
Computer Networks 199 (2021) 108399

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

DoS and DDoS mitigation using Variational Autoencoders
Eirik Molde Bårli a,b, Anis Yazidi a, Enrique Herrera Viedma c, Hårek Haugerud a,∗

a Department of Computer Science, OsloMet – Oslo Metropolitan University, P.O. Box 4 St. Olavs plass, N-0130 Oslo, Norway
b Department of Informatics, University of Oslo, P.O. Box 1080 Blindern, N-0316 Oslo, Norway
c Andalusian Research Institute in Data Science and Computational Intelligence, University of Granada, Granada 18071, Spain

A R T I C L E I N F O

Keywords:
Variational Autoencoders
Anomaly detection
Cyber-security
Deep learning
DDoS
DoS

A B S T R A C T

DoS and DDoS attacks have been growing in size and number over the last decade and existing solutions to
mitigate these attacks are largely inefficient. Compared to other types of malicious cyber attacks, DoS and
DDoS attacks are particularly challenging to combat. Because of their ability to mask themselves as legitimate
traffic, it has proven difficult to develop methods to detect these types of attacks on a packet or flow level. In
this paper, we explore the potential of Variational Autoencoders to serve as a component within an intelligent
security solution that differentiates between normal and malicious traffic. The motivation behind resorting
to Variational Autoencoders is that unlike normal encoders that would code an input flow as a single point,
they encode a flow as a distribution over the latent space which avoids overfitting. Intuitively, this allows a
Variational Autoencoder to not only learn latent representations of seen input features, but to generalize in a
way that allows for an interpretation of unseen flows and flow features with slight variations.

Two methods based on the ability of Variational Autoencoders to learn latent representations from network
traffic flows of both benign and malicious traffic, are proposed. The first method resorts to a classifier based on
the latent encodings obtained from Variational Autoencoders learned from traffic traces. The second method
is an anomaly detection method, where the Variational Autoencoder is used to learn the abstract feature
representations of exclusively legitimate traffic. Anomalies are then filtered out by relying on the reconstruction
loss of the Variational Autoencoder. In this sense, the construction loss of the autoencoder is fed as input to
a classifier that outputs the class of the traffic including benign and malign, and eventually the attack type.
Thus, the second approach operates with two separate training processes on two separate data sources: the
first training involving only legitimate traffic, and the second training involving all traffic classes. This is
different from the first approach which operates only a single training process on the whole traffic dataset.
Thus, the autoencoder of the first approach aspires to learn a general feature representation of the flows while
the autoencoder of the second approach aims to exclusively learn a representation of the benign traffic. The
second approach is thus more susceptible to finding zero day attacks and discovering new attacks as anomalies.

Both of the proposed methods have been thoroughly tested on two separate datasets with a similar feature
space. The results show that both methods are promising, with the classifier-based method being slightly
superior to the anomaly-based one.
1. Introduction

With the advent of Internet of Things (IoT), the risks of security
attacks have grown in magnitude not only due to the vulnerabilities of
IoT devices that makes them usually an easy target, but also due to the
potential to misuse them to launch malicious network traffic. In 2017,
the number of network devices was estimated to be 18 billion units, ac-
cording to an ongoing initiative by Cisco to track and forecast network-
ing trends [1]. Given the sheer number of units available for network
attacks, it would be nearly impossible to manually create solutions to
combat the problem of filtering out malicious from harmless traffic.

∗ Corresponding author.
E-mail address: harek.haugerud@oslomet.no (H. Haugerud).

Indeed, some IoT devices are less secure than others, and more
vulnerable to theft in the sense that they can be used as part of a
botnet, or as a source of attack by an external party. Among the most
notable, and perhaps hardest attacks to prevent, are denial of service
(DoS) and distributed DoS (DDoS) attacks. DoS and DDoS attacks have
become an immense threat to any Internet-connected machine over
the last decade. In 2015, a global survey of a number of companies
conducted by Kaspersky found that 50% of DDoS attacks caused a
noticeable disruption in services, and 24% led to a complete denial of
service [2,3]. As attacks continue to evolve and as the amount of IoT
vailable online 18 August 2021
389-1286/© 2021 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2021.108399
Received 12 February 2021; Received in revised form 23 June 2021; Accepted 3 A
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ugust 2021

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:harek.haugerud@oslomet.no
https://doi.org/10.1016/j.comnet.2021.108399
https://doi.org/10.1016/j.comnet.2021.108399
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.108399&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Networks 199 (2021) 108399E.M. Bårli et al.
devices available to launch attacks from grows, these percentages could
very well increase, as could demand for working mitigation systems.

DoS and DDoS attacks are similar in intention and often similar in
execution. The goal for both types of attacks is to cause a denial of
service for their target by exhausting either the victim’s bandwidth or
system resources, such as CPU or memory. In general terms, causing a
denial of service means to overload a victim, for example a web server,
with traffic. Once a system receives more traffic than its bandwidth or
system resources are able to handle, it will fail to receive or send parts
of the intended data traffic. DoS attacks are denial of service attacks
that come from a single source, while DDoS attacks are denial of service
attacks originating from a distributed range of machines and networks.
Both types of attacks have proven effective and devastating, but DDoS
attacks are the most difficult to handle. The main reason for this is the
potential significant size of a DDoS attack.

Cisco reported that the average attack size of a DDoS attack in terms
of traffic load was 990 Mbps in 2017 [1]. Because of its distributed
nature, a DDoS attack can generate much larger attacks than a normal
DoS attack. In late 2016, the peak size was reported to be 1.1 Tbps [4].
It was the result of a DDoS attack consisting of multiple compromised
IoT devices. In 2018, the peak size was reported by Cisco to have
reached 1.7 Tbps, originating from a vulnerability in the memcached
protocol [1], and resulting in the largest DDoS attack to date.

Creating an effective mitigation system requires consideration of
multiple facets of both DoS and DDoS attacks. An effective mitigation
system needs to be able to handle large amounts of traffic, and to
process malicious and normal traffic simultaneously. The system is
required to separate harmful from harmless traffic at such a rate that
the targeted victim is able to handle the traffic load. Considering that
network packets from a DDoS or DoS attack are not harmful in them-
selves, a mitigation system can let a certain amount of malicious traffic
through, while prioritizing letting as much normal traffic through as
possible. A mitigation system that fails to meet any of these require-
ments risks exposing the victim to the attack. In the case of inability
to handle the incoming traffic load to a server, the mitigation system
would cause a general slowdown of the server, because it needs to
inspect each packet before forwarding or allowing the packets through.
In the case of inability to separate normal traffic from malicious traffic,
the mitigation system risks blocking normal users from accessing the
server, or letting too many malicious packets through. Handling large
DDoS attacks can be particularly difficult, because the defending system
has limited resources to spare for defense, while an attack has the
potential to capture and use much larger amounts of devices and
their resources to overpower the victim. There are commercial systems
that reroute the enormous amounts of traffic in DDoS attacks to a
network of dedicated cloud services, which filter out the malign traffic
in what are known as cloud scrubbing centers [5,6]. However, such
cloud services also need an efficient method to differentiate between
the attack packets and the normal packets that are supposed to be
forwarded to the destination service.

Current mitigation systems often focus on a form of pattern recog-
nition or frequency-based detection, or a combination of the two. We
will give some examples of these approaches. In [7], in order to detect
DDoS attacks, the authors use a real time frequency vector based on the
target’s resource requests that tracks statistics of the target’s resource
requests. Other approaches track the frequency of the IP addresses
and build IP filters based on this information [8,9]. In [10], a hybrid
approach was reported which uses frequency to compute traffic entropy
which are fed as features into a pattern recognition engine. The work of
Hagos et al. [11] is a typical example of a pattern recognition approach
where the authors investigated applying machine learning approaches
on 41 traffic features.

It is common to have a detection system in place, but this often just
means that it is able to know when an attack is happening, while being
unable to stop it. This puts system administrators in the precarious
2

situation of having to combat the attack manually, which is usually
only feasible after the victim server has been shut down [12]. Detection
systems generally encompass systems that are able to recognize when
an attack is happening, or has happened in the past, by analyzing the
network traffic logs. A mitigation system is different in that it is able
to differentiate malicious from normal traffic on the packet or flow
level, i.e., based on IP addresses or other packet information during
the attack.

Part of what makes it difficult to differentiate between normal and
denial-of-service traffic is their similar behavior. If we compare two
network packets in isolation, one from a legitimate user, and another
from a compromised computer being used as a part of an attack,
the differences would be few or none. DoS and DDoS packets are
not harmful on their own. It is the amount of traffic they send that
overloads a system, drowning out legitimate attempts at access. This
makes it difficult to implement solutions that can keep out malicious
connections.

Simple methods and algorithms for synthetic datasets can give very
good results due to similarity of the generated traffic. For instance,
BoNeSi [13] is a popular framework to simulate malicious attacks, how-
ever, it might generate too homogeneous traffic making it easy to detect
by Machine Learning based intrusion detection systems. For more real-
life datasets, the accuracy drops usually as the detection task becomes
more difficult compared to synthetic datasets. However, within the field
of security, the number of publicly available datasets for malicious
traffic are limited. The most known dataset is the KDD-Cup dataset [11]
which has several disadvantages as reported in [11,14] and which led
to the advent of an improved version called NSL-KDD [11]. One of
the most recent and adopted datasets nowadays are CICIDS 2017 and
CICIDS 2018 released by the Canadian Institute for Cybersecurity. Both
datasets fill the void when it comes to the lack of publicly available
datasets for security. However, these datasets are limited to a few days
of traffic and a limited number of flows that is limited in the era of
Big data and that do not generalize to real life settings. Thus, some
authors have even reported 100% accuracy on those types of datasets.
For instance, in [15], the authors reported 100% accuracy using SaE-
ELM-Ca which is an optimized extreme learning machine on CICIDS
2017 and this can be due to the limited size of the dataset. Even one of
the simplest machine learning algorithms, namely KNN, performed well
in [16]. With the advent of Artificial Intelligence and the proliferation
of Generative Adversarial Networks [17], attackers are gaining more
power in generating illegitimate traffic that is hard to distinguish from
Normal traffic. For example, in a paper involving some of the authors
of the current work [18], we have shown that a subtle modification
of the flow parameters and packet padding can make malicious flows
evade detection.

In [19] the authors tested machine learning detection with two
datasets, one including IP addresses and one without IP address. The
accuracy drops when the IP addresses are not fed into the classifier
which is a sign of overfitting. However, in our paper the accuracy
increases when IP addresses are not used as a part of the training data
which shows more robustness against overfitting and also an ability to
learn meaningful features of the traffic.

A mitigation system needs to be able to detect what packets or IP
addresses are malicious, and to stop them from entering the network.
Using machine learning algorithms could be a potential way of creat-
ing such a system, since machine learning can itself potentially find
relations between packet information and intent.

In the last few years, we have seen a rise in the use and success
of machine learning algorithms. Machine learning, specifically deep
learning, can be applied to a myriad of different problem domains,
including classification of different types of data and anomaly detec-
tion, using a variety of different architectures such as convolutional
networks or autoencoders [20]. Deep learning has been proven to be ef-
fective at analyzing and extracting useful data patterns that manual and
automatic approaches are unable to solve in problem domains other

than computer network traffic. Manual and automatic approaches rely

Computer Networks 199 (2021) 108399E.M. Bårli et al.

t

m

on constant updates as well as human interaction to remain effective
against DoS and DDoS attacks. A deep learning solution, on the other
hand, is autonomous and requires minimal human interaction. These
are among the reasons why a deep learning solution could prove to be
an effective means of combating DoS and DDoS attacks.

This article proposes two approaches for DoS and DDoS mitiga-
tion utilizing the framework of the Variational Autoencoder (VAE)
by Kingma and Welling [21]. The first approach is the Latent Layer
Classification algorithm (LLC-VAE), which aims to identify different
types of computer network traffic from the latent layer representations
of the VAE. LLC-VAE resorts to a classifier based on the latent encodings
obtained from Variational Autoencoders learned from traffic traces.
The second approach is the Loss Based Detection algorithm (LBD-VAE),
which tries to identify normal and malicious traffic patterns based
on the VAE reconstruction loss function. The construction loss of the
autoencoder is fed as input to a classifier that outputs the class of
the traffic including benign and malign, and eventually the attack
type. Thus, the second approach operates with two separate training
processes on two separate data sources: the first training involving only
legitimate traffic, and the second training involving all traffic classes.
From a methodological point of view, both approaches look similar as
they both use autoencoder however the fundamental principles are dif-
ferent as the first uses autoencoder to learn a representation of all traffic
types while the second is only interested in learning a representation of
benign traffic forming the basis for anomaly detection. Thus, the second
approach is more robust against zero day attacks while the first is better
at recognizing seen malicious patterns. The two proposed approaches
are not meant to be complete solutions for mitigation systems, nor are
they aimed at creating solutions that work against all types of DoS and
DDoS attacks. The contribution of this article is the research it presents
on how deep learning, specifically a VAE, can detect specific types
of DoS and DDoS traffic from network flows. In addition, it examines
whether this can be generalized to detect other types of DoS and DDoS
attacks, and to what extent.

1.1. Outline

The remainder of this article is organized as follows. Section 2
surveys related work within the field of DoS and DDoS detection. Sec-
tion 3 discusses the two proposed deep learning approaches. Section 4
describes the experimental setup in which the proposed approaches
have been tested, as well as the datasets. Section 5 reports on the
experimental results achieved by the two proposed approaches. Finally,
in Section 6, we make some final remarks and conclude the article. The
Appendix is a short review of autoencoders.

2. Related work

Techniques to combat DoS and DDoS attacks are many and varied.
Some focus on stateless packet information, while others rely on meta
information from stateful packet flows. In this section, we will present a
few relevant research papers and topics in order to create an overview
of different strategies and methods for both discovering and mitigating
DoS and DDoS attacks. We will also present research that aims to
improve or adapt existing techniques relevant to our research or future
research. A traditional approach for mitigating DDoS attacks is to
construct filters based on the historic benign IP-traffic of a site [9]
and even to include the geographical location of the IP-addresses in
order to improve the efficiency of the IP-filters [8]. In this section we
will however mostly focus on approaches related to machine learning
techniques.
3

2.1. Flow-based stacked autoencoder in SDN

Niyaz et al. [22] present a DDoS detection system for Software-
Defined Networks (SDN), that uses deep learning to detect multi-vector
DDoS attacks from flow traffic. In an SDN, DDoS attacks happens on
the data plane or control plane1, and their system is thus focused
on detecting DDoS traffic on these two planes. The detection system
consists of three modules, which they call ‘‘Traffic Collector and Flow
Installer’’, ‘‘Feature Extractor’’, and ‘‘Traffic Classifier’’. These modules
operate by extracting multiple different headers from TCP, UDP, and
ICMP packets, and generating a flow to be fed into the DDoS detection
system. Each packet belonging to the same flow has the same source
and destination IP, the same source and destination ports, and the same
protocol type.

Multiple sparse autoencoders (SAE) are used together to form a deep
learning network by placing them after each other [22]. There are two
ways to do this. One is to encode and decode as usual on the first
autoencoder, and feed the decoded output to the second autoencoder,
and so on. Another method is to encode and decode as usual to train
the network, but, instead of using the decoded outputs, the latent layer
outputs are fed into the next autoencoder in the line. So, if we have
the raw input 𝑥 feeding into the first SAE, it will be encoded into the
latent layer values 𝑔 and decoded to �̂�. The values 𝑔 are used as input
for the second SAE, which encodes to latent layer values ℎ. After this,
he authors apply a softmax classifier to the outputs of ℎ [22]. The final

stacked autoencoder consists of two models with a classifier at the end.
For training and testing, their flow generation system extracts and

creates a total of 68 features [22], although separated into three proto-
cols, TCP, UDP, and ICMP. Attacks were simulated using Hping3, and
Niyaz et al. claim to be able to identify individual DDoS classes with
an accuracy of about 95%. The accuracy for differentiating between
normal and attack traffic is claimed to be 99.82%.

2.2. Anomaly detection on the CICIDS2017 dataset using LSTM

In networking, traffic is sent back and forth between machines, and
some packets can be said to have a relation to each other, such as the
packets transferred during a three-way handshake. If multiple machines
cooperate to send a DDoS attack, they are considered to be parts of the
same attack, even though there are multiple sources. Using machine
learning to detect the relationship between packets or flows could
potentially allow mitigation methods to prevent malicious traffic based
on learned patterns in IP addresses and traffic frequency. Pektas and
Acarman [23], and Radford et al. [24] proposed two different detection
methods in their respective papers using the CICIDS2017 dataset [25]
among others, which are used in this paper as well. This dataset,
discussed further in Section 4.2, is a modern dataset containing network
traffic data, both normal and malicious. It is meant for research, as a
benchmark for developing detection and mitigation methods.

A method for grouping together network flows into two-dimensional
arrays was proposed by Pektas and Acarman [23]. The proposed system
aims to detect malicious network traffic using a combination of a
convolutional neural network (CNN) and a long short-term memory
(LSTM)2 network, to learn spatial–temporal features. Each network
flow is grouped based on its source and destination IP, destination
port, protocol, flow direction, and label. The group is then fed through
the model as a 2D array, where each row represents one flow, sorted
by their timestamps. If a group consists of a number of flows that is
lower than a given threshold value, the group is omitted. This could be
regarded as a form of frequency-based detection added on top of the
detection algorithm using a hyper parameter, since malicious traffic,

1 The data plane in an SDN forwards traffic, while the control plane
anages what route the traffic will take.
2 LSTM is based on a recurrent neural network architecture.

Computer Networks 199 (2021) 108399E.M. Bårli et al.

b
u
t
f
m
o
u
a
s
i
m
s

2

o
r
s
1
t
p
i
D
e
p
a
c
a
l
h

i
N
e

s
t
s
f
t
t
a
f
d
t
t

d
c

especially DoS and DDoS attacks, rely on sending large amounts of
packets or flows in a given time frame. To configure the model network,
a Tree-structured Parzen Estimator (TPE) is used to tune the model
automatically based on hyper parameter searching. The authors claim
that the model is able to detect attack traffic with an accuracy of
99.09%.

Radford et al. [24] proposed a method for anomaly detection using
sequence modeling, utilizing a recurrent neural network (RNN) archi-
tecture with an LSTM model3. Five different sequence aggregation rules
ased on the flows provided in the CICIDS2017 dataset are evaluated
sing an LSTM model. The research in their paper is partly based on
heir previous work [26]. Once a sequence of computer network traffic
lows of length 10 has been generated, it is fed through the LSTM
odel. There, the sequence is given a prediction of whether it is normal

r malicious traffic, based on an outliers score [24] and measured
sing the mean area under the curve (AUC). For baseline comparison,
simple frequency-based method for outlier detection was used. The

equence aggregation using an LSTM model proved to be slightly better
n a few cases, but it was mostly on a par with the frequency-based
odel, or worse. Whether this was because of the LSTM model or the

equence aggregation methods was deemed uncertain.

.3. Malicious traffic detection using entropy-based techniques

Entropy, from information theory, is a measurement of uncertainty
r disorder in a system, often called Shannon entropy [27]. It is a value
epresenting the average rate of information drawn from a stochastic
ource of data. A source of data producing an entropy value closer to

when normalized is considered hard to predict, and a value closer
o 0 is considered easier since there is less uncertainty. Behal et al.
roposed using generalized information entropy (GE) and generalized
nformation distance (GID) to separate so-called low rate DDoS (LW-
DoS) and high rate DDoS (HR-DDoS) from normal traffic and flash
vents (FE) [28]. The idea is to group network traffic into sets, where
ackets are grouped together in 10-second time frames. The entropy
nd information distance is then measured for each set. It was dis-
overed that DDoS traffic flows had more similar traffic, as their IP
ddresses are more closely grouped in relation to time. This leads to
ower entropy values within a set containing more DDoS traffic, and
igher information distances between normal and DDoS traffic.

To better understand the relationships between different features
n network traffic and how they can be used for anomaly detection,
ychis et al. published an empirical evaluation of the subject, using
ntropy [29]. Features were collected from bi-directional flow data.

The relationships between the features’ source IP, destination IP,
ource port, destination port, in-degree, out-degree, and flow size dis-
ribution (FSD) were measured using entropy, and given correlation
cores. Note that FSD is the packet per flow measurement. The study
ound a high correlation between certain features, perhaps most no-
ably between ports and IP addresses. However, the correlation be-
ween ports and addresses was found to have limited usability for
nomaly detection purposes, and it was argued that they are ineffective
or both scanning and flood type attacks. Interestingly, the FSD and
egree distribution scores had some success in detecting anomalies, and
here was a notable difference between the entropy scores for normal
raffic and malicious traffic [29].

3 An RNN is a neural network with the ability to remember previous
ata inputs. LSTM is an improvement on this concept, increasing its memory
apabilities.
4

2.4. Flow-based DoS attack detection with techniques based on computer
vision

Autoencoders from machine learning can be used for anomaly
detection, by separating malicious from normal traffic using pattern
recognition. If a data input fed into the model is not recognized, it will
be considered an anomaly. Tan et al. proposed the use of computer
vision techniques for anomaly detection in network traffic, specifically
for DoS attack traffic [30].

Features from inbound network traffic are fed through the detection
system, and stored as one-dimensional feature vectors called records.
In computer vision, earth mover’s distance (EMD) can be used to
detect dissimilarities between two images. To apply this idea to their
system, Tan et al. transform inbound records into two-dimensional
matrices, similar to images. Profiles for normal network traffic are gen-
erated based on multivariate correlation analysis (MCA) from previous
work [31]. MCA to find correlations between features and by gener-
ating normal records from the inbound records originating from the
datasets. A reformulation of EMD [32] is then applied to the generated
record matrices, measuring dissimilarities between each record. Any
unmatched records will be defined as attacks. In an evaluation of the
application of the detection system to the KDD’99 [33] dataset, the
system was reported to have achieved 99.95% accuracy, and 90.12%
on the ISCXIDS2012 [34] dataset.

2.5. Anomaly detection with hidden semi-Markov model

Hidden Markov models (HMM) have a variety of different applica-
tions, such as research on time series data or for sequence recognition.
Xie and Yu proposed a solution for detecting application layer DDoS
attacks as anomalies by learning from user behavior on web pages using
a hidden semi-Markov model (HsMM) [35]. HsMM is an extension of
HMM that adds an explicit state duration, and is designed for live
training. The HsMM is a behavior model that learns from looking at
normal user behavior with regard to how they behave when browsing
a given web page, using the address bar, hyper links, and reading web
page content. From this, a normal user is defined with a mean entropy
value that will be used for comparison with the filter. Requests from
an outside source reach the victim web page and are stored over time
as a request series, or, as it is called in the paper, an HTTP request
sequence. This is similar to how network packets would be handled
by an RNN. The average entropy of this sequence is calculated in the
detection system filter, and used for comparison with the entropy from
the generated user behavior characteristics, made by the HsMM. The
research and experiments in the paper were only tested on application
layer DDoS attacks, but showed promising results, with a detection rate
as high as 98% .

Not many solutions for detecting or mitigating DoS and DDoS
attacks focus on learning from user behavior. This could be a potential
avenue for further research.

2.6. Complete autoencoders and recurrent autonomous autoencoders

Ili et al. proposed the usage of Complete Autoencoders (CA) and
Recurrent Autonomous Autoencoders (RAA) for detecting DDoS attacks
in [36] and [37] respectively. The main difference between a CA and
a regular autoencoder is the fact that a CA exploits the imbalance
in the data. The heart of the architecture in the two works rely on
an ensemble of a number N individual Autoencoders each acting as
classifier and a majority voting mechanism to aggregate the individual
results. Whenever the predicted number of benign IPs is a majority
under an attack scenario, a class switch is operated in the binary
classifier. Each Autoencoder is composed of a feature extractor, a
target detector and a netflow identifier. The target detector has an
adjustable reference threshold which is the true number of positives
among the IP addresses. The reference threshold is determined using

Computer Networks 199 (2021) 108399E.M. Bårli et al.
adaptive search. The netflow identifier operates the classification based
both on the features and the reference threshold. The model in [37]
improves the previous work in [36] in the sense that the RT is not
computed from frames before the attack but rather using the principles
of recurrent neural networks. The works of Ili et al. [36,37] use a
Deep Autoencoder that contains two symmetrical Deep-Belief Networks
(DBN). It is worth mentioning that the idea of using recurrent neural
networks can enhance our current paper in order to adjust the threshold
of the contraction loss. The authors use a rather non-realistic setup by
resorting to BoNeSi [13] to simulate malicious attacks consisting of TCP
flood, UDP flood, and ICMP SYN flood attacks [37]. In our paper, we
use more realistic traffic. The disadvantage of using simulated traffic is
that the malicious network packets might be too similar to each other,
making the detection easier.

The work of Chen et al. [38] uses a multi-channel CNN(MC-CNN) to
detect DDoS attacks and reports experiments using both KDD-Cup 99
and CICIDS2017. The results are encouraging, however only accuracy
is reported. MC-CNN permits automatic extraction of features. The
authors distinguish different groups of features: packet level features
and traffic features which are fed into two channels.

3. The proposed deep learning algorithms for attack mitigation
using variational autoencoders

DoS and DDoS mitigation has been researched for many years, and
several different approaches have been developed. Popular methods
for mitigation include pattern recognition, similar to how viruses are
detected, or the detection of malicious sources based on network traffic
frequency. Pattern recognition mitigation systems have proven effective
in certain scenarios, such as when a victim is the target of a known
attack, but they are also known to have several drawbacks. These kinds
of systems are prone to human error and require constant maintenance
to operate. Code updates are needed every time a new attack surfaces,
or whenever a known one is altered. Traffic frequency-based mitigation
systems work by blocking network traffic based on high traffic fre-
quency, or allotting a certain amount of bandwidth to each connected
IP. Monitoring traffic frequency can be effective if there is a lot of traffic
from one source, allowing a mitigation system to block attackers that
take up too much of a system’s resources. A problem with this approach
is that normal users might sometimes be regarded as attackers, for
example if they try to refresh a website many times because of slow
loading. Checking for frequency alone could also let certain types of
attacks through, such as DDoS attacks from a large network of machines
with different addresses.

With deep learning, it is possible to let the mitigation system filter
out normal from malicious traffic autonomously. Network traffic can be
fed through a deep learning algorithm, which filters individual packets
or flows based on learned features. For this article, incoming network
packets will be transformed into traffic flows, before being fed into
the deep learning algorithms. We propose two separate deep learning
algorithms to filter network traffic flows: Latent Layer Classification
on a Variational Autoencoder (LLC-VAE), and Loss Based Detection
on a Variational Autoencoder (LBD-VAE). These two deep learning
algorithms learn patterns by themselves, instead of relying on older
techniques where the attack patterns must be inserted manually.

The contribution of this article is to present research on how, and
how well the proposed deep learning approaches, the LLC-VAE and the
LBD-VAE, can filter out malicious from normal traffic. The LLC-VAE
and LBD-VAE will be used to learn from a few types of DoS and DDoS
attacks. While many more types of malicious computer network traffic
exist, the samples in these datasets will be used to analyze whether
the two proposed approaches can reliably be used as DoS and DDoS
mitigation systems. In the remainder of this section, we will present
how the two proposed approaches are designed, and discuss different
5

options for designing them.
3.1. Motivation

As mentioned earlier, network packets moving between a client
and a server can vary greatly in shape and form even though they
follow the same protocols. Likewise, many network packets can be
very similar, with only small differences separating them. The same
applies to packets belonging to DDoS and DoS attacks, which can be
very similar to other attack packets, and normal packets. One of the
goals we aim to achieve in this article is to be able to efficiently separate
DDoS and DoS attacks from normal traffic. An autoencoder, particularly
a VAE, could be a well-suited tool for this. It is a challenging problem
to separate malicious and normal traffic, sometimes with no more than
a minute difference in time separating them; hence we need a tool
that is able to detect small details and differences, as well as finding
features that are important for separating them. Standard autoencoders
and other implementations of autoencoders learn features from input
data in a discrete fashion when encoded to the latent layer. A VAE,
on the other hand, encodes features as probability distributions using
variational inference [21,39], which, in our case, causes similar packets
to be encoded and decoded in a similar manner. We sample from this
distribution to get the latent attributes.

A common problem with machine learning in general is collecting
reliable data to train and test on. What is more, deep learning algo-
rithms require large amounts of data to generalize and train robust
and deep features. While a VAE needs large amounts of data just like
many other deep learning methods, one of its strengths is its ability
to generalize over similar features, and ignore noise. With a VAE, it
is possible to create a model that is capable of learning smooth latent
state representations of the input. There are two parts to the learning
process of a VAE: the reconstruction loss and the KL-divergence loss.
Using purely reconstruction loss causes it to behave like a normal
autoencoder, simply reconstructing the input to the output, with poten-
tially large gaps between different classes. Using purely KL-divergence
loss, we end up with outputs that all use the same unit Gaussian,
causing different classes of data to be grouped and mixed together.
Other autoencoders that do not rely on variational inference have been
used for both DDoS and DoS detection, and were discussed in Section 2,
Related work. Because the VAE combines these two loss terms into
one, a potential use for it is to group different classes of data with
similar features close to each other. This is one of the reasons why a
VAE is a generative model, since it can extract and generate new data
based on data points with likenesses to each other. For detecting and
classifying DDoS and DoS, the generative part can be ignored, instead
using the VAE to remove noise, and generalizing over similar features
in a manner that enables understanding of data not included during
training of the model.

Generating new samples using a VAE is straightforward. One simply
removes the encoder part after training, leaving 𝑧 to sample from
 (0, 1)[40]. We do not need to generate new data from the learned
features of DDoS, DoS, and normal data since we are using it for detec-
tion and mitigation. However, it should be noted that a general problem
with VAE architecture is that the normal and generated outputs come
out blurry, or noisy [21,40]. The model will sometimes ignore less
prevalent features of the input, potentially causing this blurriness. This
weakness is most obvious when looking at images as outputs. How
much this affects datasets consisting of network packets, and how
important it is for training and testing is difficult to tell.

3.2. First proposed approach: Latent layer classification on a variational
autoencoder (LLC-VAE)

The first proposed approach, Latent Layer Classification on a Vari-
ational Autoencoder (LLC-VAE), utilizes the strength of the variational
autoencoder [21] as the underlying architecture for a latent layer classi-
fication network. Based on the ability of the variational autoencoder to

learn latent representations of various classes of a dataset, the LLC-VAE

Computer Networks 199 (2021) 108399E.M. Bårli et al.
Fig. 1. Latent layer classification on a VAE. Rectangles represent node layers. Diamond shapes represent the loss values. The trapezoids represents the shrinking nature of the
encoder, and the expanding nature of the decoder. The classification layer is a fully connected layer with a softmax activation function.
approach aims to classify different types of computer network traffic,
and separate normal from malicious traffic. The performance will be
documented in 5, Analysis, together with how the model performs in
different settings.

A representation of the LLC-VAE deep learning model is shown
below in Fig. 1. First, one flow from the dataset is loaded into memory
and transformed into a readable format by the model. One flow is
represented as one feature vector and, together, they are grouped into
mini-batches before being fed into the encoder. The encoder performs
dimensionality reduction on the mini-batch over multiple layers, fur-
ther transforming the feature vectors until they have been encoded
to the latent layers4 of means and standard deviations. Based on this,
the latent layer 𝑧 is sampled, and the KL-Loss value is produced. This
output, now represented as a vector of nodes with reduced dimen-
sions, is sent to a fully connected layer that outputs the unscaled
class predictions. The softmax function, short for softargmax [41], is
applied to the class predictions, so that the nodes are normalized to a
legal probability density function (PDF), where each node represents a
single class. To optimize the predictions, we use cross entropy over the
softmax predictions to generate a numerical loss value, which is called
prediction loss, or P-Loss for short. The latent layer 𝑧 also feeds its
vector of nodes into the decoder. The decoder aims to accomplish the
opposite of the encoder, increasing the dimensionality through multiple
layers to generate a reconstruction of the original feature vector. The
reconstructed feature vector is an approximation of the input. These
two vectors are compared to generate a reconstruction loss, or R-Loss

4 The hidden layers between the VAE encoder and decoder are called latent
layers in this article.
6

for short, using mean squared error:

𝐿(𝑥) = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑥𝑖)2

Here, 𝑥 represents the model input, 𝑦 the output, and 𝑛 the number of
features. The values generated from each of the loss functions, R-Loss,
KL-Loss, and P-Loss, are combined and optimized. We use the Adam
optimizer developed by Kingma and Ba [42], to perform stochastic
gradient-based optimization of the model. The optimizer will backprop-
agate through the network, updating the weights between each layer
based on the total loss.

Deciding what type of layers to use. A variational autoencoder is inher-
ently a deep learning algorithm, with multiple hidden layers. There
are a minimum of three hidden layers, excluding the input and output
layers, with the potential to add more. The encoder and decoder have a
minimum of one hidden layer each, while there is one hidden layer, 𝑧,
as seen in Fig. 1, also called the latent layer. Various types of layers are
available to use for the encoder and decoder in a VAE, some of which
will be explored here. How many hidden layers should be present in
the encoder and decoder will be decided through tuning in 5, Analysis.

Fully connected layers. A fully connected layer is the layer typically
associated with classification problems in multilayer perceptrons, but
it is also available to use with other neural networks, such as a VAE.
The implementation is fairly simple. All nodes in a layer are connected
to all nodes in each adjacent layer, where each node stores the node
values and the connections store the weight values. These values are
used to predict the outcome of a given problem during the training
process. The outputs of this layer type are calculated using the linear
function outputs = activation(inputs ⋅ kernel + bias), where kernel is
a weight matrix created by the layer. Using multiple fully connected
layers allows for the classification of nonlinear problems [43].

Computer Networks 199 (2021) 108399E.M. Bårli et al.
Fig. 2. This figure is a simplification of how the encoder part of the VAE works
with convolutional layers. The decoder is similar, but performs the same operations in
reverse. The rectangles represent the kernels of size 3 nodes across the height and width
dimensions, respectively. The squares from the input layer represents 5 features. The
trapezoids represents the concept of Receptive Fields in ML. The circles represent
the abstract feature nodes of the convolutional layers.

Recurrent layers. Recurrence is primarily used for sequence modeling,
that is to say a recurrent layer is able to remember what has been seen
previously. Intuitively, implementing memory in a neural network to
observe relationships between different traffic flows seems like a good
idea, enabling a deep learning model to remember previously seen, as
well as ongoing, attacks and their sources. This method has shown some
success, as discussed in Section 2, Related work.

Convolutional layers. Convolutional layers can help greatly when clas-
sifying network traffic flows, because of their ability to create complex
feature abstractions from simpler ones in order to understand complex
feature relationships. Convolutional layers calculate the outputs lin-
early in a sliding window manner, using the convolution operation of-
ten denoted as (𝑥 ∗ 𝑤)(𝑡), where 𝑥 is the input function at a given time 𝑡
and 𝑤 is the weighting function [41,44]. Convolutional layers have the
ability to capture spatial and temporal dependencies, and are therefore
excellent for use in object detection [45], and image recognition [46].
Convolutional layers have proven effective in relation to a variety of
different problems, including multiple classification problems, and they
are a strong candidate for use with a VAE. While a fully connected layer
learns a representation of an input based on each feature, a convolu-
tional layer selects important features with sliding window detectors,
making it better at ignoring redundant information and learning useful
representations through multiple abstract feature layers.

A convolutional layer learns abstract features from the input layer
using a technique called sliding window. A matrix, called a kernel,
performs mathematical operations on the node values in a layer, be-
ginning with the feature nodes from the input layer. In the example
in Fig. 2, a total of five features from the input layer can be seen.
The traffic flows used in this article are one-dimensional; hence, when
defining the kernel size, we only need to define the size of a single
dimension. In the example, each node in the first convolutional layer
learns from nodes 1, 2, and 3 in the input layer. The second node in
the first convolutional layer learns from input nodes 2, 3, and 4, while
the last node learns from input nodes 3, 4, and 5. Put another way,
each node from the first convolutional layer has a receptive field of
size 3. Likewise, the second layer also has a local receptive field of 3.
When using multiple convolutional layers, each node in each layer has
a local receptive field of a given size, but the effective receptive field
size increases every time a layer is added. For example, the first layer in
Fig. 2 has a receptive field size of 3. The following layer will learn from
the feature abstractions of the first layer, causing it to have a local size
of 3, but an effective size of 5, in the input layer. This means that the
node in the second layer has learned an abstraction from the relations
between all the nodes in the input layer.

Regularization. The term regularization has a wide range of uses. Reg-
ularizing a deep learning model means preventing overfitting, avoiding
exploding and vanishing gradients, and generally keeping the training
7

phase stable and improving various issues. An autoencoder inherently
performs a form of regularization. A VAE, specifically, performs dimen-
sionality reduction, and, as a result, forces the model to choose the most
important features through node selection.

Weight regularization is the addition of a penalty term to prevent
exploding gradients. It can be applied to the hidden layers of the en-
coder and decoder when using convolutional or fully connected layers.
Exploding gradients are a problem for many different neural network
architectures, where the layer weights grow out of control, causing
various issues with the model loss. This could occur, for example, when
the loss does not gain traction and does not improve, or if the loss ends
up with a NaN value, due to floating point overflow. We use the weight
decay regularization technique, L2, typically called ridge regression,
on the kernel values of the convolutional layers. This will encourage
the layer weights to grow towards smaller values around 0. Weight
regularization might not be necessary, but it does not harm the model
performance, and there is therefore no reason not to implement it.

A regularizing layer can be added after each layer in the encoder
and decoder. Two different regularizing layers can be used for the
approaches in this article: dropout layers [47] or batch normalization
layers [48]. Adding either of these to an encoder and a decoder is
meant to ensure stable learning, prevent overfitting, and to improve the
exploding and vanishing gradients problem. Dropout is a technique that
assigns a keep probability to each node in a given model network that is
updated during training. If a node has a keep probability that has fallen
below a given threshold, the weights will be multiplied by 0 during the
forward pass, causing the gradients to become 0 during backpropaga-
tion. As a result of this, a number of nodes in the model network will
effectively be removed, forcing the model to learn more robust features
and teaching each layer to rely on different nodes from the previous
layer. Batch normalization can be used instead of dropout to prevent
overfitting, as well as to prevent vanishing and exploding gradients.

Latent layer classification. The encoder and decoder of the VAE can be
modified to use different types of layers. To represent the vectors 𝜇,
𝜎, and 𝑧, we use fully connected layers. The output from 𝑧, as seen
in Fig. 1, is sent to another fully connected layer, which attempts
to predict the classes that the different flows belong to. A softmax
cross entropy loss function is used to improve the classification by
performing cross-entropy between the predicted classes and the labeled
true classes. In the dataset CSECICIDS2018 [49], there are a total of 8
classes, each used for training and validation by the LLC-VAE. Either
of the cross-entropy functions softmax or sigmoid could be utilized as
loss functions for the LLC. Each flow can only belong to one class, and
the higher the probability of a flow belonging to one specific class, the
smaller the probability of that flow belonging to another class. That
is to say the class predictions are dependent on each other. For the
LLC-VAE, we will use the softmax activation function.

The dataset CICIDS2017 [25] has two fewer DDoS classes, a total
of 6. This dataset will be used for testing. Having fewer classes for
the test network compared to the training network is not a problem,
as these six classes are present in both datasets, and comparison can
be done on these classes alone. However, the test results will be less
comprehensive than the validation results. Classifying specific DoS and
DDoS attacks could pose a different problem. Although the LLC-VAE is
able to classify specific attacks and normal computer network traffic,
doing so could lead to less accuracy when differentiating between
normal and malicious traffic. When the model needs to carry out
more than just anomaly detection, it has to train more precisely tuned
weights for the different flow features. This could mean that the model
achieves more precise predictions for specific attacks at the expense
of overall accuracy. For this reason, both a multi-class variant and an
anomaly detection variant will be examined in 5, Analysis.

Latent layer z. At the core of the VAE is the latent layer 𝑧 that samples
from the vector of means and vector of standard deviations. The two

Computer Networks 199 (2021) 108399E.M. Bårli et al.

a
m
t
L
w
w
a

b
s
e
a
t
a
d
a
b
f

3
t

a
I
L
o
a
b
f
s
l
e
b

s
o
o
i
w
i
b
T
o
u
m
s

L
t
o
b
s
M
w
i

s
b
t
t
L
e
b
v
m
l

b

I

vectors of means and standard deviations are implemented using fully
connected layers that are initialized with random values. Previously,
we discussed how, in a VAE, the term −𝐷𝐾𝐿(𝑞(𝑧|𝑥)) ∥ 𝑝(𝑧)) is used to
approximate the true posterior. This is the KL-Loss term, and can be
written as:

1
2

𝐽
∑

𝑗=1
= (1 + 𝑙𝑜𝑔((𝜎𝑗)2) − (𝜇𝑗)2 − (𝜎𝑗)2)

The KL-Loss term is used as a measurement of the divergence between
two probability distributions, the vector 𝑧 that samples from (𝜇𝑖, 𝜎2𝑖),
nd the standard normal distribution. The sampled vector 𝑧 is imple-
ented as 𝑧 = 𝜇+𝜎 ⋅𝜀 where 𝜀 is an auxiliary noise variable drawn from

he standard normal distribution, 𝜀 ∼ (0, 1). When minimizing the KL-
oss term, the vector of means 𝜇 and vector of standard deviations 𝜎
ill be optimized to resemble the target distribution. This means that
e can initialize the two fully connected layers with random values,
nd let them learn the target distribution during model training.

The latent layer 𝑧 not only learns to describe the input flows 𝑥,
ut also representations of 𝑥 that have similar features. The mean and
tandard deviation vectors that 𝑧 samples from give a distribution to
ach flow. Each flow is represented as a data point, and each point has
probability distribution. Other points within the probability distribu-

ion have a higher chance of belonging to the same class, as opposed to
normal autoencoder, where each point has a direct encoding that only
ecodes specific encodings in the latent space. Intuitively, this allows
VAE to not only learn latent representations of seen input features,

ut to generalize in a way that allows for an interpretation of unseen
lows and flow features with slight variations.

.3. Second proposed approach: Loss-based detection on a variational au-
oencoder (LBD-VAE)

The second proposed approach, Loss-Based Detection on a Vari-
tional Autoencoder (LBD-VAE), is a variant of the first approach.
nstead of classifying the different traffic types in the latent layer, the
BD-VAE performs anomaly detection based on the reconstruction loss
f the VAE after it has been trained. The LBD is based on the notion that
n autoencoder is only able to reconstruct data that have previously
een shown to it. Both of the proposed approaches use the underlying
ramework of the VAE. This means that the decisions about the VAE
tructure, what layers to use, when to use regularization, how the latent
ayer operates, etc., will mostly remain the same. The LBD-VAE could
nd up running on different tuning settings compared to the LLC-VAE,
ut the parameters available for tuning will mostly remain the same.

An overview of the LBD-VAE can be seen in Fig. 3. The figure is
eparated into two parts, ‘‘Model 1’’ and ‘‘Model 2’’. They are both part
f the LBD-VAE model, but will be separated for easier understanding
f how the second approach works. The first part, Model 1, is simply an
mplementation of the VAE developed by Kingma and Welling [21]. It
ill be trained separately from the second part, Model 2. To begin train-

ng the LBD-VAE, we will first create a dataset exclusively containing
enign computer network traffic from the CSECICIDS2018 [49] dataset.
he idea is that, by only training Model 1 on benign data, the VAE will
nly learn the patterns of those types of flows, and, as a side effect, be
nable to recognize malicious data. Training only on benign data also
eans that the LBD-VAE has the potential to be a robust mitigation

ystem against any type of attack.

oss-based detection. When training the LBD-VAE, we first need to train
he first part, Model 1, to completion. After having trained Model 1
n exclusively benign data, the idea is that the reconstruction loss will
e low for benign data, and higher for malicious data. After that, the
econd part, Model 2, is trained based on the reconstruction loss from
odel 1. During the training of Model 2, we will use a mixed dataset
ith both benign and malicious computer network traffic flows. The

nput data are fed through the whole model, starting from input 𝑥 as
8

N

een in Fig. 3. Each flow will generate a KL-Loss and an R-Loss value,
ut only the R-Loss will be used to train Model 2. The R-Loss will be
he only feature used in training a fully connected layer that outputs
he unscaled class predictions. To generate a prediction loss value (P-
oss), we perform cross-entropy on the unscaled class predictions with
ither a softmax or sigmoid activation function5. When performing
ackpropagation based on the P-Loss to update the weights and node
alues of model 2, it is important to prevent backpropagation through
odel 1. In Tensorflow, this can be done by treating the reconstruction

oss as a constant, using the function tf.stop_gradient(). This
ensures that Model 2 will be trained separately from Model 1, and
prevent the P-Loss from interfering with the weights and node values
of Model 1. Failing to prevent backpropagation through Model 1 from
Model 2 would cause the first part to learn from malicious data, which
would defeat the purpose of the LBD-VAE approach.

4. Experimental setup

This section will be used to present the proposed algorithms from
the previous section. We will explain the specifications of the system
used to run the programs, the computer network setup that the datasets
came from, and what tools that were used to create the proposed
algorithms. Before moving on to the analysis section, we will explain
how the models can be tuned, and suggest some presets.

4.1. System specifications

All the experiments were performed on a single system, using the
two datasets CSECICIDS2018 [49] and CICIDS2017 [25]. The computer
system runs on Windows 10 64-bit version. For deep learning, the most
important hardware components are the memory, CPU and GPU. The
system has 16GB of RAM, uses an Intel Core i7-5930K CPU with 6
cores at 3.50 GHz (stock frequency), and a Nvidia GeForce GTX 1080
graphics card with 8GB of dedicated GPU-memory.

When running the experiments, it is possible to adjust the batch size
that is fed into the deep learning models as a hyperparameter. The num-
ber of flows in one batch should usually be as high as possible to ensure
optimal learning and speed up the model convergence time [50,51].
Because the models mainly run on the GPU, the only limitation on batch
size is the dedicated GPU-memory. After running a few experiments,
we found a batch size of about 1000 flows per batch to be the optimal
amount to ensure stable training. The deep learning models mainly run
using the GPU, so the CPU is at about 15% usage during runtime when
the GPU is at max memory load. RAM usage by the model is about
6.5GB during runtime, but it should be noted that this is because we
load the whole training dataset into memory to reduce training times.
It is possible to rely more on the disk to reduce memory usage, but this
would result in slower training times.

4.2. Datasets

For this article, the Intrusion Detection System (IDS) dataset cre-
ated in collaboration between the Communications Security Estab-
lishment (CSE) and the Canadian Institute for Cybersecurity (CIC),
CSECICIDS2018 [49], will be used to train the deep learning-based
models. Furthermore, we will use the CICIDS2017 dataset [25] as a
test set for the deep learning models6. For an analysis of the two IDS
datasets and their features, see the paper by Sharafaldin et al. [52].
A similar dataset, the ISCXIDS 2012 by Shiravi et al. [34], containing

5 Both functions can be used here, and can be considered equivalent to a
inary classification problem: Sigmoid = 1

1 + 𝑒−𝑥
= 𝑒𝑥

𝑒0 + 𝑒𝑥
= Softmax

6 Both datasets, CSECICIDS2018 and CICIDS2017, are from the Canadian
nstitute for Cybersecurity. This is also the case for the datasets ISCX2012 and
SL-KDD.

Computer Networks 199 (2021) 108399E.M. Bårli et al.
Fig. 3. Loss-based detection on a VAE. Rectangles represent node layers. Diamond shapes represent the loss values. The trapezoids represent the shrinking nature of the encoder,
and the expanding nature of the decoder. The classification layer is a fully connected layer with a sigmoid activation function. The surrounding frames depict two stages of model
training. First, Model 1 is trained to completion, then Model 2 is trained based on the reconstruction loss of Model 1.
many of the same types of attacks, has also been considered for use in
this article. Due to the similarities, only one or two of these datasets
were needed, and the newer 2017 and 2018 versions were chosen
for their more recent content. For a list of the features used in both
datasets, see Table 1. The features were extracted using CICFlowme-
ter7 [53], turning the corresponding raw PCAP data into network flows
in a CSV file format. The flows are bidirectional, where one flow
represents both the forward and backward direction of a group of
packets. TCP flows were terminated by a FIN packet, while UDP flows
were terminated by a flow timeout. The CSV files are available for
public download at [25,49].

CICIDS2017. This dataset, CICIDS2017 [25], contains a variety of both
malicious and benign computer network traffic records, the majority
of which are flows of normal traffic, labeled Benign. The DoS and
DDoS attacks are labeled DoS Slowloris, DoS Slowhttptest,
DoS Hulk, DoS Goldeneye, and DDoS. The DDoS attack was sim-
ulated using a tool called Low Orbit Ion Cannon (LOIC). LOIC is a tool
that can be used for HTTP/TCP/UDP flooding of a server. A single
LOIC does not generate enough traffic to cause a denial of service,

7 CICFlowmeter is a tool created in the Java programming language, used
to generate traffic flow data from network packets.
9

and it is therefore typically used with many computers simultaneously,
comprising a DDoS attack. In total, there are over 2.2 million flows of
benign traffic, and over 380 thousand flows of DoS and DDoS traffic.
For a complete enumeration of the data, their classes, and the attack
vectors, see Table 2. The amount of normal traffic heavily outweighs
the amount of malicious traffic. This unevenness of the distributions
will be taken into account during training and testing. Deep learning
algorithms need large amounts of data to be able to learn robust,
general, and accurate deep features. Whether this dataset and the
CSECICIDS2018 dataset provide a sufficient amount of flows for the two
proposed approaches will be discussed in 5, Analysis. Although the dis-
tribution between normal and malicious traffic is uneven, there is still a
considerable amount of malicious traffic that can be used, and previous
research using CICIDS2017 has shown that this dataset can be used to
achieve adequate results, see 2.2 from the Related work section. Using
this dataset for training purposes can pose a challenge when it comes
to the Slowloris, Slowhttptest, and Goldeneye attacks, as there are very
few examples of those classes compared to the other types of traffic.

CSECICIDS2018. Like the 2017 dataset [25], this version consists
of a variety of malicious traffic types, in addition to benign traf-
fic [49]. The DoS and DDoS attacks are labeled DoS Slowloris,
DoS Slowhttptest, DoS Hulk, DoS Goldeneye, DDoS LOIC-
HTTP, DDoS LOIC-UDP, and DDoS HOIC-HTTP. The DDoS attacks

Computer Networks 199 (2021) 108399E.M. Bårli et al.
Table 1
All features used from the CICIDS2017 and CSECICIDS2018 datasets. The features are
in order, starting from top to bottom, and from left to right. For an explanation of the
features and what they represent, see the dataset information page [49].

Column 1 Column 2 Column 3 Column 4

Src IP Flow IAT Min Pkt Len Std Subflow Fwd Pkts
Dst IP Fwd IAT Tot Pkt Len Var Subflow Fwd Byts
Dst Port Fwd IAT Mean FIN Flag Cnt Subflow Bwd Pkts
Protocol Fwd IAT Std SYN Flag Cnt Subflow Bwd Byts
Flow Duration Fwd IAT Max RST Flag Cnt Init Fwd Win Byts
Tot Fwd Pkts Fwd IAT Min PSH Flag Cnt Init Bwd Win Byts
Tot Bwd Pkts Bwd IAT Tot ACK Flag Cnt Fwd Act Data Pkts
TotLen Fwd Pkts Bwd IAT Mean URG Flag Cnt Fwd Seg Size Min
TotLen Bwd Pkts Bwd IAT Std CWE Flag Count Active Mean
Fwd Pkt Len Max Bwd IAT Max ECE Flag Cnt Active Std
Fwd Pkt Len Min Bwd IAT Min Down/Up Ratio Active Max
Fwd Pkt Len Mean Fwd PSH Flags Pkt Size Avg Active Min
Fwd Pkt Len Std Bwd PSH Flags Fwd Seg Size Avg Idle Mean
Bwd Pkt Len Max Fwd URG Flags Bwd Seg Size Avg Idle Std
Bwd Pkt Len Min Bwd URG Flags Fwd Byts/b Avg Idle Max
Bwd Pkt Len Mean Fwd Header Len Fwd Pkts/b Avg Idle Min
Bwd Pkt Len Std Bwd Header Len Fwd Blk Rate Avg Label
Flow IAT Mean Pkt Len Min Bwd Byts/b Avg
Flow IAT Std Pkt Len Max Bwd Pkts/b Avg
Flow IAT Max Pkt Len Mean Bwd Blk Rate Avg

Table 2
Overview of traffic flow data in the CICIDS2017 [25] dataset.

Traffic type Number of flows Attack vector

Benign 2,273,098 None
DoS Slowloris 5,796 HTTP/TCP-SYN
DoS Slowhttptest 5,499 HTTP
DoS Hulk 231,073 HTTP
DoS Goldeneye 10,293 HTTP/TCP
DDoS LOIC-HTTP 128,027 HTTP

Table 3
Overview of traffic flow data in the CSECICIDS2018 [49] dataset.

Traffic type Number of flows Attack vector

Benign 7,372,557 None
DoS Slowloris 10,990 HTTP/TCP-SYN
DoS Slowhttptest 139,890 HTTP
DoS Hulk 461,912 HTTP
DoS Goldeneye 41,508 HTTP/TCP
DDoS LOIC-HTTP 576,191 HTTP
DDoS LOIC-UDP 1,730 UDP
DDoS HOIC-HTTP 686,012 HTTP

in the 2018 dataset are similar to the attacks in the 2017 version, with
the exception of an LOIC-UDP, and a High Orbit Ion Cannon (HIOC)
attack class. HIOC is an attack tool used to generate a flood attack
by overflowing a victim with HTTP GET and POST requests. It was
created as an improvement on the previously discussed LOIC, and to
fix some of its shortcomings. From this dataset, we have more than 7.3
million flows of benign traffic available, and over 1.9 million flows of
malicious traffic, comprising various types of DoS and DDoS attacks.
Although similar to the 2017 version, most of the attack types have
a considerable amount of flows each, the Slowloris, Goldeneye,
and LOIC-UDP attacks have notably fewer flows than the other types.

The low amount of training data might negatively impact the accu-
racy of the proposed mitigation methods in relation to these types of
attacks, as the two proposed approaches might have too little data to
generalize properly. In 5, Analysis, we will discuss how much, if at all,
this impacts the learning process in the two approaches.

Dataset files. For both datasets, we use the pre-generated CSV files
publicly available for download [25,49]. The PCAP files are available
as well, but, due to time constraints and the overall good quality of
the CSV files, we will not generate new datasets. The current datasets
will need transformation, however, to streamline the feature names
10
and the number of features, to ensure consistency between the two
datasets used, as well as to fix weaknesses in the datasets. One of the
most notable weaknesses in CSECICIDS2018 is the lack of source IP,
destination IP, and source port for a subset of the flow traffic. To solve
this problem, we looked up the attack source and destination IP for
each type of attack reported in the computer network, as seen in Fig. 4,
and added them to each flow lacking these data. It was not feasible to
recover the source ports from the original PCAP files in a reasonable
time, and they will therefore be dropped. Another potential issue is
the fact that both datasets use simulated benign data, and not recorded
real-world traffic. There is no real way to mitigate this shortcoming
without using other datasets. Some labels in the pre-generated CSV
files might be mislabeled, which could lead to unwanted or erroneous
results [23]. After inspecting the datasets, this problem seems to be the
exception rather than the rule. As long as it is an anomaly in the data,
and numerically clearly in the minority, the already noisy and random
techniques of machine learning make their impact negligible.

For the two proposed approaches presented in this article, we use
the CSECICIDS2018 dataset [49] for training and validation, and the
CICIDS2017 dataset [25] for testing. The terms validation set and test
set, are often used interchangeably to describe the same thing, a dataset
for improving a machine learning model. In the remainder of this
article, when we discuss validation sets, this means flows from the
same computer network as the training set. The CSECICIDS2018 dataset
will be split into two subsets: one is the training set, and the other
the validation set. When discussing test sets, this means flows from a
different computer network than the ones featured in the training and
validation sets, but that follow the same probability distribution. The
CICIDS2017 dataset will be used for this. Although the test dataset,
CICIDS2017, has fewer malicious flow types than the training and
validation set from CSECICIDS2018, all of the flow types in CICIDS2017
are present in CSECICIDS2018, and will thus not pose a problem as
regards using CICIDS2017 as a test set.

A simplified version of the computer networks used to simulate the
flows can be seen in Fig. 4. The CICIDS2017 network is on the left,
while the CSECICIDS2018 network is on the right. In both computer
networks, the benign data had multiple, different sources and destina-
tions. The attacks always targeted the victim network, and came from
a separate attack network. The IP addresses of the attack flows can be
seen in Fig. 4, below their respective networks.

4.3. Tuning presets

An important part of any deep learning model is to tune its settings
so that it is able to produce a useful result. To properly capture the
nuances of the two proposed approaches, and in an attempt to explore
which settings work well, we experiment with multiple, promising
presets. These will be used for comparison purposes, to show which
settings the models perform well on, and on which settings they come
up short. Six presets will be presented initially, with more later, each
with a reference name for easy lookup. The LBD-VAE will have its own
presets, detailed in 5.2.

The hyperparameters that will be used for tuning are:

• Optimizer learning rate (LR)
• KL-Loss multiplier (KLM)
• Number of training batches iterated (Steps)

The dataset transformations used for tuning are:

• Scaling technique (ST)

– No scaling (None)

Computer Networks 199 (2021) 108399E.M. Bårli et al.
Fig. 4. Simple example of the computer network setups used to generate the CICIDS2017 dataset (left), and the CSECICIDS2018 dataset (right). For the full network setup of the
CICIDS2017 dataset, see [52]. For the full network setup of the CSECICIDS2018 dataset, see [49].
– Min–Max normalization (N-18) or (N-18/17)8

– Logarithmic scaling (Log)

Other settings that will be used for tuning:

• Type of layers used for encoding and decoding (LT)

– Convolutional layers (Conv)
– Fully connected layers (Dense)

• Regularizing layer type (RLT)

– Batch normalization (Batch)

Unless noted otherwise, all training done with convolutional layers
will use a kernel size of 5 for each layer, a stride size of 2 for the first
layer, and a stride size of 1 for the other two layers. This means that
the 76 input features will be reduced to 38 abstract features in the first
convolutional layer of the encoder, 34 features in the second layer, and
30 features in the third layer and the latent layer.

4.3.1. Presets
All the above presets were tested in [54]. Preset 4 and Preset 6 were

retained as the most promising ones.

5. Analysis

The performance of the two proposed approaches is measured by
logging key features of the models, using Tensorboard plots and confu-
sion matrices. From Tensorboard, the graphs are plotted every 50 steps,
where one step represents one batch (1 024) of flows being fed through
a model. Graphs are plotted for the training dataset, the validation set,
and the test set. The plotted graphs show the prediction accuracy, P-
Loss, KL-Loss, R-Loss,9 and total loss mean values, as they develop over
time during training, validation, and testing. The prediction accuracy

8 Normalization uses sampled min and max values from the used datasets.
A notation of (N-18) means the values are sampled from CSECICIDS2018,
while a notation of (N-18/17) means the values are sampled from both
CSECICIDS2018 and CICIDS2017.

9 As discussed in Section 3.2
11
mean values represent the mean accuracy of each batch. In our dataset,
there is an overweight of benign traffic in the datasets used, which will
influence the overall accuracy score by giving more weight to benign
accuracy. With this in mind, we will only use the mean accuracy score
for development and performance improvement, and not as a metric to
show model results. As an alternative, we can also use fewer benign
flows, or only draw a certain percentage of each traffic type, from
the datasets. To determine how well each model performs on different
tuning settings, we will use confusion matrices to show the overall
benign versus malicious flow traffic accuracy, as well as the accuracy
within individual attack classes, separated and unaffected by the other
flow accuracy scores.

5.1. LLC-VAE results

The first approach that will be analyzed is the LLC-VAE. We have
trained the model using the settings defined by the presets from 4,
Experimental setup, defined in Table 4 as reported in [54]. For all
training runs, we will use the CSECICIDS2018 dataset, with a 60–40
split between the training set and validation set, respectively, unless
noted otherwise. To prevent learning bias, the training set has been
modified to contain an equal amount of benign and malicious flows.
For the test set, we will use the whole CICIDS2017 dataset.

5.1.1. Further adjustments
In the following subsections, we will present further adjustments to

the two most promising presets, Preset 4 4 and Preset 6 4f. Compared
with the other presets, Preset 4 and Preset 6 had the best test results
overall, and achieved much higher test accuracy, as reported in [54].
We use test accuracy as the deciding factor for choosing to build on
these presets, because it is the best metric to show how well the LLC-
VAE generalizes. Further adjustments will be made to examine how the
LLC-VAE can be further improved, and to determine whether it can be
considered as a method for creating a mitigation system.

LIME. In addition to the feature selection carried out by the convo-
lutional layers, and the selection through dimensionality reduction by
the encoder of the LLC-VAE model, we can manually select which input
features the model should learn from. Using LIME [55], we can analyze
how the presets weighted each feature, to find out which ones had

Computer Networks 199 (2021) 108399E.M. Bårli et al.
Table 4
All presets parameters. The parameters that change between presets have been highlighted in gray. Preset 6
(in bold) only uses P-Loss to improve, which means that it is not a VAE, just a simple convolutional neural
network that performs dimensionality reduction.
.

Table 5
Top 40 features remaining after using LIME on the LLC-VAE with Preset 4 4d. The
features are ordered from most to least impactful, from top to bottom and left to right

Column 1 Column 2 Column 3 Column 4

Bwd IAT Std Bwd Pkt Len Mean Fwd Header Len Fwd IAT Tot
Pkt Len Mean Bwd Pkt Len Max Pkt Len Std Bwd Pkt Len Min
Fwd IAT Max Active Min Fwd Pkt Len Max Bwd IAT Tot
Bwd IAT Min Idle Max TotLen Fwd Pkts Flow IAT Max
Dst Port Flow Duration Subflow Fwd Byts Bwd Header Len
Init Bwd Win Byts Bwd Pkt Len Std Flow IAT Min Subflow Fwd Pkts
Pkt Size Avg Fwd IAT Std Fwd IAT Mean Active Std
Pkt Len Max Bwd IAT Mean Flow IAT Mean TotLen Bwd Pkts
Idle Mean Pkt Len Var Fwd Seg Size Avg Idle Min
Init Fwd Win Byts Bwd IAT Max Fwd IAT Min Pkt Len Min

the largest, and which ones had the smallest impact on the learning
process. LIME shows how much impact each input feature from a
flow had on a prediction. An example of how LIME visualizes the
prediction probabilities for a single flow is shown in Fig. 5. The flow
from the example figure has been predicted to be a DoS Hulk attack,
with a probability of 62%. On the right-hand side, we see the six most
impactful input features ordered from most to least impact. Features on
the side named ‘‘Not DoS Hulk’’ weigh against this particular flow being
predicted to be a DoS Hulk attack, and vice versa for the opposite side
named ‘‘DoS Hulk’’. The number next to each feature name represents
how much they are weighted by the model, rounded off to the closest,
second decimal point. We can use LIME to understand how the LLC-VAE
classifies flows, as well as for manual feature removal, to ensure better
generalization.

To find out which input features were the most influential on the
LLC-VAE training process, we ran LIME on the model after it had been
trained using Preset 4, with the same training and validation datasets
that were used previously. Running LIME is a time-consuming process,
so we have shortened the process by using a sample size of 50 000
flows. This produced a list of the most impactful features, sorted in
order.

Results after feature selection with LIME. To test whether manual feature
selection is constructive for the LLC-VAE model performance, we tried
to remove the least impactful features, only keeping the top 40, as
seen in Table 5. By removing the least impactful features, we allow the
model to give more emphasis to the remaining features. This could help
prevent overfitting, since the model no longer tries to learn from less
important data. Another method would be to select individual features
if they are deemed to be potential causes of overfitting. This would be
much more time-consuming, and will not be done for this article.

The confusion matrices from Fig. 6, and Fig. 7, shows the test results
12

of Preset 4 and Preset 6, respectively, before performing manual feature
selection using LIME.10 Preset 6 showed slightly better benign accuracy
than Preset 4, but both models had trouble classifying the malicious
traffic flows. Preset 4 was particularly poor at classifying the attack
DoS SlowHTTPTest, while Preset 6 was mostly unable to classify the
attacks DoS Slowloris and DoS SlowHTTPTest. Recall Table 3,
showing the number of flows for each flow type from the training
dataset, CSECICIDS2018. DoS Slowloris had relatively few samples
compared to the other attack types, which could explain why the convo-
lutional network, using Preset 6, was unable to generalize well enough
to correctly classify this attack. The attack DoS SlowHTTPTest had
relatively many flow samples in the training set, but the LLC-VAE and
the convolutional network were still unable to generalize well, using
Presets 4 and 6, respectively. This conceptualizes the idea that the
attack DoS SlowHTTPTest is too similar to benign traffic flows for
the LLC-VAE and the convolutional network, using Presets 4 and 6, to
classify it correctly.

After having used LIME to find the least impactful features, we kept
the top 40 most impactful features, as seen in Table 5, and ran more
tests on variations of Preset 4 and Preset 6, as seen in Table 6. Since
differentiating between individual attack classes seemed to be difficult
for the LLC-VAE to handle, we decided to compress them into one
class named malicious, and instead perform binary classification.
In addition, we also changed the latent layer size, by changing the
convolutional layers. For Preset 4 and Preset 6, the kernel size was 5
for each layer, and the first layer had a stride size of 2, as described
in 4.3. The kernel size remains the same for these tests, at a size of 5,
but now each of the layers has a stride size of 1. Hence, the top 40
input features, 5, will be reduced to 28 abstract features in the latent
layer, through dimensionality reduction. The confusion matrix for the
test results for Preset 4a 6a can be seen in Fig. 8, while the test results
for Preset 6a 6b can be seen in Fig. 9. From both figures, we can see that
the benign accuracy has decreased by about 2%, but that the malicious
accuracy has increased dramatically. As discussed previously, Preset 6,
and inherently 6a, is a simple, reducing convolutional network that is
used for baseline comparison with the LLC-VAE performance. The LLC-
VAE performed less than 1% worse in terms of benign accuracy, but
almost 5% better in terms of malicious accuracy. Overall, the LLC-VAE
performed better in this test, but could still be improved with some fine
tuning.

When we trained the six presets [54], reducing the KL-Loss mul-
tiplier showed some improvement in overall model performance. We

10 Note that, at the bottom of the confusion matrices, there are no LOIC-UDP
or HOIC-HTTP attacks. This is because the test dataset contains no samples of
those attack types.

Computer Networks 199 (2021) 108399E.M. Bårli et al.
Table 6
Modified Preset 4 4d and Preset 6 4e. The parameters are as follows; Preset is the base preset, CT is
short for classification type, Features specifies the number of input features, KS is short for kernel size.
Stride specifies the stride size in the format 𝑖1 − 𝑖2 − 𝑖3, where 𝑖 is the size of the first, second, and third
layer, respectively.
Fig. 5. LIME example figure for a single flow. Result achieved by running LIME on the LLC-VAE using Preset 4 4d.
Fig. 6. Confusion matrix of test dataset for preset 4.

tried to reduce it even further using Preset 4b 7a, changing the multi-
plier to 1 ⋅ 10−6 and the number of steps to 50 000. The result of this
can be seen in Fig. 10. The benign accuracy was mostly the same as
when using a KL-Loss multiplier of 1 ⋅ 10−4, but the malicious accuracy
increased by more than 3%, compared to the results of Preset 4a 8.
Further reducing the KL-Loss multiplier caused the LLC-VAE model
performance to degrade, indicating that a multiplier of 1 ⋅ 10−6 will
provide the best results.

Adjusting receptive field. The tuning presets that were used to train the
LLC-VAE worked as a way of trying different methods to improve the
model, as well as to see which settings worked, and which did not. Both
Preset 4a 6a and Preset 6a 6b used convolutional layers for the encoder
and decoder. Within convolutional layers, it is possible to adjust the
13
Fig. 7. Confusion matrix of test dataset for preset 6.

kernel size and the stride size of the sliding window, as discussed in
Section 3.2. We can thereby adjust the effective size of the receptive
field of the latent layer to make it learn an abstraction of the relations
between a larger or smaller number of features in the input layer.

All of the six original presets 4 use a kernel size of 5, where the
first layer has a stride size of 2, which leads the latent layer to have an
effective receptive field size of 21. This means that each latent layer
node is able to learn relations between 21 adjacent input features.
In order for each node in the latent layer to learn from the relations
between all the original 76 input features, as seen in Table 1, the kernel
size of each layer needs to be set to 13, and the first two layers need to
have a stride size of 2. A figure showing how the theoretical receptive
field increases in this case can be seen in 11.

Computer Networks 199 (2021) 108399E.M. Bårli et al.
Fig. 8. Confusion matrix of the test results on preset 4a.
Fig. 9. Confusion matrix of the test results on preset 6a.
Fig. 10. Confusion matrix of the test results on preset 4b, after adjusting the KL-Loss
multiplier from 1 ⋅ 10−4 to 1 ⋅ 10−6.

Thus far, the best results have been achieved after training the
model on Preset 4b 7a with a KL-Loss multiplier of 1 ⋅ 10−6, as seen in
Fig. 10, with the reduced input feature set from Table 5. To achieve
an effective receptive field size that covers all the 40 features from
the reduced input feature set, we adjusted the kernel size of the
convolutional layers to 7, and the first and second layer to have a stride
size of 2, as seen in Preset 4c 7b. This gives the latent layer nodes a
theoretical receptive field size that covers 43 features. In Fig. 12(a),
we see the accuracy plot of the LLC-VAE performance using Preset 4b
on the validation set. In Fig. 12(b), we see the accuracy plot of the
LLC-VAE performance using Preset 4c on the same set. We can see
from Fig. 12 that increasing the receptive field size did not improve
the validation accuracy, but rather degraded it. The model converged
to a solution at about step 130 000.
14
Fig. 11. Example figure of the receptive field size for a model using three layers, a
kernel size of 13, and the first two layers having a stride size of 2.

Other changes. To better understand what works well and what does
not for the LLC-VAE, we have tried further fine tuning of the model
based on Preset 4, and with the improvements done with LIME and the
modifications on the convolutional layers. We have tried to adjust the
KL-Loss multiplier, and ended up with a multiplier of 1 ⋅ 10−6, as seen
in Preset 4b 7a, to achieve the best performance. Adjusting the P-Loss
or R-Loss multipliers showed no improvement. Further adjustments of
the convolutional layers showed that the optimal settings for the kernel
sizes were 5 with a stride size of 1 for all layers, leading to a latent layer
size of 28. Both larger and smaller latent layer sizes produced poorer
end results, even though larger latent layer sizes caused the model to
converge faster.

Computer Networks 199 (2021) 108399E.M. Bårli et al.

m
s
e
t
t
o
m
s
t
a

s
s
a
B
s
f
I
W
w
s
4
d
w
i
p
i
b

5

t
w
t

t
s
t
s
t
a

5

c
t
u

Fig. 12. Comparison of the validation accuracy when using two different receptive field sizes with the LLC-VAE on Presets 4b and 4c.
Earlier, when discussing the datasets, we saw that some of the
alicious traffic flows from the training set CSECICIDS2018 had few

amples, see Section 4.2. The attacks DoS Slowloris, DoS Gold-
neye, and DDoS LOIC-UDP had relatively few samples compared to

he other attack classes. To test whether this had a negative impact on
he training process, we removed them for a training run. Contrary to
ur initial belief, removing these attacks from the training set decreased
odel accuracy. The training and validation accuracy remained the

ame as before, but the test accuracy decreased. This could point to
he model generalizing better when subjected to a variety of different
ttack types with few samples.

The features that were removed after using LIME included the
ource IP and destination IP addresses. It is common for mitigation
ystems, when determining whether a network packet or flow is an
ttack or not, to analyze the source and destination IP addresses.
y doing so, a mitigation system can determine the intent of the
ource by connecting their IP address to their behavior and traffic
requency. The LLC-VAE performed better, however, after removing the
P addresses, improving overall model performance for the test dataset.

e performed a training run on the settings used with Preset 4 4d,
here we removed the IP address input features, and got the test results

een in Fig. 13(b). Fig. 13(a) shows the confusion matrix for Preset
when performing binary classification, which used the IP addresses

uring training. The benign detection accuracy decreased by about 1%
hen the IP addresses were removed. The malicious detection accuracy

ncreased by about 16%, which is a significant leap in overall model
erformance. This points to the LLC-VAE overfitting on the IP address
nput features, learning specific IP addresses instead of the relationships
etween the IP addresses and the other input features.

.2. LBD-VAE results

The second approach, LBD-VAE, will use similar tuning settings to
he first approach. The presets will not be used directly, but variations
ill be tested, based on the findings concerning what worked well for

he LLC-VAE. These new settings can be seen in Table 8.
The LBD-VAE consists of two different models that need to be

rained in order, where the first model is trained in isolation from the
econd one, as seen in Fig. 3. As previously, all training runs will use
he CSECICIDS2018 dataset with a 60–40 split between the training
et and the validation set, respectively. To prevent learning bias, the
raining set has been modified to contain an equal amount of benign
nd malicious flows.

.3. Comparison of results

Convolutional neural networks (CNNs) have proven extremely suc-
essful in various contexts and, in this paper, we have therefore chosen
o compare our approach to CNNs. In our proposed methods, we
se convolutional encoding and decoding layers in the variational
15
autoencoders, and by comparing them to a pure CNN we try to de-
tect whether the variational autoencoders actually make a difference.
A CNN performs dimensionality reduction and can act as a simple
baseline that can be compared to the data reduction capabilities of
variational autoencoders.

At the currently best settings, using Preset 4b 7a, the LLC-VAE
achieved a benign accuracy of 99.59% and a malicious accuracy of
99.98% on the validation set,11 as seen in Fig. 14(a). This means that,
based on the validation set, 4 out of every 1000 legitimate flows, and
the corresponding source IP addresses, would be blocked. At the same
time, only 2 out of every 10 000 malicious flows would be let through
the LLC-VAE. The LBD-VAE prioritized benign accuracy, which is better
than prioritizing malicious accuracy. However, the overall accuracy, as
seen in 14(b), was much lower than the accuracy of the LLC-VAE.

Compared with the simple convolutional neural network, the LLC-
VAE performed better overall on the test set. The best test results for
the LLC-VAE were achieved using Preset 4b 7a, as can be seen in
Fig. 15(a). The best test results for the simple convolutional network
were achieved using Preset 6a 6b, as can be seen in Fig. 15(b). The
LLC-VAE had less than 1% poorer benign accuracy, but substantially
increased malicious accuracy, at about 7.5% higher. For both models,
the validation accuracy was significantly higher, but, ultimately, the
test accuracy gives a better understanding of how the models would
perform in general, since the test set comes from a different com-
puter network. Hence, there are fewer similarities that could cause
overfitting, as the datasets are internally correlated to a large degree.

Using the LLC-VAE as a part of a mitigation system is reasonable,
even though 3 of every 100 benign flows would be blocked. However,
relying solely on the detection capabilities of the LLC-VAE would not
be a good solution. Instead, it should be incorporated as a part of a
larger mitigation system.

5.3.1. Flow processing time
After fully training the LLC-VAE on the best preset, Preset 4b 7a,

we measured the speed of the model. The LLC-VAE was estimated to be
able to process one batch in about 10.8 ms ± 0.3 ms, where one batch
contains 1024 flows. That is between 90 and 95 batches per second,
which translates to about 92 000 to 97 000 traffic flows per second.
These measurements are only from the LLC-VAE, and do not include the
time taken for data transformations. Furthermore, the model has not
been optimized for speed either. If this approach were to be added as a
part of a full mitigation system, the overall flow processing time would
be expected to increase, so these measurements only give an indication
of what to expect from the LLC-VAE.

11 We use validation set here for comparison between the LLC-VAE and the
LBD-VAE, since we did not do any test runs using the LBD-VAE because of
poor training performance.

Computer Networks 199 (2021) 108399E.M. Bårli et al.
Fig. 13. Comparison of test results of Preset 4, with and without IP addresses.
Table 7
Two modifications on Preset 4a 6a. As before, KLM is short for KL-Loss multiplier.
Table 8
Settings for the LBD-VAE Model. Steps 1 is the number of iterations for ‘‘model 1’’, while Steps 2 is the
number of iterations for ‘‘model 2’’.
5.4. Comparison with related works

As mentioned in the Related Works section, quite a few studies have
used the CICIDS datasets. However, there are a few obstacles when
trying to compare these results directly to the results in this paper.
Most of the studies report aggregated results for all the attacks in the
datasets, not only DoS and DDoS attacks, as in this work. In addition, in
order to make the testing phase as realistic as possible, we have trained
and validated the models using the CICIDS2017 [25] dataset and tested
them using the CSECICIDS2018 [49] dataset. This approach is different
from the approach taken in other studies. Nevertheless, in Table 9 we
show some results from related works that make the interpretation
16
of our results more transparent. The result shown in the first row of
the table is for the Deep Belief Network (DBN) model proposed by
Manimurugan et al. [56], which is reported to perform better than the
results of the more conventional models seen in the next four rows. The
Partial model in the last row is a Partial Decision Tree approach that
reports a very high accuracy [57].

The overall accuracy of our LLC-VAE model, corresponding to the
confusion matrix in Fig. 15(a), is 94.85%. It performs similarly to
the other neural networks, but, again, it should be noted that the
testing phase was conducted using another dataset. When comparing
the results of the LLC-VAE model to the CNN model that was exposed to
exactly the same datasets, the accuracy of the CNN model was 91.60%,
corresponding to the confusion matrix in Fig. 15(b).

Computer Networks 199 (2021) 108399E.M. Bårli et al.
Fig. 14. Validation accuracy comparison.
Fig. 15. Test accuracy comparison.
Table 9
Model accuracy reported by studies focusing on the DoS and DDos parts of the CICIDS
2017 dataset.

Model Accuracy (%)

DBN [56] 96.67
SVM [56] 95.55
RNN [56] 94.40
SNN [56] 93.30
FNN [56] 92.25
Partial [57] 99.97

6. Conclusion

This article has presented two different approaches to DoS and
DDoS mitigation using deep learning. Both approaches build on the
framework of a Variational Autoencoder, using pre-generated datasets
to classify different types of computer network traffic. These datasets
provide the two approaches with input features from network traffic
flows, allowing them to learn to filter normal and malicious traffic.

The first approach, LLC-VAE, is a latent layer classification network
that utilizes the latent layer encodings of a Variational Autoencoder.
The LLC-VAE showed clear signs of overfitting to the training dataset in
the beginning, but the generalization capabilities have been greatly im-
proved through various tunings. Improved generalization has in large
part been achieved by adjusting the KL-Loss weight, manual feature
selection, and tuning of the convolutional layers.

The performance of the LLC-VAE has been tested on two different
datasets, split into a training set, a validation set, and a test set. The
training and validation sets contain data that are internally correlated;
hence we use the test set to record model results. When we compared
17
the LLC-VAE performance to a simple convolutional network of a simi-
lar structure, the LLC-VAE was better overall at generalizing, achieving
better results on the test set. At the core of the VAE is the KL-Loss
value, which regulates the latent layers. Lowering the KL-Loss weight
improved overall model performance. When the weight was reduced
past a certain point, however, the overall performance of the LLC-
VAE declined. This means that using a Variational Autoencoder over a
standard autoencoder had a positive impact on the ability of the model
to classify normal and malicious traffic flows.

The second approach, LBD-VAE, relies on the VAE to separate
normal and malicious traffic flows into two different probability dis-
tributions. A Loss Based Detector is applied to the reconstruction loss,
classifying traffic flows using a linear classification layer. The VAE is
trained exclusively on normal traffic, while the LBD is trained on a
combination of normal and malicious traffic. Since the VAE is only
trained using normal traffic, the LBD-VAE is theoretically capable of
classifying DoS and DDoS attack types not seen during training. This is
because malicious flows would not fit into the probability distribution
of the normal flows. The results from the training runs using the LBD-
VAE showed that it is currently unsuitable for use as a part of a
mitigation system. The VAE had difficulty separating the two proba-
bility distributions, and the classifier therefore achieved unsatisfactory
results. Still, if the LBD-VAE were to be further tuned, it has the
potential to become a viable mitigation method.

This article has proven that deep learning-based techniques can be
effective at countering DoS and DDoS attacks. The second approach,
LBD-VAE, does not currently perform well enough to be used as a mit-
igation system, but it is theoretically promising. More research should
be conducted to explore other possibilities. The best test results overall
were achieved by the LLC-VAE, which was able to classify benign and
malicious traffic at upwards of 97% and 93% accuracy, respectively,

Computer Networks 199 (2021) 108399E.M. Bårli et al.

𝑝

a
m
e
w
u
t
o
a
d
r
t
l
a
d
a
i
t
a
w
i
t

a
o
a
h
i
o

e

A

c
l
i
f
l
l
i
a
t
i
t
t
c
s

w
d
𝑔
s
t
s
𝛺
t
a
w

𝛺

a

d
o
t
d
i
𝐻
d
b
s
d
f
o

on simulated data in the generalized case. The LLC-VAE has proven to
be capable of competing with traditional mitigation methods, but will
need further tuning to ensure even better performance.

CRediT authorship contribution statement

Eirik Molde Bårli: Conceptualization, Methodology, Software,
Writing, Visualization, Validation, Resources. Anis Yazidi: Method-
ology, Writing, Investigation. Enrique Herrera Viedma: Writing –
review & editing, Validation. Hårek Haugerud: Conceptualization,
Methodology, Writing, Project administration, Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix. Autoencoders

An autoencoder is a deep learning framework that utilizes an NN
framework to perform a variety of different tasks, primarily for unsu-
pervised learning, where the backpropagation target values are set to be
equal to the input. Variations of an autoencoder allow for classification,
anomaly detection, and generative tasks, among other uses. Autoen-
coders are feedforward networks, meaning that the representative ANN
is a directed acyclic graph, and that they use backpropagation for
training. The composition of an autoencoder always features at least
two parts, an encoder and a decoder. The encoder encodes the input 𝑥
to a hidden layer ℎ, selecting which dimensions to learn from with the
function ℎ = 𝑓 (𝑥). The decoder tries to make a reconstruction, 𝑟, of the
input from the hidden layer, with the function 𝑟 = 𝑔(ℎ). The concept
of autoencoders have been around for over a decade, with one exam-
ple, from Bourland and Kamp, dating back to 1988[58]. Historically
the hidden layer mapping has been deterministic, but more modern
solutions use stochastic mapping, with the functions 𝑝𝑒𝑛𝑐𝑜𝑑𝑒𝑟(ℎ|𝑥) and
𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑥|ℎ)[41, p. 499].

The reconstruction of the hidden layer is not a perfect replication,
nd nor should it be, and it is recipient to noise. For an autoencoder
odel to be useful, it needs to generalize over training data to avoid

nding up with a model that performs poorly on foreign data, as we
ill see later in Section 5, Analysis. One of the major advantages of
sing this kind of model is its capability to determine which parts of
he input are important, by forcing it to learn the useful properties
f the data it is given during training. In a way, when using an
utoencoder, we are often more interested in the encodings of the
ata and the latent layer representations than we are in the actual
econstruction of the decoder. A good autoencoder is one that is able
o properly select which dimensions of the input to use in the hidden
ayer, and to what degree. This enables the decoder to produce a good
pproximation on as few dimensions as possible. Two main methods for
imension selection are used in autoencoders: dimensionality reduction
nd regularization. Dimensionality reduction is when each hidden layer
n the model contains fewer nodes than the preceding layer. This forces
he model to select the most important features from the previous layer,
nd discard the least important ones. Regularization selects the nodes
ith the greatest positive impact on the model’s result, and lessens the

mpact of the other nodes. There are multiple, different regularization
echniques, some of which will be discussed in the following sections.

The imperfect reconstruction of the input data can be both an
dvantage and a disadvantage in machine learning. Autoencoders, like
ther machine learning algorithms, must be applied to problems they
re fit to solve. Reconstructing the input is only possible if the model
as seen similar data during training. If an autoencoder is only given
mages of cats during training, it will not be able recognize images
18

f, e.g., birds. For this article, this means that the model will not be
able to classify a DDoS or DoS attack if we only train it on normal
data. However, because of this precise property, an autoencoder could
be used as an anomaly detector, essentially differentiating the two
classes by only recognizing normal data, and being unable to recognize
anomalies.

Algorithm 1: A simple autoencoder

for each input 𝑥 do
Feedforward 𝑥 and compute activations for each layer;
Sample the hidden layer 𝑧;
Obtain output 𝑦;
Measure deviation of 𝑦 from 𝑥;
Backpropagate to update weights and node values;

nd

.1. Sparse autoencoder

A sparse autoencoder (SAE) is a regularized variation of an autoen-
oder with potentially more nodes in the hidden layer than in the input
ayer. This means that, to extract useful features to learn from in the
nput layer, the SAE appends a regularizing function to the normal loss
unction of an autoencoder [59][41, p. 502]. Because of this, the hidden
ayer only has a few select nodes active at a time, forcing the SAE to
earn the most useful properties of the input. Furthermore, each type of
nput activates different nodes in the hidden layer. There is normally
n overlap between properties of, for example, network packets. Hence
hey will often activate some of the same nodes, but the point of an SAE
s to only activate the relevant nodes in the hidden layer, customized
o those types of input. This is called the sparsity constraint. In theory,
his means that the total amount of active nodes in the hidden layer
ould be as large as the different properties of the input, leading to
ome SAEs having larger hidden layers than input.

The loss function of an autoencoder can be described as 𝐿(𝑥, 𝑔(𝑓 (𝑥))),
here 𝑓 is an encoder and 𝑔 is a decoder. The goal is to minimize the
ifference between the input and the output. This is done by penalizing
(𝑓 (𝑥)) for being dissimilar from input x. A sparse autoencoder adds a
parsity penalty to the loss function, which is commonly done in one of
wo ways. One way is to use L1 regularization, also called Lasso Regres-
ion,12 which ends up looking like this: 𝐿(𝑥, 𝑔(𝑓 (𝑥))) + 𝛺(𝑓 (𝑥)), where
(𝑓 (𝑥)) is the regularization term. Note that regularized networks

ypically regularize the weights that connect the nodes. However, SAEs
pply regularization to the activations of the nodes. The term 𝛺(𝑓 (𝑥)),
here 𝑓 (𝑥) is the hidden layer ℎ, can be simplified as

(ℎ) = 𝜆
∑

𝑖
|ℎ𝑖|

Here 𝜆 is a hyperparameter, and the following formula is the
bsolute sum of all activations of the nodes 𝑖 in the hidden layer.

Another way to apply a sparsity penalty is by using Kullback–Leibler
ivergence, or KL-Divergence for short. KL-divergence is a measure
f the divergence between two probability distributions. It is used
o measure their similarities or dissimilarities. Given the probability
istributions 𝑝 and 𝑞, KL-divergence is a measure of how well 𝑞 approx-
mates 𝑝, by calculating the cross-entropy 𝐻(𝑝, 𝑞) minus the entropy
(𝑝), to get the KL-term 𝐷𝐾𝐿(𝑝 ∥ 𝑞) = 𝐻(𝑝, 𝑞) − 𝐻(𝑝). The KL-

ivergence is a central part of the Variational Autoencoder, which will
e explained in detail in Appendix A.3. Niyaz et al. proposed using a
tacked sparse autoencoder in order to detect DDoS attacks in software-
efined networking (SDN) [22]. In their paper, they use KL-divergence
or their sparse autoencoders to put a constraint on the hidden layer in
rder to maintain low average activation values. They also present a

12 From statistics. Lasso Regression shrinks the coefficient of less important
features, reducing their impact.

Computer Networks 199 (2021) 108399E.M. Bårli et al.
Fig. 16. A VAE with fully connected layers. Each vertical line of nodes represents one layer. The latent mean and latent variance layers are two separate layers, which the layer
z samples from. All nodes in a layer have weights connected to the nodes in the adjacent layer, like seen in the first two encoding layers. (For simplification, only some of the
weights are drawn in this figure).
Fig. 17. Diamond shapes represent deterministic dependencies, and oval shapes represent random variables.
method for layering the sparse autoencoders to use as a classifier. The
sparsity penalty term can be written as

𝛽
𝑁
∑

𝑗=1
𝐾𝐿(𝑝 ∥ �̂�𝑗)

where 𝛽 is a hyperparameter to adjust the sparsity penalty term, �̂�𝑗 is
the average activation value of a hidden node 𝑗 over all the training
inputs, and 𝑝 is a Bernoulli random variable13 that represents the ideal
value distribution. The KL-loss is at a minimum when 𝑝 = �̂�𝑗 .

A.2. Denoising autoencoders

The principle of a denoising autoencoder (DAE) is simple. As ex-
plained earlier, an autoencoder aims to optimize the loss function by
minimizing the difference between the input and the reconstructed
output. A DAE is regularized and can be overcomplete, meaning that
it uses regularization to extract useful features. Unlike an SAE, a DAE
does not apply a penalty to the loss function, but instead changes
the reconstruction error term. The loss function is changed from the
vanilla version 𝐿(𝑥, 𝑔(𝑓 (𝑥))) to 𝐿(𝑥, 𝑔(𝑓 (�̃�))), trying to optimize on 𝑓 (�̃�)
instead of 𝑓 (𝑥), where �̃� is a corruption of the input. The output is then
compared to the uncorrupted input. DAEs only differ in a minor way
from vanilla autoencoders. By adding noise to the input data, a DAE is
forced to learn the most prominent features to be able to reconstruct
the original input, essentially learning to remove the noise.

13 From statistics, a Bernoulli distribution is the discrete probability
distribution of a random variable with Boolean values.
19
A DAE is generally used to create outputs free of noise. If applied
to images, it is possible to reconstruct missing parts; for example, if
there is lens-flare covering part of the image, the DAE could provide
a copy of the image without the flare. A DAE could also be used to
restore missing or hard to read letters and words in a text, or unclear
sound could be repaired to make it sound cleaner. Vincent et al. [60]
presented a simple stacked DAE and tested it on a variety of different
datasets, including the MNIST image dataset [61]. What they showed us
is that, by using a denoising criterion, we can learn useful higher level
representations of the input data. In the paper by Vincent et al. [60], the
input is corrupted with simple generic corruption processes, and they
mainly perform tests on image and audio samples. A denoising criterion
could be useful to help the learning process of an autoencoder to
perform DDoS and DoS classification based on the output loss function.

A.3. Variational autoencoder

The Variational Autoencoder (VAE) introduced by Kingma and
Welling [21] is a generative model that uses the same encoding as a
normal autoencoder, the difference being in how the latent variables
are handled. It is based on variational Bayes,14 which is an analytical
approximation of the intractable posterior distribution of the latent
variables. It is used to derive a lower bound for the marginal likelihood
of the observed data. The VAE presents a change to variational Bayes,
by reparameterization of the variational lower bound, which is called
the Stochastic Gradient Variational Bayes (SGVB) estimator. Since the

14 Bayes here refers to Bayesian inference. Variational Bayes methods are
used to approximate intractable integrals arising from Bayesian inference.

Computer Networks 199 (2021) 108399E.M. Bårli et al.

t
s

𝜇

a

VAE is a generative model, its primary strength lies in how well it
can create new outputs based on features learned from training. In
addition, it is possible to extend a VAE to use it for data classification.
An example of this can be seen in the VAE of Y. Pu et al. [62],
which used convolutional layers of the encoder and decoder to perform
semi-supervised learning on image datasets.

The main difference between a traditional autoencoder and a VAE
is how they use the layer between the encoder and the decoder,
commonly referred to as the latent layer. An autoencoder uses the latent
variables directly and decodes them to enable comparison between the
input and output. A VAE will instead encode into two vectors of size 𝑛,
the vector of means 𝜇, and the vector standard deviations 𝜎. A sampled
vector is created from a collection of elements 𝑧𝑖 that is assumed to
follow a Gaussian distribution,15 where each element 𝑖 comes from the
𝑖th element in 𝜇 and 𝜎. Thus, we can write each element in the sampled
vector as 𝑧𝑖 ∼ (𝜇𝑖, 𝜎2𝑖).

16 (See Fig. 16.)

A.3.1. VAE in detail
Let 𝑧 be a latent representation of the unobserved variables, and 𝑔(𝑧)

a differentiable generator network. 𝑥 is sampled from a distribution
𝑝(𝑥; 𝑔(𝑧)), which can be written as 𝑝(𝑥|𝑧). Here 𝑝(𝑥|𝑧) represents a
probabilistic decoder presenting a distribution over the possible val-
ues of 𝑥 given 𝑧. When using the probabilistic decoder, we get an
observation 𝑥 from the hidden variable 𝑧. However, what we want
is to infer the characteristics of 𝑧; thus, we need 𝑝(𝑧|𝑥) and the inte-
gral marginal likelihood 𝑝(𝑥). The problem is that 𝑝(𝑥) is intractable,
which means that we cannot evaluate or differentiate the marginal
likelihood17. The solution to this is to create an approximation of
the true posterior with another distribution 𝑞(𝑧|𝑥), which will be the
recognition model, a probabilistic encoder. We can use KL-divergence
to measure the difference between these two probability distributions,
as discussed earlier in Appendix A.1. The goal is to minimize the
difference in order for the two distributions to be as similar as possible.
We then get min𝐾𝐿(𝑞(𝑧|𝑥) ∥ 𝑝(𝑧|𝑥)). This can be used to maximize
the lower bound (𝑞) of the marginal likelihood of the observed data,
so that we get (𝑞) = 𝐸𝑧∼𝑞(𝑧|𝑥) 𝑙𝑜𝑔 𝑝(𝑥|𝑧) − 𝐷𝐾𝐿(𝑞(𝑧|𝑥)) ∥ 𝑝(𝑧)).
The first term 𝐸𝑧∼𝑞(𝑧|𝑥) 𝑙𝑜𝑔 𝑝(𝑥|𝑧) represents the reconstruction term,
while 𝐷𝐾𝐿(𝑞(𝑧|𝑥)) ∥ 𝑝(𝑧)) represents the Kullback–Leibler (KL) term. It
ensures that the approximate posterior q is similar to the true posterior
p.

A.3.2. Reparameterization trick
We have now seen the basic explanation of how a VAE works,

and the math behind it. To fix the problem of the integral marginal
likelihood 𝑝(𝑥), the ‘‘reparameterization trick’’ is introduced.

Since an autoencoder relies on an NN to forward data and backprop-
agate for training, we should not have a latent variable 𝑧 as a random
variable sampled from 𝑞(𝑧|𝑥). An NN generally displays poor perfor-
mance when performing backpropagation on random variables. This
would lead to the decoded output being too different from the input.
We know that the probabilistic encoder 𝑞(𝑧|𝑥) is Gaussian, because it
produces a distribution over the possible values of 𝑧 from a data point
𝑥. In other words, 𝑞(𝑧|𝑥) = (𝜇, 𝜎2). Now, let 𝜀 be an auxiliary noise
variable 𝜀 ∼ (0, 1). We can reparameterize the encoder 𝑞(𝑧|𝑥), so that
we get z= 𝜇 + 𝜎 ⋅ 𝜀, as seen on the right-hand side of Fig. 17.

15 A Gaussian distribution, also called a normal distribution, is a func-
ion that represents the distribution of a group of random variables as a
ymmetrical bell-shaped graph with the mean value at the center.
16 From statistics. It reads: ‘‘z drawn from a normal distribution with mean
and standard deviation 𝜎’’

17 For further details about this problem, see the original paper by Kingma
20

nd Welling [21].
References

[1] Inc. Cisco Systems, Cisco visual networking index: Forecast and trends,
2017–2022, 2019, https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-741490.html.

[2] Kaspersky Lab, Denial of service: How businesses evaluate the threat of ddos at-
tacks, 2015, https://media.kasperskycontenthub.com/wp-content/uploads/sites/
45/2018/03/08234158/IT_Risks_Survey_Report_Threat_of_DDoS_Attacks.pdf.

[3] Kaspersky Lab, Global it security risks survey, 2015, https://media.kaspersky.
com/en/business-security/it-security-risks-survey-2015.pdf.

[4] James Scott, Drew Spaniel, Rise of the machines: The dyn attack was just a
practice run, 2016.

[5] Giovane C.M. Moura, Cristian Hesselman, Gerald Schaapman, Nick Boerman,
Octavia de Weerdt, 2020 IEEE European Symposium on Security and Privacy
Workshops (EuroS & PW), 2020.

[6] Wencong You, Lei Jiao, Jun Li, Ruiting Zhou, Scheduling ddos cloud scrubbing in
isp networks via randomized online auctions, in: IEEE International Conference
on Computer Communications, INFOCOM, 2020.

[7] Wei Zhou, Weijia Jia, Sheng Wen, Yang Xiang, Wanlei Zhou, Detection and
defense of application-layer ddos attacks in backbone web traffic, Future Gener.
Comput. Syst. 38 (2014) 36–46.

[8] Madeleine Kongshavn, Hårek Haugerud, Anis Yazidi, Torleiv Maseng, Hugo
Hammer, Mitigating ddos using weight-based geographical clustering, Concurr.
Comput.: Pract. Exper. 32 (11) (2020) e5679.

[9] Markus Goldstein, Christoph Lampert, Matthias Reif, Armin Stahl, Thomas M.
Breuel, Bayes Optimal ddos mitigation by adaptive history-based ip filtering,
in: Seventh International Conference on Networking, ICN 2008, vol. 4, IEEE
Computer Society Press, 2008, pp. 174–179.

[10] Irom Lalit Meitei, Khundrakpam Johnson Singh, Tanmay De, Detection of ddos
dns amplification attack using classification algorithm, in: Proceedings of the
International Conference on Informatics and Analytics, 2016, pp. 1–6.

[11] Desta Haileselassie Hagos, Anis Yazidi, Øivind Kure, Paal E. Engelstad, Enhancing
security attacks analysis using regularized machine learning techniques, in: 2017
IEEE 31st International Conference on Advanced Information Networking and
Applications (AINA), IEEE, 2017, pp. 909–918.

[12] S.T. Zargar, J. Joshi, D. Tipper, A survey of defense mechanisms against
distributed denial of service (ddos) flooding attacks, IEEE Commun. Surv. Tutor.
15 (4) (2013) 2046–2069, Fourth.

[13] M. Goldstein, Bonesi ddos simulator, 2008, https://github.com/Markus-Go/
bonesi.

[14] Maheshkumar Sabhnani, Gursel Serpen, Why machine learning algorithms fail
in misuse detection on kdd intrusion detection data set, Intell. Data Anal. 8 (4)
(2004) 403–415.

[15] Gopal Singh Kushwah, Virender Ranga, Optimized extreme learning machine for
detecting ddos attacks in cloud computing, Comput. Secur. 105 (2021) 102260.

[16] Ilhan Firat Kilincer, Fatih Ertam, Abdulkadir Sengur, Machine learning methods
for cyber security intrusion detection: Datasets and comparative study, Comput.
Netw. 188 (2021) 107840.

[17] Maria. Rigaki, Sebastian Garcia, Bringing a gan to a knife-fight: Adapting
malware communication to avoid detection, in: 2018 IEEE Security and Privacy
Workshops (SPW), IEEE, 2018, pp. 70–75.

[18] Torgeir Fladby, Hårek Haugerud, Stefano Nichele, Kyrre Begnum, Anis Yazidi,
Evading a machine learning-based intrusion detection system through adversarial
perturbations, in: Proceedings of the International Conference on Research in
Adaptive and Convergent Systems, 2020, pp. 161–166.

[19] Gabriel C. Fernández, Shouhuai Xu, A case study on using deep learning for net-
work intrusion detection, in: MILCOM 2019-2019 IEEE Military Communications
Conference, MILCOM, IEEE, 2019, pp. 1–6.

[20] Pramuditha Perera, Vishal M. Patel, Learning deep features for one-class
classification, 2018, arXiv preprint arXiv:1801.05365.

[21] Diederik P. Kingma, Max Welling, Auto-encoding variational Bayes, 2013, arXiv
e-prints, arXiv:1312.6114.

[22] Quamar Niyaz, Weiqing Sun, Ahmad Y. Javaid, A deep learning based ddos
detection system in software-defined networking (sdn), 2016, arXiv preprint
arXiv:1611.07400.

[23] Abdurrahman Pektaş, Tankut Acarman, A deep learning method to detect
network intrusion through flow-based features, Int. J. Network Manage. (2018)
e2050.

[24] Benjamin J. Radford, Bartley D. Richardson, Shawn E. Davis, Sequence aggre-
gation rules for anomaly detection in computer network traffic, 2018, arXiv
e-prints, arXiv:1805.03735.

[25] Canadian Institute for Cybersecurity, Cicids2017 dataset download and
information, 2017, https://www.unb.ca/cic/datasets/ids-2017.html.

[26] Benjamin J. Radford, Leonardo M. Apolonio, Antonio J. Trias, Jim A. Simpson,
Network traffic anomaly detection using recurrent neural networks, 2018, arXiv
e-prints, arXiv:1803.10769.

[27] C.E. Shannon, A mathematical theory of communication, SIGMOBILE Mob.
Comput. Commun. Rev. 5 (1) (2001) 3–55.

[28] Sunny Behal, Krishan Kumar, Detection of ddos attacks and flash events using
information theory metrics–an empirical investigation, Comput. Commun. 103
(2017) 18–28.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://media.kasperskycontenthub.com/wp-content/uploads/sites/45/2018/03/08234158/IT_Risks_Survey_Report_Threat_of_DDoS_Attacks.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/45/2018/03/08234158/IT_Risks_Survey_Report_Threat_of_DDoS_Attacks.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/45/2018/03/08234158/IT_Risks_Survey_Report_Threat_of_DDoS_Attacks.pdf
https://media.kaspersky.com/en/business-security/it-security-risks-survey-2015.pdf
https://media.kaspersky.com/en/business-security/it-security-risks-survey-2015.pdf
https://media.kaspersky.com/en/business-security/it-security-risks-survey-2015.pdf
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb4
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb4
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb4
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb5
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb5
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb5
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb5
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb5
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb7
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb7
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb7
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb7
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb7
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb8
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb8
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb8
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb8
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb8
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb9
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb9
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb9
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb9
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb9
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb9
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb9
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb11
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb11
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb11
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb11
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb11
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb11
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb11
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb12
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb12
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb12
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb12
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb12
https://github.com/Markus-Go/bonesi
https://github.com/Markus-Go/bonesi
https://github.com/Markus-Go/bonesi
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb14
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb14
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb14
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb14
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb14
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb15
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb15
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb15
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb16
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb16
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb16
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb16
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb16
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb17
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb17
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb17
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb17
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb17
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb19
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb19
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb19
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb19
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb19
http://arxiv.org/abs/1801.05365
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1611.07400
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb23
http://arxiv.org/abs/1805.03735
https://www.unb.ca/cic/datasets/ids-2017.html
http://arxiv.org/abs/1803.10769
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb27
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb27
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb27
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb28
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb28
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb28
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb28
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb28

Computer Networks 199 (2021) 108399E.M. Bårli et al.
[29] George Nychis, Vyas Sekar, David G. Andersen, Hyong Kim, Hui Zhang, An
empirical evaluation of entropy-based traffic anomaly detection, in: Proceedings
of the 8th ACM SIGCOMM Conference on Internet Measurement, IMC ’08, ACM,
New York, NY, USA, 2008, pp. 151–156.

[30] Z. Tan, A. Jamdagni, X. He, P. Nanda, R.P. Liu, J. Hu, Detection of denial-of-
service attacks based on computer vision techniques, IEEE Trans. Comput. 64
(9) (2015) 2519–2533.

[31] Z. Tan, A. Jamdagni, X. He, P. Nanda, R.P. Liu, A system for denial-of-service
attack detection based on multivariate correlation analysis, IEEE Trans. Parallel
Distrib. Syst. 25 (2) (2014) 447–456.

[32] H. Ling, K. Okada, An efficient earth mover’s distance algorithm for robust
histogram comparison, IEEE Trans. Pattern Anal. Mach. Intell. 29 (5) (2007)
840–853.

[33] Irvine University of California, Kdd99 dataset download and information, 1999,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[34] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, Ali A. Ghorbani, Toward developing
a systematic approach to generate benchmark datasets for intrusion detection,
Comput. Secur. 31 (3) (2012) 357–374, Dataset download link: https://www.
unb.ca/cic/datasets/ids.html.

[35] Y. Xie, S. Yu, A large-scale hidden semi-markov model for anomaly detection on
user browsing behaviors, IEEE/ACM Trans. Netw. 17 (1) (2009) 54–65.

[36] Ili Ko, Desmond Chambers, Enda Barrett, Adaptable feature-selecting and
threshold-moving complete autoencoder for ddos flood attack mitigation, J.
Inform. Secur. Appl. 55 (2020) 102647.

[37] Ili Ko, Desmond Chambers, Enda Barrett, Recurrent autonomous autoencoder
for intelligent ddos attack mitigation within the isp domain, Int. J. Mach. Learn.
Cybern. (2021) 1–23.

[38] Jinyin Chen, Yi-tao Yang, Ke-ke Hu, Hai-bin Zheng, Zhen Wang, Dad-mcnn:
Ddos attack detection via multi-channel cnn, in: Proceedings of the 2019
11th International Conference on Machine Learning and Computing, 2019, pp.
484–488.

[39] David M. Blei, Alp Kucukelbir, Jon D. McAuliffe, Variational inference: A review
for statisticians, J. Amer. Statist. Assoc. 112 (518) (2017) 859–877.

[40] Carl Doersch, Tutorial on variational autoencoders, 2016, arXiv e-prints, arXiv:
1606.05908.

[41] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press,
2016, http://www.deeplearningbook.org.

[42] Diederik P. Kingma, Jimmy Ba, Adam: A method for stochastic optimization,
2014, arXiv e-prints, arXiv:1412.6980.

[43] Irie, Miyake, Capabilities of three-layered perceptrons, in: IEEE 1988
International Conference on Neural Networks, 1 (1988) 641–648.

[44] Steven W. Smith, The Scientist and Engineer’s Guide To Digital Signal Process-
ing, California Technical Publishing, San Diego, CA, USA, 1997, http://www.
dspguide.com/ch13/2.html.

[45] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus,
Yann LeCun, OverFeat: Integrated recognition, localization and detection using
convolutional networks, 2013, arXiv e-prints, arXiv:1312.6229.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning
for image recognition, in: The IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2016.

[47] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan
Salakhutdinov, Dropout: a simple way to prevent neural networks from
overfitting, J. Mach. Learn. Res. 15 (1) (2014) 1929–1958.

[48] Sergey Ioffe, Christian Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, 2015, arXiv e-prints, arXiv:1502.
03167.

[49] The Communications Security Establishment and the Canadian Institute for
Cybersecurity, Csecicids2018 dataset download and information, 2018, Dataset
information: https://www.unb.ca/cic/datasets/ids-2018.html, and download:
https://registry.opendata.aws/cse-cic-ids2018/.

[50] Samuel L. Smith, Pieter-Jan Kindermans, Quoc V. Le, Don’t decay the learning
rate, increase the batch size, 2017, CoRR, arXiv:abs/1711.00489.

[51] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
Ping Tak Peter Tang, On large-batch training for deep learning: Generalization
gap and sharp minima, 2016, CoRR, arXiv:abs/1609.04836.

[52] Iman Sharafaldin, Arash Habibi Lashkari, Ali Ghorbani, Toward generating a
new intrusion detection dataset and intrusion traffic characterization, 01 (2018)
108–116.

[53] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun,
Ali A. Ghorbani, Characterization of tor traffic using time based features, in:
ICISSP, 2017, pp. 253–262.

[54] Eirik Molde Bårli, Ddos and dos mitigation using a variational autoencoder
(Master’s thesis), 2019.

[55] Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin, Why should I trust you?:
Explaining the predictions of any classifier, 2016, Github Project Page: https:
//github.com/marcotcr/lime arXiv e-prints, arXiv:1602.04938.
21
[56] S. Manimurugan, Saad Al-Mutairi, Majed Mohammed Aborokbah, Naveen Chil-
amkurti, Subramaniam Ganesan, Rizwan Patan, Effective attack detection in
internet of medical things smart environment using a deep belief neural network,
IEEE Access 8 (2020) 77396–77404.

[57] John Sheppard, A partial approach to intrusion detection, in: International
Conference on Digital Forensics and Cyber Crime, Springer, 2020, pp. 78–97.

[58] H. Bourlard, Y. Kamp, Auto-association by multilayer perceptrons and singular
value decomposition, Biol. Cybernet. 59 (4) (1988) 291–294.

[59] Andrew. Ng, et al., Sparse autoencoder, CS294A Lecture Notes 72 (2011) 1–19.
[60] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine

Manzagol, Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion, J. Mach. Learn. Res. 11 (Dec)
(2010) 3371–3408.

[61] Yann LeCun, Corianna Cortes, Christopher J.C. Burges, Mnist dataset download
and information, 1998, http://yann.lecun.com/exdb/mnist/.

[62] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens,
Lawrence Carin, Variational autoencoder for deep learning of images, labels and
captions, in: D.D. Lee, M. Sugiyama, U.V. Luxburg, I. Guyon, R. Garnett (Eds.),
Advances in Neural Information Processing Systems, vol. 29, Curran Associates,
Inc., 2016, pp. 2352–2360.

Eirik Molde Bårli received his M.Sc. degree in Computer
Science from the University of Oslo in 2019 and has since
then worked as a Full Stack Web Developer for Kongsberg
Target Systems, Kongsberg, Norway

Professor Anis Yazidi received the M.Sc.and Ph.D. de-
grees from the University of Agder, Grimstad, Norway,
in 2008 and 2012, respectively. He was a Researcher
with Teknova AS, Grimstad, Norway. He is currently a
Full Professor with the Department of Computer Science,
Oslo Metropolitan University, Oslo, Norway, where he is
leading the research group in Applied Artificial Intelligence.
His current research interests include machine learning,
learning automata, stochastic optimization, and autonomous
computing.

Enrique Herrera-Viedma (Fellow, IEEE) received the M.Sc.
and Ph.D. degrees in computer science from the University
of Granada, Granada, Spain, in 1993 and 1996, respectively.
He is currently a Professor of Computer Science and the
Vice-President of Research and Knowledge Transfer with
the University of Granada. His H-index is 85 with more
than 25000 citations received in Web of Science and 97 in
Google Scholar with more than 38500 citations received. His
current research interests include group decision making,
consensus models, linguistic modeling, aggregation of infor-
mation, information retrieval, bibliometric, digital libraries,
Web quality evaluation, recommender systems, and social
media. He has been identified as one of the World’s Most
Influential Researchers by Shanghai Center and Thomson
Reuters/Clarivate Analytics in both the computer science
and engineering scientific categories in 2014–2020.

Dr. Hårek Haugerud received his M.Sc. and Ph.D. degrees
from the University of Oslo and is currently an associate
professor at Oslo Metropolitan University (OsloMet). He
joined OsloMet in 1998. He is member of the research
group Autonomous Systems and Networks and the Applied
Artificial Intelligence research group.

http://refhub.elsevier.com/S1389-1286(21)00375-3/sb29
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb29
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb29
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb29
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb29
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb29
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb29
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb30
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb30
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb30
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb30
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb30
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb31
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb31
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb31
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb31
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb31
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb32
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb32
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb32
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb32
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb32
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/ids.html
https://www.unb.ca/cic/datasets/ids.html
https://www.unb.ca/cic/datasets/ids.html
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb35
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb35
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb35
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb36
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb36
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb36
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb36
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb36
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb37
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb37
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb37
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb37
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb37
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb39
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb39
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb39
http://arxiv.org/abs/1606.05908
http://arxiv.org/abs/1606.05908
http://arxiv.org/abs/1606.05908
http://www.deeplearningbook.org
http://arxiv.org/abs/1412.6980
http://www.dspguide.com/ch13/2.html
http://www.dspguide.com/ch13/2.html
http://www.dspguide.com/ch13/2.html
http://arxiv.org/abs/1312.6229
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb47
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb47
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb47
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb47
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb47
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://www.unb.ca/cic/datasets/ids-2018.html
https://registry.opendata.aws/cse-cic-ids2018/
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1609.04836
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb54
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb54
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb54
https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
http://arxiv.org/abs/1602.04938
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb56
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb56
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb56
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb56
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb56
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb56
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb56
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb57
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb57
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb57
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb58
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb58
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb58
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb59
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb60
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb60
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb60
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb60
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb60
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb60
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb60
http://yann.lecun.com/exdb/mnist/
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb62
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb62
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb62
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb62
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb62
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb62
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb62
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb62
http://refhub.elsevier.com/S1389-1286(21)00375-3/sb62

	DoS and DDoS mitigation using Variational Autoencoders
	Introduction
	Outline

	Related work
	Flow-based stacked autoencoder in SDN
	Anomaly detection on the CICIDS2017 dataset using LSTM
	Malicious traffic detection using entropy-based techniques
	Flow-based DoS attack detection with techniques based on computer vision
	Anomaly detection with hidden semi-Markov model
	Complete autoencoders and recurrent autonomous autoencoders

	The proposed deep learning algorithms for attack mitigation using variational autoencoders
	Motivation
	First proposed approach: Latent layer classification on a variational autoencoder (LLC-VAE)
	Second proposed approach: Loss-based detection on a variational autoencoder (LBD-VAE)

	Experimental setup
	System specifications
	Datasets
	Tuning presets
	Presets

	Analysis
	LLC-VAE results
	Further adjustments

	LBD-VAE results
	Comparison of results
	Flow processing time

	Comparison with related works

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix. Autoencoders
	Sparse autoencoder
	Denoising autoencoders
	Variational autoencoder
	VAE in detail
	Reparameterization trick

	References

