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ABSTRACT

Symmetries in an open quantum system lead to degenerated Liouvillians that physically imply the existence of multiple steady states. In
such cases, obtaining the initial condition independent steady states is highly nontrivial since any linear combination of the true asymptotic
states, which may not necessarily be a density matrix, is also a valid asymptote for the Liouvillian. Thus, in this work, we consider different
approaches to obtain the true steady states of a degenerated Liouvillian. In the ideal scenario, when the open system symmetry operators
are known, we show how these can be used to obtain the invariant subspaces of the Liouvillian and hence the steady states. We then discuss
two other approaches that do not require any knowledge of the symmetry operators. These could be powerful numerical tools to deal with
quantum many-body complex open systems. The first approach that is based on Gram–Schmidt orthonormalization of density matrices
allows us to obtain all the steady states, whereas the second one based on large deviations allows us to obtain the non-degenerated maximum
and minimum current carrying states. We discuss the symmetry-decomposition and the orthonormalization methods with the help of an
open para-benzene ring and examine interesting scenarios such as the dynamical restoration of Hamiltonian symmetries in the long-time
limit and apply the method to study the eigenspacing statistics of the nonequilibrium steady state.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0045308

In 1976, Gorini, Kossakowski, Sudarshan, and Lindblad (GKSL)1,2

independently proposed a completely positive trace preserving
master equation that governs the dynamics of a generic quantum
system. Since then, the equation has been a hallmark in the study
of dissipative open quantum systems and has been used in a wider
variety of applications. In recent years, due to the experimental
advancements, engineering the bath properties and system–bath
interaction has become possible. One immediate consequence is
the existence of multiple steady states. In such cases, the dissi-
pative Liouvillian becomes degenerated, having more than one
invariant subspace. In general, finding the nonequilibrium steady
states (NESSs) is highly nontrivial, and in this work, we outline
three methods to address this issue. Each method has its own
benefits and drawbacks. Using a para-benzene ring as a open
quantum system, we elucidate the methods and find the existence
of decoherence free subspaces or even dynamical restoration of
Hamiltonian symmetries in the long-time limit. Last, since our

approach allows us to obtain the NESSs for a degenerated Liou-
villian, we use it to study the statistics of the ratio of consecutive
eigenspacing gaps r of the NESS, which shows the probability
distribution P(r) → 0 as r → 0.

I. INTRODUCTION

Quantum master equations are an essential tool to study
dissipative systems and have been applied to a wide vari-
ety of model systems in quantum optics,3–5 thermodynamics,6–10

transport,11–14 and quantum information.15,16 The most general
Markovian master equation that preserves the properties of the den-
sity matrix (positivity, Hermiticity, and trace) is the Lindblad (or
Gorini–Kossakowski–Sudarshan–Lindblad, GKSL) equation.1,2,17,18

This equation describes the dynamics of a system under the effect of
a Markovian environment. The fixed points of this dynamics have
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also been broadly analyzed. Evans19 proved that bounded systems
present at least one fixed point and that there can be more than one
leading to degeneracy of the Liouvillian.

The study of degenerated master equations has been very
active during the last decade. The use of symmetries and degener-
acy has been applied to reduce the dimensionality of open quan-
tum systems,20 to harness quantum transport,21 to detect magnetic
fields,22 and in error correction.23 In the timely field of quantum
machine learning, there are approaches to pattern retrieval by the
use of degenerated open quantum systems.24 Furthermore, the non-
equilibrium properties of molecular systems have been addressed to
detect symmetries and multiple fixed points.25

In the non-degenerated case, the initial condition indepen-
dent steady state of a system can be obtained by numerically
diagonalizing the dissipative Liouvillian. Unfortunately, the degen-
erated case is complicated because a linear combination of fixed
points is also fixed, and thus, there is no guarantee that the diag-
onalization algorithm will return the physical steady states instead
of their linear combinations. Thus, the problem of degenerated
Liouvillians becomes nontrivial and hard to analyze numerically
since the initial condition dependence cannot be easily elimi-
nated.

In this paper, we present a toolbox for the extraction of the
physical steady-states of degenerated open quantum systems in
the Lindblad form. We present three different methods, a block
diagonalization,20 a Gram–Schmidt-inspired orthonormalization,22

and a method based in large deviation theory.26 Each method has its
own strengths and weaknesses. To illustrate the presented methods,
we apply them to a model of a ring driven out of equilibrium by two
thermal baths. We analytically calculate the steady-states, for a spe-
cific choice of the parameters, by the block-diagonalization method.
We discuss the phenomenology of the open quantum system as a
function of its bath parameters and test the numerical methods.
The minimal model allows us to analytically discuss a plethora of
interesting scenarios; e.g., we find that the invariant subspace of
the Liouvillian can become degenerate if the bath is engineered to
only pump energy into the system. In other words, even though one
expects a single steady state corresponding to the invariant subspace,
we find multiple steady states due to the dynamical degeneration of
the invariant subspace. The Gram–Schmidt inspired method also
allows us to explore the eigenspacing statistics of the nonequilib-
rium steady state (NESS) and understand the signatures from the
perspective of random matrix theory.27

This paper is organized as follows: In Sec. II, we discuss the
main idea behind degenerated Liouvillians and symmetries in open
quantum systems. Section III is dedicated to the general formulation
of the three different methods to obtain the steady states. Partic-
ularly, Sec. III A deals with the block-diagonalization approach in
which the open system symmetry operators are known. In Sec. III B,
we discuss the Gram–Schmidt based orthonormalization procedure
that allows us to obtain all the steady states, and Sec. III C is dedi-
cated to the large deviation theory based method, which helps obtain
the non-degenerate states carrying minimum or maximum cur-
rent. In Sec. IV, we apply our different methods to a para-benzene
ring, discuss analytically solvable cases, and study the eigenspacing
statistics of the NESS. Finally, in Sec. V, we conclude and provide a
future outlook.

II. DEGENERATED LIOUVILLIANS

In this section, we present the basics of degenerated Liouvillians
and set up the notation that will be used in the paper. The main
object of this study is mixed quantum states described by density
matrices. If the Hilbert space of the pure states of our system is H,
then a mixed state is determined by a matrix ρ ∈ O(H), with O(H)
being the space of bounded operators, that fulfills two properties,

Normalization: Tr(ρ) = 1,

Positivity: ρ > 0, i.e., ∀|ψ〉 ∈ H 〈ψ |ρ|ψ〉 ≥ 0. (1)

Any matrix fulfilling these two properties is considered a density
matrix. Another important concept we will use is orthogonality of
density matrices. Two density matrices ρi and ρj are considered
orthogonal if Tr[ρiρj] = 0.

In this work, we consider the dynamics of the system to be
governed by the Lindblad equation (see Ref. 18 for an introduction),

dρ(t)

dt
= −i [H, ρ(t)] +

∑

i

(

Liρ(t)L
†
i −

1

2

{

ρ(t), L
†
i Li

}

)

≡ L[ρ(t)], (2)

where H is the Hamiltonian of our system of interest and Li are
positive bound operators called “jump operators.” Throughout this
work, we will set ~ = kB = 1. The super-operatorL is usually named
the Liouville operator of the system dynamics or just the Liouvillian.
If the system pure states, H, has a dimension N, the operator’s space
dimension, O(H), is N2. As the Lindblad equation represents a map
of operators, the Liouvillian L may be represented by a matrix of
dimension N2 × N2.

For bounded systems, Evans’ theorem states that this equation
has at least one fixed point,19 meaning that there is at least one
density matrix ρ such that

Re{L[ρ]} = 0. (3)

In most cases, there is at least one state such that L[ρSS] = 0.
These are called steady-states, and they do not evolve with time
as dρSS/dt = L[ρSS] = 0. Evans’ theorem, as stated above, also
includes the possibility of having pairs of states with a zero real part
but a non-zero imaginary one.21,28 These states are called stationary
coherences, and they evolve indefinitely.

The Liouvillian is a super-operator, and hence to obtain its
spectrum, we need to map it to a matrix. The mathematical tool to
do so is called the Fock–Liouville space (FLS). In the FLS, the den-
sity matrices are written as column vectors using an arbitrary map
for its elements. All maps produce equivalent results, and hence,
any choice of the map is a good choice. Once the density matrix
is mapped to a column vector, the Liouvillian super-operator can be
written as a N2 × N2 general non-Hermitian matrix. It has both right
and left eigenvectors, and its steady states (fixed points) correspond
to the right eigenvectors with zero real eigenvalue.

Evan’s theorem also gives the conditions for obtaining a unique
steady state.19 This happens iff the set of operators {H, Li} can gen-
erate the entire algebra of the space of bounded operators under
multiplication and addition. In general, this condition is hard to
prove for most systems (see Ref. 29 for an example). However, when
not fulfilled, there are more than one steady states. This degeneracy
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in the Liouvillian may be related to the presence of symmetries as we
discuss in Sec. III.

Let us suppose that we have a degenerated Liouvillian with M
zero eigenvalues (we suppose that there are no oscillating coher-
ences). Each zero eigenvalue has an associated right-eigenvector that
can be obtained by diagonalizing the Liouvillian expressed in the
FLS. One could naïvely think that each of these right eigenvectors
corresponds to a steady-state density matrix, but this is true only in
very simple cases. In general, any linear combination of the steady-
state density matrices is a right eigenvector of the Liouvillian with
zero eigenvalue, but it is not necessarily a density matrix in the sense
that may not be positive. Furthermore, it is also possible that the
obtained right eigenvectors do not form an orthogonal set,30 mean-
ing that they do not belong to different invariant subspaces. Bearing
these issues in mind, in Sec. III, we propose various approaches to
obtain the steady-state density matrices, which are independent of
initial conditions in each subspace of the Liouvillian.

III. METHODS TO OBTAIN STEADY STATES

We present three methods to calculate the steady-states
of degenerated Liouvillians, the symmetry-decomposition, the
orthonormalization, and the large deviation method. Each method
has its own advantages. The symmetry-based one can be applied
analytically for many cases and it is numerically cheap, but it
requires full knowledge of the system’s symmetries. The orthonor-
malization can be applied with no previous knowledge about open
system symmetries, but its computational cost increases with the
degree of degeneracy. Finally, the large deviation method does not
require previous knowledge about open system symmetries and it
is computationally cheap, but it only gives the non-degenerated
maximum and minimum current carrying states.

A. Diagonalization by symmetry-decomposition

In this subsection, we explain the relation between open sys-
tem symmetry operators and multiple steady-states. We then use
the knowledge of the symmetry operators and outline a procedure
to obtain the steady states, some of which could have zero trace
(non-physical density matrices).

To simplify our discussion, we focus on strong open system
symmetries in which there exists a unitary operator π such that20,21

[π , H] = [π , Li] = 0 ∀i. (4)

This implies that the generators of the dissipative system dynam-
ics {H, Li} and the symmetry operator π can be diagonalized with
a common basis. Let us denote the eigenvalues of π as vi = eiθi ,
with i ∈ [1, n] and n being the number of distinct eigenvalues. Each
eigenvalue can be degenerated, and hence, we introduce the index
di that represents the dimension of the subspace corresponding
to eigenvalue vi. The corresponding eigenvectors of the symmetry
operator π are |vαi 〉, with i ∈ [1, n] and 1 ≤ α ≤ di.

We define a super-operator 5 acting on the subspace of the
bounded operators of H as

5 [x] ≡ π · x · π†. (5)

The spectrum of5 is derived from the one of π as

5

[

|vαi 〉〈vβj |
]

= ei(θi−θj)|vαi 〉〈v
β

j |. (6)

Thus, the Hilbert space H can be decomposed using the spectrum
of π ,

H =
n

⊕

i=1

Hi, (7)

with Hi = span
{

|vαi 〉,α = 1, . . . , di

}

. Similarly, the space of boun-
ded operators B can be expanded in the eigenspace of the
super-operator5 as

B =
n

⊕

i,j=1

Bi,j, (8)

with Bi,j = span
{

|vαi 〉〈vβj |,α = 1, . . . , di; β = 1, . . . , dj

}

. Using this

decomposition, it is clear that these eigenspaces are invariant under
the effect of the Liouvillian L[Bi,j] ⊆ Bi,j. This implies that the Liou-
villian can be block decomposed, using the basis of 5, into n2

invariant subspaces.
Normalized density matrices are only possible in the subspaces

Bi,i, meaning that we have at least n steady states. It is also possi-
ble to find states having zero trace, belonging to the subspaces Bi,j

(i 6= j).22 These states do not represent real density matrices, but they
can form linear combinations with the steady states making physi-
cal differences. Note that we use the term “steady state” only for the
states with finite trace and corresponding to zero eigenvalue of the
Liouvillian. From the above description, it is also clear that steady
states corresponding to different subspaces are orthogonal to each
other.

The knowledge of a strong symmetry operator π gives us only a
lower bound of the number of steady states. It is always possible that
some of the blocks Bi,i are further degenerated. This happens when
there are K > 1 strong symmetry operators, i.e.,

{

π (1), . . . ,π (K)
}

each of them with n(j) (j = 1, . . . , K) different eigenvalues such that31

[π (j), H] = [π (j), Li] = [π (j),π (l)] = 0 ∀(i, j, l). (9)

In this case, we can perform the block-diagonalization of the Liou-
villian using the eigenbasis of π (1), obtaining

H =
n(1)
⊕

i=1

Hi. (10)

Then, each block Hi can be further block diagonalized into a maxi-
mum of n(2) blocks using the eigenbasis of π (2). This can be repeated
until all symmetry operators are used. Thus, since the operation of
each symmetry operator not always diagonalize the Liouvillian into
exactly n(i) blocks, it is impossible to predict the total number of
steady states. Thus, we can only impose bounds on the number of

steady states M as max
[

n(i)
]

< M <
∏K

i=1 n(i).
To summarize the above outlined approach, we provide an

algorithm to be applied to a system having K symmetry operators
{

π (j)
}

(j = 1, . . . , K). Each of the symmetry operators π (j) has n(j)
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distinct eigenvalues with phases
{

θ
(j)
1 , θ

(j)
2 , . . . , θ

(j)

n(j)

}

. As the sym-

metry operators commute with each other, we can define a com-
mon eigenbasis of all of them. The eigenbasis can be defined by

the eigenvectors

{

|vα
θ
(1)
i1

,θ
(2)
i2

,...,θ
(K)
iK

〉
}

, where ij ∈ [1, n(j)], and α stands

for the degeneracy of the subspace determined by the eigenvalues

θ i =
{

θ
(1)
i1

, θ (2)i2
, . . . , θ (K)iK

}

, where i = {i1, i2, . . . , iK} and each element

ij of i is associated with the same element θ (j) of θ . This means that
each vector |vαθ i

〉 is an eigenvector of each symmetry operator π (j);
i.e.,

π (j)|vαθ i
〉 = θ

(j)
ij

|vαθ i
〉. (11)

The eigenbasis of the corresponding super-operators 5(j) is natu-

rally given by the elements
{

|vαθ i
〉〈vβθ

i′
|
}

. The method to obtain the

steady sates of the degenerated Liouvillian, if we know its symmetry
operators, is then

1. Find the common eigenbasis of all the symmetry operators
{

π (j)
}

.
2. Calculate the eigenvalues of the symmetry operators corre-

sponding to the elements of the basis, obtaining a classification
of the form |vαθ i

〉.
3. Order the elements of the basis by grouping all the vectors with

the same eigenvalues.
4. Change the Liouvillian to the new basis. A block-diagonal struc-

ture arises.
5. Diagonalize each block of the new basis. Any eigenvector with

a zero eigenvalue corresponds to a steady state. Note that the
dimension of the blocks is smaller than the dimension of the
Liouvillian, and, therefore, the eigenvectors of the blocks do not
represent density matrices by themselves.

6. Increase the dimension of the eigenvectors of each block by
adding zeros to complete the dimension.

7. Change back to the original basis.

B. Diagonalization by orthonormalization

In Subsection III A, we dealt with the ideal scenario in which all
the strong symmetry operators were known. In complex many-body
open quantum systems, knowing all the strong symmetry operators
is highly non-trivial, and the problem can become even more com-
plicated if weak symmetry20 is degenerating the Liouvillian. In this
case, our starting point could be a set of M linearly independent right
eigenvectors of the Liouvillian, which correspond to zero eigenvalue.
One could naïvely expect that these operators are indeed the density
matrices corresponding to the fixed points of the Liouvillian, but this
is not the general case. In most cases, the diagonalization algorithm
will give us a set of operators that are neither positive nor orthog-
onal to each other. Thus, in this subsection, we explain our second
method to reconstruct the density matrices from such a set. This
method was first presented in Ref. 22, and it does not require any
pre-requisite knowledge of the strong or weak symmetry operators.

Having this objective in mind, the question we ask is: If we have
a set of M zero eigenvalue eigenvectors of L that are linearly inde-
pendent {ρ̃i}, how can we reconstruct M positive density matrices

{ρi} with the following properties:

L[ρi] = 0 ∀i, (12)

Tr[ρiρj] = 0 ∀i 6= j. (13)

We will address this problem by a two-step approach. First, we con-
struct a set of orthogonal matrices. To construct the orthonormal
set, we start by applying an orthogonalization process based on the
Gram–Schmidt algorithm. To begin, we form a set of Hermitian
matrices

{

ρH
i

}

from the original set,

ρH
i = ρ̃i + ρ̃

†
i . (14)

Then, we use these Hermitian matrices
{

ρH
i

}

to construct a set of
orthogonal Hermitian matrices by applying

ρO
1 = ρH

1 ,

ρO
2 = ρH

2 −
Tr[ρO

1 ρ
H
2 ]

Tr[ρO
1 ρ

O
1 ]
ρO

1 ,

ρO
3 = ρH

3 −
Tr[ρO

1 ρ
H
3 ]

Tr[ρO
1 ρ

O
1 ]
ρO

1 −
Tr[ρO

2 ρ
H
3 ]

Tr[ρO
2 ρ

O
2 ]
ρO

2 ,

...

ρO
M = ρH

M −
M−1
∑

j=1

Tr[ρO
j ρ

H
N ]

Tr[ρO
j ρ

O
j ]
ρO

j . (15)

The orthonormalization process preserves Hermiticity, and it triv-
ially follows that the set

{

ρO
i

}

fulfill the orthogonality relation

Tr[ρO
i ρ

O
j ] = 0 if i 6= j. (16)

This is a set of eigenmatrices of the Liouvillian with zero eigenvalue
in which every matrix is Hermitian and orthogonal to each other.
The only remaining issue is that these matrices may not be semi-
positive definite, meaning that they may have negative eigenvalues.
To address this issue, we first define the positivity functional, P, of a
set of M Hermitian operators, {Ai}M

i=1, of dimension N (the same as
the dimension of density matrices) as

P [{Ai}] =
M

∑

i=1

N
∑

j=1

(

v
Ai
j −

∣

∣

∣
v

Ai
j

∣

∣

∣

)

, (17)

with v
Ai
j being the jth eigenvalue of operator Ai. It is clear that this

measure is equal to zero iff all the matrices of the set {Ai}M
i=1 are

semi-positive definite. As the set of matrices
{

ρO
i

}M

i=1
are orthogonal

and a linear combination of positive matrices, we may find a uni-
tary operator, U, that transforms this set to zero eigenvalue positive
orthogonal matrices

{

ρP
i

}

. To do so, we first write the original set as
a column vector

|ρO〉〉 ≡













ρO
1

ρO
2

...

ρO
M













. (18)
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As we want to preserve orthogonality, we need to apply a uni-
tary operator to the vector |ρO〉〉. Note here that each element of
the vector |ρO〉〉 should be considered a point object. This trans-
formation can be described by a set of (M2 − M)/2 Euler angles,

χ =
{

χ1, χ2, . . . , χM2−M
2

}

. For a specific choice of the Euler angles,

we can define the new vector of matrices |ρ(χ)〉〉 = U(χ)|ρO〉〉, cor-
responding to the set of matrices {ρi(χ)}. For example, if we have
three steady states, i.e., M = 3, then we have three [(M2 − M)/2]
Euler angles, and one possible form of the general rotation matrix in
three dimensions is given by

U(χ) =





c1c3 − c2s1s3 −c1s3 − c2c3s1 s1s2

c3s1 + c1c2s3 c1c2c3 − s1s3 −c1s2

s1s3 c3s2 c2



 , (19)

where s and c represent sine and cosine and the subscripts 1, 2,
and 3 represent χ1, χ2, and χ3, i.e., c1 = cos(χ1), on the right hand
side. The Euler angles lie within the range 0 ≤ χ1, 0 ≤ χ2 ≤ π , and
χ3 < 2π . Thus, using the ρO

i as point objects, we can obtain the set
of matrices {ρi(χ1,χ2,χ3)}.

In order to find the correct choice of the angles that performs
the correct transformation, we need to maximize the functional

P [{ρi(χ)}] =
M

∑

i=1

N
∑

j=1

(

v
ρi(χ)

j −
∣

∣

∣
v
ρi(χ)

j

∣

∣

∣

)

, (20)

with respect to the various Euler angles. Thus, we can obtain a set of
orthogonal semi-definite positive zero eigenvalue right-eigenvector
matrices

{

ρP
i

}

. These obtained matrices need not be normalized, and
this can be easily achieved by transforming ρi = ρP

i /Tr[ρP
i ] for all

the matrices that have Tr[ρP
i ] 6= 0.

The above described method can be summarized as follows:

1. Obtain a set of Hermitian matrices by applying Eq. (14) and
obtaining the set

{

ρH
i

}

.

2. Construct a set of orthogonal matrices,
{

ρO
i

}

, by applying a
Gram–Schmidt method for density matrices.

3. Find the rotation angles, χ =
{

χ1, χ2, . . . , χM2−M
2

}

, by maxi-

mizing the functional, Eq. (20).
4. Apply the rotation U(χ) to obtain the orthonormal semi-

positive definite Hermitian set of matrices
{

ρP
i

}

.
5. Renormalize by doing ρi = ρP

i /Tr[ρP
i ] for all the matrices that

have Tr[ρP
i ] 6= 0.

C. Diagonalization by large deviations

In this subsection, we describe a method to obtain some of the
steady states by a single diagonalization of the Liouvillian, making it
much simpler than the previous methods. On the other hand, it can
be applied only in some cases, and it allows us to obtain only some of
the states. The method is based on the study of the thermodynamic
currents, and it was first presented in Ref. 26 (see Ref. 21 for a more
detailed discussion). Here, we focus only on the description of this
approach and its applicability.

We consider a system connected to several incoherent channels
that allow the exchange of quanta between the system and an envi-
ronment. This allows us to divide the super-operator L from Eq. (2)

into three parts,

L = L−1 + L0 + L+1, (21)

where the subscripts indicate the number of excitations intro-
duced/removed from the system by the environment. Of course,
there could be more exotic environments that exchange more than
one excitation, but for the sake of simplicity, we will not consider this
possibility. Next, we define the system density matrix conditioned
on a fixed number of excitations Q as ρQ(t) ≡ TrQ[ρ(t)], where TrQ

is partial trace over the manifold containing Q excitations. Thus, the
evolution of ρQ(t) is governed by

dρQ(t)

dt
= L−1[ρQ+1(t)] + L0[ρQ(t)] + L+1[ρQ−1(t)]. (22)

This gives a hierarchy of equations that can be unraveled using the
Laplace transform

ρλ(t) =
∞

∑

Q=−∞
ρQ(t)e

−λQ, (23)

which when applied to Eq. (22) gives a set of independent equations

dρλ(t)

dt
= eλL−1[ρλ(t)] + L0[ρλ(t)] + e−λ

L+1[ρλ(t)]

≡ Lλ[ρλ(t)], (24)

where λ is known as the counting field. For the Lindblad equation
that takes the form of Eq. (2), we have the correspondence

L−1[ρ(t)] = Liρ(t)L
†
i ,

L+1[ρ(t)] = Ljρ(t)L
†
j ,

L0[ρ(t)] = −i [H, ρ(t)]

+
∑

k 6=i,j

Lkρ(t)L
†
k −

1

2

∑

k

{

LkL
†
k , ρ(t)

}

, (25)

where the index i/j stand for the incoherent channels that
extract/inject excitations in the system. The probability of finding
the system in a state with Q excitations is PQ(t) = Tr[ρQ(t)], and

Zλ(t) ≡ Tr[ρλ(t)] =
∞

∑

Q=−∞
PQ(t)e

−λQ (26)

is known as the generating function of the current probability distri-
bution. This generating function follows a large deviation principle,
and for a long time, it scales as

Zλ(t) ∼ etµ(λ), (27)

where µ(λ) is called the current Large Deviation Function (LDF).
It can be calculated as the highest eigenvalue of the tilted super-
operator Lλ. As Zλ(t) is the current moment generating function,
the LDF µλ corresponds to the cumulant generating function of
the current distribution. Therefore, the average current can be
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calculated as

〈Q̇〉 = lim
t→∞

1

t

∂Zλ(t)

∂λ

∣

∣

∣

∣

λ=0

=
∂µ(λ)

∂λ

∣

∣

∣

∣

λ=0

. (28)

If |λ| << 1, we can expand the LDF as

µ(λ)|λ→0 ∼ µ(0)+ λ
∂µ(λ)

∂λ

∣

∣

∣

∣

λ=0

= 〈Q̇〉. (29)

Therefore, if the Liouvillian is degenerated and the different steady
states have non-degenerated average currents, the LDF µ(λ) will
have a non-analytic behavior around λ = 0 in the form

µ(λ) =
{

+ |λ| 〈Q̇〉max for λ → 0−,
− |λ| 〈Q̇〉min for λ → 0+.

(30)

This allows us to calculate the steady-states corresponding to the
maximum and minimum currents as long as they are not degen-
erated. The method may be summarized as follows:

1. Calculate the highest eigenvalue µ(λ) (and its corresponding
eigenvector ρλ) of the modified Liouvillian Lλ.

2. Take the limits ρ ′
min = limλ→0+ ρλ and ρ ′

max = limλ→0− ρλ.
3. Renormalize, obtaining ρmin = ρ ′

min/Tr[ρ ′
min] and ρmax = ρ ′

max/

Tr[ρ ′
max].

To summarize this section, we have introduced three different
methods using which we can obtain the steady states for an open
quantum system with a degenerated Liouvillian. The first method
described in Sec. III A is the most general approach but requires the
knowledge of symmetry operators that are usually difficult to obtain.
The second approach (Sec. III B) could be easily implemented com-
putationally and does not require any knowledge of the symmetry
operators. Although this seems most beneficial, with an increase in
the degree of degeneracy, the computational cost increases substan-
tially due to the minimization procedure to find the optimal Euler
angles. The final method is the easiest computationally (Sec. III C)
but is limited to a class of nonequilibrium systems and can be used
to obtain only a subset of the steady states.

IV. EXAMPLE: PARA -BENZENE RING

The methods presented can deal with a wide variety of scenar-
ios, and in order to illustrate these, we use the example of a para-
benzene ring connected to two reservoirs as illustrated in Fig. 1.
We restrict to the single-excitation picture and consider the Hilbert

space to be spanned by the site basis
{

|ĩ〉
}6

i=1
plus a ground state |0̃〉 to

allow interactions with the reservoir. The system Hamiltonian takes
the form

H = J

6
∑

ñ=1

|ñ〉〈ñ + 1| + H.c., (31)

with |7̃〉 = |1̃〉. The system is boundary driven by two incoherent
baths connected to sites 1 and 4. The baths exchange energy and

FIG. 1. Illustration of the para-benzene-type system with six sites connected to
two incoherent baths (red and blue rectangles) at different temperatures TL and
TR. The para-benzene system exchanges energy with the left L and right R baths
due to the pumping rates0+ and dumping rates0−. The tilde basis is the original
site representation.

excitations with the system via the jump operators

L1 =
√

0+
L |1̃〉〈0̃|, L2 =

√

0−
L |0̃〉〈1̃|,

L3 =
√

0+
R |4̃〉〈0̃|, L4 =

√

0−
R |0̃〉〈4̃|,

(32)

where 0+(−)
x ≥ 0 are the pumping (dumping) rates for the xth bath

(x = L or R). All properties of the baths are encoded in these rates,
and we will not consider any specific form herein. The model here is
a simple model to elucidate the idea of a degenerated Liouvillian, and
our primary focus is to demonstrate the mathematical framework of
symmetries in open quantum systems. Readers might be interested
in applying such models to understand nonequilibrium observables
such as heat currents, but with such local master equations, one
needs to define the thermodynamic observables carefully32 in order
to avoid violations of thermodynamic laws or use non-Lindblad
master equations (like Redfield) that can be precisely mapped to a
microscopic model.33

For the simple ring structure, there is only one open system
symmetry operator given by

π =
∑

i=0,1,4

|ĩ〉〈ĩ| + |2̃〉〈6̃| + |6̃〉〈2̃| + |3̃〉〈5̃| + |5̃〉〈3̃|. (33)

The unitary operator π has two eigenvalues +1 and −1, and the
transformation matrix T to change basis from the site representation
to the eigenvectors |i〉 of π reads

T |ĩ〉 = |i〉,

T =
∑

i=0,1,4

|ĩ〉〈ĩ| +
1

√
2

∑

i=2,3

|ĩ〉〈ĩ| −
1

√
2

∑

i=5,6

|ĩ〉〈ĩ|

+
1

√
2

(

|2̃〉〈6̃| + |3̃〉〈5̃| + H.c.
)

. (34)

The ground |0〉 and symmetric states |i〉 (i = 1, . . . , 4) have eigen-
value +1, whereas the anti-symmetric states |i〉 (i = 5, 6) correspond
to eigenvalue −1. The transformation matrix does not affect the
ground (0̃) and edge sites (1̃ and 4̃), which are connected to the baths
but only transforms the bulk sites (2̃, 3̃, 5̃, and 6̃).
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The system Hamiltonian in the transformed basis takes the
form

H =
√

2J (|1〉〈2| + |3〉〈4|)+ J (|2〉〈3| + |5〉〈6|)+ h.c., (35)

which is block diagonal since the ground and symmetric subspace
(|0〉, . . . , |4〉) does not interact with the anti-symmetric one (|5〉
and |6〉). Since the transformation does not affect the ground state
and the edge sites, there is no entanglement generated in the jump
operators and they remain the same form as Eq. (32) with |ĩ〉 → |i〉.

Given the block-diagonal form of the system Hamiltonian and
the jump operators confined to the ground and symmetric sub-
space, we can split the system space into the subspace of the ground
state (Hg with one state), symmetric states (Hs with four states),
and anti-symmetric states (Ha with two states). Thus, the system
Hamiltonian can be decomposed into a 3 × 3 matrix that takes the
form

H =





0 0 0
0 Hss 0
0 0 Haa



 . (36)

In this representation, the sum of the jump operators takes the form

4
∑

i=1

Li =





0 L− 0
L+ 0 0
0 0 0



 , (37)

with L+ = L1 + L3 representing the net pumping operator and
L− = L2 + L4 being the net dumping operator. The Lindblad
equation (2) then separates out for each sub-block, and the resultant
equations read

dρgg(t)

dt
= −

1

2
{N+, ρgg(t)} + L−ρss(t)L

†
−,

dρss(t)

dt
= −i[Hss, ρss(t)] −

1

2
{N−, ρss(t)}

+L+ρgg(t)L
†
+, (38)

dρgs(t)

dt
= iρgs(t)Hss −

1

2
ρgs(t)N−−

1

2
N+ρgs(t),

dρga(t)

dt
= iρga(t)Haa −

1

2
N+ρga(t),

dρsa(t)

dt
= −i (Hssρsa(t)− ρsa(t)Haa)−

1

2
N−ρsa(t), (39)

dρaa(t)

dt
= −i[Haa, ρaa(t)], (40)

with N+ = L
†
+L+ and N− = L

†
−L− being positive operators and

ρx,y(t) = ρ†
y,x(t) ({x, y} = g, s, a). The cross-subspaces, i.e., ρx,y(t)

∀x 6= y, the reduced density matrix ρx,y(t) decays exponentially as
can be seen from Eq. (39).

Thus, in the steady state, only the diagonal components
of the reduced density matrix survive, and we now focus on
the anti-symmetric subspace whose evolution is described by
Eq. (40). Clearly, this describes coherent evolution, and thus,
the anti-symmetric subspace is a decoherence free subspace. The

eigenvectors of Haa (2 × 2 matrix) can be easily obtained and are
given by

|ψ1〉 =
1

√
2
(|5〉 + |6〉) ,

|ψ2〉 =
1

√
2
(|5〉 − |6〉) .

(41)

If we initiate our system in any one of these states, it will not evolve
in time, and hence, from the perspective of the general Lindblad
equation, both of these pure states are steady states. In other words,
the dark states

ρDS
1 = |ψ1〉〈ψ1| and ρDS

2 = |ψ2〉〈ψ2| (42)

are zero current carrying steady states. The cross combination of
these states displays oscillating behavior and is known as oscillat-
ing coherences28 whose state has zero trace ρOC(t) = e−i2Jt|ψ1〉〈ψ2|
+ ei2Jt|ψ2〉〈ψ1|. The frequency of the oscillations is given by the
difference of the eigenvalues of Haa. Thus, the existence of deco-
herence free subspaces always gives us L number of steady states,
where L is the dimension of the decoherence free subspace, and L
pairs of eigenvalues of the Liouvillian with zero real part but a finite
imaginary part known as oscillating coherences.

The reduced density matrix for the subspaces belonging to the
ground and symmetric states obeys coupled first order differential
equations [see Eq. (38)], which is impossible to solve analytically.
In general, this setup has three steady states; one from the ground
and symmetric subspace and two from the anti-symmetric sub-
space described above. In specific scenarios, wherein the effect of the
bath can be simplified, we can obtain analytic solutions as described
below.

A. Equilibrium

We can simplify our problem by considering that the pumping
(dumping) rates of both baths are the same; i.e., 0+

L = 0+
R = 0 and

0−
L = 0−

R = γ . In this case, the equilibrium steady state is given by

ρ
EQ
3 =

γ

γ + 40
|0〉〈0| +

0

γ + 40

4
∑

i=1

|i〉〈i|. (43)

If the baths were ideal sinks 0 = 0 (zero temperature baths) or
pumping and dumping at the same rate γ = 0 (infinite tempera-
ture baths), we obtain the physically intuitive results of either being
localized in the ground state or all states being equally populated.
Note here that in the general equilibrium scenario, we do not obtain
the canonical Gibbs state because the jump operators in our Lind-
blad equation are resonantly being coupled to the ground state 0̃
and either site 1̃ or 4̃. Such a resonant coupling does not allow the
dissipator to mix all the energy levels, which is a crucial requirement
to obtain a Gibbsian state at equilibrium.

B. Ideal source

In another extreme scenario when the baths are an ideal
source such that 0+

L = 0+
R = 0 and 0−

L = 0−
R = 0, the dynamical
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equations of the ground-symmetric subspace [Eq. (38)] simplify as

dρgg(t)

dt
= −20ρgg(t), (44)

dρss(t)

dt
= −i[Hss, ρss(t)] + 0ρgg(t)

∑

i,j=1,4

|i〉〈j|. (45)

The equation for ρgg(t) can be solved analytically giving an expo-
nentially decaying solution ρgg(t) = exp[−20t]ρgg(0) with ρgg(0)
being the initial condition. In the long-time limit, ρgg = 0, which
is expected since the baths only pump excitations from the ground
state to the ring. In this long-time limit, it is clear from Eq. (45)
that ρss(t) obeys an oscillatory coherent evolution. Thus, in this
ideal-source limit, we obtain more than three steady states (six
in particular): the anti-symmetric subspace is not affected by this
analysis and hence gives the two steady states as explained above,
whereas the ground and symmetric subspace now gives four (dimen-
sion of Hss) steady states using the same arguments we provided
for the coherent evolution in the anti-symmetric subspace analysis.
Note here that the emergence of these extra steady states is not due
to the open system symmetries but because there was a dynamical
restoration of Hamiltonian symmetries in the long-time limit.

FIG. 2. Populations as a function of time t for the case of pure pumping
L−
i = 0. The system exhibits a dynamical decoherence free subspace due to
which we obtain multiple steady states even in the absence of strong or weak
open system symmetries. The symmetric subspace is invariant, and only in the
limit t → ∞, the invariant symmetric subspace becomes decoherence free.

The ground state population is 〈0̃|ρ(t)|0̃〉, the edge state population is ρedge(t)
=

∑

i=1,4 〈̃i|ρ(t)|̃i〉, and the bulk state population is ρbulk(t) =
∑

i=2,3,5,6

〈̃i|ρ(t)|̃i〉. All individual sites in the bulk or edge have the same populations due
to the open system symmetries, and the difference in the bulk and edge site
populations is due to the symmetries in Hss. The pumping rate for both baths
0+
x = 0 = 0.1 and the hopping J = 1.

Thus, in general, the existence of multiple steady states need not
be rooted in open system symmetries (as usually believed) but could
arise due to the peculiar properties of the baths.

We illustrate this evolution for the real-space popula-
tions in Fig. 2. The ground state (black solid line) population
decays exponentially as expected, and the populations of the
edge [ρedge(t) =

∑

i=1,4〈ĩ|ρ(t)|ĩ〉, red solid line] and bulk [ρbulk(t)

=
∑

i=2,3,5,6〈ĩ|ρ(t)|ĩ〉, blue solid line] sites oscillate indefinitely. The
oscillations of the edge and bulk are out of phase, and the difference
in their amplitudes is due to the symmetries in Hss, which has dif-
ferent weights for the connections between the edges and bulk sites
[see Eq. (35)].

C. Ideal sink and source

Next, we turn our attention to systems in nonequilibrium.
The simplest case that yields analytic results is when one of the
baths is an ideal sink 0+

L = 0, 0−
L = γ , whereas the other is an

ideal source 0+
R = 0, 0−

R = 0. Unlike the ideal-source scenario, in
which the ground state gets depleted leading to dynamical restora-
tion of Hamiltonian symmetries, in this case, the ideal sink would
re-populate the ground state ensuring that a current carrying NESS
exists. The ground and symmetric subspace has only one NESS
given by

ρNESS
3 =

1

1 + 40
γ

+ 9γ0

16J2

{

|0〉〈0| +
0

γ
|1〉〈1| +

(

0

γ
+
γ0

8J2

)

|2〉〈2|

+
(

0

γ
+
γ0

4J2

)

|3〉〈3| +
(

0

γ
+

3γ0

16J2

)

|4〉〈4|

− i
0

2
√

2J

(

|1〉〈2| +
√

2 |1〉〈4| +
1

√
2
|2〉〈3|

− i
4J

γ
|2〉〈4| + |3〉〈4| + H.c.

)}

. (46)

The steady-state excitonic current for the ideal sink source scenario
is

IL = Tr[L
†
1L1ρ

NESS
3 ] − Tr[L

†
2L2ρ

NESS
3 ]

=
0

1 + 40
γ

+ 9γ0

16J2

. (47)

D. General case

In the general nonequilibrium case, it is not possible to solve
the differential equations exactly, and hence, we solve these numer-
ically and display the dynamics in Fig. 3. The solid lines in Fig. 3
are for the low temperature regime in which we find that the edge
(red lines) and bulk (blue lines) state populations are different. The
difference in the populations can be attributed to the symmetries
of the symmetric subspace Hamiltonian Hss (recall a similar behav-
ior was observed in the ideal-source case). At low temperatures, the
bath should not affect the system dramatically, and thus, the Hamil-
tonian symmetries should be respected. On the other hand, at high
temperatures (Fig. 3, dashed lines), the dissipative baths completely
alter the system dynamics, and hence, in this case, we do not see any
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FIG. 3. Populations as a function of time t for the general nonequilibrium sce-
nario. Solid lines are for the case of low temperature with TL = 0.25 and TR =
0.5, whereas dashed lines are for the high temperature regime with TL = 1
and TR = 2. The individual edge and bulk sites (the same as that defined in
the caption of Fig. 2) have the same populations due to open system symme-
tries. At low temperatures, the edge and bulk populations are distinct exhibiting
the same symmetry governed by Hss (the same as Fig. 2). At high tempera-
tures, the Hamiltonian symmetry is broken, and the bulk and edge site popula-
tions become equal after a short transient. The hopping is chosen to be J =
1, and the rates obey local-detailed balance, 0+

x = 0ω0n(Tx,ω0)/2 and 0−
x

= 0ω0[1 + n(Tx,ω0)]/2 with x = L,R, n(T ,ω0) = [exp[ω0/T ] − 1]−1 being
the Bose–Einstein distribution, ω0 = 1 being the system–bath resonant fre-
quency, and 0 = 0.1 the system–bath coupling strength.

signatures of the Hss symmetries being preserved. In fact, at high
temperatures, the edge and bulk populations become equal after a
short transient, indicating an equal distribution of the excitation
among the edge and bulk.

E. Eigenspacing statistics of NESS

There are several scenarios in which knowing the NESS for a
degenerated Liouvillian could be useful. In this subsection, we focus
on the timely example of studying the eigenspacing statistics of the
NESS as first proposed in Ref. 27. Recently, there has been a surge in
understanding the universal properties of a dissipative open quan-
tum system mostly restricted to the spectra of a non-degenerated
Liouvillian.34–36 The idea is to observe universal features based on
statistical correlations between the eigenvalues of the Liouvillian or
the NESS. For closed Hamiltonian systems, there is a deep connec-
tion between the quantum chaos conjecture37,38 and the statistical
correlations of the eigenvalues, which is described by random matrix
theory.39 However, for open quantum systems, very little is known
in this direction.

For an open quantum system, there is a choice to study the
spectral properties of either the Liouvillian or the steady-state den-
sity matrix. The spectral signatures of the Liovillian reflect on the
properties (e.g., localizing behavior) of all of its eigenmodes, most of

which are unphysical (trace zero operators) except the steady-state
density matrix, whereas the study of spectral properties of the phys-
ically meaningful steady-state density matrix reflects on the proper-
ties of the eigenmodes of the steady-state density matrix. Moreover,
for a complex many-body open quantum system, evaluating the
entire spectra of the Liouvillian can be computationally expensive
since its corresponding matrix dimension scales as N2 × N2 (recall
that N is the dimension of the system Hilbert space). For degen-
erated Liouvillians, most studies are restricted up to N ≈ 250. On
the other hand, since the NESS is the eigenvector corresponding to
the zero eigenvalue of the Liouvillian, it can be obtained for much
larger systems (up to N ≈ 1000 provided the Liouvillian is sparse)
using variants of the Lanczos algorithm. This reduces the computa-
tional cost of obtaining the NESS, but this reduction is accompanied
by a square-root reduction in the sample size, which needs to be
compensated by more sampling. In other words, the computational
advantage of studying the eigenspacing statistics of the NESS lies in
being able to explore large system Hilbert space to understand the
scaling with N.

Although it is computationally lucrative to study the eigenspac-
ing statistics of the NESS to uncover universal features, it is highly
nontrivial if the Liouvillian is degenerated and the open system
symmetries (weak or strong) are unknown. Without knowledge of
the symmetry operators, the nonequilibrium steady states would be
initial condition dependent, leading to a mixed NESS. The spec-
tral statistics of such a mixed NESS would contain influences from
all subspaces and hence would not give us a clear picture of the
properties of the NESS in each subspace. Our approach based on
orthonormalization (Sec. III B) is ideally suited to treat such cases
since it helps obtain the steady state of each subspace without knowl-
edge of the symmetry operators. To illustrate this idea, we consider
the same para-benzene ring as before but choose the jump oper-
ators [Eq. (32)] extended to all ground-symmetric states [|i〉 with
i = 1, . . . , 4; see Eq. (34)] and then randomly picked from the Gini-
bre unitary ensemble.40 To simulate a nonequilibrium situation,
we choose only two jump operators Lx/

√
0x with x = 1, 2 whose

distribution is given by

P(Lx) =
1

(2π)N
2

exp

[

−
Tr[L∗

xLx]

2

]

, (48)

with N = 5 for the case described above. This allows us to ensure
that the randomization process is non-pathological41 and covers the
manifold of all jump operators within the ground-symmetric sub-
sector uniformly, as seen from the inset in Fig. 4, which shows
the distribution of the eigenvalues of the Liouvillian. Moreover, the
full Liouvillian still has a block-diagonal structure between ground-
symmetric and anti-symmetric subspaces with three steady states.
We use then our orthonormalization procedure outlined in Sec. III B
and evaluate the distribution of the ratio of consecutive eigenspacing
gaps,42

0 ≤ rn =
min{sn, sn−1}
max{sn, sn−1}

≤ 1, (49)

with sn = νn+1 − νn being the eigenspacing of the NESS (ρNESS|ϕn〉
= νn|ϕn〉). The ratio, since it is independent of the local density of
states, avoids irregularities due to finite-size of the NESS matrix and
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FIG. 4. The probability distribution P(r) and the inset show the eigenvalues of
the Liouvillian 3 confined to the ground-symmetric subspace. The solid black
line shows the ratio of the eigenspacing gap distribution of the initial condition
independent NESS obtained from the ground-symmetric subspace, whereas the
red dashed line belongs to the distribution for the general mixed NESS, Eq. (50),
averaged over 107 randomly chosen initial conditions, i.e., random ci . The “lemon”
shape44 is distinct near the origin for the eigenvalues of the Liouvillian. The system
Hamiltonian is chosen such that J = 1, and both distributions are averaged over
107 samples of the Lindblad jump operators. In the inset, we plot the eigenvalues
only for 2500 randomly chosen samples. The jump operators have rates 0L = 1
and 0R = 2.

thus does not require the unfolding of the spectrum. The result-
ing distribution is shown by the black solid curve in Fig. 4. The
distribution shows P(r) → 0 as r → 0, indicating level repulsion
and/or spectral rigidity, which means that the NESS is a thermalizing
or highly nonintegrable state; i.e., there exists no algebraic proce-
dure to construct this state in a finite number of steps. The average
〈r〉 ∼ 0.463 lies in between the exact predictions from a Poisson
(〈r〉 ∼ 0.386) and a Gaussian orthogonal ensemble (〈r〉 ∼ 0.536).43

The inset, Fig. 4, shows the distribution of the eigenvalues of the
Liouvillian, which are available in this case. It should be noted that a
more sophisticated form of the sampling could be chosen to obtain
a perfect lemon structure,34,44 but this does not turn out to be a
strict requirement as indicated by the eigenspacing distribution of
the NESS.

Moreover, if we do not restrict our investigation to the sym-
metric and ground state subspace, then our statistics will depend on
the choice of the initial condition. The most general mixed form of
the NESS that spans over the entire system Hilbert space reads

ρNESS
mix = c1ρ

NESS + c2ρ
DS
1 + c3ρ

DS
2 , (50)

with ρNESS being the NESS in the ground and symmetric subspace
and ρDS

i being the dark states given by Eq. (42). The coefficients
ci depend on the initial condition such that

∑

i |ci| = 1. In order
to eliminate the initial condition dependence, we further ensem-
ble average over initial conditions by choosing ci from a uniform

random distribution. The resulting distribution of the ratio of con-
secutive eigenspacing gaps of ρNESS

mix is shown by the red dashed
curve in Fig. 4. Clearly, we see a strong influence of the antisym-
metric subspace on the distribution especially close to r → 0. Such
a strong influence is expected since our dimension of the anti-
symmetric subspace, whose asymptotic is a pure state, is compara-
ble to the ground-symmetric subspace wherein the non-integrable
NESS resides. Thus, in the case of degenerate Liouvillians, the
spectral statistics of the NESS must be studied in each subspace
independently (similar to the study of spectral statistics in closed
systems in the presence of symmetries) such that all initial condition
dependencies are eliminated, which could lead to spurious effects.

Overall, in this section, we studied the para-benzene ring in
detail. Although we dealt with the symmetry-decomposition based
approach (Sec. III A) throughout this section, we would like to
end with a few remarks on the other two methods. In all cases,
we found that the orthonormalization based approach (Sec. III B)
yielded the same results as the symmetry-based one. The orthonor-
malization based approach was also able to treat the ideal-source
case and obtain all the six steady states. In complex many-body
systems wherein the symmetry operators are either not known or
wherein there could be mechanisms due to the baths leading to
additional steady states, the orthonormalization based approach
is perfectly suited to treat such cases. The large deviation based
approach although computationally cheap would fail in the equi-
librium and ideal-source situation since the currents for all steady
states are zero. This method would also not allow us to obtain the
two dark states [Eq. (42)] from the anti-symmetric subspace since
they both carry zero current. Finally, we ended with studying the
eigenspacing distribution of the NESS using the orthonormalization
based approach, which gave us the expected result that the NESS is
a highly non-integrable state.

V. CONCLUSIONS

In this paper, we have presented several techniques to obtain
the steady states of a degenerated Lindblad Liouvillian. Each method
comes with advantages and disadvantages and, together, they form a
useful toolbox for many different problems. First, we have presented
a method based on the use of symmetry operators. This technique
allows the analytical resolution of many systems, but it requires the
existence and knowledge of the open system symmetry operators.
The second method, based on a Gram–Schmidt orthonormalization
is general and does not require knowledge about the symmetry oper-
ators, but it is computationally expensive. Its utility depends on the
degree of degeneracy and on the system dimension. Finally, we have
presented a method based on large deviations theory. It does not
require any previous knowledge about the system symmetries, and
it is also computationally cheap as it only requires the diagonaliza-
tion of an operator of the same size as the Liouvillian. On the other
hand, it only gives the density matrices that maximize or minimize
a given flux.

These methods have been illustrated by a canonical example,
a para-benzene ring. This system can be analytically diagonal-
ized, and in several specific cases, it shows a rich phenomenology
including dark states, oscillating coherences, and steady-states that
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are not a consequence of symmetries. Finally, we have also stud-
ied the eigenspacing distribution of the NESS obtained via the
orthonormalization method. Since the system by construction is a
thermalizing open quantum system, the ratio of the eigenspacing
gap distribution P(r) → 0 as r → 0.

There are still several open questions to be addressed in this
field of research. The para-benzene ring considered herein had only
one NESS, whereas the other steady states were pure. An interesting
question remains whether it is possible to construct open quantum
systems with more than one NESS, i.e., steady states influenced by
the reservoir. Consequently, would these states belong to the same
random matrix ensembles, and if they do not, what could be the
consequences on observables such as heat and particle currents. Fur-
thermore, the existence of trace zero steady-states has been recently
probed,22 but the consequence of these states has not been analyzed
so far. How they affect the physical properties of the system and how
they can be engineered and detected remain open.
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