45] and NuWro[46].

using the spectral function (SF) only. Furthermore, the contribution from the meson
clouds as well as the shadowing effect are taken into account and this corresponds to
the full model (Total) results. The expression of total nuclear structure functions in
the full theoretical model is given by

FiA(x,Q
2) = FiA,N (x,Q2) + FiA,π(x,Q

2) + FiA,ρ(x,Q
2) + FiA,shd(x,Q

2), (46)

where i = 1, 2. FiA,N (x,Q2) are the weak nuclear structure functions which have con-
tributions from the spectral function only, FiA,π/ρ(x,Q

2) take into account mesonic

contributions. FiA,shd(x,Q
2) has contribution from the shadowing effect.



Will be inserted by the editor 15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

F
2

 F
e

E
M

(x
,Q

2
)

JLab 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

F
2

 F
e

W
I (x

,Q
2
)

CCFR 
NuTeV 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x

0

0.1

0.2

0.3

0.4

0.5

F
2

 F
e

E
M

(x
,Q

2
) SF

SF+π+ρ
Total

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
x

0

0.5

1

1.5

2

F
2

 F
e

W
I (x

,Q
2
)

CDHSW 

Q
2
 = 2 GeV

2 Q
2
 = 2 GeV

2

Q
2
 = 20 GeV

2Q
2
 = 20 GeV

2

Fig. 7. Results of EM(Left panel) and Weak(Right panel) nuclear structure functions
in 56Fe(isoscalar) obtained using spectral function(dashed double-dotted line), including
mesonic contribution(double dashed-dotted line), full model(solid line). These results are pre-
sented for different Q2 and are compared with the available experimental data of JLab(solid
circle) [47], CDHSW(semi solid circle) [11], CCFR(triangle up) [12], NuTeV(diamond) [13].

In this model, the full expression for the parity violating weak nuclear structure
function F3A(x,Q

2) is given by,

F3A(x,Q
2) = F3A,N (x,Q2) + F3A,shd(x,Q

2). (47)

Notice that this structure function has no mesonic contribution. The contribution to
the nucleon structure function mainly comes from the valence quarks distributions.
For F3A,shd(x,Q

2) similar definition has been used as given in Eq.(45) following the
works of Kulagin et al. [17].

3.1 Nucleon Structure Function and Cross Section

In Fig. 5, the results for the free nucleon weak structure functions 2xF1N (x,Q2),
F2N (x,Q2), xF3N (x,Q2), F4N (x,Q2) and 2xF5N (x,Q2) (from the top to bottom)
are shown at the two different values of Q2 viz. Q2 = 2 GeV2 (left panel) and Q2 = 5
GeV2 (right panel). The nucleon structure functions are presented at NLO without
the TMC effect (double dash-dotted line), with the TMC effect in 3-flavor(dash-
dotted line:nf3) and 4-flavor(dotted line:nf4) schemes, with TMC and HT effects in
3-flavor(dashed line: nf3) and 4-flavor(solid line:nf4) schemes. From the figure, it may
be noticed that the TMC effect is dominant in the region of high x and low Q2 and
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Fig. 8. Results for F ν+ν̄
2A (x,Q2) (top panel) and xF ν+ν̄

3A (x,Q2) (bottom panel) vs Q2 are
shown at x = 0.275 and 0.45 in 56Fe . The results are obtained with the spectral function
only (dashed line) and with the full model (solid line) at NNLO and are compared with the
results of the available experimental data [11,12,13]. Iron is treated as an isoscalar nuclear
target.

it becomes small at low x and high Q2. Quantitatively, the TMC effect is found to
be different in F2N (x,Q2) from F1N (x,Q2) while the TMC effect in F5N (x,Q2) is
similar to the effect in F2N (x,Q2). However, in the case of F4N (x,Q2) the whole
contribution, arises in the leading order due to the TMC effect at mid and high x.
F4N (x,Q2) contributes to the cross section due to the non-vanishing lepton mass
when it is large, and contributes only in the region of x ≤ 0.2. We find that at NLO,
F4N (x,Q2) becomes almost negligible in the region of x > 0.2 when TMC effect
is not incorporated but with the inclusion of TMC effect a nonzero though small
contribution in the region of high x and low Q2 has been found. The difference in the
results of free nucleon structure functions FiN (x,Q2); (i = 1− 5) evaluated at NLO
with and without the TMC effect at x = 0.3 is 5%(3%) in 2xF1N (x,Q2), 2%(< 1%) in
F2N (x,Q2), 7%(∼ 3%) in xF3N (x,Q2) and 4%(∼ 2%) in 2xF5N (x,Q2) for Q2 = 2(5)
GeV2.

For the first three structure functions (FiN (x,Q2); i = 1 − 3), the HT effect
has also been studied. This is found to be comparatively small in F1N (x,Q2) and
F2N (x,Q2) than in F3N (x,Q2). Due to higher twist(HT) corrections, we have ob-
served a decrease in the value of F3N (x,Q2), which becomes small with the increase
in Q2. To show the effect of massive charm on the nucleon structure functions, we
have compared the results obtained with the TMC and HT effects for the three flavor
of massless quarks (nf = 3) with the results when additional contribution from the
massive charm quark (nf = 4) have also been considered. It is found that massive
charm effect is almost negligible in the kinematic region of low Q2 and high x while
it increases with the increase in Q2 and is appreciable at low x.

In Fig. 6, we have shown our results for the total scattering cross section σ/Eν vs
Eν , for the DIS of ντ and ν̄τ from the nucleons and compared them with the results
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Fig. 9. dσA/dx
dσCH/dx

(A = 56Fe, 208Pb) vs x for incoming neutrino beam of energies E = 7 GeV

and 25 GeV. The numerical results are obtained with the full model (solid line: E = 25 GeV,
solid line with star: E = 25 GeV and double dash-dotted line: E = 7 GeV) at NNLO and
are compared with the simulated results [10]. The solid squares are the experimental points
of MINERvA [10]. The results are shown for the isoscalar nuclear targets.

of the different models available in the literature like that of Pashchos et al. [41]
(dashed line with diamond), Kretzer et al. [37] (solid line with right triangle without
a cut on W ; dotted line with a cut of W > 1.4 GeV), Jeong et al.[38] (dash-dotted
line), Gazizov et al.[42] (solid line with down triangle), Hagiwara et al.[39] (solid line
with cross symbol), Anelli et al.[44] (double dash-dotted line) and Li et al. [43] (solid
line with circles) as well as with the predictions made by the Monte Carlo generator
GENIE [45] and NuWro [46]. The results are presented for the two cases of cut on
the center of mass energy(W), taken to be W=1.4 GeV(shown by dashed line) and 2
GeV(shown by the solid line). The results are presented by incorporating the target
mass correction and higher twist effects at NLO in the four flavor scheme. Our results
with a cut of W = 1.4 GeV (shown by dashed line) is in good agreement with the
result of Kretzer et al. [37] (shown by the dotted line) while there are significant
differences from the result of Jeong et al. [38] (shown by the dash-dotted line). Notice
that the results of the total scattering cross section with the same CoM energy cut
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Fig. 10. Predictions for the differential scattering cross section vs y, at the different values
of x for 6.25 GeV ν-Ar treated as an isoscalar target. The results are obtained with a
Q2 ≥ 1.0 GeV 2 cut by the Aligarh-Valencia model using CTEQ 6.6 nucleon PDFs [48] at
NLO in the MS-bar scheme (solid line). The nCTEQnu nuclear PDFs [49] based prediction
is the blue dash-dotted line.

reported by Kretzer and Reno [37] and Jeong and Reno [38] are also different with
each other. The difference is mainly due to the choice of lower cuts on Q2 in the
evaluation of PDFs. It is important to point out that the results given by the different
models [37,38,39,40,41,42,43,44] have significant differences due to their choice of
different kinematic conditions. Furthermore, we have observed that the dependence
of the cross section on the effect of CoM energy cut is more pronounced in the case of
ν̄τ −N DIS than in ντ −N DIS process. Moreover, one may also notice that the total
scattering cross section is quite sensitive to the kinematic cut on the CoM energy. It
implies that a suitable choice of the CoM energy cut as well as the four momentum
transfer square (Q2) cut to define the deep inelastic region and use them to calculate
the nucleon structure functions, differential and total scattering cross sections is quite
important. These kinematic considerations should be kept in mind while comparing
the predictions of the cross sections in various theoretical models.

3.2 Nuclear Structure Function and Cross Section

In Fig. 7, we present the results for the weak nuclear structure function FWeak
2A (x,Q2)

and compare them with the electromagnetic structure function FEM
2A (x,Q2) as a

function of x for the two different values of Q2 viz. 2 and 20 GeV 2. In this figure, we

show the curves for FEM,Weak
2A (x,Q2) obtained using the spectral function only, also

including the mesonic contribution, and finally using the full model which also includes
shadowing. The use of nuclear spectral function leads to a reduction of ∼ 8% at
x = 0.1; ∼ 18% at x = 0.4; ∼ 3% at x = 0.7 in FEM

2A (x,Q2) as well as in FWeak
2A (x,Q2)

nuclear structure functions as compared to the free nucleon case. The inclusion of
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mesonic contributions from pion and rho mesons leads to an enhancement in these
structure functions at low and medium values of x. For example, the enhancement
is ∼ 30% at x=0.1; ∼ 15% at x=0.4; ∼ 0.3% at x=0.7. The inclusion of shadowing
effects further reduces these structure functions and are effective in low region of
x ( < 0.1). For example, the reduction is ∼ 10% at x=0.05 and ∼ 5% at x=0.1.

In Fig. 8, we present the results for the (anti)neutrino induced processes in F ν+ν̄
2A (x,Q2)

and xF ν+ν̄
3A (x,Q2) vs Q2 in 56Fe by treating it as an isoscalar nuclear target at the

different values of x using the full model at NNLO and compared them with the
available experimental data from CCFR [12], CDHSW [11] and NuTeV [13] exper-
iments. We find a good agreement between the theoretical results for F ν+ν̄

2A (x,Q2)

and reasonable agreement for F ν+ν̄
3A (x,Q2) with the experimental data. It can be seen

that the description of the nuclear medium effect in our model is able to reproduce
the experimental results.

Furthermore, in Fig.9, we have presented the results for the ratio of the differ-
ential scattering cross sections, for the different nuclear targets viz. A= 56Fe and
208Pb to the hydrocarbon(CH) target i.e. dσA/dx

dσCH/dx (A= 56Fe, 208Pb) vs x at the two

different values of neutrino energies viz. Eν = 7 GeV and Eν = 25 GeV and com-
pared them with the corresponding experimental data of MINERvA [10]. It may be
noticed that MINERvA’s experimental data have large error bars and the wide band
around the simulation is due to the systematic errors which shows an uncertainty up
to ∼ 20% [10].

Fig. 10 shows predictions for the differential scattering cross section for νµ induced
reaction on 40Ar nuclear target at Eνµ=6.25 GeV. The numerical calculations are done
by using the CTEQ6.6 PDFs parameterization [48]. Our theoretical results obtained
using the full model are compared with the results of nCTEQnu nPDFs [49]. As
y decreases, the nPDF approach predicts lower cross sections than the theoretical
approach. For high-x (' 0.5), the nPDF approach and the theoretical approach both
predict quite similar cross sections while for the low-x (/ 0.3) region the nPDF
approach predicts a lower cross section than our theoretical model.

3.3 Nonisoscalarity Effect

For a nonisoscalar nuclear target like 56Fe and 208Pb, where (A − Z) > Z, we ob-
tain the normalized spectral function to the proton (Sp

h) and neutron (Sn
h ) numbers

(Eqs.34, 32 and 33). For details please see the discussion in Ref.[4]. In Fig.11, we have

presented the results for the ratios of nuclear structure functions FiA(x,Q2)
FiA′ (x,Q2) ; (i =

1, 2, 3; A =56 Fe, 208Pb and A′ =12 C) vs x at Q2 = 5 GeV2. The present numerical
results are obtained by using the full model at NNLO and treating iron and lead to

be isoscalar as well as nonisoscalar nuclear targets. We find that the ratios FiFe(x,Q
2)

FiC(x,Q2)

and FiPb(x,Q
2)

FiC(x,Q2) deviate from unity in the entire range of x which implies that nuclear

medium effects are A dependent, and the medium effects become more pronounced
with the increase in the nuclear mass number. This enhancement in the ratio is more
at high x.

4 Summary

1. The inclusion of perturbative and nonperturbative effects is quite important in
the evaluation of nucleon structure functions. These effects are both x and Q2

dependent.
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Fig. 11. FiA(x,Q2)

FiA′ (x,Q2)
; (i = 1 − 3; A =56Fe, 208Pb; A′ =12C) vs x are shown at Q2 = 5

GeV2. The results are obtained using the full model at NNLO by treating 56Fe, 208Pb to be
isoscalar (solid line) as well as nonisoscalar (dashed line) nuclear targets.

2. The difference in the results of all the free nucleon structure functions FiN (x,Q2); (i =
1−5) evaluated at NLO with and without the TMC effect is non-negligible. In the
case of F4N (x,Q2) this difference is quite large when TMC effect is considered,
specially at mid and high x. The higher twist(HT) effect has not much effect on
F1N (x,Q2) and F2N (x,Q2), but affects F3N (x,Q2). We find that the difference
due to HT effect is somewhat larger for F3N (x,Q2) at low x and low Q2. With
the increase in x the effect of HT increases.

3. The total cross section σ for ντ and ν̄τ interactions on the free nucleon target
shows significant dependence on the model used to calculate the nucleon structure
functions which implies that there are uncertainties even at the level of free nucleon
level and more work is needed.

4. NME in FEM
2A (x,Q2) and FWeak

2A (x,Q2) in iron nucleus are almost the same for x
i.e x > 0.3, but are different in small x region(x < 0.3). However, this difference
is found to be very small for isoscalar nuclei, and is similar to the case of free
nucleon.

5. The nuclear structure functions obtained with spectral function only are sup-
pressed as compared to the free nucleon case in the entire region of x. Whereas,
the inclusion of mesonic contributions results in an enhancement in the nuclear
structure functions in the low and intermediate region of x. Mesonic contributions
are observed to be more pronounced with the increase in mass number and they
decrease with the increase in x and Q2. The results for the nuclear structure func-
tions FWeak

2A (x,Q2) and FWeak
3A (x,Q2) with the full theoretical model show good

agreement with the experimental data of CCFR [12], CDHSW [11] and NuTeV [13]
especially at high x and high Q2.
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6. The present theoretical results for the ratio
dσWeak

A /dx

dσWeak
CH /dx

(A =56 Fe, 208Pb) when

compared with the different phenomenological models and the recent MINERvA’s
experimental data on νl − A scattering, imply that a better understanding of
nuclear medium effects is required for the νl(ν̄l)−nucleus deep inelastic scattering
process.

7. We find the non-isoscalarity effect to be non-negligible which increases with the
non-isoscalarity δ(= N−Z

A ) and x.

8. Predictions are also made for νµ(ν̄µ) interactions on 40Ar that may be useful in
analyzing the experimental results of DUNE [20].
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