
Neurocomputing 463 (2021) 59–76
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
A lexicographic cooperative co-evolutionary approach for feature
selection
https://doi.org/10.1016/j.neucom.2021.08.003
0925-2312/� 2021 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: jesusgonzalez@ugr.es (J. González).
Jesús González a,⇑, Julio Ortega a, Juan José Escobar a, Miguel Damas a

aDepartment of Computer Architecture and Technology, CITIC, University of Granada, Granada, Spain

a r t i c l e i n f o
Article history:
Received 11 January 2021
Revised 1 June 2021
Accepted 8 August 2021
Available online 11 August 2021
Communicated by Zidong Wang

Keywords:
Cooperative co-evolution
Multi-objective optimization
Lexicographic optimization
Feature selection
Classification
a b s t r a c t

This paper starts with two hypotheses. The first one is that the simultaneous optimization of the
hyperparameters regulating the classifier within a wrapper method, while the best subset of features
is being determined, should improve the results with respect to those obtained with a pre-
parameterized classifier. The second one is that solving these two problems can be formulated as a lex-
icographic optimization problem, allowing the use of a simple single-objective evolutionary algorithm to
solve this multi-objective problem.
The fitness function is of key importance for such wrapper methods. It is responsible for guiding the

search towards potentially good solutions and it also consumes most of the runtime. Having these issues
in mind, this paper also proposes a new lexicographic fitness function, designed to minimize the runtime
of the algorithm and also to avoid over-fitting. Furthermore, the execution time and the quality of the
results obtained by the wrapper procedure also depend on some algorithmic hyperparameters: the sim-
ilarity thresholds used when comparing two different solutions lexicographically and the percentage of
data samples used for validation during the training process. Thus, an experimental analysis has been
carried out to find adequate values for these hyperparameters. Finally, the lexicographic cooperative
co-evolutionary wrapper approach, using the new fitness function proposed in this paper, has been tested
with several datasets belonging to the University of California, Irvine (UCI) repository and also with some
real high-dimensional datasets, obtaining quite good results, compared to other state-of-the-art wrapper
methods. The comparison has also been made lexicographically, with a new methodology proposed in
this paper.
� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Motivation

Since datasets may contain redundant, noisy or even irrelevant
features (concerning the process being observed), one of the first
steps in any machine learning application is related to the selection
of the subset of features that best describe the data. Feature selec-
tion makes easier the learning process in many ways: it reduces
both, the dataset storage requirements and the training time, since
fewer data are needed. It also helps to mitigate the curse of dimen-
sionality [1] and to improve the prediction performance [2].

Although first attempts to the feature selection problem were
proposed in the sixties [3,4], it was at the end of last century when
the feature selection problem was more thoroughly studied and
characterized [5,6]. Regarding the kind of processing, feature selec-
tion techniques can be divided into filter, wrapper and embedded
methods. Filters are considered as a pre-processing step applied to
select the best subset of features before the data mining process is
applied. Thus filter methods are completely independent of the
posterior learning algorithm. Wrappers are on the opposite side.
They rely on the machine learning process to perform feature
selection, using it as a black box to score different subsets of fea-
tures proposed by a search algorithm until a termination criterion
is met. Finally, embedded approaches are specific to some learning
machines, since they select the best subset of features within the
machine’s training phase.

Wrapper methods are commonly used since they are inherently
simple. They essentially consist of a machine learning procedure, a
search algorithm, and a way to determine the prediction accuracy
of the learning machine to guide the search towards good feature
subsets [6]. Additionally, since wrapper methods select the fea-
tures subset with the aid of the learning machine that will be
applied later to the test set, they generally obtain better accuracy
than filter methods, although they are also more computationally
demanding [7,8].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.08.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neucom.2021.08.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jesusgonzalez@ugr.es
https://doi.org/10.1016/j.neucom.2021.08.003
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
Regarding the learning machine, this paper is focused on
classification problems. Thus, the learning machine is a classifier.
Many classifiers have been tested within wrapper methods, such
as ID3 [6], Naive Bayes Classifier (NBC) [6,9–11], k-Nearest Neigh-
bors (KNN) [12–17], Fisher’s Linear Discriminant Analysis (LDA)
[11,18,19], or Support Vector Machines (SVM) [16,17,20–23]. How-
ever, the behavior of some of these classifiers depend on some
hyperparameters that need to be fine tuned, according to the data-
set, in order to achieve a good accuracy. For example, SVM [24]
depends on both the regularization hyperparameter C and the set
of hyperparameters determining the type of kernel used. The cor-
rect setting of these hyperparameters is a fundamental issue,
mainly because the final result of the wrapper procedure will
depend on them. The problem is that the values of these hyperpa-
rameters depend on the final data defined by the selected features
too, which is a priori unknown.

Some methods set these hyperparameters heuristically before
the wrapper procedure is applied. For instance, in [20,21] they
are initialized using the whole dataset (containing all the features)
before the application of the wrapper procedure. Nevertheless, the
initial values obtained for the hyperparameters might not be opti-
mal for the definitive subset of features found by the wrapper pro-
cedure. Besides, different values for the initial hyperparameters
could obtain a different features subset.

Thus, wrapper methods involve two problems that should be
optimized simultaneously. Obviously, the number of features
should be minimized, but since the classifier used within the
search algorithm may depend on several hyperparameters, these
hyperparameters should also be optimized in order to avoid a
biased result [25]. This is the first hypothesis that motivates this
work. The joint optimization of these two interdependent prob-
lems should improve the results. Cooperative Co-Evolutionary
Algorithms (CCEAs) are particularly appropriate to this scheme,
considering they were designed to co-evolve different species of
solutions at the same time [26,27].

According to [28], CCEAs can be implemented at two basic
levels, depending on how the problem is decomposed. Single-
level CCEAs divide a large problem into smaller components or
sub-problems which evolve separately, whereas two-level co-
evolutionary approaches divide the problem into two species,
one evolving components and another one evolving complete sys-
tems built from these components. In this case, the fitness of each
component is estimated based on its contribution to the systems
which it is included in.

Regarding feature selection problems, wrapper approaches
based on CCEAs were formerly implemented as two-level
approaches. For example, in [29,30] two species were used, one
to evolve the feature subset and another to optimize the classifier.
However, with the advent of big data, single-level approaches are
now preferred to solve large-scale optimization problems. For such
kind of problems, input variables are separated and grouped into
several species, taking into account different heuristics, to leverage
of the parallel computing platforms available nowadays
[31–33,17]. Both approaches have advantages and drawbacks. On
the one hand, two-level approaches allow the optimization of the
classifier simultaneously with the feature selection process,
although they cannot leverage parallel computing architectures
since they use only two subpopulations. On the other hand,
single-level approaches are designed to use all the available com-
puting power, as they split the problem into many species that
evolve independently. However, they are only focused on the fea-
ture selection problem, with an a priori fixed classifier, which
introduces a bias in the feature selection problem.

There also exist many variants of the classical CCEA, such as
[17], a single-level Particle Swarm Optimization (PSO) based
approach, which implements an adaptive adjustment mechanism
60
of subswarms to save computational cost on evaluating particles,
or [34–37], which propose a completely different application of
co-evolution, named Multiple Populations for Multiple Objectives
(MPMO), where each subpopulation is focused on the optimization
of a different single objective.

On the other hand, several objectives should be considered to
guide the search towards a good combination of classifier hyperpa-
rameters and subset of features. First and foremost, the classifica-
tion error and generalization capability should be optimized, since
the goal of feature selection is to discover the subset of features
that best characterize the original data. Depending on how these
objectives are estimated, one or more objectives could be defined
for this purpose. For example, in [38] only the misclassification
error is used, whereas in [39] the sensitivity and the specificity
are used for these purposes, and in [40] the misclassification rate
and the minimization of imbalance in class sizes are applied.
Another objective usually taken into account is the size of the fea-
tures subset, which should also be minimized [38,40–42]. Finally,
since the hyperparameters of the classifier are being optimized
too, some objectives could also be defined, depending on the type
of classifier used. Thus, we are dealing with a Multi-Objective Prob-
lem (MOP).

Taking into account that two problems must be solved simulta-
neously (the optimization of the classifier hyperparameters and
the minimization of the set of most representative features), and
that co-evolutionary algorithms perform much more evaluations
per generation than evolutionary algorithms, since each individual
in each subpopulation is usually evaluated several times to esti-
mate its fitness, the simpler multi-objective handling scheme
applied within the CCEA the better. Probably the simplest approach
to solve a MOP is lexicographic optimization [43]. Lexicographic
optimizers try to satisfy all the objectives in order. First, the most
important objective is considered. Then, among the solutions
meeting this objective, a subset of solutions is selected to satisfy
the second objective, and so on until all the objectives have been
processed [44]. Thus if a different priority level can be established
for each objective, the MOP becomes a Lexicographic MOP (LMOP)
[45]. Although it may seem a rather basic approach, there are rel-
evant LMOPs that have been successfully solved with it, even
nowadays, such as the design and optimization of integrated vehi-
cle control systems [46] or the design of autonomous vehicles [47].

There are also more sophisticated priority handling schemes.
For example, one of the first works dealing with Decision-Maker
(DM) preferences about objectives in MOPs was [48], which pro-
poses a modified Pareto-ranking procedure incorporating goals
and priorities for each objective. In this approach, objectives are
grouped in several priority levels and also assigned a desired goal.
Then, the ranking procedure compares the objectives by groups,
starting with the highest priority groups. For each group, a modi-
fied Pareto-dominance criterion is used that only takes into
account those objectives not meeting their corresponding goals.
Only in the case that all the goals are met, the following priority
group is considered. Later on, the favor relation was introduced
in [49], which relaxes the classical dominance criterion by count-
ing the number of objectives where a solution is better than, the
same as, or worse than another. Based on the favor relation, the
priority-favor relation, which modifies it allowing the arbitrary
assignment of priorities to each objective, was proposed in [50].
The same authors have also proposed the �-preferred and prio-�-
preferred relations [51], which are modifications of the favor and
priority-favor relations, where a limit or �-value is defined for each
objective. However, if a different priority level can be defined for
each objective, lexicographic optimization is preferred. This is the
second hypothesis of this work: the co-evolution of the classifier
hyperparameters, while the best subset of features is found, can
be formulated as an LMOP.

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
Thus, the main contribution of this paper is approaching the
feature selection problem as two co-evolving problems, the opti-
mization of the classifier hyperparameters while the smallest sub-
set of features is also being determined, and formulating this co-
evolution as an LMOP, introducing a new lexicographic fitness
function that minimizes the runtime of the wrapper procedure
and avoids over-fitted solutions. Other contributions are:

� A study of the hyperparameters influence in the accuracy and
number of features finally selected, and also in the wrapper pro-
cedure execution time, in order to reach an adequate balance
between the quality of solutions and the wrapper procedure
training time.

� A new lexicographic ranking methodology, based on pairwise
comparisons of the p-values returned by the non-parametric
Kruskal–Wallis statistical test, able to compare the average
results of many feature selection methods on several datasets,
taking into account multiple objectives.

� The application of the proposed wrapper procedure to some real
high-dimensional datasets, obtaining high stable results.

The rest of the paper is organized as follows. Section 2 details
the lexicographic relation for MOEAs, a relation that makes possi-
ble the full ranking of candidate solutions for a MOP where a differ-
ent level of priority can be assigned to each objective. Later,
Section 3 describes in detail the Lexicographic Optimization Coop-
erative Co-Evolutionary Algorithm (LeOCCEA), which simultane-
ously minimizes the number of features needed to describe a
dataset while the hyperparameters of the classifier within a wrap-
per method are also being optimized. Then, Section 4 describes the
different metrics considered in this paper to evaluate the solutions
of the evolutionary algorithm and proposes a new lexicographic
fitness function that aims to reduce both the computation time
and the possible over-fitting of solutions, while optimizing the
classification accuracy and reducing the number of selected fea-
tures. After that, Section 5 studies the influence of the main hyper-
parameters of LeOCCEA, the percentage of training samples used
for validation (pval) and the vector of similarity thresholds applied
in the lexicographic comparison of two solutions (tl), in the classi-
fication accuracy for test data, the number of features finally
selected, and the computation time of the wrapper method. After-
wards, Section 6 compares the results obtained by LeOCCEA with
those obtained by other wrapper methods using several datasets
from the UCI machine learning repository [52], and Section 7
applies LeOCCEA to some real high-dimensional classification
problems. Finally, Section 8 concludes this work.

2. A lexicographic relation for MOPs

As introduced above, lexicographic optimizers prioritize all the
objectives and then try to satisfy them in order of priority. Thus,
assuming a problem where no objectives have been defined, and
also that these objectives can be sorted according to their priority,
the fitness for any solution for the problem can be expressed as:

f ¼ f 0; f 1; . . . ; f no�1
h iT

2 Rno ð1Þ

Depending on the kind of objectives being optimized, and also
on the DM criteria, given two fitness evaluations f 1 and f 2, a differ-
ence between two fitness values in a given objective

oi; di ¼ jf i1 � f i2j, may be considered irrelevant or quite significant.
Also, distinct precisions may be desired for the different objectives
taken into account. Therefore a vector of no similarity thresholds tl
is introduced to let the DM setting the precision used to perform
the comparison of each objective:
61
tl ¼ t0l ; t
1
l ; . . . ; t

no�1
l

� �T 2 Rno
P0 ð2Þ

Two fitness values for an objective oi will be considered similar
if

jf i1 � f i2j < til ð3Þ
If a traditional lexicographic comparison is desired, as intro-

duced in [43], the DM only has to fix til ¼ 0;8i 2 ½0;noÞ \N.
Thus, the lexicographic relations between them, noted as �l and

�l, are defined as [25]:

f 1�lf 2 () 9k 2 ½0;noÞ \N : f k1 < f k2
^jf k1 � f k2j P tkl ^ jf i1 � f i2j < til; 8i < k

ð4Þ

f 1�lf 2 () jf i1 � f i2j < til;

8i 2 ½0;noÞ \N ð5Þ
f 1�lf 2 () f 1�lf 2 _ f 1�lf 2 ð6Þ

A fitness evaluation f 1 will be better than another f 2 (4) if and

only if there exists an objective k such that f k1 < f k2, that is, f 1
improves f 2 in objective k. The difference in such objective must
also be higher than or equal to the similarity threshold tkl , that is

jf k1 � f k2j Ptkl , while the difference in more important objectives
(objectives lower to k) must be lower than the similarity threshold

til ðjf i1 � f i2j < til, 8i < kÞ.
A fitness evaluation f 1 will be similar to another f 2 (5) if and

only if the difference between each pair of objectives is lower than

the similarity threshold til. That is, if jf i1 � f i2j < til for each objective i
taken into account.

Finally, a fitness evaluation f 1 will be better than or similar to
another f 2 (5) if and only if f 1 is better than f 2 (4) of if f 1 is similar
to f 2 (5).

The behavior of the algorithm using this relation resembles the
classical lexicographic optimization algorithms. It processes the
objectives in order, but with an important difference. The search
is not sequential, since an EA is being applied, what provides the
search algorithm a mechanism to escape from local optima [53].

The use of this lexicographic relation within a MOP has many
benefits. Since the population can be fully ranked, a simple EA,
with smaller populations, can be applied. Another advantage of
this approach is that the algorithm will provide only one optimal
solution, composed of the combination of the best solution found
in each subpopulation, instead of a large set of Pareto-optimal
solutions, which greatly helps the DM. Besides, since priorities of
objectives are defined according to the characteristics of the prob-
lem, the algorithm will search only towards solutions meeting this
restriction, greatly reducing the search space.
3. The LeOCCEA wrapper method

This section describes extensively the LeOCCEA wrapper
method, formerly introduced in [25]. This wrapper method is able
to optimize the hyperparameters of the classifier while the set of
features is also being minimized. Fig. 1 shows its flowchart, high-
lighting those steps that have been modified from the original
CCEA to achieve LeOCCEA, along with the sections in this paper
that detail these changes. As can be seen, subpopulation 0 opti-
mizes the classifier hyperparameters whereas the rest of subpopu-
lations are centered on solving the feature selection problem. Each
subpopulation evolves individuals of a different species, being nec-
essary an individual of each one of the species to form a complete
solution for the two problems. Each time a complete solution is
evaluated, the resulting fitness contributes to the fitness of all
the individuals that have used to build that solution.

Fig. 1. Flowchart of the LeOCCEA wrapper method. The steps that are not highlighted are taken from the original CCEA.

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
3.1. Structure

Since LeOCCEA is based on a CCEA, potential solutions for the
problem are co-evolved by different species, each one in a separate
subpopulation. The most direct approach could be to use a two-
level approach. However, a pure two-level approach would only
use two species, one to optimize the hyperparameters of the clas-
sifier and another to minimize the features subset. This would not
be an even division, since the number of hyperparameters needed
to define a classifier is quite lower than the number of features in
almost any feature selection problem, and thus, the search space
would be much larger for the feature selection species, especially
in high-dimensional problems. Moreover, such a kind of division
would limit the exploitation of current parallel computing plat-
forms drastically, since only two subpopulations would be used
to implement the algorithm. In fact, recent CCEA-based wrapper
methods are based on a single-level approach, mainly to leverage
the high-performance computing platforms available nowadays.
However, single-level approaches do not optimize the classifier.
They only minimize the number of selected features. Therefore,
LeOCCEA is based on a hybrid single-level and two-level approach.
One species evolves the hyperparameters of the classifier while the
input features are also split among several species (see Fig. 1). The
number of species needed to process the features of the input data-
set is not fixed a priori and should be adjusted for each problem
according to the number of features in the dataset being processed
and the number of computing nodes available, to balance the
search spaces of all the subpopulations.
62
3.2. Fitness evaluation

As introduced above, complete solutions for both co-evolving
problems are formed by the collaboration of one representative
individual from each one of the subpopulations. Once a complete
solution is evaluated, the obtained fitness contributes to the final
fitness of each one of the individuals used to build that solution,
which is finally obtained as a statistic (the better, worse, or average
value, for example) of all the fitness values obtained by the individ-
ual in the different collaborations it has been involved.

The collaboration strategy affects both the computation time
and fitness estimation of the individuals. On the one hand, the
more collaborations established to estimate the fitness of each
individual, the better fitness estimation, but also the greater com-
putation time. On the other hand, fewer collaborations minimize
the computation time and worsen the fitness estimation of individ-
uals, increasing the possibility of converging to sub-optimal
solutions.

The cheaper individual-centric method, in terms of computa-
tion time, is the single-best collaboration method [27], where each
individual collaborates with the best one of the remaining species
to be evaluated. Assuming np subpopulations of size
mi ði ¼ 1; . . . ;npÞ, the number of evaluations needed to assign a fit-
ness value to all the individuals in a generation would be:

nebest ¼
Xnp�1

i¼0

mi ð7Þ

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
Since this approximation is too greedy and might guide the
algorithm towards local optima, more representatives could be
chosen (randomly from each subpopulation, only from the Pareto
front of each species, etc.). For a number nr of representatives,
the number of evaluations needed would increase linearly:

neðnrÞ ¼ nr

Xnp�1

i¼0

mi ð8Þ

In this case, each individual of each species is evaluated nr

times, with the best result being assigned as its fitness [54].
However, population-centric approaches allow the evaluation

of all the individuals while minimizing the overall number of eval-
uations, avoiding also the greediness of individual-centric
approaches [55]. Specifically, the shuffle-and-pair method shuffles
the indices to access individuals in each subpopulation and then
recombines all the individuals having the same index to form
and evaluate a complete solution for the problem. Since only one
evaluation per individual may poorly estimate its fitness, this pro-
cess can be repeated nr times to obtain a better evaluation for each
individual. The only limitation for this method is that all the sub-
populations must have the same size m. The total number of eval-
uations needed to complete a generation would be:

nes&p ðnrÞ ¼ nr �m ð9Þ

which, on average, is np times lower than the number of evaluations
needed for individual-centric methods. Considering that the hybrid
single-level and two-level approach followed by LeOCCEA can make
use of any number of subpopulations to balance the search space
assigned to each species, the restriction of all subpopulations hav-
ing the same size is completely irrelevant. Even more, as the num-
ber of features in the input dataset increases, more subpopulations
will be needed, but since the number of subpopulations np no longer
affects the overall number of evaluations needed, the shuffle-and-
pair method is completely scalable for high-dimensional problems.
Thus, this is the collaboration method chosen for LeOCCEA.

3.3. Species representation

Since LeOCCEA is based on a hybrid single-level and two-level
approach, different representations for the species are needed.
Specifically, one representation for the hyperparameters defining
the classifier, and another one for the subsets of features co-
evolved in the remaining species.

3.3.1. Classifier species
Some classifiers, such as KNN or SVM rely on configuration

hyperparameters. Thus, these hyperparameters are encoded as a
vector of floating-point numbers in the first subpopulation (P0).
In this case, the classifier applied within the wrapper procedure
is an SVM based on a Radial Basis Function (RBF) kernel. Thus, S0
is defined as follows:

S0 ¼ C; c½ �T 2 R2 ð10Þ
Each individual belonging S0 encodes a possible value for the

regularization hyperparameter of the SVM (C) and a possible width
for its RBFs (c).

3.3.2. Features subset species
The representation proposed in [11] is also used for the features

subset species, but with a couple of differences: features are
distributed over several subpopulations, and now there is not a
maximum size for the set of features provided by the wrapper
method. For a problem of n input features, indexed from 0 to
n� 1, and np subpopulations, assuming that subpopulation P0
63
evolves the classifier hyperparameters, an individual belonging to
subpopulation Pj is defined as:

Ij 	 Sj ð11Þ
with Sj being the whole subset of features evolved by the species in
Pj:

Sj ¼ x 2 aj; bj
� � \N

� �
;0 < j < np ð12Þ

That is, each species Sj is defined as the interval of natural num-
bers ½aj; bjÞ with aj and bj defined as:

aj ¼ j� 1ð Þd n
np � 1

e ð13Þ

bj ¼min jd n
np � 1

e;n
� �

ð14Þ
3.4. Breeding operators

Since each subpopulation co-evolves a different species, new
breeding operators are needed for each one of them. The breeding
operators for both, the classifier hyperparameters and the subsets
of features, are described below.

3.4.1. Breeding operators for the classifier species
Given that species S0 is represented by a vector of real numbers,

Simulated Binary Crossover (SBX) [56] and polynomial mutation
[57] are applied within the classifier hyperparameters species
since both were specifically designed to deal with real numbers.
These operators are based on a polynomial distribution depending
on a user-defined index parameter m, which is usually fixed to 20 as
standard default value.

3.4.2. Breeding operators for the features subset species
Concerning the features subset species, the breeding operators

have also been adapted from those proposed in [11], in a way that
generated offspring must belong to the same species as their par-
ents. In what follows, the crossover and mutation operators are
defined.

Crossover operator. Given a couple of individuals, Ijk and Ijl ,
belonging to subpopulation Pj, the two offspring, Ojk and Ojl , are
obtained as follows.

Let Cjkl be the subset of features that have been selected by both
Ijk and Ijl , that is, their common features:

Cjkl ¼ Ijk \ Ijl ð15Þ
Let also Rjkl be the remaining features in Ijk and Ijl , once common

features are removed:

Rjkl ¼ Ijk [Ijl
	 � n Cjkl ð16Þ

The offspring Ojk and Ojl are obtained as:

Ojk ¼ Cjkl [Rjk ; Ojl ¼ Cjkl [Rjl ð17Þ
provided that:

Rjl [Rjk ¼ RjklandRjk \ Rjl ¼ £ ð18Þ
jOjk j ¼ jIjk jandjOjl j ¼ jIjl j ð19Þ
All the selected features that are common in Ijk and Ijl are com-

mon in Ojk and Ojl too, since Ojk \ Ojl ¼ Cjkl . The remaining subset of
selected features Rjkl , which are not common in Ijk and Ijl , are ran-
domly distributed between Rjk and Rjl (18) assuring that the sizes
of Ojk and Ojl match the sizes of Ijk and Ijl respectively (19). This
crossover procedure always generates solutions conforming the
constraints stated in Section 3.3.2 for the features species.

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
Mutation operator. This operator may alter each individual’s
gene (a selected feature) separately. Given an individual Ij belong-
ing to a subpopulation Pj with 0 < j < np, a gene mutation proba-
bility of pm, and a random variable X following a standard
uniform distribution ðX
 Uð0;1ÞÞ, let Mj be defined as the random
subset of features in Ij that will be mutated:

Mj ¼ i 2 Ij : XðiÞ 6 pm

� � ð20Þ
where XðiÞ denotes the probability that feature i is mutated.

Once Mj is obtained, two possibilities exist to mutate all its ele-
ments. Each one of them could be modified or removed. Thus,Mj is
randomly split into two new subsets, Mjs and Mjr , the elements of
Mj that will be substituted and those that will be removed
respectively:

Mjs ¼ m 2 Mj : XðmÞ 6 0:5
� �

; Mjr ¼ Mj nMjs ð21Þ
The mutated individual I0j is be obtained as:

I0j ¼ ðIj nMjÞ [Njs [Nja ð22Þ
where Njs is the subset of new features that substitutes those
belonging Mjs :

Njs 	 Sj jNjs j ¼ jMjs j and Njs \ Ij ¼ £ ð23Þ
and Nja is a subset of at most one new feature that will be added to
I0j, to make possible the increment of features in I0j respect to the
original Ij:

Nja 	 x 2 Sj n Ij
	 � n Njs

� �
; jNja j 2 f0;1g ð24Þ

with Sj being defined as in (12).

4. Lexicographic fitness function proposal

As introduced above, several objectives should be taken into
account to co-evolve the classifier hyperparameters and the best
subset of input features simultaneously. Besides, since two prob-
lems are being jointly optimized, the objectives should cover both
problems.

4.1. Metrics related to the feature selection problem

It seems clear that both, the size of the selected features subset
and the classification accuracy obtained with it should be taken
into account for a feature selection problem. The number of
selected features can be measured easily. However, there are sev-
eral metrics to estimate the accuracy of a classifier, such as the
error rate [40] or the combination of sensitivity and specificity
[39]. However, the Kappa index [58] has been finally chosen
because it takes into account the accuracy of the classifier and also
the per class error distribution. This index is defined as follows:

jðC;DIÞ ¼ poðC;DIÞ � peðC;DIÞ
1� peðC;DIÞ ð25Þ

where poðC;DIÞ is the relative observed agreement between the
classifier C and the labeled data in the dataset DI , (identical to accu-
racy), and peðC;DIÞ is the hypothetical probability of chance agree-
ment between the classifier C and the labeled data in DI.

Special care has to be taken, especially when training with small
datasets, to avoid over-fitting. Many works suggest the use of
cross-validation when training classifiers [6,12]. Nevertheless,
and although this approach has proven successful, it presents a
critical inconvenience. It is quite computationally demanding,
since all the potential solutions explored by the search algorithm
must be evaluated several times. This drawback is even more seri-
ous in the case of CCEA approaches, since all the individuals in each
64
species must be re-evaluated in every generation because their fit-
ness depend on their collaboration with some individuals belong-
ing to the remaining species too. Thus, less demanding
alternatives are proposed below.
4.2. Metrics related to the optimization of SVM classifiers

The behavior of SVM classifiers depend on a regularization
hyperparameter C that controls the trade-off between their train-
ing error and their generalization capability. Large values of C
choose a smaller-margin separating hyperplane to minimize the
training error, while small values try a larger-margin hyperplane,
even if some training samples are misclassified. Thus, smaller val-
ues of C are preferred, since small margins may cause over-fitting,
in particular for small datasets, and large margins generally lower
the generalization error [59,60].

On the other side, and for most SVM implementations, training
time may raise dramatically with large values of C. This is the case
of the Sequential Minimal Optimization (SMO) algorithm, a widely
used training algorithm for SVMs. In [61,62] it is shown how the
increase in training time at large C values is sharp. This behavior
can also be observed in the LibSVM library, since it is based on
the WSS3 learning algorithm, a variant of the SMO algorithm [63].

Therefore, smaller values of C increase the generalization capa-
bility of the results provided by any wrapper method while mini-
mizing its training time.
4.3. The VT fitness function

This is the lexicographic fitness function originally proposed in
[25], where LeOCCEA was firstly introduced. It is based on the max-
imization of the Kappa index to estimate the accuracy of the clas-
sifier, the minimization of the number of features and the
minimization of C, in this order. However, the Kappa index is not
applied over the whole training set. As introduced above, the fit-
ness function should prevent over-fitting. Thus, the VT fitness func-
tion takes the idea of distributed cross-validation proposed in [11],
which saves a great amount of computation time respect to the
original cross-validation method.

Given a subset of input features I, a classifier C and an input
dataset D, first the selected features coded in I are extracted from
D, generating a reduced dataset DI . Then, DI is divided randomly
into two new subsets, DItr and DIval according to pval, a hyperparam-
eter indicating the rate of samples used to validate the classifier
results with these selected features. This random division of DI is
also stratified, i.e., it ensures that a percentage pval of samples of
each class in DI is always included in DIval . Then, classifier C is only
trained with samples in DItr , and later, two accuracies are evalu-
ated: the Kappa indices obtained by the classifier using DItr and
DIval separately. Since all individuals are evaluated each generation
because their fitness also depend on the collaborators used to form
a complete solution for the problem, a sort of cross-validation, dis-
tributed over all the generations of the wrapper method, is finally
carried out, with the benefit that each solution is evaluated only
twice (for DItr and DIval) instead of the five or ten folds typically used
with cross-validation. Another advantage of this method is that
final solutions are not biased due to the way D is split, since differ-
ent subsets DItr and DIval are randomly generated each time an indi-
vidual is evaluated.

In the case that two solutions achieve similar Kappa indices, the
one with fewer features is preferred, and in the case that both solu-
tions have similar Kappa indices and number of features, a smaller
C is preferred. That is, the generalization performance of the final
solution for both problems is optimized with two different objec-
tives (one for each problem). The most important one is the valida-

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
tion Kappa index, but if two solutions have similar Kappa indices, a
lower value of C improves the generalization capability of the clas-
sifier, since an SVM with wider margins is obtained. Thus, this lex-
icographic fitness function optimizes, in this order, the following
objectives:

1. Maximize jðC;DIval Þ.
2. Maximize jðC;DItr Þ.
3. Minimize the number of features.
4. Minimize the regularization hyperparameter C of the SVM.

The name of the fitness function (VT) comes from the use of
both, the Validation and also the Training Kappa indices, to esti-
mate the accuracy of solutions.

4.4. The VO fitness function

The VT fitness function was originally proposed to show how
LeOCCEA was able to solve even Many-Objective Optimization
Problems (MaOPs), but the fact is that it may cause over-fitting
for really small datasets with a large number of features, since
jðC;DItr Þ is used as the second objective. Thus, this paper proposes
the use of only jðC;DIval Þ to estimate the accuracy of solutions, that
is the use of the Validation index Only (VO).

In consequence, the new lexicographic fitness function pro-
posed in this paper only optimizes, in this order, these objectives:

1. Maximize jðC;DIval Þ.
2. Minimize the number of features.
3. Minimize the regularization hyperparameter C of the SVM.

The reduction from four to three objectives makes the problem
to become a MOP instead a MaOP, although this is not an issue for
lexicographic methods. Moreover, it prevents over-fitting when
selecting features from datasets with a large number of features
and a low number of samples and also reduces the computation
time of the wrapper method, since only one Kappa index is calcu-
lated for each solution instead of two. On the other side, the effect
of distributed cross-validation remains because individuals are
evaluated with a different DIval each time, as described above.
5. LeOCCEA hyperparameter setting

The behavior of LeOCCEA depends on its two configuration
hyperparameters: the vector of similarity thresholds tl, used by
the lexicographic comparison of two individuals, and the percent-
age of samples pval used to split the original training dataset D into
DItr and DIval each time an individual I is evaluated. Both the com-
putation time and the balance between the minimization of the
error rate or the number of features are affected by these hyperpa-
rameters, as shown below. This effect has been analyzed by means
of an empirical study applying the wrapper method to six different
datasets from the UCI machine learning repository [52]. Table 1
Table 1
Datasets.

Dataset #
Features

#
Classes

#
Instances

German credit [64] 24 2 1000
Johns Hopkins University Ionosphere [65] 34 2 351
Vehicle silhouettes [66] 18 4 846
Wisconsin Diagnostic Breast Cancer

(WDBC) [67]
30 2 569

Wine recognition [68] 13 3 178
Zoo [69] 16 7 101

65
shows the details of these datasets. For all the experiments, each
dataset has been randomly divided (stratified) into two separate
sets as proposed in [12,22,70]: a test set containing 30% of all sam-
ples in each class, and a training set formed by the rest of samples.

Regarding pval, in [11] it was fixed to 0:3, and although quite
good results were obtained, the fact is that no other values were
tried. Thus, in this work the value 0:5 is tested too. A reduction
in the execution time is expected for this new value, since less
training data will be used. However, the effect of this increment
in the value of pval in both the accuracy of the solutions and the
number of features finally selected is unclear. On the other side,
the vector of thresholds tl regulate the maximum difference
allowed between two values for each objective to be considered
similar in their lexicographic comparison. Thus, the lower value
of til, the higher probability of obtaining over-fitted solutions with
respect to objective oi, while high values of til will not guide the
search properly towards oi optima values because quite different
values for oi will be considered similar.

Although a different threshold value til can be fixed for each
objective oi, the use of the same value tl 2 ð0;1Þ for all thresholds
in tl was proposed in [25]. This decision is justified because:

� The number of selected features is always an integer value. Thus
any value in ð1;0Þ is valid to distinguish two different integer
values in (3).

� The Kappa index and the C regularization hyperparameter of
SVMs are both real numbers, defined in ½�1;1� and in ð0;1Þ
respectively. A priori it seems that these two objectives should
have different similarity thresholds, since their range is also
quite different. However, since the value of C is minimized to
avoid over-fitting and reduce the training time, optima values
for C will be in (0,1) most of the time. Thus, the same similarity
threshold tl 2 ð0;1Þ can be fixed for both objectives.

Originally, tl was fixed to 0:001 in [25], but other values may
change the behavior of the wrapper method. So, different values
for this hyperparameter have been tested. Concretely, values
0:001;0:005;0:01;0:05; 0:1 and 0:2 have been analyzed. The rest
of hyperparameters of the wrapper method has been fixed as
Table 2 shows.

The number of executions of the wrapper method (ne) has been
fixed to 40, as in [71]. On the other hand, the number of species
(subpopulations) is different for each dataset, because it depends
on the total number of features of each problem, as described
above. Table 3 shows the number of subpopulations used for each
one of the datasets of Table 1. The heuristic applied to fix these val-
ues has been that the number of features assigned to each subpop-
ulation should be 4 or 5.

Regarding the wrapper method implementation, the base
co-evolutionary algorithm, as well as the breeding operators
applied within subpopulation P0, which evolves the classifier
hyperparameters, have been taken from ECJ [72], a research
Evolutionary Computation (EC) framework written in Java and
developed within the Evolutionary Computation Laboratory at the
Table 2
Hyperparameters of the LeOCCEA wrapper method.

Parameter Value

Subpopulations size ðmÞ 150
Number of generations ðngÞ 300
Feature selection species mutation probability ðpmfs

Þ 0:01
SVM hyperparameters species Mutation probability ðpmsvm

Þ 0:05
Number of executions of the wrapper method ðneÞ 40
Co-evolutionary evaluation number of shuffles ðnrÞ 2

Table 3
Number of subpopulations used for each dataset.

Wrapper Number of subpopulations ðnpÞ
German credit 6
Ionosphere 8
Vehicle silhouettes 5
WDBC 7
Wine recognition 4
Zoo 5

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
George Mason University, VA, USA. Moreover, LibSVM has been
used to implement the SVM classifiers [73]. The rest of the code
has been written by the authors of this work. All the code is imple-
mented within the ristretto library, publicly available in [74].

Fig. 2 shows the average values of the test Kappa index, the
number of features finally selected and the execution time, over
40 executions of the wrapper method, for the six datasets listed
in Table 1, and for all the possible combinations of
pval 2 f0:3;0:5g and tl 2 f0:001;0:005;0:01;0:05;0:1;0:2g. As
expected, the execution time of LeOCCEA is reduced when pval is
increased. However, the effect of this hyperparameter on the
Kappa index and the number of features changes depending on
the datasets. For the Wine and Zoo datasets the Kappa index
improves significantly with pval ¼ 0:5, while for the rest of datasets
the accuracies obtained are similar. Regarding the number of fea-
tures, it seems that a higher value of pval makes the wrapper
method to obtain smaller subsets of features for the Ionosphere,
WBCD, Wine and Zoo datasets.

Concerning the similarity threshold tl, the accuracy of the test
Kappa index improves as tl is increased until it stagnates for values
higher than tl ¼ 0:01. This hyperparameter also influences on the
number of features selected by the wrapper method the same
way, although its effect is more or less clear depending on the
dataset.

Thus, taking into account previous considerations, the hyperpa-
rameters of the LeOCCEA wrapper method have been fixed to
pval ¼ 0:5 and tl ¼ 0:01 for the rest of executions performed in this
paper, to achieve a compromise between the accuracy of results
and the computation time of the algorithm.

6. Comparison with other wrapper methods

Once the hyperparameters of LeOCCEA have been fixed, this
section compares its results with different wrapper methods. The
same datasets used in the previous section are used for the com-
parison. The hyperparameters used by these methods are detailed
in Table 4. As can be seen, there are quite different configurations.
However, the direct comparison of these values with those in
Table 2 is not fair, since LeOCCEA co-evolves two problems simul-
taneously (the optimization of the classifier hyperparameters and
the selection of the smallest subset of features that better describe
the dataset) while the remaining wrapper methods rely on a pre-
parameterized classifier.

6.1. Brief description of the other wrapper alternatives

The results of LeOCCEA have been compared with those
obtained by the following procedures. There is a wide variety of
search algorithms and classifiers, including SVM, the classifier used
by LeOCCEA in this paper.

6.1.1. Linear Forward Selection (LFS):
This wrapper procedure [75] is derived from the well known

Sequential Forward Selection (SFS) [76], but with a fundamental
difference. LFS limits the number of features considered in each
66
step of the forward selection, which reduces the number of evalu-
ations, optimizing the overall computation time. This method was
applied to the datasets listed in Table 1 in [12], using KNN as the
classifier with k ¼ 5.

6.1.2. Greedy Stepwise Backward Selection (GSBS):
This method is based on the classical Sequential Backward

Selection (SBS) algorithm [77]. It begins considering all the avail-
able features and takes off one feature per iteration until the
removal of any of the remaining features worsens the accuracy
of the classifier [78]. This method was also applied in [12] to the
datasets listed in Table 1, using the same classifier, KNNwith k ¼ 5.

6.1.3. Commonly Used PSO Algorithm (ErFS):
This method uses the PSO metaheuristic [79] to minimize the

error rate of the classifier. The implementation described in [12]
fixes the inertia weight w ¼ 0:7298 and the acceleration constants
c1 ¼ c2 ¼ 1:49618, which are specific parameters of PSO. It also
applies KNN as the classifier with k ¼ 5.

6.1.4. PSO With a Two-Stage Fitness Function (2SFS):
This wrapper procedure, also based on PSO, splits the evolution-

ary process into two stages. The first one minimizes only the error
rate of the classifier, whereas the second stage also considers the
number of features in the fitness function [71]. Since this proce-
dure is also proposed in [12], the parameters of both PSO and clas-
sifier are fixed in the same way as in ErFS.

6.1.5. Two-phase Mutation Grey Wolf Optimizer (TMGWO):
This wrapper procedure, described in [15], proposes a variant of

the Grey Wolf Optimizer (GWO) [80] with a two-phase mutation
operator to avoid local optima. This wrapper method applies
KNN with k ¼ 5 too.

6.1.6. FAM-BSO:
This wrapper method [70] uses the Brain Storm Optimization

(BSO) algorithm [81], a swarm intelligence procedure inspired by
the human brainstorming process, as search engine. Classification
is performed applying the Fuzzy ARTMAP (FAM) model [82], a
supervised neural network that combines fuzzy sets theory with
Adaptive Resonance Theory (ART) [83].

6.1.7. Binary PSO (BPSO):
This wrapper procedure implements a version of PSO operating

on discrete binary variables [84]. In [22] it was applied to some
datasets of Table 1 using SVM as classifier.

6.1.8. BSEOA:
This wrapper procedure, proposed in [22], implements a binary

version, inspired by BPSO, of the Social Emotional Optimization
Algorithm (SEOA) [85], a swarm intelligent population-based opti-
mization algorithm which simulates the decision-making of
human beings in society based on human emotion. It also uses
SVM as classifier.

6.2. Proposed ranking methodology

Since this paper compares 9 different wrapper procedures, a
new methodology is necessary to rank them lexicographically, tak-
ing into account both their error rates and number of features, in
order to allow their comparison. This paper proposes the use of
pairwise comparisons of all methods results using the non-
parametric Kruskal–Wallis statistical test.

First of all, two p-values are obtained for each possible pair of
wrapper methods Wa and Wb; peab

for their error rates comparison

Fig. 2. Average values, over 40 executions of LeOCCEA, of the test Kappa index, number of features and execution time obtained for all the combinations of pval 2 f0:3;0:5g
and tl 2 f0:001;0:005;0:01;0:05;0:1;0:2g, and six different datasets.

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76

67

Table 4
Hyperparameter setting of the wrapper methods compared with LeOCCEA. Depending
on each method, m refers to the number of individuals, agents, or particles, while ng is
related to the number of generations or iterations, and n indicates the number of
features in the dataset.

Wrapper m ng

LFS [12] n:a: n:a:
GSBS [12] n:a: n:a:
ErFs [12] 30 100
2SFS [12] 30 100
TMGWO [15] 5 30
FAM-BSO [70] 100 2000
BSEOA [22] 10þ 2

ffiffiffi
n

p
50

BPSO [22] 10þ 2
ffiffiffi
n

p
50

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
(ea and eb), and pnab
related to the difference between the number

of features they finally selected (na and nb). Then all the methods
can be lexicographically ranked according to these expressions:

Wa�lWb () peab
6 a ^ ea < eb

 �
_ peab

> a ^ pnab
6 a ^ na < nb

 �
ð26Þ

Wa�lWb () peab
> a ^ pnab

> a ð27Þ
Wa�lWa () Wa�lWb _ Wa�lWb ð28Þ

where a is the significance level used for the comparison.
On the other side, it is quite possible that Wa�lWb for some

datasets while Wb�lWa for others. So, the comparison should be
converted to a real number to allow the computation of average
values for all the datasets. This real number is rDðWÞ, the rank of
wrapper method W once the all the wrapper methods have been
compared using dataset D:

rDðWÞ ¼ jBDðWÞj ð29Þ
where BDðWÞ is the set of wrapper methods that are better than W
for D:

BDðWÞ ¼ Wi : Wi�lWf g ð30Þ
Thus, an average value of the rank for each wrapper method,

�rðWÞ, can be calculated for a set different datasets D:

�rðWÞ ¼ 1
nD

Xi<nD

i¼0

rDi
ðWÞ; Di 2 D ð31Þ

where nD is the number of datasets in D.

6.3. Comparison

Tables 5 and 6 show the means of the error rates and number of
features obtained by all the wrapper methods for datasets listed in
Table 1, except for BPSO and BSEOA, whose results are not avail-
able in [22] for the German, Ionosphere and WBCD datasets.

A lexicographic comparison of all the wrapper methods has
been made for all the datasets, according to the methodology pro-
posed in Section 6.2. A significance level a ¼ 0:05 has been applied
to detect statistically different values. Results are shown in Tables
7–12, where cells marked with a letter mean that the wrapper
method in the column has a statistically significant better error
(E) or a similar error but a statistically better number of features
(N) than the method in the row, that is, that the method in the col-
umn is lexicographically better than the method in the row. On the
other side, cells marked with a tick denote pairs of methods that
obtain statistically similar results. As can be seen, these tables also
allow to form clusters of similar methods for each dataset.

For the German, Ionosphere and WBCD datasets, Tables 7–9
also show the ranking of each wrapper method in the last row,
while for Tables 10–12 two rankings are calculated, with and with-
out BPSO and BSEOA, to allow the comparison of results with those
of Tables 7–9, where results from BPSO and BSEOA are not avail-
68
able. Average rankings are calculated in Tables 13 and 14. The for-
mer calculates an average ranking considering all the datasets,
while the latter considers all the wrapper methods. In both cases
it can be appreciated that although LeOCCEA is not the best wrap-
per method for each one of the datasets, is achieves the best aver-
age ranking, with and without considering BPSO and BSEOA, what
means that it performs better than the rest of methods on average.
These results confirm the two starting hypotheses of this work: the
simultaneous optimization of the classifier hyperparameters, while
the best subset of representative features is being found, does
improve the final results, and the co-evolution of these two inter-
dependent problems can be successfully approached as a lexico-
graphic problem. see Table 8.

6.4. Stability analysis

Stability is another desirable property of any wrapper method,
since DMs usually prefer those methods which return consistent
feature subsets from multiple runs. Table 15 shows the stability
score achieved by LeOCCEA for all the datasets of Table 1. These
scores have been calculated using the stability method proposed
in [11], which is based on the average Spearman index of the
full-ranked lists of features obtained in the different runs of the
algorithm. Possible outcomes of this method lie in the range
½�1;1�, with 0 indicating no correlation at all, and 1 or �1 indicat-
ing a perfect positive or negative correlation, respectively. Thus,
the higher (positive) value of the Spearman index, the more stabil-
ity of the wrapper procedure. As can be seen, LeOCCEA is quite
stable for all the datasets. see Table 11.
7. Application to real high-dimensional data

This last section applies LeOCCEA to two real high-dimensional
multi-class classification problems. The former is related to the
lung cancer diagnosis from microarray data, while the latter con-
sists of the Motion Imagery (MI) classification of three datasets,
corresponding to three different subjects.

7.1. Application to a lung cancer diagnosis

The first high-dimensional classification problem where LeOC-
CEA has been tested is the lung cancer diagnosis from microarray
data. The data come from The Cancer Genome Atlas (TCGA) and
consist of microarray data of 1100 subjects with 410 features
and three different states: 495 ACC Primary Tumor, 502 SCC Pri-
mary Tumor, and 103 Solid Tissue Normal samples, which have
been split (80%� 20%, stratified) into training and test sets after
the deletion of 10 outliers. This dataset was also used in [23] to
select the most relevant features with several feature selectors,
being the best one minimum Redundancy Maximum Relevance
(mRMR) [86]. Three different classifiers were also tested on this
dataset SVM, KNN, and Random Forest (RF).

Since the number of input features is much larger than those of
datasets used in previous sections, LeOCCEA has been run 20 times,
during 1000 generations and using 16 subpopulations (the number
of cores in the computing platform) of 1000 individuals. The
remaining hyperparameters have been kept as described above.
Table 16 shows the error rate and the number of features finally
selected by all the feature selection approaches. At first sight, it
seems that LeOCCEA presents better results than all the feature
selection approaches presented in [23]. Table 17 presents a pair-
wise lexicographic comparison of all of them, with a significance
level a ¼ 0:05, as well as their ranking. LeOCCEA achieves the high-
est rank, confirming this fact. LeOCCEA also achieves high stable
outcomes, reaching a stability score of 0:975. These results confirm

Table 5
Mean test error rate achieved by the different wrapper alternatives.

Method German Ionosphere Vehicle WBCD Wine Zoo

LFS 0:313 0:133 0:169 0:111 0:259 0:210
GSBS 0:357 0:219 0:242 0:164 0:148 0:200
ErFS 0:306 0:116 0:150 0:066 0:040 0:045
2SFS 0:308 0:119 0:151 0:065 0:040 0:045
TMGWO 0:244 0:069 0:262 0:052 0:053 0:040
FAM-BSO 0:171 0:081 0:182 0:035 0:028 0:043
BPSO n:a: n:a: 0:175� 0:068 n:a: 0:028� 0:011 0:013� 0:023
BSEOA n:a: n:a: 0:188� 0:062 n:a: 0:028� 0:013 0:008� 0:018
LeOCCEA 0:255� 0:021 0:067� 0:019 0:079� 0:007 0:039� 0:010 0:036� 0:014 0:036� 0:010

Table 6
Mean number of features achieved by the different wrapper alternatives.

Method German Ionosphere Vehicle WBCD Wine Zoo

LFS 3:000 4:000 9:000 10:000 7:000 8:000
GSBS 18:000 30:000 16:000 25:000 8:000 7:000
ErFS 13:480 12:580 9:520 13:420 8:000 9:180
2SFS 11:920 12:050 8:650 5:000 8:000 9:180
TMGWO 14:000 4:000 9:000 4:000 6:000 8:000
FAM-BSO 12:030 17:050 9:030 14:840 6:410 8:420
BPSO n:a: n:a: 10:500 n:a: 8:900 11:050
BSEOA n:a: n:a: 10:350 n:a: 8:150 10:200
LeOCCEA 6:325� 1:072 8:175� 0:501 8:775� 0:733 5:600� 0:744 3:175� 0:385 4:425� 0:594

Table 7
Lexicographic comparison of the wrapper methods for the German dataset (a ¼ 0:05).

Table 8
Lexicographic comparison of the wrapper methods for the Ionosphere dataset
(a ¼ 0:05).

Table 9
Lexicographic comparison of the wrapper methods for the WBCD dataset (a ¼ 0:05).

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76

69
again the two starting hypotheses of this work, now on a high-
dimensional dataset.

7.2. Application to a real motor imagery classification problem

Now LeOCCEA is applied to three different datasets concerning
a real BCI problem. These MI datasets were recorded in the BCI lab-
oratory at the University of Essex, UK. One different dataset was
obtained from each one of the several subjects imagining the
movement of their right hand, left hand, and feet (three classes).
These BCI data were acquired applying the 10–20 international
placement system [87], a standard method to apply the scalp elec-
trodes in the context of EEG tests.

Data were obtained with 15 electrodes and from 12 healthy
subjects (58% female, 50% naive to BCI, with ages ranging from
24 to 50), sampled at 256 Hz during four different sessions of 30
trials per class, producing a total of 120 trials per class for each
subject. The training dataset was formed by samples from the first
two sessions, leaving the rest of the data for the test dataset,
obtaining two datasets of 180 samples per subject. After pre-
processing and feature extraction, each sample is formed by
3600 input features, each one representing a set of coefficients
obtained from the original signal by means of multiresolution anal-
ysis (MRA) [88]. These datasets were also used to test the NSGAII-
based wrapper method proposed in [11], where four different clas-
sification schemes were compared, KNN, NBC, and the application
of LDA to reduce the input dimensionality before using the two for-
mer classifiers (LDA + KNN and LDA + NBC respectively).

The LeOCCEA hyperparameters have been fixed the same as in
Section 7.1 for the three different datasets: subjects 104, 107,
and 110. Tables 18 and 19 show the results obtained, along with
those achieved by the four different classifier schemes used in
[11]. It can be appreciated that the number of features finally
selected by LeOCCEA is quite different for subjects 104, 107 and
110, although an a posteriori adjustment in the similarity thresh-
old tl could guide the search of the wrapper method towards solu-
tions with a similar number of features, as it has been analyzed in
Section 5. However, the value of the test Kappa index achieved by
LeOCCEA is lower than those reported by the other wrapper alter-

Table 10
Lexicographic comparison of the wrapper methods for the Vehicle dataset (a ¼ 0:05). Ranking� has been calculated
discarding BPSO and BSEOA, to allow the comparison of results with those of Tables 7–9.

Table 11
Lexicographic comparison of the wrapper methods for the Wine dataset (a ¼ 0:05). Ranking� has been calculated
discarding BPSO and BSEOA, to allow the comparison of results with those of Tables 7–9.

Table 12
Lexicographic comparison of the wrapper methods for the Zoo dataset (a ¼ 0:05). Ranking� has been calculated
discarding BPSO and BSEOA, to allow the comparison of results with those of Tables 7–9.

Table 13
Average ranking achieved for all datasets. BPSO and BSEOA are not included, since they have not been applied to all datasets.

Dataset LeOCCEA FAM-BSO TMGWO 2SFS ErFS LFS GSBS

German 1 0 2 4 4 4 6
Ionosphere 1 3 0 3 5 4 6
Vehicle 0 4 5 2 2 3 6
WBCD 1 1 2 3 5 5 6
Wine 0 1 4 3 3 5 6
Zoo 0 4 2 5 5 6 4

Average 0:50 2:17 2:50 3:33 4:00 4:50 5:67

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
natives, although results obtained by LeOCCEA are much more
stable, especially for subjects 107 and 110, as shown in Table 20.
This fact could mean that SVM is not the best classifier for the
University of Essex BCI data. Indeed, this issue is discussed in
[89,90], where some guidelines are provided to choose an adequate
70
classifier taking into account the characteristics of a concrete BCI
application.

On the other side, since results obtained by LeOCCEA are sur-
prisingly stable and KNN and NBC performed better for the same
data in [11], these classifiers have been tried with the Essex test

Table 14
Average ranking achieved considering all the wrapper methods.

Dataset LeOCCEA BSEOA BPSO FAM-BSO 2SFS ErFS TMGWO LFS GSBS

Vehicle 0 6 6 6 2 2 7 3 8
Wine 0 3 3 1 5 5 6 7 8
Zoo 1 2 3 6 7 7 2 8 6

Average 0:33 3:67 4:00 4:33 4:67 4:67 5:00 6:00 7:33

Table 15
Stability score achieved by the LeOCCEA wrapper method for all the datasets listed in
Table 1.

Dataset Score

German 0:863
Ionosphere 0:878
Vehicle 0:858
WBCD 0:743
Wine 0:867
Zoo 0:756

Average 0:828

Table 16
Average accuracy and number of features selected for the test patterns of the lung
cancer dataset.

Method Accuracy # Features

mRMR + SVM 0:904 3
0:947 6
0:951 9

mRMR + KNN 0:904 3
0:951 6
0:951 9

mRMR + RF 0:914 3
0:954 6
0:944 9

LeOCCEA 0:962� 0:005 5:750� 1:552

Table 18
Kappa values (avg � std) for the test patterns of subjects 104, 107 and 110 of the
University of Essex BCI data files.

Wrapper 104 107 110

KNN 0:704� 0:031 0:550� 0:033 0:590� 0:031
NBC 0:642� 0:029 0:521� 0:030 0:515� 0:038
LDA + KNN 0:647� 0:053 0:584� 0:035 0:580� 0:039
LDA + NBC 0:677� 0:047 0:550� 0:028 0:574� 0:055
LeOCCEA 0:578� 0:046 0:479� 0:049 0:493� 0:039

Table 19
Number of features (avg � std) selected for subjects 104, 107 and 110 of the
University of Essex BCI data files.

Wrapper 104 107 110

KNN 28:260� 1:209 28:840� 0:866 29:080� 0:829
NBC 27:220� 1:112 29:360� 0:921 29:380� 0:725
LDA + KNN 28:760� 1:117 29:850� 0:670 29:680� 0:695
LDA + NBC 28:480� 1:249 29:860� 0:756 29:720� 0:757
LeOCCEA 17:700� 1:342 30:900� 2:426 26:350� 2:540

Table 20
Stability scores achieved by the different wrapper procedures for subjects 104, 107
and 110 of the University of Essex BCI data files.

Wrapper 104 107 110 Average

KNN 0:948 0:959 0:963 0:957
NBC 0:679 0:928 0:793 0:800
LDA + KNN 0:694 0:834 0:920 0:816
LDA + NBC 0:721 0:859 0:879 0:820
LeOCCEA 0:991 0:988 0:989 0:989

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
dataset using the sets of features provided by LeOCCEA. KNN was
parameterized with k equal to the odd number closest to the
squared root of the number of samples in each dataset, as in
[11]. Results are shown in Table 21. KNN seems to be quite sensi-
tive to this change because their results have worsen. This is in line
with the stability tests performed in [11]. On the contrary, results
obtained with NBC are even better than those achieved by SVM,
which was the classifier used by LeOCCEA to select the features
in the training process. Thus, these results support the hypothesis
that SVM may not be the best classifier for this dataset. Even more,
perhaps LeOCCEA trained with NBC could even improve the results,
although this experiment has been left for future work.
Table 17
Lexicographic comparison of the feature selection methods applie
the different classifiers are indicated with the number of feature

71
Tables 22–24 show the pairwise comparison of the wrapper
methods for the three subjects, with a significance level a ¼ 0:05,
as well as their ranking. It can be appreciated that the subsets of
features found by LeOCCEA and classified with NBC are among
d to the lung cancer dataset. For the results obtained in [23],
s obtained by mRMR in brackets (a ¼ 0:05).

Table 21
Kappa values (avg � std) applying different classifiers obtained for the test patterns of
subjects 104, 107 and 110 of the University of Essex BCI data files. Features were
selected with LeOCCEA (using SVM while training).

Classifier 104 107 110

SVM 0:578� 0:046 0:479� 0:049 0:493� 0:039
KNN 0:543� 0:053 0:361� 0:043 0:444� 0:059
NBC 0:639� 0:061 0:534� 0:037 0:542� 0:037

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
the best alternatives for subjects 104 and 107. Average ranking val-
ues are listed in Table 25, where LeOCCEA + NBC is in the second
position just after KNN. However, it has to be remarked that the
application of KNN to test data used the subsets of features found
by the wrapper method proposed in [11] also using KNN, while for
the LeOCCEA + NBC alternative NBC was applied to test data using
the features provided by LeOCCEA, which used SVM while training.
Table 22
Lexicographic comparison of the wrapper methods for subjec

Table 23
Lexicographic comparison of the wrapper methods for subjec

Table 24
Lexicographic comparison of the wrapper methods for subjec

Table 25
Average ranking achieved by the wrapper methods for the test patterns of subjects 104, 1

Subject KNN LeOCCEA (NBC) LDA + KN

104 0 1 4
107 2 2 1
110 1 3 2

Average 1:00 2:00 2:33

72
8. Conclusions

This paper has described the LeOCCEA wrapper method in-
depth, a wrapper procedure that hybridizes concepts of CCEAs
and lexicographic optimization to make possible the simultaneous
optimization of two interdependent problems: finding the best
hyperparameter values for the classifier applied within the wrap-
per method while minimizing the number of features that better
describe a dataset. The lexicographic approach allows the opti-
mization of multiple objectives easily, even with a simple EA
scheme for each species. Another benefit of LeOCCEA is that it finds
only one solution per execution, instead of a set of Pareto optimal
solutions, which makes easier the work of the DM. see Table 23.

Since the results and execution time of LeOCCEA depend on its
two main configuration hyperparameters, pval and tl, an experi-
mental study has been carried out in order to determine how these
hyperparameters influence the wrapper method results and which
t 104 of the University of Essex BCI data files (a ¼ 0:05)

t 107 of the University of Essex BCI data files (a ¼ 0:05).

t 110 of the University of Essex BCI data files (a ¼ 0:05).

07 and 110 of the University of Essex BCI data files.

N LDA + NBC LeOCCEA (SVM) NBC

3 5 3
3 4 5
3 4 5

3:00 4:33 4:33

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
values are likely to make the algorithm converge to satisfactory
solutions in a reasonable computation time. Once these values
have been obtained, LeOCCEA has been applied to several well-
known datasets. A new lexicographic ranking methodology has
been proposed to allow the comparison of its results with those
provided by other state-of-the-art wrapper methods. LeOCCEA
has achieved the best average ranking, which confirms the two
starting hypotheses of this work: the simultaneous optimization
of the classifier hyperparameters, while the feature selection prob-
lem is being solved, improves the final results, and the co-
evolution of these two interrelated problems can be formulated
as a lexicographic problem.

LeOCCEA has also been applied to several real high-dimensional
datasets. For the lung cancer diagnosis, LeOCCEA also performs
quite well, reducing the dimensionality of the dataset from 410
features to an average of 4:75, and achieving the better accuracy
of all compared methods. However, for the MI application, the clas-
sification accuracy obtained is not as good as expected, although
the wrapper method has presented a surprisingly high stability,
which led us to think that perhaps SVM is not the best classifier
for this BCI application. Thus, the subsets of features provided by
LeOCCEA (using SVM while training) were used to classify the test
datasets with KNN and NBC, achieving noticeably better accuracies
with NBC, comparable with those obtained in [11]. These results
open up future research where LeOCCEA should also take into
account other classifiers, such as NBC, to improve its test accuracy
in this application.

Finally, the stability scores achieved by LeOCCEA for all the
high-dimensional datasets are quite higher than those obtained
for the UCI datasets, even with the former being much more diffi-
cult problems. This effect may be related to the number of gener-
ations run in each case. Perhaps the 300 generations run for the
UCI datasets do not suffice to achieve the highly stable results pro-
duced for the motor imagery data, obtained after 1000 generations.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

This work was supported by project PGC2018-098813-B-C31
(Spanish "Ministerio de Ciencia, Innovación y Universidades"),
and by European Regional Development Funds (ERDF). Funding
for open access charge: Universidad de Granada / CBUA. We would
like to thank Dr. Daniel Castillo-Secilla and Dr. John Q. Gan for
making available to us, respectively, the lung cancer dataset and
the University of Essex BCI data files.

Appendix A. Summary of notations

The notations used along this paper are described below:

n Number of features in the original dataset.
k Number of neighbors chosen for the KNN classifier.
C Regularization hyperparameter for the SVM classifier.
c Width of the RBF kernels for the SVM classifier.
no Number of objectives to be optimized.
oi The i-th objective.

f i Fitness value for the i-th objective.
f Vector of no components storing the fitness for all the objec-
tives defined in the problem.
73
til Similarity threshold applied for the lexicographic comparison
of values for i-th objective.
tl Vector of no components storing the different similarity
thresholds for all the objectives.
tl Unique similarity threshold value. Used when the same sim-
ilarity threshold value is applied for all the objectives
ðtil ¼ tl;8i 2 ½0;noÞ \NÞ.
�l Better-than lexicographic relation (subindex l comes from
lexicographic).
¼l Equal-to lexicographic relation.
�l Better-than or equal-to lexicographic relation.
np Number of subpopulations defined in the LeOCCEA wrapper
method.
Pi i-th subpopulation defined in the LeOCCEA wrapper method.
Si Species being evolved in subpopulation Pi. S0 is used to repre-
sent the hyperparameters of the classifier whereas the rest of
species evolve subsets of input features.
mi Size of subpopulation Pi.
m Size of all the subpopulations being evolved (in case all the
subpopulations have the same size).
Ij Individual belonging to species Sj. If j ¼ 0 it encodes possible
values for the hyperparameters of the classifier. For higher val-
ues of j it contains a subset of input features belonging to Sj.
nr Number of representatives chosen from each subpopulation
in order to assign a fitness value to each individual in the LeOC-
CEA wrapper method.
ng Number of generations performed by the LeOCCEA wrapper
method.
pmfs

Mutation probability for the feature selection species.
pmsvm

Mutation probability for the classifier hyperparameter
species.
ne Number of executions of the wrapper algorithm.
D The whole training dataset.
pval Percentage of data in D used for validation for the VO and
VT lexicographic evaluation alternatives.
DI Reduced dataset obtained keeping only the selected features
coded in I from the original training dataset D.
DItr Subset of DI used to train the classifiers for the VO and VT
lexicographic evaluation alternatives.
DIval Subset of DI used for validation for the VO and VT lexico-
graphic evaluation alternatives.
W Wrapper method.
BDðWÞ Set of wrapper methods lexicographically better than W
for dataset D.
rDðWÞ Rank of wrapper method W for a dataset D.
�rðWÞ Average rank of wrapper method W for several datasets.
References

[1] R.E. Bellman, Adaptive Control Processes. A Guided Tour, Princeton Legacy
Library, Princeton University Press, Princeton, NJ, USA, 1961.

[2] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, J. Mach.
Learn. Res. 3 (2003) 1157–1182, URL:http://www.jmlr.org/papers/v3/
guyon03a.html.

[3] P.M. Lewis, The characteristic selection problem in recognition systems, IRE
Trans. Inform. Theory 8 (2) (1962) 171–178, https://doi.org/10.1109/
TIT.1962.1057691.

[4] P. Min, On feature selection in multiclass pattern recognition, Ph.D. thesis,
School of Electrical Engineering, Purdue University, Lafayette, IN, USA (June
1968).

[5] A.L. Blum, P. Langley, Selection of relevant features and examples in machine
learning, Artif. Intell. 97 (1–2) (1997) 245–271, https://doi.org/10.1016/S0004-
3702(97)00063-5.

[6] R. Kohavi, G.H. John, Wrappers for feature subset selection, Artif. Intell. 97 (1–
2) (1997) 273–324, https://doi.org/10.1016/S0004-3702(97)00043-X.

[7] P. Pudil, P. Somol, Identifying the most informative variables for decision-
making problems – a survey of recent approaches and accompanying

http://refhub.elsevier.com/S0925-2312(21)01187-5/h0005
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0005
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0005
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0010
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0010
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0010
https://doi.org/10.1109/TIT.1962.1057691
https://doi.org/10.1109/TIT.1962.1057691
https://doi.org/10.1016/S0004-3702(97)00063-5
https://doi.org/10.1016/S0004-3702(97)00063-5
https://doi.org/10.1016/S0004-3702(97)00043-X

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
problems, Acta Oeconomica Pragensia 2008 (4) (2008) 37–55, https://doi.org/
10.18267/j.aop.131.

[8] S. Khalid, T. Khalil, S. Nasreen, A survey of feature selection and feature
extraction techniques in machine learning, in: K. Arai, A. Mellouk (Eds.),
Proceedings of the 2014 Science and Information Conference, The Science and
Information (SAI) Organization, London, UK, 2014, pp. 372–378, doi: 10.1109/
SAI.2014.6918213.

[9] S. Basterrech, P. Bobrov, A. Frolov, D. Húsek, Nature-inspired algorithms for
selecting eeg sources for motor imagery based bci, in, in: Proceedings of the
14th International Conference on Artificial Intelligence and Soft Computing
(ICAISC 2015), Part II, Lecture Notes in Computer Science Springer, Zakopane,
Poland, 2015, pp. 79–90, https://doi.org/10.1007/978-3-319-19369-4_8.

[10] R. Corralejo, R. Hornero, D. Álvarez, Feature selection using a genetic algorithm
in a motor imagery-based brain computer interface, in: Proceedings of the
33rd Annual International Conference of the IEEE Engineering-in-Medicine-
and-Biology-Society (EMBS), IEEE, Boston, MA, USA, 2011, pp. 7703–7706,
https://doi.org/10.1109/IEMBS.2011.6091898.

[11] J. González, J. Ortega, M. Damas, P. Martín-Smith, J.Q. Gan, A new multi-
objective wrapper method for feature selection – accuracy and stability
analysis for bci, Neurocomputing 333 (14) (2019) 407–418, https://doi.org/
10.1016/j.neucom.2019.01.017.

[12] B. Xue, M. Zhang, W.N. Browne, Particle swarm optimization for feature
selection in classification: A multi-objective approach, IEEE Trans. Cybern. 43
(6) (2013) 1656–1671, https://doi.org/10.1109/TSMCB.2012.2227469.

[13] A. Wang, N. An, G. Chen, L. Li, G. Alterovitz, Accelerating wrapper-based
feature selection with k-nearest-neighbor, Knowl.-Based Syst. 83 (2015) 81–
91, https://doi.org/10.1016/j.knosys.2015.03.009.

[14] C.H. Park, S.B. Kim, Sequential random k-nearest neighbor feature selection for
high-dimensional data, Expert Syst. Appl. 42 (5) (2015) 2336–2342, https://
doi.org/10.1016/j.eswa.2014.10.044.

[15] M. Abdel-Basset, D. El-Shahat, I. El-henawy, V.H.C. de Albuquerque, S. Mirjalili,
A new fusion of grey wolf optimizer algorithm with a two-phase mutation for
feature selection, Expert Syst. Appl. 139 (2020), https://doi.org/10.1016/j.
eswa.2019.112824 112824.

[16] P. Tan, X. Wang, Y. Wang, Dimensionality reduction in evolutionary
algorithms-based feature selection for motor imagery brain-computer
interface, Swarm Evol. Comput. 52 (2020), https://doi.org/10.1016/j.
swevo.2019.100597 100597.

[17] X.F. Song, Y. Zhang, Y.N. Guo, X.Y. Sun, Y.L. Wang, Variable-size cooperative
coevolutionary particle swarm optimization for feature selection on high-
dimensional data, IEEE Trans. Evol. Comput. 24 (5) (2020) 882–895, https://
doi.org/10.1109/TEVC.2020.2968743.

[18] R.N. Khushaba, A. AlSukker, A. Al-Ani, A. Al-Jumaily, Intelligent artificial ants
based feature extraction fromwavelet packet coefficients for biomedical signal
classification, in: Proceedings of the 3rd IEEE International Symposium on
Control, Communications and Signal Processing (ISCCSP 2008), IEEE, St.
Julians, Malta, 2008, pp. 1366–1371, doi: 10.1109/ISCCSP.2008.4537439.

[19] J. Ortega, J. Asensio-Cubero, J.Q. Gan, A. Ortiz, Classification of motor imagery
tasks for bci with multiresolution analysis and multiobjective feature
selection, BioMedical Eng. OnLine 15 (Suppl 1) (2016) 73, https://doi.org/
10.1186/s12938-016-0178-x.

[20] M. Schroder, M. Bogdan, W. Rosenstiel, T. Hinterberger, N. Birbaumer,
Automated eeg feature selection for brain computer interfaces, in:
Proceedings of the 1st International IEEE/EMBS Conference on Neural
Engineering, IEEE, Capri, Italy, 2003, pp. 626–629, https://doi.org/10.1109/
CNE.2003.1196906.

[21] S. Madonado, R. Weber, A wrapper method for feature selection using support
vector machines, Inf. Sci. 179 (13) (2009) 2208–2217, https://doi.org/10.1016/
j.ins.2009.02.014.

[22] P. Rajasekharreddy, E.S. Gopi, Feature selection for vocal segmentation using
social emotional optimization algorithm, in: A.J. Kulkarni, P.K. Singh, S.C.
Satapathy, A.H. Kashan, K. Tai (Eds.), Socio-cultural Inspired Metaheuristics,
Vol. 828 of Studies in Computational Intelligence, Springer Verlag, Singapore,
2019, pp. 69–91, doi: 10.1007/978-981-13-6569-0_4.

[23] D. Castillo-Secilla, J.M. Gálvez, F. Carrillo-Perez, M. Verona-Almeida, D.
Redondo-Sánchez, F.M. Ortuno, L.J. Herrera, I. Rojas, Knowseq r-bioc
package: The automatic smart gene expression tool for retrieving relevant
biological knowledge, Comput. Biol. Med. 133 (2021), https://doi.org/10.1016/
j.compbiomed.2021.104387 104387.

[24] C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (3) (1995)
273–297, https://doi.org/10.1007/BF00994018.

[25] J. González, J. Ortega, M. Damas, P. Martín-Smith, Many-objective cooperative
co-evolutionary feature selection: A lexicographic approach, in: I. Rojas, G.
Joya, A. Catalá (Eds.), Advances in Computational Intelligence, IWANN 2019,
Vol. 11507 of Lecture Notes in Computer Science, Springer, Gran Canaria,
Spain, 2019, pp. 463–474, doi: 10.1007/978-3-030-20518-8_39.

[26] M.A. Potter, K.A. De Jong, A cooperative coevolutionary approach to function
optimization, in: Y. Davidor, H.-P. Schwefel, R. Männer (Eds.), Proceedings of
the 3rd International Conference on Parallel Problem Solving from Nature,
PPSN III, Vol. 866 of Lecture Notes in Computer Science, Springer, Jerusalem,
Israel, 1994, pp. 249–257, doi: 10.1007/3-540-58484-6_269.

[27] M.A. Potter, K.A. De Jong, Cooperative coevolution: An architecture for
evolving coadapted subcomponents, Evolutionary Computation 8 (1) (2000)
1–29, https://doi.org/10.1162/106365600568086.

[28] V.R. Khare, X. Yao, B. Sendhoff, Credit assignment among neurons in co-evolving
populations, in: X. Yao, E.K. Burke, J.A. Lozano, J. Smith, J.J. Merelo-Guervós, J.A.
74
Bullinaria, J.E. Rowe, P. Tiňo, A. Kabán, H.-P. Schwefel (Eds.), Proceedings of the
8th International Conference on Parallel ProblemSolving fromNature, PPSNVIII,
Vol. 3242 of Lecture Notes in Computer Science, Springer, Berlin, Germany,
2004, pp. 882–891, doi: 10.1007/978-3-540-30217-9_89.

[29] J. Tian, M. Li, F. Chen, Coevolutionary feature selection strategy for rbfnn
classifier, in: M. Guo, L. Zhao, L. Wang (Eds.), Proceedings of the Fourth
International Conference on Natural Computation, ICNC’2008, Vol. 7, IEEE,
Jinan, China, 2008, pp. 131–135, doi: 10.1109/ICNC.2008.436.

[30] Y. Wen, H. Xu, A cooperative coevolution-based pittsburgh learning classifier
system embedded with memetic feature selection, in: A.E. Smith, I. Parmee
(Eds.), Proceedings of the 2011 IEEE Congress of Evolutionary Computation,
CEC’2011, IEEE, New Orleans, LA, USA, 2011, pp. 2415–2422, doi: 10.1109/
CEC.2011.5949916.

[31] B. Cao, J. Zhao, Z. Lv, X. Liu, A distributed parallel cooperative coevolutionary
multiobjective evolutionary algorithm for large-scale optimization, IEEE Trans.
Industr. Inf. 13 (4) (2017) 2030–2038, https://doi.org/10.1109/
TII.2017.2676000.

[32] X. Ma, X. Li, Q. Zhang, K. Tang, Z. Liang, W. Xie, Z. Zhu, A survey on cooperative
co-evolutionary algorithms, IEEE Transactions on Evolutionary Computation
(early access), doi: 10.1109/TEVC.2018.2868770.

[33] A.E. Aguilar-Justo, E. Mezura-Montes, A local cooperative approach to solve
large-scale constrained optimization problems, Swarm Evol. Comput. 51
(2019), https://doi.org/10.1016/j.swevo.2019.100577 100577.

[34] Z.H. Zhan, J. Li, J. Cao, J. Zhang, H.S.H. Chung, Y.H. Shi, Multiple populations for
multiple objectives: A coevolutionary technique for solving multiobjective
optimization problems, IEEE Trans. Cybern. 43 (2) (2013) 445–463, https://doi.
org/10.1109/TSMCB.2012.2209115.

[35] X.F. Liu, Z.H. Zhan, Y. Gao, J. Zhang, S. Kwong, J. Zhang, Coevolutionary particle
swarm optimization with bottleneck objective learning strategy for many-
objective optimization, IEEE Trans. Evol. Comput. 23 (4) (2019) 587–602,
https://doi.org/10.1109/TEVC.2018.2875430.

[36] Z.G. Chen, Z.H. Zhan, Y. Lin, Y.J. Gong, T.L. Gu, F. Zhao, H.Q. Yuan, X. Chen, Q. Li,
J. Zhang, Multiobjective cloud workflow scheduling: A multiple populations
ant colony system approach, IEEE Trans. Cybern. 49 (8) (2019) 2912–2926,
https://doi.org/10.1109/TCYB.2018.2832640.

[37] S.-Z. Zhou, Z.-H. Zhan, Z.-G. Chen, S. Kwong, J. Zhang, A multi-objective ant
colony system algorithm for airline crew rostering problem with fairness and
satisfaction, IEEE Trans. Intell. Transp. Syst. (2020), https://doi.org/10.1109/
tits.2020.2994779.

[38] C. Emmanouilidis, A. Hunter, J. MacIntyre, A multiobjective evolutionary
setting for feature selection and a commonality-based crossover operator, in:
A. Zalzala (Ed.), Proceedings of the 2000 Congress on Evolutionary
Computation, CEC’2000, IEEE, La Jolla, CA, USA, 2000, pp. 309–316, doi:
10.1109/CEC.2000.870311.

[39] C. Emmanouilidis, A. Hunter, J. MacIntyre, C. Cox, A multi-objective genetic
algorithm approach to feature selection in neural and fuzzy modeling, Evol.
Optim. 3 (1) (2001) 1–26.

[40] J. Liu, H. Iba, Selecting informative genes using a multiobjective evolutionary
algorithm, in: D.B. Fogel (Ed.), Proceedings of the 2002 Congress on
Evolutionary Computation, IEEE, Honolulu, HI, USA, 2002, pp. 297–302,
https://doi.org/10.1109/CEC.2002.1006250.

[41] L. Oliveira, R. Sabourin, F. Bortolozzi, C.Y. Suen, A methodology for feature
selection using multiobjective genetic algorithms for handwritten digit string
recognition, Int. J. Pattern Recognit Artif Intell. 17 (6) (2003) 903–929, https://
doi.org/10.1142/S021800140300271X.

[42] F. Mendes, J. Duarte, A. Vieira, A. Gaspar-Cunha, Feature selection for
bankruptcy prediction: A multi-objective optimization approach, in: X.-Z.
Gao, A. Gaspar-Cunha, M. Köppen, G. Schaefer, J. Wang (Eds.), Soft Computing
in Industrial Applications, Vol. 75 of Advances in Intelligent and Soft
Computing, Springer, Berlin, Germany, 2010, pp. 109–115, doi: 10.1007/978-
3-642-11282-9_12.

[43] V.V. Podinovskii, V.M. Gavrilov, Optimization with respect to successive
criteria (Optimizatsiya po posledovatel’no primenyaemym kriteriyam),
Sovetskoe Radio, Moscow, Russia, 1975.

[44] A. Ben-Tal, Characterization of pareto and lexicographic optimal solutions, in:
G. Fandel, T. Gal (Eds.), Proceedings of the Third Conference on Multiple
Criteria Decision Making Theory and Application, Vol. 177 of Lecture Notes in
Economics and Mathematical System, Springer, Berlin, Germany, 1979, pp. 1–
11, doi: 10.1007/978-3-642-48782-8_1.

[45] M.G. Klepikova, The stability of lexicographic optimization problem, USSR
Comput. Math. Math. Phys. 25 (1) (1985) 21–29, https://doi.org/10.1016/
0041-5553(85)90037-0.

[46] S. Khosravani, M. Jalali, A. Khajepour, A. Kasaiezadeh, S.-K. Chen, B. Litkouhi,
Application of lexicographic optimization method to integrated vehicle control
systems, IEEE Trans. Industr. Electron. 65 (12) (2018) 9677–9686, https://doi.
org/10.1109/TIE.2018.2821625.

[47] Y. Rasekhipour, I. Fadakar, A. Khajepour, Autonomous driving motion planning
with obstacles prioritization using lexicographic optimization, Control Eng.
Practice 77 (2018) 235–246, https://doi.org/10.1016/
j.conengprac.2018.04.014.

[48] C.M. Fonseca, P.J. Fleming, Multiobjective optimization andmultiple constraint
handling with evolutionary algorithms – part i: A unified formulation, EEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
28 (1) (1998) 26–37, https://doi.org/10.1109/3468.650319.

[49] N. Drechsler, R. Drechsler, B. Becker, Multi-objective optimisation based on
relation favour, in: E. Zitzler, L. Thiele, K. Deb, C.A. Coello Coello, D. Corne

https://doi.org/10.18267/j.aop.131
https://doi.org/10.18267/j.aop.131
https://doi.org/10.1007/978-3-319-19369-4_8
https://doi.org/10.1109/IEMBS.2011.6091898
https://doi.org/10.1016/j.neucom.2019.01.017
https://doi.org/10.1016/j.neucom.2019.01.017
https://doi.org/10.1109/TSMCB.2012.2227469
https://doi.org/10.1016/j.knosys.2015.03.009
https://doi.org/10.1016/j.eswa.2014.10.044
https://doi.org/10.1016/j.eswa.2014.10.044
https://doi.org/10.1016/j.eswa.2019.112824
https://doi.org/10.1016/j.eswa.2019.112824
https://doi.org/10.1016/j.swevo.2019.100597
https://doi.org/10.1016/j.swevo.2019.100597
https://doi.org/10.1109/TEVC.2020.2968743
https://doi.org/10.1109/TEVC.2020.2968743
https://doi.org/10.1186/s12938-016-0178-x
https://doi.org/10.1186/s12938-016-0178-x
https://doi.org/10.1109/CNE.2003.1196906
https://doi.org/10.1109/CNE.2003.1196906
https://doi.org/10.1016/j.ins.2009.02.014
https://doi.org/10.1016/j.ins.2009.02.014
https://doi.org/10.1016/j.compbiomed.2021.104387
https://doi.org/10.1016/j.compbiomed.2021.104387
https://doi.org/10.1007/BF00994018
https://doi.org/10.1162/106365600568086
https://doi.org/10.1109/TII.2017.2676000
https://doi.org/10.1109/TII.2017.2676000
https://doi.org/10.1016/j.swevo.2019.100577
https://doi.org/10.1109/TSMCB.2012.2209115
https://doi.org/10.1109/TSMCB.2012.2209115
https://doi.org/10.1109/TEVC.2018.2875430
https://doi.org/10.1109/TCYB.2018.2832640
https://doi.org/10.1109/tits.2020.2994779
https://doi.org/10.1109/tits.2020.2994779
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0195
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0195
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0195
https://doi.org/10.1109/CEC.2002.1006250
https://doi.org/10.1142/S021800140300271X
https://doi.org/10.1142/S021800140300271X
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0215
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0215
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0215
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0215
https://doi.org/10.1016/0041-5553(85)90037-0
https://doi.org/10.1016/0041-5553(85)90037-0
https://doi.org/10.1109/TIE.2018.2821625
https://doi.org/10.1109/TIE.2018.2821625
https://doi.org/10.1016/j.conengprac.2018.04.014
https://doi.org/10.1016/j.conengprac.2018.04.014
https://doi.org/10.1109/3468.650319

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
(Eds.), Proceedings of the First International Conference on Evolutionary
Multi-Criterion Optimization, EMO’2001, Vol. 1993 of Lecture Notes in
Computer Science, Springer, Berlin, Germany, 2001, pp. 154–166, doi:
10.1007/s11047-014-9422-0.

[50] F. Schmiedle, N. Drechsler, D. Große, R. Drechsler, Priorities in multi-objective
optimization for genetic programming, in: L. Spector, E.D. Goodman, A. Wu, W.
B. Langdon, H.-M. Voigt (Eds.), Proceedings of the 3rd Annual Conference on
Genetic and Evolutionary Computation, GECCO’2001, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001, pp. 129–136, URL:https://dl.
acm.org/citation.cfm?id=2955256.

[51] N. Drechsler, A. Súlflow, R. Drechsler, Incorporating user preferences in many-
objective optimization using relation �)preferred, Nat. Comput. 14 (3) (2015)
469–483, https://doi.org/10.1007/s11047-014-9422-0.

[52] D. Dheeru, E. Karra Taniskidou, UCI Machine Learning Repository, School of
Information and Computer Sciences, University of California, Irvine, CA, USA,
2017, URL:http://archive.ics.uci.edu/ml.

[53] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,
3rd Edition., Springer, Berlin, Germany, 1998.

[54] K.C. Tan, Y.J. Yang, C.K. Goh, A distributed cooperative coevolutionary
algorithm for multiobjective optimization, IEEE Trans. Evol. Comput. 10 (5)
(2006) 527–549, https://doi.org/10.1109/TEVC.2005.860762.

[55] E. Popovici, A. Bucci, R.P.Wiegand, E.D. De Jong, Coevolutionary principles, in: G.
Rozenberg, T. Bäck, J.N. Kok (Eds.), Handbook of Natural Computing, Springer,
Berlin, Germany, 2012, pp. 987–1033, doi: 10.1007/978-3-540-92910-9_31.

[56] K. Deb, R.B. Agrawal, Simulated binary crossover for continuous search space,
Complex Systems 9(2) (1995) 115–148, URL:https://www.complex-
systems.com/abstracts/v09_i02_a02/.

[57] K. Deb, S. Agrawal, A niched-penalty approach for constraint handling in
genetic algorithms, in: A. Dobnikar, N.C. Steele, D.W. Pearson, R.F. Albrecht
(Eds.), Proceedings of the International Conference on Artificial Neural
Networks and Genetic Algorithms, Springer, Portorož, Slovenia, 1999, pp.
235–243, doi: 10.1007/978-3-7091-6384-9_40.

[58] J.W. Cohen, A coefficient of agreement for nominal scales, Educ. Psychol.
Measur. 20 (1) (1960) 37–46, https://doi.org/10.1037/h0026256.

[59] T. Eitrich, B. Lang, Efficient optimization of support vector machine learning
parameters for unbalanced datasets, J. Comput. Appl. Math. 196 (2) (2006)
425–436, https://doi.org/10.1016/j.cam.2005.09.009.

[60] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd
Edition, Springer series in statistics, Springer, New York, USA, 2009, https://doi.
org/10.1007/978-0-387-84858-7.

[61] S.S. Keerthi, S.K. Shevade, Smo algorithm for least-squares svm formulations,
Neural Comput. 15 (2) (2003) 487–507, https://doi.org/10.1162/
089976603762553013.

[62] J. López, J.A.K. Suykens, First and second order smo algorithms for ls-svm
classifiers, Neural Process. Lett. 33 (1) (2011) 31–44, https://doi.org/10.1007/
s11063-010-9162-9.

[63] C. Sentelle, G.C. Anagnostopoulos, M. Georgiopoulos, A fast revised simplex
method for svm training, in: Proceedings of the 19th International Conference
on Pattern Recognition, IEEE, Tampa, FL, USA, 2008, https://doi.org/10.1109/
ICPR.2008.4761810.

[64] H. Hofmann, German Credit Data, Universitat Hamburg, Hamburg, Germany,
URL:https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data
%29.

[65] V. Sigillito, Johns Hopkins University Ionosphere Database, Johns Hopkins
University, Baltimore, MD, USA, 1989, URL:https://archive.ics.uci.edu/
ml/datasets/Ionosphere.

[66] P. Mowforth, B. Shepherd, Vehicle Silhouettes Dataset, Turing Institute,
Glasgow, UK, URL:https://archive.ics.uci.edu/ml/datasets/Statlog+%28Vehicle
+Silhouettes%29.

[67] W.H. Wolberg, W.N. Street, O.L. Mangasarian, Wisconsin Diagnostic Breast
Cancer (WDBC), Clinical Sciences Center, MAdison, WI, USA, URL:https://
archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
(1995).

[68] M. Forina, R. Leardi, C. Armanino, S. Lanteri, PARVUS - An Extendible Package
for Data Exploration, Classification and Correlation, Institute of Pharmaceutical
and Food Analysis and Technologies, Genoa, Italy, URL:https://archive.ics.uci.
edu/ml/datasets/Wine (1991).

[69] R.S. Forsyth, Zoo Dataset, Mapperley Park, Nottingham, UK, 1990, URL:https://
archive.ics.uci.edu/ml/datasets/Zoo.

[70] F. Pourpanah, Y. Shi, C.P. Lim, Q. Hao, C.J. Tan, Feature selection based on brain
storm optimization for data classification, Appl. Soft Computing J. 80 (2019)
761–775, https://doi.org/10.1016/j.asoc.2019.04.037.

[71] B. Xue, M. Zhang, W.N. Browne, New fitness functions in binary particle swarm
optimisation for feature selection, in: H. Abbass, D. Essam, R. Sarker (Eds.),
Proceedings of the 2012 IEEE Congress on Evolutionary Computation,
CEC’2012, IEEE, Brisbane, QLD, Australia, 2012, doi: 10.1109/
CEC.2012.6256617.
75
[72] S. Luke, et al., Ecj 26. a java-based evolutionary computation research system,
URL:https://cs.gmu.edu/ eclab/projects/ecj/.

[73] C.-C. Chang, C.-J. Lin, LIBSVM: A library for support vector machines, ACM
Transactions on Intelligent Systems and Technology 2 (3) (2011) 27, software
available at URL:http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[74] J. González, Ristretto, EFFICOMP team, University of Granada, URL:https://
github.com/efficomp/ristretto.

[75] M. Gutlein, E. Frank, M. Hall, A. Karwath, Large-scale attribute selection using
wrappers, in: K. Smith-Miles, E. Keogh, V.C. Lee (Eds.), Proceedings of the 2009
IEEE Symposium on Computational Intelligence and Data Mining, CIDM’2009,
IEEE, Nashville, TN, USA, 2009, doi: 10.1109/CIDM.2009.4938668.

[76] A.W. Whitney, A direct method of nonparametric measurement selection, EEE
Trans. Computers C-20 9 (1971) 1100–1103, https://doi.org/10.1109/T-
C.1971.223410.

[77] T. Marill, D.M. Green, On the effectiveness of receptors in recognition systems,
IEEE Trans. Inf. Theory 9 (1) (1963) 11–17, https://doi.org/10.1109/
TIT.1963.1057810.

[78] R. Caruana, D. Freitag, Greedy attribute selection, in: W.W. Cohen, H. Hirsh
(Eds.), Proceedings of the Eleventh International Conference on International
Conference on Machine Learning, ICML’94, Morgan Kaufmann, New
Brunswick, NJ, USA, 1994, pp. 28–36.

[79] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the
IEEE International Conference on Neural Networks, ICNN’95, Vol. 6, IEEE, Perth,
WA, Australia, 1995, pp. 1942–1948, doi: 10.1109/ICNN.1995.488968.

[80] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw. 69
(2014) 46–61, https://doi.org/10.1016/j.advengsoft.2013.12.007.

[81] Y. Shi, Brain storm optimization algorithm, in: Y. Tan, Y. Shi, Y. Chai, G. Wang
(Eds.), Advances in Swarm Intelligence, ICSI 2011, Vol. 6728 of Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, 2011, pp. 303–309, doi:
10.1007/978-3-642-21515-5_36.

[82] G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, D.B. Rosen, Fuzzy
artmap: A neural network architecture for incremental supervised learning of
analog multidimensional map, IEEE Trans. Neural Networks 3 (5) (1992) 698–
713, https://doi.org/10.1109/72.159059.

[83] S. Grossberg, Adaptive pattern classification and universal recoding: Ii.
feedback, expectation, olfaction, illusions, Biological Cybernetics 23(4)
(1976) 187–202, https://doi.org/10.1007/bf00340335.

[84] J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm
algorithm, in: 1997 IEEE International Conference on Systems, Man, and
Cybernetics. Computational Cybernetics and Simulation, Vol. 5, IEEE, Orlando,
FL, USA, 1997, pp. 4104–4108, doi: 10.1109/ICSMC.1997.637339.

[85] Y. Xu, Z. Cui, J. Zeng, Social emotional optimization algorithm for nonlinear
constrained optimization problems, in: B.K. Panigrahi, S. Das, P.N. Suganthan,
S.S. Dash (Eds.), First International Conference on Swarm, Evolutionary, and
Memetic Computing, SEMCCO 2010, Vol. 6466 of Lecture Notes in Computer
Science, Springer, Chennai, India, 2010, pp. 583–590, doi: 10.1007/978-3-642-
17563-3_68.

[86] C. Ding, H. Peng, Minimum redundancy feature selection frommicroarray gene
expression data, J. Bioinformatics Comput. Biol. 3 (2) (2005) 185–205, https://
doi.org/10.1142/S0219720005001004.

[87] J.S. Ebersole, A.M. Husain, D.R. Nordli, Current Practice of Clinical
Electroencephalography, 4th Edition., Wolters Kluwer, Philadelphia, PA, USA,
2014.

[88] J. Asensio-Cubero, J.Q. Gan, R. Palaniappan, Multiresolution analysis over
simple graphs for brain computer interfaces, J. Neural Eng. 10 (4) (2013),
https://doi.org/10.1088/1741-2560/10/4/046014 046014.

[89] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B. Arnaldi, A review of
classification algorithms for eeg-based brain-computer interfaces, J. Neural
Eng. 4 (2) (2007) R1–R13, https://doi.org/10.1088/1741-2560/4/2/R01.

[90] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, F.
Yger, A review of classification algorithms for eeg-based brain-computer
interfaces: a 10-year update, J. Neural Eng. 15 (3) (2018), https://doi.org/
10.1088/1741-2552/aab2f2 031005.

Jesús González received the M.Sc. and Ph.D. degrees in
Computer Engineering from the University of Granada,
Spain, both with honors, in 1998 and 2001 respectively.
He is a Full Professor in the Department of Computer
Architecture and Technology at the University of Gran-
ada. His research interests include evolutionary com-
putation, machine learning, and embedded systems.

https://doi.org/10.1007/s11047-014-9422-0
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0260
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0260
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0260
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0260
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0265
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0265
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0265
https://doi.org/10.1109/TEVC.2005.860762
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0280
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0280
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0280
https://doi.org/10.1037/h0026256
https://doi.org/10.1016/j.cam.2005.09.009
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1162/089976603762553013
https://doi.org/10.1162/089976603762553013
https://doi.org/10.1007/s11063-010-9162-9
https://doi.org/10.1007/s11063-010-9162-9
https://doi.org/10.1109/ICPR.2008.4761810
https://doi.org/10.1109/ICPR.2008.4761810
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0325
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0325
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0325
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0325
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0345
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0345
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0345
https://doi.org/10.1016/j.asoc.2019.04.037
https://doi.org/10.1109/T-C.1971.223410
https://doi.org/10.1109/T-C.1971.223410
https://doi.org/10.1109/TIT.1963.1057810
https://doi.org/10.1109/TIT.1963.1057810
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1109/72.159059
https://doi.org/10.1007/bf00340335
https://doi.org/10.1142/S0219720005001004
https://doi.org/10.1142/S0219720005001004
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0435
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0435
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0435
http://refhub.elsevier.com/S0925-2312(21)01187-5/h0435
https://doi.org/10.1088/1741-2560/10/4/046014
https://doi.org/10.1088/1741-2560/4/2/R01
https://doi.org/10.1088/1741-2552/aab2f2
https://doi.org/10.1088/1741-2552/aab2f2

Jesús González, J. Ortega, Juan José Escobar et al. Neurocomputing 463 (2021) 59–76
Julio Ortega received the M.Sc. and Ph.D. degrees in
Electronic Physics from the University of Granada,
Spain, in 1986 and 1990 respectively. He is a Full Pro-
fessor in the Department of Computer Architecture and
Technology at the University of Granada and a senior
member of the IEEE Computer Society. His research
interests include the processing of parallel architec-
tures, multi-objective optimization, neural networks,
and evolutionary computation.
Juan José Escobar received the M.Sc. and Ph.D. degrees
in Computer Engineering from the University of Gran-
ada, Spain, in 2014 and 2020 respectively. He is a
Postdoctoral Researcher in the Department of Computer
Architecture and Technology at the University of Gran-
ada. His research interests include code optimization,
energy-efficient parallel computing, and workload bal-
ancing strategies on heterogeneous and distributed
systems, especially in issues related to evolutionary
algorithms and multi-objective feature selection prob-
lems.
76
Miguel Damas received the M.Sc. and Ph.D. degrees in
Computer Engineering from the University of Granada,
Spain, both with honors, in 1991 2000 respectively.
Currently, he is a Full Professor in the Department of
Computer Architecture and Computer Technology at the
University of Granada. His research interests are related
to the Industrial Internet of Things, human activity
recognition systems, machine learning, and parallel
programming for optimization problems.

	A lexicographic cooperative co-evolutionary approach for feature selection
	1 Motivation
	2 A lexicographic relation for MOPs
	3 The LeOCCEA wrapper method
	3.1 Structure
	3.2 Fitness evaluation
	3.3 Species representation
	3.3.1 Classifier species
	3.3.2 Features subset species

	3.4 Breeding operators
	3.4.1 Breeding operators for the classifier species
	3.4.2 Breeding operators for the features subset species

	4 Lexicographic fitness function proposal
	4.1 Metrics related to the feature selection problem
	4.2 Metrics related to the optimization of SVM classifiers
	4.3 The VT fitness function
	4.4 The VO fitness function

	5 LeOCCEA hyperparameter setting
	6 Comparison with other wrapper methods
	6.1 Brief description of the other wrapper alternatives
	6.1.1 Linear Forward Selection (LFS):
	6.1.2 Greedy Stepwise Backward Selection (GSBS):
	6.1.3 Commonly Used PSO Algorithm (ErFS):
	6.1.4 PSO With a Two-Stage Fitness Function (2SFS):
	6.1.5 Two-phase Mutation Grey Wolf Optimizer (TMGWO):
	6.1.6 FAM-BSO:
	6.1.7 Binary PSO (BPSO):
	6.1.8 BSEOA:

	6.2 Proposed ranking methodology
	6.3 Comparison
	6.4 Stability analysis

	7 Application to real high-dimensional data
	7.1 Application to a lung cancer diagnosis
	7.2 Application to a real motor imagery classification problem

	8 Conclusions
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Summary of notations
	References

