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a b s t r a c t

The improvements in technology and computation have promoted a global adoption of Data Science.
It is devoted to extracting significant knowledge from high amounts of information by means of the
application of Artificial Intelligence and Machine Learning tools. Among the different tasks within Data
Science, classification is probably the most widespread overall.

Focusing on the classification scenario, we often face some datasets in which the number of
instances for one of the classes is much lower than that of the remaining ones. This issue is known as
the imbalanced classification problem, and it is mainly related to the need for boosting the recognition
of the minority class examples.

In spite of a large number of solutions that were proposed in the specialized literature to address
imbalanced classification, there is a lack of open-source software that compiles the most relevant ones
in an easy-to-use and scalable way. In this paper, we present a novel software approach named as
SOUL, which stands for Scala Oversampling and Undersampling Library for imbalanced classification.
The main capabilities of this new library include a large number of different data preprocessing
techniques, efficient execution of these approaches, and a graphical environment to contrast the output
for the different preprocessing solutions.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In current applications of Data Science and Machine Learning
ML), the problem of classification can be viewed as one of the
ajor areas of investigation [1,2]. Different non-standard scenar-

os need to be faced in any classification problem [3]. Among
hem, when the dataset comprises a number of instances from
class that is radically different to the number of instances that
elong to another class, the problem is known as the imbalanced

∗ Corresponding author.
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classification [4–6]. The current relevance and implications of this
area of research in classification are beyond all doubt [7].

The main characteristic of the imbalanced problem is the bias
of standard ML techniques towards the majority class instances.
To solve this issue we may proceed it in two different ways,
namely algorithm level techniques and data level techniques [8].
Algorithm level techniques aim for modifying the ML algorithms
to take into account the skewed data distribution and/or to boost
the recognition of the minority class instances. Data level tech-
niques aim for directly modifying the dataset prior to the learning
stage to create a balanced one. Regarding this type of approach,
we further distinguish between two categories. On the one hand,

oversampling algorithms that replicate and/or generate minority
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Fig. 1. Example of running undersampling and oversampling techniques.

lass instances. On the other hand, undersampling algorithms
hat remove instances mainly from the majority class [9]. Remov-
ng instances of the majority class may be a good idea to avoid
ossible noise, which may worsen the performance of the classi-
ier [10]. In addition, feature selection is an approach that could
elp the techniques described before identifying discriminative
eatures and reducing computational time [11].

Fig. 1 shows an illustrative representation of the result of
pplying oversampling and undersampling techniques. Both tech-
iques balance the data, despite working differently. Fig. 1(a)
hows the distribution of an example of the imbalanced distri-
ution of classes in a given dataset. Fig. 1(b) shows the outcome
f an undersampling method, where the majority class is reduced
ntil 250 instances to balance the data. In contrast, oversampling
enerates instances labeled as minority class, expanding the for-
er until 750 instances, balancing the data as well, as we can see

n Fig. 1(c).
It is well-known that applying oversampling or undersam-

ling before running a classification algorithm enhance its per-
ormance [12]. In addition, these techniques can be part of the
earning process within an ensemble [13], extending its role
eyond just pre-processing the data.
In the specialized literature, we may find a large number

f proposals on oversampling and undersampling algorithms.
nfortunately, there is not so much software available that im-
lements any of these techniques. The most known open source
ibraries that include algorithms for imbalanced classification are
EEL [14] library for Java, imbalanced-learn [15] for Python

and unbalanced [16], smotefamily [17], rose [18] and im-
balance [19] for R. These libraries have a large set of included al-
gorithms for undersampling and oversampling techniques to ad-
dress the imbalance problem from a data level perspective. How-
ever, there are three main issues associated with these software
solutions:

1. Among the different software solutions, only imbalanced-
learn allows for a direct representation of preprocessed
datasets.

2. Existing software focuses only on oversampling approaches
or may include few approaches of undersampling tech-
niques, but they do not offer a good repository of both kind
of techniques.

3. Regarding scalability and efficiency, Scala is known to be
usually faster than both Python and R. One of the reasons
Scala is faster is that it uses static data types, while Python
or R use dynamic typing. That means that during execution,
Python or R need to do additional processing to identify
the types of the values in order to evaluate the expres-
sions [20,21]. Also, the framework Spark works better in
Scala [22,23]. This fact is quite relevant when we need to
face large datasets as those generated in the Big Data era.

In this paper, we present the first Scala library for imbalance
classification, which includes all the classic and well-established
algorithms. Those algorithms work on the data level, pre-process-
ing the dataset in order to mitigate the negative effects caused
by the imbalance distribution of classes present in the data. The
new dataset is ready to be used by any other algorithm from
other libraries that the user considers appropriate. We named
the library SOUL, which stands for Scala Oversampling and
Undersampling Library. This library provides a set of almost
30 different algorithms for data preprocessing. Specifically, it in-
cludes 13 techniques for oversampling and another 15 algorithms
for undersampling. It is also the first open-source library for im-
balanced library purely written in Scala. Also, SOUL is compatible
with SMILE [24], the biggest library for ML in Scala.

To provide a clear picture of SOUL, the rest of this paper is
divided into the following sections. First, Section 2 presents the
software framework. Then, Section 3 describes the implemented
algorithms. In Section 4 we present a use case of this software.
After that, in Section 5 we perform two different experiments to
2
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ompare this library with the currently available software. Finally,
ection 6 presents the conclusions.

. SOUL: A Scala library for imbalanced preprocessing

The SOUL library is implemented in Scala [20], a powerful
anguage built on top of the Java Virtual Machine (JVM), so it
s compatible with any system that can run Java. Scala provides
mix design pattern, combining functional with object-oriented
rogramming. Scala is as simple as powerful, allowing users to
reate from a simple script to a huge project, with a few lines of
ode. As Scala is compiled by the JVM, it is faster than R and can
et similar execution times than Python, which is compiled to C.
cala is statically typed, meanwhile, Python and R are dynami-
ally typed, which allows Scala less prone to errors. Also, Scala
rovides some parallels collection, using the advantage of the
unctional programming, allowing the programmer to implement
arallel operations without any extra effort. Parallelism is impor-
ant due to the amount of data used in classification problems.
cala is easily integrated with Spark [25], an Apache framework
sed for Big Data.
A clear positive feature of this library in comparison to similar

olutions is the large number of algorithms that are implemented.
s commented previously, up to 30 different approaches have
een developed within SOUL, divided between oversampling and
ndersampling. In particular, there are a number of 13 over-
ampling algorithms and another 15 undersampling algorithms.
s commented before, it almost duplicates the number of ap-
roaches in the imbalanced-learn library (16 algorithms), and
times more than unbalanced. In addition to the former, an-
ther significant issue for this library is to support the use of
ifferent distance metrics when we run the algorithms, such as
he Heterogeneous Value Difference Metric [26]. This is of high
mportance as the behavior of the preprocessing algorithms is
ery dependent for this characteristic.
It is noteworthy to mention the possibility of a complete pa-

ameterization by the algorithms included in this library, allowing
he end-user to adapt the execution of the algorithms to their
eeds. In order not to overload the user’s work, all the parameters
ave a default value, thus allowing a quick execution of the
lgorithms without having to understand what each parameter
oes and which would be a correct value for it, as will be shown
n Section 4.

It is important to point out that we have our own input/output
ystem, which makes the library easier to use. The supported
ormats are CSV, any delimited text data file and ARFF, which are
he most common formats in data science applications.

In Code metadata table, we can see the most recent version
etadata of the project.

. Preprocessing algorithms included in SOUL

As pointed out throughout this paper, SOUL imbalanced library
upports a large number of different preprocessing approaches.
ext, in Table 1 all the included algorithms are enumerated.

. User manual for SOUL library

In order to use SOUL library from another sbt project, we just
eed to clone the repository of the project, in the root folder of
he cloned repository execute sbt publishLocal and add the
ollowing dependency to the build.sbt file of our project:

1 l ibraryDependencies += "com. github . soul "

Listing 1: sbt dependency.

Table 1
Enumeration of algorithms included. In brackets, the name of the algorithm in
the code.
Oversampling Undersampling

Random Oversampling (RO)
[27]

Random Undersampling (RU)
[27]

SMOTE (SMOTE) [28,29] Condensed Nearest
Neighbor (CNN) [30]

SMOTE + Edited Nearest
Neighbor rule (SMOTEENN)
[27]

Edited Nearest Neighbor
rule (ENN) [31]

SMOTE + Tomek Link
(SMOTETL) [27]

Tomek Link (TL) [32]

Borderline-SMOTE
(BorderlineSMOTE) [33]

One-Side Selection (OSS)
[34]

ADASYN (ADASYN) [35] Neighborhood Cleaning
Rule (NCL) [36]

ADOMS (ADOMS) [37] NearMiss (NM) [38]
SafeLevel-SMOTE
(SafeLevelSMOTE) [39]

Class Purity Maximization
(CPM) [40]

Spider2 (Spider2) [41] Undersampling Based on
Clustering (SBC) [42]

DBSMOTE (DBSMOTE) [43] Balance Cascade (BC) [44]
SMOTE-RSB* (SMOTERSB) [45] Easy Ensemble (EE) [44]
MWMOTE (MWMOTE) [46] Evolutionary

Undersampling (EUS) [47]
MDO (MDO) [48] Instance Hardness

Threshold (IHTS) [49]
ClusterOSS (clusterOSS)
[50]
Iterative Instance
Adjustment for Imbalanced
Domains (IPADE) [51]

To read a data file we only need to use the code from the
Listing 2. We just need to import the Reader class (line 1), import
the Data class (line 2) and read the required file in the format we
want (lines 5 and 7).

1 import soul . io . Reader
2 import soul . data . Data
3
4 /∗ Read a csv f i l e or any delimited text f i l e ∗/
5 val csvData : Data = Reader . readDelimitedText ( f i l e = <

pathToFile >)
6 /∗ Read a WEKA a r f f f i l e ∗/
7 val ar f fData : Data = Reader . readArff ( f i l e = <pathToFile >)

Listing 2: Read data from a file.

Listing 3 shows the steps to run the chosen algorithm. We
have to import the algorithm class we want to use (line 1) and
instantiate the algorithm using the data we have read in Listing
2 (lines 4 and 7). After that, we only need to call the compute
method (lines 5 and 8). If we provide a file name representing
where to store the log, the execution of the algorithm will save
the information into this file (argument passed to the constructor
of algorithm’s class in lines 4 and 7). In the example presented in
Listing 3 we have used an undersampling algorithm but it is the
same for an oversampling one. As commented in Section 2, all the
algorithm’s parameters have a default value so we do not need to
specify any of them to run an algorithm, but we can modify them
to fit our needs.

1 import soul . algorithm . undersampling . NCL
2 import soul . data . Data
3
4 val nclCSV = new NCL( csvData )
5 val resultCSV : Data = nclCSV . compute ( )
6
7 val nclARFF = new NCL( ar f fData )
8 val resultARFF : Data = nclARFF . compute ( )

Listing 3: Apply the algorithm.
3
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Finally, we only need to save the result to a file using the code
hown in Listing 4. Import the Writer class (line 1) and, based
n the format we want to use as output, call the corresponding
unction (lines 3 and 4), specifying the output file and the data
e want to save.

1 import soul . io . Writer
2
3 Writer . writeDelimitedText ( f i l e = <pathToFile > , data =

resultCSV )
4 Writer . wri teArf f ( f i l e = <pathToFile > , data = resultARFF )

Listing 4: Save result to a file.

For further information about the parameters and available
lgorithms, please refer to the documentation website at: https:
/soul-doc.github.io/soul/index.html.

. SOUL use case: Experimental results

With the objective of showing the capabilities of SOUL, we
ave generated a two-dimension synthetic imbalanced dataset
ith 1,871 instances. Among them, 1,600 instances belong to
he majority class and the remaining 271 belongs to the minor-
ty class, leading to about a 17% of minority instances in the
hole dataset (Imbalance Ratio, IR=5.9). The representation of
his dataset can be found in Fig. 2, where we may observe a clear
verlapping between the classes, as well as a cluster of minority
nstances in the middle of the majority instances.

Next, we have applied the following preprocessing algorithms,
ogether with the configuration specified:

• MWMOTE: seed: 0, N: 1400, k1: 5, k2: 5, k3: 5, dist: euclidean,
normalize: false, verbose: false.

• SMOTE: seed: 0, percent: 500, k: 5, dist: euclidean, normalize:
false, verbose: false.

• ADASYN: seed: 0, d: 1, B: 1, k: 5, dist: euclidean, normalize:
false, verbose: false.

• SafeLevelSMOTE: seed: 0, k: 5, dist: euclidean, normalize:
false, verbose: false.

• IHTS: seed = 0, nFolds = 5, normalize = false, randomData
= false, verbose = false

• IPADE: seed = 0, iterations = 100, strategy = 1, randomChoice
= true, normalize = false, randomData = false, verbose =

false
• NCL: seed = 0, dist = euclidean, k = 3, threshold = 0.5,

normalize = false, randomData = false, verbose = false
• SBC: seed = 0, method = ‘‘NearMiss1’’, m = 1.0, k = 3,

numClusters = 50, restarts = 1, minDispersion = 0.0001,
maxIterations = 200, val dist = euclidean, normalize = false,
randomData = false, verbose = false

As commented above, we intend to visually contrast the dif-
ferences regarding the output of the different alternatives.

Fig. 3 shows the output of four oversampling algorithms.
Fig. 3(d) shows that SMOTE can generate a large number of
synthetic samples in the minority class space. SafeLevelSMOTE,
in Fig. 3(b), works on safe zones and create one synthetic sam-
ple per minority class sample at most. Hence, we can observe
less synthetic samples created compared to SMOTE. The orig-
inal SafeLevelSMOTE does not have a parameter to choose
the number of synthetic samples to be generated. ADASYN and
MWMOTE, whose behavior is depicted in Figs. 3(a) and 3(c) work
on borderline zones. ADASYN creates synthetic samples based on
the number of majority class samples in the neighborhood of
each minority class sample. The larger the number of majority
class examples the dataset has, the more synthetic samples are
created. Hence, we can see a large number of synthetic samples

in borderline. MWMOTE generates a lesser amount of synthetic
samples because it only works with the minority class samples
that are adjacent to majority class samples. Furthermore, it only
creates one synthetic sample for every set of samples, so that the
amount of synthetic samples created is smaller.

Fig. 4 shows the output of four undersampling algorithms.
IHTS, Fig. 4(a), shows that it is not always necessary to use k-
NN rules in undersampling algorithms to get good results. IPADE,
Fig. 4(b), achieves impressive results maintaining the essential
distribution of the original dataset. IPADE uses a representation
of evolutionary techniques applied to the problem described in
this paper. IPADE follows an iterative scheme, where it de-
termines the most appropriate number of instances per class
and their positioning for a determined classifier, focusing on the
positive class. NCL was initially selected as a classic algorithm,
however, does not provide remarkable results, as we can see in
Fig. 4(c). Finally, SBC, represents the clustering techniques, as we
can see in Fig. 4(d), it does not reduce drastically the number
of majority instances but it is capable of separating the borders
between the two classes, which is an outstanding property of
these techniques.

To compare the execution time of the library, we created
another synthetic dataset with five dimensions and one million
instances. Then, we iteratively reduced the dataset by a ten per
cent until we get a set with less than a thousand instances. In
this way, we have generated 67 synthetic datasets with sizes
ranging from 950 instances to one million instances. We have
executed our NCL and SMOTE implementations versus the ones
in imbalanced (Python) and unbalanced (R) libraries. In
Figs. 5 and 6 the results of NCL and SMOTE algorithms are depicted
respectively.

We have to be careful when we look at the graphics as they
are in logarithmic scale. That is why in Fig. 6 it seems that SOUL
(Scala) takes half the time of unbalanced (R), but in the
tables of times, we can see that the difference is quite significant.

As can be seen in Fig. 6, SOUL (Scala) implementation is
slower than imbalanced (Python). SOUL (Scala) implemen-
tation computes a new random gap for every attribute when a
synthetic sample is generated, as described in the original pro-
posal [28,29]. However, imbalanced (Python) implementation
computes the random gap just once, therefore it run faster1. In
the case of NCL, as we can see in Fig. 5, SOUL (Scala) takes
practically the same as imbalanced (Python), surpassing it in
certain datasets, and also being much faster than unbalanced
(R).

6. Conclusion

The imbalanced classification scenario is present in many cur-
rent applications. Therefore, researchers and practitioners need
to address the problem with the solutions available at hand.
However, the number of open-source libraries that comprise
preprocessing algorithms is not so high as expected.

In this paper, we have addressed this problem of the lack of
solutions in the field of classification with imbalanced datasets
by proposing a novel, complete, scalable, and easy-to-use soft-
ware written in Scala. We have stressed its characteristics and
capabilities, possibly being the most significant one large number
of preprocessing techniques that have been included (about 30
different solutions).

Along with the good features included in this first version of
the library, in the near future, our efforts will be oriented towards
the addition of novel preprocessing algorithms, and its extension
to Spark to cope with Big Data problems.

1 The implementation (which can be found in https://github.com/scikit-learn-
contrib/imbalanced-learn/blob/master/imblearn/over_sampling/_smote/base.py)
shows that the mentioned gap is always 1. Therefore, the Python implementation
avoid to compute this gap in every iteration, so that, it run faster.
4
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Fig. 2. Original toy binary imbalanced dataset.

Fig. 3. Oversampling algorithms.
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Fig. 4. Undersampling algorithms.

Fig. 5. Comparison of execution times of NCL for imbalanced (Python), unbalanced (R) and SOUL (Scala).
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Fig. 6. Comparison of execution times of SMOTE for imbalanced (Python), unbalanced (R) and SOUL (Scala).
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