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Abstract
This paper provides a new approximate Bayesian computation (ABC) algorithm
with reduced hyper-parameter scaling and its application to nonlinear struc-
tural model calibration problems. The algorithm initially takes the ABC-SubSim
algorithm structure and sequentially estimates the algorithm hyper-parameter
by autonomous adaptation following a Markov chain approach, thus avoiding
the error associated to modeler’s choice for these hyper-parameters. The result-
ing algorithm, named2BC-SubSim, simplifies the application of ABC-SubSim
method for new users while ensuring better measure of accuracy in the posterior
distribution and improved computational efficiency. A first numerical applica-
tion example is provided for illustration purposes and to provide a comparative
and sensitivity analysis of the algorithmwith respect to initial ABC-SubSim algo-
rithm. Moreover, the efficiency of the method is demonstrated in two nonlinear
structural calibration case studies where the 2BC-SubSim is used as a tool to
infer structural parameters with quantified uncertainty based on test data. The
results confirm the suitability of the method to tackle with a real-life damage
parameter inference and its superiority in relation to the original ABC-SubSim.

1 INTRODUCTION

Bayesian methods are nowadays at the core of devel-
opment in numerous fields of science and engineering,
probably due to the maturity of the statistical computing
tools in conjunction with the rampant increase of com-
putational power. In structural engineering, the Bayesian
approach provides a powerful and robust framework to
system identification (Jiang et al., 2007; Perez-Ramirez
et al., 2019; Yuen et al., 2019), comprising either model
parameter updating or model class selection (Ching et al.,
2006; Sharma et al., 2015; Yin & Zhu, 2020; Zhang et al.,
2013).
Irrespectively, closed form solutions to the Bayesian

inverse problem (BIP) are rarely available due to the com-
plexity of themultidimensional integrals involved or due to
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difficulty in the formulation of a likelihood function Beck
(2010). Hence a branch of approximation methods have
been explored in the literature during decades to provide
efficient and effective solutions to practical applications of
the BIP. These methods mostly involve variational meth-
ods and stochastic simulation approaches (Stuart, 2010).
Apart from these methods, approximate Bayesian com-

putation (ABC)methods emergedwith the purpose of solv-
ing the BIP in those cases where the evaluation of the
likelihood function is computational prohibitive or analyti-
cally intractable (Marjoram et al., 2003; Tavaré et al., 1997).
ABC methods have been under continuous development
since the last two decades, and a number of ABC vari-
ants have been proposed in the literature by joining the
ABC principles with variational inference or Monte Carlo
methods like the Kernel ABC (Park et al., 2016), Lazy ABC
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(Prangle, 2016), Coupled ABC (Neal, 2012), Empirical-
likelihood ABC (Mengersen et al., 2013), or Bootstrap-
likelihood ABC (Zhu et al., 2016). Other variants combine
the ABC approach with efficient sampling algorithms like
the ABC-Partial Rejection Control (Sisson et al., 2007),
ABC-Sequential Monte Carlo (Del Moral et al., 2012; Toni
et al., 2009), ABC-Particle Monte Carlo (Beaumont et al.,
2009), ABC-Parallel Tempering (Baragatti et al., 2013),
ABC by Simulated Annealing (Albert et al., 2015), and
ABC by Subset Simulation (Chiachio et al., 2014). The
reader is referred to Sisson et al. (2018) for a comprehen-
sive overview of the ABCmethods and to Karabatsos et al.
(2018) for a recent comparative review.
The majority of these ABC variants have been proposed

in the form of new ABC algorithms that have been suc-
cessfully used for model inference and calibration in a
wide range of application fields, such asmolecular dynam-
ics (Dutta et al., 2018; Kulakova, 2017), biology (Bian-
coni et al., 2019), hydrology (Kavetski et al., 2018), health
sciences (Da Costa et al., 2018; McKinley et al., 2018;
Rutter et al., 2019), environmental radioactivity (Nishina
et al., 2018), communications (Bharti & Pedersen, 2019),
and physics (Christopher et al., 2018). Engineering appli-
cations (Sala & Soriguera, 2020), and particularly struc-
tural engineering applications, have also received attention
from the ABC community mainly to infer unknown struc-
tural performance parameters fromnonlinearmodels (Ben
Abdessalem et al., 2019; Betz, 2017; De et al., 2019; Lam
et al., 2018; Song et al., 2019; Tiboaca, 2016).
Despite their successful contribution for solving com-

plex problems in a wide range of applications, the ABC
variants available in the literature require the definition of
a number of sensitive algorithm hyper-parameters aparat
from theABC scaling parameters, as will be shown next, in
Section 2.1. that highly influence the efficiency of the algo-
rithm and also the quality of the solution. This drawback
puts some extra difficulties for extending these algorithms
to real-world engineering problems as previous expertise is
required to tune these parameters.
In this paper, a new self-adaptive approximate Bayesian

computation algorithm is presented. The algorithm has
been named Adaptive ABC by Subset Simulation (also
referred to as 2BC-SubSim), and uses a Markov Chain
approach to adaptively and autonomously scale the algo-
rithmhyper-parameters, thus avoiding themodeler’s inter-
vention. The proposed algorithm takes the basic structure
of the ABC-SubSim algorithm (Chiachio et al., 2014), as it
has been proven to be one of the most efficient ABC algo-
rithms in the literature and also because it is included in
several well-known ABC user-platforms like ABCpy Dutta
et al. (2017) and Pi4U (https://github.com/cselab/pi4u).
The resulting 2BC-SubSim is a general purpose algo-
rithm for Bayesian inference, however, here the algorithm

is illustrated as a tool for autonomous parameter calibra-
tion of complex structural models based on real-world
test results.
Indeed, after illustration using a simple numerical

example, a real-world engineering case study about a well-
known nonlinear model calibration of a concrete column
under cycling lateral loads is presented to demonstrate
the full potential of the 2BC-SubSim algorithm. The
performance of the algorithm is further demonstrated in
a calibration exercise of a complex dynamical model from
a tall-building subjected to seismic excitation and using
structural healthmonitoring data. This exercise is provided
to show the capacity of2BC-SubSim in a large and com-
plex application that includes multiple (>30) uncertain
parameters.
Structural model calibration is a common practice in

engineering to adapt an analytical or semi-analytical struc-
tural model to a specific real-world application scenario
based on test data, and constitutes the basis for the formu-
lation of the majority of structural design codes and stan-
dards. Recent examples of structural model calibration can
be found in Lee and Han (2018) and LeBorgne and Ghan-
noum (2014),who adopted a laboratory-based by-hand pro-
cedure to calibrate nonlinearmodels for concrete columns.
A similar calibration procedure was presented in Hasel-
ton et al. (2008), which stated that degradation parameters
were empirically obtained by trial and error (following a
standardized procedure) until a good visualmatch between
the model and the experimental results were achieved.
Also inHaselton et al. (2008), a regression analysis was car-
ried out and empirical equations were proposed for model
parameter estimation after individual calibrations of more
than 200 column tests.
The aforementioned works evidence that manual cal-

ibration and regression analyses of nonlinear structural
model lacks of rigor and might imply biased results even
when highly trained structural specialists were involved.
To the best of the authors’ knowledge, the calibration of
complex structural models has never been done before
using heterogeneous sources of data. The latter, along with
the difficulties for defining and computing the likelihood
function, makes the ABC approach adequate to overcome
these limitations and provide a bone fide structural model
calibration with quantified uncertainty. More specifically,
the results shown in this paper after the application of
2BC-SubSim demonstrate that the nonlinear hysteretic
column model can be efficiently calibrated considering
uncertainty about the parameters, the model, and the data
with minimal algorithm manipulation. In application to
the tall-building model calibration, the results show that
the proposed algorithm is able to performmodel inference
of large structural models with a feasible computational
cost, and requiring minimal algorithm tuning.

https://github.com/cselab/pi4u
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The paper is organized as follows. In Section 2, the adap-
tive approximate Bayesian computation by Subset Simula-
tion (2BC-SubSim) algorithm is presented. In Section 2.3,
a simple but illustrative example is shown to validate the
implementation. A structural nonlinear model of a rein-
forced concrete column subjected to cyclic degradation is
presented in Section 3 along with its parameter inference
using the2BC-SubSim algorithm. In Section 4, a compar-
ison of the proposed inference-based calibration method
with conventional by-hand procedure is presented, sug-
gestions to get consistency on the inferred parameters are
given, and the extension to a large structural model is
presented. Finally, in Section 5 some concluding remarks
are provided.

2 ADAPTIVE APPROXIMATE
BAYESIAN COMPUTATION BY SUBSET
SIMULATION

The2BC-SubSim algorithm proposed herein is based on
the structure of the ABC-SubSim method. Thus a con-
cise description of ABC-SubSim is provided here to confer
the reader with the basis about the method under a uni-
fied notation.

2.1 Bayesian model updating by
ABC-SuBSim

The focus of Bayesianmodel updating is to update the prior
information about the value of a set of uncertain model
parameters 𝜽 ∈ 𝚯 ⊆ ℝ𝑛𝑝 from a parameterized model 𝐱 =

𝑔(𝐮, 𝜽) ∈  ⊂ ℝ𝑑 based on the information given by the
data 𝐲 ∈  ⊂ ℝ𝑑, where 𝑔 ∶ ℝ𝑛𝑢×𝑛𝑝 → ℝ𝑑, 𝐮 ∈ ℝ𝑛𝑢 are
input values to 𝑔, and  is the observation space. Follow-
ing the Bayesian formulation, the solution is not a single
value of 𝜽; on the contrary, Bayes’ Theorem takes the initial
quantification of the plausibility of 𝜽, which is expressed by
the prior PDF 𝑝(𝜽), and updates this plausibility using the
information in the data set  through the likelihood func-
tion 𝑝(𝐲|𝐱) to obtain the posterior PDF of the state variable
𝑝(𝜽|𝐲). The interested reader is referred to Beck (2010) for
further information about Bayesian model updating.
However, there are situations where the likelihood func-

tion is unknown or analytically intractable, for which
the ABC methods (Marjoram et al., 2003), also known as
likelihood-free computation algorithms, provide an efficient
alternative. These methods bypass the evaluation of the
likelihood function using a simulation-based approach.
Through a specific tolerance parameter 𝜉, the method
selects as posterior samples the pairs (𝐱, 𝜽) ∈  ⊆  × 𝚯

such that themodel simulations 𝐱 ∼ 𝑝(𝐱|𝜽)𝑝(𝜽) laywithin
a specific region around 𝐲, namely 𝜉(𝐲) = {𝐱 ∈  ∶

𝜌(𝐱, 𝜽, 𝐲) ⩽ 𝜉}, where 𝜌(⋅) ∶ ℝ𝑑×𝑛𝑝 → ℝ is a user-defined
metric function used to measure the closeness of the sim-
ulated output 𝐱 to the data 𝐲. By this means, the ABC
marginal posterior of parameters is expressed as 𝑝𝜉(𝜽) ∝
𝑃(𝐱 ∈ 𝜉(𝐲)|𝜽)𝑝(𝜽), where 𝑃(𝐱 ∈ 𝜉(𝐲)|𝜽) assigns the
unity when 𝜌(𝐱, 𝜽, 𝐲) ⩽ 𝜉, and 0 otherwise.
ABC-SubSim (Chiachio et al., 2014) exploits the efficient

simulation framework of Subset Simulation, originally
proposed by Au and Beck (2001) as an estimator of small
failure probabilities. By Subset simulation, a rare event
simulation problem is transformed into the product of a
series of simulations with larger probabilities whereby the
computational effort is reduced. Indeed, in ABC-SubSim,
the region of possible solutions is assumed to be defined
as the intersection of𝑚 nested regions in the  × 𝚯 space,
that is,1 ⊇ …𝑗 ⊇ … ⊇ 𝑚 = , where

𝑗 = {(𝐱, 𝜽) ∶ 𝜌(𝐱, 𝜽, 𝐲) ⩽ 𝜉𝑗} (1)

In the last equation, the tolerance values follow a decreas-
ing sequence 𝜉1 ⩾ 𝜉2 … ⩾ 𝜉𝑚 whose values are adap-
tively determined such that the sample estimate �̄�𝑗 ≜

𝑃(𝑗|𝑗−1) satisfies �̄�𝑗 = 𝑝0, with 𝑃(𝑗) = 𝑃((𝐱, 𝜽) ∈

𝑗), and 𝑝0 is a conditional probability acting as algorithm
hyper-parameter defined by the modeler.

2.2 The𝟐BC-SubSim algorithm

As seen above, the conditional probability 𝑝0 in ABC-
SubSim is a hyper-parameter that needs to be fixed in
advance. As shown inChiachio et al. (2014),𝑝0 has a strong
influence on the computational burden of the algorithm
alongwith the quality of theABCposterior approximation.
The2BC-SubSimmethod avoids themanual tuning of 𝑝0
by numerical adaptation, as shown next.
First, let us consider that �̄�𝑗 is not fixed to a specific

value 𝑝0 and that the sequence �̄�1, �̄�2, … , �̄�𝑗, … , �̄�𝑚 follows
aMarkov chainwhose initial state �̄�1 = 𝑝1 is known,while
the rest �̄�𝑗 = 𝑝𝑗, 𝑗 ⩾ 2, are randomly chosen from a trun-
cated normal PDF given by

 ∗(𝑎, 𝑏, 𝜇, 𝜎) =
1

𝜎

𝜙
(
𝑥−𝜇

𝜎

)
𝛟
(
𝑏−𝜇

𝜎

)
− 𝛟

(
𝑎−𝜇

𝜎

) (2)

where 𝑎 and 𝑏 are the lower and upper truncation values,
𝜇 and 𝜎 are the mean and standard deviation, respectively,
𝜙(⋅) is the standard normal PDF, and 𝛟(⋅) is its cumulative
distribution function.
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Next, let us consider that a sample of 𝐾 values
𝑝
(1)
𝑗
, 𝑝

(2)
𝑗
, … , 𝑝

(𝑘)
𝑗
, … , 𝑝

(𝐾)
𝑗
, distributed following Equation

(2), are available as possible candidates for any subset 𝑗 ⩾
2. To determine the best choice for 𝑝𝑗 , let us now intro-
duce a weighting function 𝜔𝑘 ∶ ℝ → [0, 1], which assigns
a valuewithin the [0, 1] interval to each sample𝑝(𝑘)

𝑗
, so that

the chosen 𝑝𝑗 = 𝑝
(𝑘)
𝑗

is selected with probability𝜔𝑘 among
the𝐾 samples. This weighting function is defined based on
the following criteria:

∙ The expected acceptance ratio of the Markov chain
Monte Carlo (MCMC) algorithm, 𝛼, which should be as
near as possible to an optimum value;

∙ The selected 𝑝𝑗 , which should preferably produce an
associate tolerance value 𝜉𝑗 as close as possible to the
final tolerance, 𝜉𝑓 .

The first criterion is based on Papaioannou et al.’s
(2015) observations on the optimum acceptance ratio of
an MCMC algorithm, where 𝛼 ≈ 0.40 is recommended to
maximize the efficiency of the Subset Simulation method;
note that this allows the modeler to avoid some required
preruns to set a hyper-parameter for the original ABC-
SubSim (Chiachio et al., 2014), like the variance in the
proposal PDF. The second criterion is proposed to min-
imize the amount of subsets required to reach the final
tolerance 𝜉𝑓 , thus increasing the computational efficiency.
Therefore, the weighting function can be mathematically
expressed as

𝜔𝑘 = 𝑢𝑘 ⋅ 𝑣𝑘 (3)

where 𝑢𝑘 and 𝑣𝑘 are ad hoc functions to take into account
the first and second aforementioned criteria, respectively.
The 𝑢𝑘 factor can be any concave downward function
whose maximum is located near the recommended value
0.40. In this work, the following expression is adopted for
𝑢𝑘:

𝑢𝑘 = exp

(
−
(�̃�𝑘 − 0.40)

2

2𝜎2𝛼

)
(4)

where �̃�𝑘 is the sample estimate acceptance ratiowhen𝑝
(𝑘)
𝑗

is adopted, and 𝜎𝛼 is a factor to set the influence of 𝑢𝑘 in
𝜔𝑘. Further insight about the influence of 𝜎𝛼 on the com-
putational efficiency is provided in Section 2.4.
For the second factor 𝑣𝑘, a distance function is proposed

as follows:

𝑣𝑘 = 1 −
𝜉
(𝑘)
𝑗

− 𝜉min

𝜉max − 𝜉min
(5)

where 𝜉min and 𝜉max represent the minimum and max-
imum metric values obtained for the {𝑝

(𝑘)
𝑗
}𝐾
𝑘=1

samples.
Note that Equation (5) makes unity when the intermedi-
ate tolerance 𝜉(𝑘)

𝑗
associated to a trial 𝑝(𝑘)

𝑗
equals 𝜉min and

zero in the opposite case. Note that the weighting func-
tion𝜔𝑘 conveys a healthy balance between simulation effi-
ciency and computational cost, which adaptively penalizes
the 𝑝𝑗 values whose associated 𝑢𝑘 or 𝑣𝑘 are low and favor
those whose balance is high. This observation is further
discussed in Section 2.4, specifically in Figure 3c.
Finally, note that the choice of 𝑝(𝑘)

𝑗
constitutes a stochas-

tic random process and, therefore, the shape of 𝑢𝑘 and 𝑣𝑘
functions will not have significant influence on the behav-
ior of the algorithm, as long as their values lay within those
proposed in Section 2.3. For instance, taking a different
weighting function 𝑢∗

𝑘
, like the one in Equation (6), leads

to similar results as denoted in Figure 3c, when comparing
𝑢∗
𝑘
to 𝜎𝛼 = 0.10:

𝑢∗
𝑘
=

⎧⎪⎨⎪⎩
5�̃�𝑘 − 1 if 0.2 < �̃�𝑘 ≤ 0.4

3 − 5�̃�𝑘 if 0.4 < �̃�𝑘 ≤ 0.6

0.01 otherwise
(6)

An algorithmic description of 2BC-SubSim is pre-
sented as Algorithm 1. The adaptive selection process of
𝑝𝑗 values is shown in steps 8–22. Note that the hyper-
parameter 𝐾 is used to set the amount of 𝑝𝑗 candidates
to be evaluated in every subset, whereas 𝑛𝑘 sets the algo-
rithm runs needed to estimate the functions 𝑢𝑘 and 𝑣𝑘.
To alleviate computational cost, the algorithm is imple-
mented so that similar 𝑝𝑗 candidates (say, with less than
1% difference) are evaluated only once. A flowchart of the
proposed algorithm is presented in Figure 1, which also
depicts how the ABC-SubSim steps are integrated into the
2BC-SubSim.

2.3 Illustrative example

Let us consider a cantilever prismatic column with 0.4-
m square cross section, 2-m length that is loaded at the
top with a force 𝐹 = 1 kN. For the sake of illustration, let
us also consider that the structural material degrades at a
unknown constant rate 𝜁 affecting the Young modulus by
reducing it from an initial value𝐸0 = 40MPa following the
exponential function:

𝑥𝑛 = 𝑒−𝜁𝑥𝑛−1 + 𝜐𝑛 (7)

where subscript 𝑛 ∈ ℕ denotes time in weeks, 𝑥 refers to
the Young’s modulus prediction, and 𝜐 is a model error
term, which is assumed to follow a Gaussian distribution
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A l g o r i t hm 1 2BC-SubSim algorithm

with zero mean and unknown standard deviation 𝜎, that
is, 𝜐𝑛 ∼  (0, 𝜎). Also, a sensor is assumed to be available
at the top of the column to measure weekly deflections 𝛿𝑛
following a measurement equation, as follows:

𝑦𝑛 = ℎ(𝑥𝑛) + 𝜓𝑛 (8)

where 𝑦𝑛 refers to the measured deflection, 𝛿𝑛 and 𝜓𝑛
denote the measurement error term, which is assumed
as a Gaussian zero-mean distribution with a known stan-
dard deviation, that is, 𝜓𝑛 ∼  (0, 𝜎) where 𝜎𝜓 = 10−6,
expressed in meters units. In Equation (8), the func-
tion ℎ ∶ ℝ≥0 → ℝ≥0 and can be expressed from elasticity
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F IGURE 1 2BC-SubSim algorithm flowchart. Dashed arrows show the path of the original ABC-SubSim whilst solid ones display the
proposed parameter auto-tuning steps

theory as ℎ =
𝐹𝐿3

3𝑥𝑛𝐼
, where 𝐼 is the inertiamomentum of the

cross section.
In this example, the degradation rate and the stan-

dard deviations of the model error term are selected as
unknown model parameters, so that 𝜽 = {𝜃1, 𝜃2} = {𝜁, 𝜎}.
The uniform PDFs 𝑝(𝜃1) =  [0.0001, 0.02] and 𝑝(𝜃2) =

 [0.01, 2], respectively, are considered as prior PDFs for
the model parameters. The data for this example are syn-
thetically generated from Equations (7) and (8), consider-
ing 𝜽true = (0.005, 0.1) for a time period of 200 [weeks],
that is,  = {𝛿𝑛}

200
𝑛=0 as shown in Figure 2c and d (refer to

the blue plot).
In this exercise, the ABC-SubSim and the 2BC-

SubSim algorithms are comparatively used to estimate
the approximate posterior 𝑝𝜉(𝜽|), with 𝜉𝑓 = 80 [MPa],
𝑁 = 5000 (amount of samples per intermediate level), and
using a 𝕃1−norm as metric function, that is, 𝜌(𝐱,𝜽,) =∑200

𝑛=0
‖𝑋𝑛 − 𝑥𝑛‖, where𝑋𝑛 is the Youngmodulus obtained

from Equation (7) using 𝜽true, acting as measured Young
modulus during the 200 weeks period. The ABC-SubSim
algorithm is used with 𝑝0 = 0.2, whereas the 2BC-
SubSim is scaled using 𝜎𝛼 = 0.1, 𝐾 = 3, and 𝑛𝑘 = 0.02,
according to the suggestions given in Section 2.4.
The ABC-SubSim and the2BC-SubSim results are pre-

sented in Figure 2. In panels (a) and (b), circles repre-

sent samples in the model parameter space, whereas the
brighter gray circles correspond to prior samples. To reveal
the uncertainty reduction, the intermediate posterior is
superimposed in increasing gray tones. The results show
that the approximate posterior samples (in yellow) are
close to the 𝜽true in both cases. Panels (c)–(f) provide com-
parative analysis in terms of model accuracy and cumu-
lative error with respect to the data. In this numerical
example, the ABC-SubSim required𝑚 = 5 simulation lev-
els with 25,000 model evaluations to reach the desired tol-
erance, whereas 2BC-SubSim employed 17, 016 model
evaluations and𝑚 = 3 simulation levels. Observe that the
2BC-SubSim posterior samples are substantially closer to
𝜽true, hence bettermodel response can be obtained if poste-
rior samples from2BC-SubSim are used to reproduce the
model. This aspect will be further corroborated in Section 3
within the context of an engineering case study.

2.4 Hyper-parameters evaluation

The 2BC-SubSim is presented in this paper as a vari-
ant to the original ABC-SubSim algorithm to circum-
vent the need of manually scaling the hyper-parameter
𝑝0; however, Section 2 has shown that new control
parameters are required, namely 𝐾, 𝑛𝜅, and 𝜎𝛼. In this
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F IGURE 2 Comparative results after the application of2BC-SubSim and ABC-SubSim algorithms to the cantilever column example
from Section 2.3. Panels (a) and (b) show scatter plots of posterior samples of 𝜽 for intermediate levels, the final level (in yellow) and the true
values (in red). Panels (c) and (d) represent evaluation of model response using theMaximum a Posteriori (MAP) values of the inferred model
parameters 𝜽. Panels (e) and (f) represent the comparative error on the simulation of the deflections

section, a sensitivity analysis is presented to show the influ-
ence of the aforementioned2BC-SubSim control param-
eters whereby recommendations to fix their values can
be obtained.
To this end, let us start by investigating the influence

of 𝐾, which sets out the amount of 𝑝𝑗 trial samples pro-
duced at the 𝑗th simulation level. Figure 3a shows the
statistics taken from 100 independent runs of the algorithm
using 𝐾 = {3, 5, 10}, whereas the rest of hyper-parameters
are fixed to 𝜎𝛼 = 0.1, 𝑛𝜅 = 0.04, and𝑁 = 2000. The results

are presented for the number of subsets required to reach
the desired tolerance 𝜉𝑓 = 80, amount of model evalua-
tions, andmetric evaluation. As expected, the higher the𝐾,
the larger the amount of model evaluations needed; how-
ever, the results also show that this parameter has negligi-
ble influence on the mean value and spread of the metric
𝜌 and on the amount of required subsets.
Hence, a natural research question arises about whether

a minimum 𝐾 value can be defined in 2BC-SubSim.
To this end, the weighting function 𝜔 (recall Equation 3)
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(a) (b) (c) (d) (e)

F IGURE 3 Sensitivity study using box-plots of the2BC-SubSim hyper-parameters taken from 100 independent runs of the algorithm
using 𝜉𝑓 = 80.0 and 𝑁 = 2000 for the cantilever example from Section 2.3. Panel (a) shows the algorithm response under variation of 𝐾. In
panel (b), the hyper-parameters are fixed to 𝐾 = 3, and 𝜎𝛼 = 0.10, whereas 𝑛𝑘 = {0.04, 0.08, 0.10}. In panel (c), 𝑛𝑘 = 0.04, 𝐾 = 3, and
𝜎𝛼 = {0.1, 0.3, 10}. The term 𝑢∗

𝑘
in panel (c) refers to an alternative piecewise linear function used for comparison (refer to Section 2.2). Panel

(d) shows the original ABC-SubSim response using 𝑝0 = {0.10, 0.20, 0.30}. Panel (e) shows a comparative analysis between ABC-SubSim and
2BC-SubSim using a more restrictive tolerance 𝜉𝑓 = 30, and 𝑝0 = 0.2 for the ABC-SubSim, and 𝐾 = 3, 𝑛𝑘 = 0.04, and 𝜎𝛼 = 0.1 for the
2BC-SubSim

is evaluated for two cases using 𝐾 = 3 and 𝐾 = 10. The
results, shown in Figure 4 reveal that there are cases where
the 𝜔(𝑘)-values can be fitted using a quadratic downward
concave function, whose global maximum lies within any
intermediate point of the 𝑝(𝑘)

𝑗
values (panels a and c); in

other cases (panels b and d), the maximum lies above
the 𝑝

(𝑘)
𝑗

trials, corresponding to the one with higher 𝜔-
value. This suggests that, when using a quadratic down-
ward function, 𝐾 = 3 is enough to obtain the global maxi-
mum by interpolation.
Besides, panels (b) and (c) from Figure 3 show summa-

rizing statistics of the 2BC-SubSim output after the 100
runs by varying 𝑛𝑘 and 𝜎𝛼, respectively, whereas panel
(e) shows the comparative performance of ABC-SubSim
versus 2BC-SubSim using a more demanding tolerance,
namely 𝜉𝑓 = 30. As with 𝐾, the results show that the
larger the 𝑛𝑘, the higher the amount of model evalua-
tions required; however, its influence is negligible on the
metric distribution and on the amount of subsets. Hence,
a proper way to fix 𝑛𝑘 is through a sampling formula
like the Yamane’s formula (Israel, 1992), which give us an

(a) (b)

(c) (d)

F IGURE 4 Examples of the evaluation of weighting function
𝜔𝑘 for a number of {𝑝

(𝑘)
𝑗
}𝐾
𝑘=1

candidates, where 𝐾 = 10 for panels
(a,b) and 𝐾 = 3 for panels (c,d)
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estimation of a sample size based on an error. Thus, the
sample size 𝑛𝑘𝑁 can be obtained as follows:

𝑛𝑘𝑁 =
𝑁

1 + 𝑁𝐸2
(9)

where 𝐸 is the admissible margin of error, which has been
fixed to 𝐸 = 0.1 in this work. Note from the last equation
that the adopted 𝑁 = 2000 and 𝐸 = 0.1 lead to an esti-
mated 𝑛𝑘 ≃ 0.04.
Moreover, the results reveal that the algorithmefficiency

is, in general, insensitive to the variation of 𝜎𝛼, and also
that, irrespective of the 𝜎𝛼 adopted, the algorithm behavior
is comparable to theABC-SubSimbehaviorwhen𝑝0 = 0.1,
near the recommended value, as depicted in panel (d).
Additionally, panel (e) shows that 2BC-SubSim turns to
be considerablymore efficient thanABC-SubSimwhen the
algorithm is subjected to a more demanding tolerance. In
this particular case, the results show that ABC-SubSimwas
unable to attain the required tolerance 𝜉𝑓 = 30 after 80
simulation levels, whereas2BC-SubSim reached it using
a mean of 30 simulation levels.
In summary, this analysis shows the small influence

of the 2BC-SubSim hyper-parameters on the algorithm
behavior, hence a recommendation is to fix them to𝐾 = 3,
𝜎𝛼 = 0.1, whereas 𝑛𝑘 can be set using Yamane’s formula
with an admissible margin of error equal to 10%.
In addition, a comparison in terms of computational

cost is carried out between 2BC-SubSim, using the
recommended hyper-parameters (see the first result of
either panel a, b, or c in Figure 3) and the orig-
inal ABC-SubSim (see panel d on the same figure)
using 𝑝0 = 0.2, as recommended in Chiachio et al.
(2014). The results show that, in average, the former
required 12% less evaluations than the latter, depict-
ing an improved computational efficiency. Using an
Intel R©CoreTM i7-7700K CPU, 4.20 GHz processor, with
64 GB of RAM running on Windows 10-64 bits, on Python
3.8.3, Spyder 4.1.4, the ABC-SubSim required 504 s for
the metric evaluations of 100 runs, while 2BC-SubSim
required 441 s. Also, the2BC-SubSim got better measure
of the accuracy in the posterior distribution, as the met-
ric function reached 17% lower values. These results, which
demonstrate some improvement of both accuracy and effi-
ciency, are in addition to the significant computational sav-
ings obtained by avoiding the manual scaling of the hyper-
parameter 𝑝0.
As final exercise, the sequence of𝑝𝑗 has been obtained to

show how these values evolve as the algorithm progresses.
The results are presented in Figure 5a after 100 indepen-
dent runs of the 2BC-SubSim algorithm. Note that, in
average, the 𝑝𝑗 sequence follows a random path with a
marked tendency to lie within the range of 𝑝𝑗 = [0.2, 0.3].
Figure 5b shows the corresponding acceptance rate (𝛼) per

(a) Sequence of values per simulation level

(b) Acceptance rate per simulation level

F IGURE 5 Results from 100 independent runs using
2BC-SubSim, with 𝐾 = 3, 𝑛𝜅 = 0.04 and 𝜎𝛼 = 0.10 for the column
example from Section 2.3. Also shown the equivalent mean results
using ABC-SubSim with constant 𝑝0 = 0.10 and 𝑝0 = 0.30

simulation level. Displayed in Figure 5b are also shown the
mean acceptance rate values obtained from ABC-SubSim
algorithm after 100 independent runs using 𝑝0 = 0.1 (in
blue squares dotted line) and 𝑝0 = 0.3 (green rhomboids
dotted line). Observe that the mean acceptance rate values
of ABC-SubSim constitute average bounds of the 2BC-
SubSim mean acceptance rate.

3 CASE STUDY: CANTILEVER
REINFORCED CONCRETE
BEAM-COLUMNNON-LINEAR
DEGRADINGMODEL

In this section, the2BC-SubSimalgorithm is used to infer
damage parameters from a nonlinearmechanical model of
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F IGURE 6 General geometry, reinforcement details, and test
setup, adapted from Gill (1979). Length units are expressed in
millimeters

TABLE 1 Input parameter values of Concrete01 constitutive
model taken for the engineering case study of Section 3

Concrete 𝒇′
𝒄 (MPa) 𝒇𝒄𝒖 (MPa) 𝝐𝒄𝟎 (%) 𝝐∗𝒄𝒖 (%)

Confined −34.70 −23.60 −0.641 −7.110
Unconfined −23.10 −12.00 −0.183 −0.582

Note: 𝑓′
𝑐 , concrete peak stress; 𝑓𝑐𝑢 , concrete ultimate stress;

𝜖𝑐0, concrete strain at peak stress; 𝜖𝑐𝑢 , concrete ultimate strain.

a reinforced concrete column subjected to a constant axial
load and cyclic lateral deformation. The column is 3300
mm high and 550 × 550 mm cross-section, with longitudi-
nal reinforcement ratio of 0.019 and 50 mm of coating, as
depicted in Figure 6. The average compressive strength of
the concrete is 23.1 MPa, whereas the yield strength of lon-
gitudinal steel is 375 MPa. The transverse reinforcement is
made of two 10-mmdiameter stirrupswith 297MPaof yield
strength and arranged as shown in Figure 6.

3.1 Nonlinear forward model

The nonlinear model consists of a force-based beam-
column type element in cantilever along with a rotational
springmodeled as a zero-length finite element, as depicted
in Figure 7. The numerical implementation is carried out
using the OpenSeespy software (Zhu et al., 2018). Thus,
the reinforced concrete section is modeled by an OpenSees
fiber section as shown in Figure 7 using the Concrete01
material, whose input values are given in Table 1 for the
cases of confined and unconfined concrete. These values
have been set following the recommendations proposed by
Karthik and Mander (2011) and the estimation of the con-
finement ratio proposed by Mander et al. (1988). The steel

TABLE 2 Nominal parameter values of hysteretic constitutive
model taken for the engineering case study of Section 3

Steel 𝑭𝒚 (MPa) 𝑭𝒔𝒉 (MPa) 𝝐𝒚 (%) 𝝐𝒔𝒉 (%)
Reinforcement 375.00 468.80 0.188 1.5

fibers for the longitudinal steel reinforcement are mod-
eled using the OpenSees Hysteretic material and the rec-
ommended properties by the ASCE/COPRI (2014) regula-
tions.
Three damage types are adopted to model the struc-

tural deterioration, namely: (1) damage due to ductility, (2)
damage due to dissipated energy, and (3) unloading stiff-
ness degradation (𝛽), where parameters 𝐷1, 𝐷2, and 𝛽, are
involved, respectively, as shown in Figure 8. The nonlin-
ear model is parameterized with a set of model param-
eters 𝜽 = {𝜃1, 𝜃2, … , 𝜃8}, where 𝜃1 to 𝜃4 act as modifying
factors of the physical parameters {𝐹𝑦, 𝐹𝑠ℎ, 𝜖𝑦, 𝜖𝑠ℎ}, while
𝜃5 to 𝜃8 represent the parameters {𝑝𝑥, 𝑝𝑦, 𝐷1, 𝐷2}, respec-
tively. The parameter 𝛽 was also set equal to 𝜃8. The reader
is referred to Figures 7 and 8 for a schematic description
of these parameters within the context of the constitutive
equations of the hysteretic material whereas the nominal
values adopted for the physical parameters are provided in
Table 2. Finally, for the case of the rotational spring ele-
ment, the Bond SP01 OpenSees material has been adopted
using the recommendations by Zhao and Sritharan (2007)
to model the steel, which allows us to take into consid-
eration the effect of strain penetration happening in the
anchorage length of the steel reinforcement. Also, the rec-
ommendations by Coleman and Spacone (2001) have been
adopted to define the ultimate strain corresponding to the
constitutive behavior of concrete fibers, as a function of the
size of integration points of the frame beam-column ele-
ments (i.e., regularization). In this work, Newton–Cotes
integration method with five integration points is used.
Indeed, the 𝜖∗𝑐𝑢 values shown in Table 1 are obtained after
the aforementioned regularization procedure.
Then, through inference of the referred model param-

eters, the nonlinear mechanical model can be updated
based on experimental data.

3.2 Results

For the inference of parameters 𝜽, force–displacement
pairs taken from the column shown in Figure 6 are con-
sidered as data . The values are taken specifically from
the specimen 1 in Berry et al. (2004) open-access database.
Such specimen was axially loaded with 1815 KN and also
subjected to a lateral cyclic displacement varying from ±5
to ±35 mm. Further information about the test and the
data can be found in Berry et al. (2004). The2BC-SubSim
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F IGURE 7 Schematic view of the proposed nonlinear model of a reinforced concrete beam-column modeled using OpenSees. On the
right-hand side, plots of the constitutive material monotonic behavior are presented, which include information about model
parameterization

TABLE 3 Hyper-parameter values adopted for the engineering
case study of Section 3

Parameter 𝑲 𝒏𝒌 𝝈𝜶 𝑵 𝝃𝒇 𝒎

Value 3 0.05 0.10 2000 27,550 [N] 30

TABLE 4 Interval definition of the 𝜽 parameter space for the
case study of Section 3. (shown values are dimensionless)

Parameter 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 𝜽𝟓 𝜽𝟔 𝜽𝟕 𝜽𝟖

Lower bound 0.50 0.50 0.50 0.50 0.00 0.50 0.00 0.00
Upper bound 1.50 1.50 1.50 1.50 0.50 1.00 0.25 0.25

algorithm is applied by using the configuration given in
Table 3 and adopting a 𝕃1 norm as metric function over
the force-displacement pairs, that is,

𝜌(𝐱,𝜽,) =

𝑛𝑑∑
𝑖=1

‖𝑥𝑖 − 𝑦𝑖‖ (10)

where 𝑦𝑖 is the 𝑖th lateral force data value from the test
results, and 𝑥𝑖 is the OpenSees 𝑖th force value response
obtained according to model parameters 𝜽. Uniform PDFs
taken over the intervals shown in Table 4 are adopted as a
prior distribution of the model parameters 𝜽 .

The 2BC-SubSim results are presented in Figure 9
in terms of approximate posterior PDF 𝑝𝜉(𝜽|), while
Table 5 provides some summarizing statistics about the
aforementioned PDFs. Note from Figure 9 that the approx-
imate posterior of 𝜃4 and 𝜃8 are less informative than their
component-wise counterparts, meaning that they capture
less information from the data, thus their influence within
the model to reproduce the data are comparatively lower.
Moreover, Figure 11a depicts the hysteretic response pre-
dicted by the model using the MAP of the model param-
eters 𝜽 obtained by 2BC-SubSim versus the test curve
showing that themodel inferred using2BC-SubSim algo-
rithm can satisfactory reproduce the hysteric response, and
that this model response is more accurate than the one
using the current practice of a time-consuming and costly
by-hand calibration method.

4 DISCUSSION

4.1 Comparison with current practice
trial and error model calibration

As a first step to compare the potential of the proposed
methodology, a comparative analysis is carried out by
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TABLE 5 Posterior 5th and 95th percentiles, mean, standard deviation, and 𝜽𝑀𝐴𝑃 values of 𝜽

Parameter 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 𝜽𝟓 𝜽𝟔 𝜽𝟕 𝜽𝟖

5th 𝜽 0.715 1.212 0.906 0.529 0.306 0.511 0.002 0.008
95th 𝜽 0.968 1.485 1.032 1.473 0.457 0.666 0.020 0.183
Mean (𝜇) 0.837 1.362 0.964 0.988 0.378 0.580 0.009 0.091
Std. deviation (𝜎𝜃) 0.095 0.091 0.047 0.384 0.057 0.054 0.005 0.064
𝜽𝑀𝐴𝑃 0.898 1.481 0.992 1.369 0.443 0.668 0.02 0.144

L px ( U − L) + L U m

pyσm

σm

Strain

Stress

( P , σP )

(a)

Stress

} f
D1

m
y
−1 ,D2

Eii
Eult

ki

ki+1 = ki m

y

−β

Strain

ith cycle

(i + 1)th cycle

(b)

F IGURE 8 (a) Schematic illustration of the in-cycle Hysteretic
material behavior. (b) Schematic representation of the cyclic
degradation (damage) parameters 𝐷1, 𝐷2, and 𝛽. The terms 𝜖𝑦 , 𝑖𝑖 ,
and 𝑢𝑙𝑡 , refer to the yield deformation, the 𝑖th-cycle absorbed
energy, and the maximum available energy, respectively

considering the nonlinearmodel response calibrated using
the MAP of 𝜽 from 2BC-SubSim algorithm, and the one
manually calibrated following Barreiro (2018), taken as
reference. In Barreiro (2018), an ad hoc trial and error
methodology enriched with some mechanical constraints
was carried out obtaining a reasonable goodmodel calibra-
tion using data fromBerry et al. (2004). Similar handy cali-
brationswere used by others on different structuralmodels
(i.e., Haselton et al., 2008; Sattar & Liel, 2016) with anal-
ogous results. As pointed-out in the last section, results
shown in Figure 10 reveal a better accuracy of the model
response to the data when using the inferred parameters
from the 2BC-SubSim method. To quantify the model

prediction improvement, Equation (10) is used to quantify
the mismatch between the predicted and test data, ren-
dering an output of 27,357 N of accumulated error for the
2BC-SubSim inference procedure against 37,265N for the
by-hand method by Barreiro (2018). This difference can be
attributed to simplifications required for the manual scal-
ing process leading to cumulativemodeling errors. Indeed,
in Barreiro (2018), parameters 𝜃1 to 𝜃6 were directly fixed
from their nominal values and, therefore, they were not
considered during the calibration process. Also, both
the damage due to energy and the unloading stiffness
degradation parameter (recall Figure 8) were constrained
to be equal values. The output of the calibration in terms of
model parameter values is shown in Table 6 for bothmeth-
ods. Parameters 𝜃7 to 𝜃9 in Table 6 refer to damage due to
ductility, damage due to energy, and unloading stiffness
degradation, respectively (note that the latter two param-
eters are now differentiated into 𝜃8 and 𝜃9, respectively).
The results demonstrate that the proposed inference

procedure using the 2BC-SubSim algorithm has the
capability to reduce the human-factor error and reproduce
the test data with higher accuracy than the case of using
a by-hand calibration. Moreover, these results also show
that an indirect inference of the model parameters can
be obtained through the proposed method with quantified
uncertainty, whereby robust predictions can be obtained.
Thus, a richer knowledge of the actual behavior of the con-
stitutive materials is possible through the information pro-
vided by the ABC posterior inference, which can be used
for structural diagnostics purposes, among others.

4.2 Model consistency evaluation

The results shown in Sections 3.2 and 4.1 illustrate
how the proposed algorithm can efficiently obtain model

TABLE 6 Calibration results from by-hand and2BC-SubSim inference procedure. Results shown for the2BC-SubSim case
correspond to the maximum a posteriori values of the posterior PDFs

Parameter 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 𝜽𝟓 𝜽𝟔 𝜽𝟕 𝜽𝟖 𝜽𝟗

2 BC-SubSim 0.893 1.453 0.992 1.276 0.425 0.657 0.017 0.149 0.149
By-hand 1.00 1.00 1.00 1.00 0.25 0.70 0.006 1.00 0.21
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F IGURE 9 Scatter plot representation of the posterior PDF of 𝜽 = {𝜃1, 𝜃2, … , 𝜃8} as2BC-SubSim output. On the diagonal, kernel
density estimates are shown for the marginal posterior PDFs of the respective parameters

(a) 2BC-SubSim calibration (b)By-hand calibration

F IGURE 10 Results of the comparative analysis of the nonlinear mechanical calibration using (a)2BC-SubSim method and (b) the
by-hand procedure by Barreiro (2018). The blue line represents the displacement-shear force dataset from Berry et al. (2004)
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(a) Inferred steel constitutive model using parameterization given in
Section 3.

(b) Inferred steel constitutive model, including concrete behaviour
modifiers in the parameterization.

F IGURE 11 Model results after calibration by ABC parameter estimation

parameter inference for a nonlinear structural case study
using real-world data. However, it is worth mentioning
that for this particular application the algorithm itself is
unable to give a physically consistent response should the
model parameters and their validity range are not prop-
erly selected. Thus, engineering judgment is required to
validate the results of the model parameter inference. To
illustrate this aspect, the steel constitutive model is repro-
duced after considering the posterior of model parame-
ters 𝜽 inferred using 2BC-SubSim. Figure 11a shows the
inferredMAP value of the elastic module of the steel corre-
sponding to the combined influence of parameters 𝜃1 and
𝜃2 (in red) that results about 40% lower than its nominal
value (in blue). Note that the latter is inconsistent with the
physical reality of the steel behavior, and an explanation to
this can be given in terms of the algorithm response, which
tries to converge to posterior values of the steel in liaison to
the low stiffness values of the concrete due to the induced
hysteretic damage.
To overcome this misbehavior, the inference is per-

formed again here including the following modification of
model parameterization: (i) A new parameter 𝜃9 is used
to replace 𝜃8 for the 𝛽 parameter shown in Figure 8, using
𝑝(𝜃9) =  (0.00, 0.25) as prior PDF; (ii) Parameters 𝜃10 and
𝜃12 are introduced as modification factors for peak and
ultimate stress values of the concrete constitutive model,
as shown in Figure 7. The prior distributions adopted
for these new parameters are taken as 𝑝(𝜃10) = 𝑝(𝜃12) =

 (0.50, 1.50); (iii) Analogously, parameters 𝜃11 and 𝜃13 are
used as modification factors for the strain values corre-
sponding to peak and ultimate strain values of the con-
crete constitutive model, as shown in Figure 7. The prior
distributions adopted for these parameters are assumed as
𝑝(𝜃11) = 𝑝(𝜃13) =  (0.50, 1.50). The 2BC-SubSim algo-
rithm configuration taken for this study is the same as the

one shown in Section 3.2 (recall Table 3) except for the fol-
lowing changes: 𝑛𝑝 = 13, 𝜉𝑓 = 20,000 N and𝑚 = 15. Note
that, in this case, 𝜉𝑓 is set to a lower value with respect to
the one chosen in Section 3.2, as the new parameterization
allows reducing it to 𝜉𝑓 = 20,000 N with similar compu-
tational cost. Results are displayed in Table 7. Note that
in this case, the inferred elastic module of the steel rein-
forcement is consistent with the expected steel behavior,
as shown in Figure 11b. Also, the new results are consis-
tent with the typical dispersion expected in material stiff-
ness, particularly for the 45% reduction of the concrete
stiffness from its nominal value, which is an acceptable
value. Also, a closer approximation was achieved in terms
of the mismatch function, with an error equal to 23,724 N
(i.e., 𝜉𝑓 ≈ 11.3%). In summary, this discussion reveals that
the solely use of 2BC-SubSim algorithm, as with many
other inference algorithms, is not enough for an effective
material diagnostics and further model calibration of com-
plex nonlinear models, and that engineering judgment is
required tomake the algorithmoutputs consistentwith the
physics of the problem.

4.3 Calibration of group of structural
tests

The previous results have demonstrated the effectiveness
of the 2BC-SubSim inference method to be used for
structural nonlinearmodel calibration using data fromone
test. However, current practice of structural model calibra-
tion typically requires the use of a complete database of test
results (Haselton et al., 2008). Thus, the previous model
calibration by 2BC-SubSim model parameter inference
is extended here for the use of a group of experimental
tests.
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TABLE 7 Posterior 5th and 95th percentiles, mean, standard deviation, and 𝜽𝑀𝐴𝑃 values of 𝜽, including concrete parameters

𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 𝜽𝟓 𝜽𝟔 𝜽𝟕 𝜽𝟖 𝜽𝟗 𝜽𝟏𝟎 𝜽𝟏𝟏 𝜽𝟏𝟐 𝜽𝟏𝟑

5th 𝜽 1.106 1.052 1.204 1.022 0.481 0.670 0.010 0.205 0.178 0.718 1.327 0.898 0.570
95th 𝜽 1.131 1.093 1.222 1.128 0.499 0.699 0.011 0.240 0.194 0.727 1.350 0.931 0.594
𝜇 1.119 1.072 1.214 1.086 0.491 0.683 0.010 0.227 0.186 0.723 1.338 0.914 0.581
𝜎 0.007 0.013 0.006 0.030 0.006 0.008 0.000 0.011 0.005 0.003 0.007 0.011 0.010
𝜽𝑀𝐴𝑃 1.115 1.066 1.205 1.006 0.497 0.704 0.011 0.209 0.186 0.725 1.340 0.933 0.568

TABLE 8 Algorithm hyper-parameter values adopted for the
example in Section 4.3

Parameter 𝑲 𝒏𝒌 𝝈𝜶 𝑵 𝝃𝒇 𝒎

Value 3 0.05 0.10 5000 0.12 18

To this end, the data of four tests were taken from Berry
et al. (2004) for the calibration process, all of them belong-
ing to the experimental program published by Gill (1979).
The four column specimens considered here have the same
length, cross-section and longitudinal steel reinforcement
ratio, and strength as detailed in Section 3, but with the
following varying aspects: (a) Concrete strength (𝑓′𝑐); (b)
Transverse steel strength, separation, size, and configura-
tion; and (c) the axial load (𝑃).
Clearly, one of the experimental campaign objectives

was to study the influence of axial load ratio on the flex-
ural behavior of reinforced concrete beam-column ele-
ments. Through this criterion, the 2BC-SubSim is used
to obtain a model calibration using the four specimens
taking the axial load ratio as the independent variable to
define the degradation parameters. For this purpose, the
hyper-parameters of the2BC-SubSim algorithmwere set
as shown in Table 8, whereas the degradation parameters
were set as functions of the axial load ratio, as follows:

𝐷1 =
𝑃

𝐴𝑔𝑓
′
𝑐

𝜃7 + 𝜃14 (11)

𝐷2 =
𝑃

𝐴𝑔𝑓
′
𝑐

𝜃8 + 𝜃15 (12)

𝛽 =
𝑃

𝐴𝑔𝑓
′
𝑐

𝜃9 + 𝜃16 (13)

where 𝐷1, 𝐷2 and 𝛽 are the damage parameters already
presented in Figure 8, whereas 𝐴𝑔 denotes the con-
crete gross area of the cross-section. The term 𝑃

𝐴𝑔𝑓
′
𝑐

rep-

resents the axial load ratio. Prior PDFs of parameters
𝜃7, 𝜃8, 𝜃9 and 𝜃14, 𝜃15, 𝜃16 are assumed as 𝑝(𝜃7) = 𝑝(𝜃8) =

𝑝(𝜃9) =  (−1.00, 1.00), and 𝑝(𝜃14) = 𝑝(𝜃15) = 𝑝(𝜃16) =

 (0.00, 0.30), respectively. The rest model parameters

along with their prior PDF definitions are considered the
same as in Section 4.2.
For this case, the metric is defined as the complemen-

tary value of the product of one minus the normalized dif-
ference between the test andmodel output, which is math-
ematically described as

𝜌(𝐱,𝜽,) = 1 −

4∏
𝑗=1

⎡⎢⎢⎣1 −
∑𝑛𝑑

𝑖=1
‖‖‖𝑥𝑗𝑖 − 𝑦

𝑗
𝑖
‖‖‖∑𝑛𝑑

𝑖=1
|||𝑦𝑗𝑖 |||

⎤⎥⎥⎦ (14)

where 𝑗 = 1,… , 4 is the test index, and 𝑦
𝑗
𝑖
and 𝑥

𝑗
𝑖
are

the 𝑖th corresponding force value from the 𝑗th test and
model, respectively.
The results are shown in Figure 12 and reveal a good

agreement between the predicted model response using
the MAP parameter values and the test results of the
group of four columns. The normalized difference between
test and predicted model resulted equal to 16.90%, 10.15%,
9.97%, and 11.80% for tests 1–4, respectively, achieving sim-
ilar tolerance as the calibrations done in previous sections.
Finally, as a byproduct of posterior inference of damage
parameters, a function of variation of the parameters 𝐷1,
𝐷2, and 𝛽 has been obtained versus the axial load ratio val-
ues, and shown in Figure 13.

4.4 Calibration of a complex structural
model

In this section, the proposed Bayesian methodology is
tested in a complex structural application to infer multiple
uncertain parameters from a nonlinear dynamical model
of a tall building subject to seismic excitation.
The data for model inference have been taken from

a recent structural test performed by Pratap and Pujol
(2021) over a 17-story physical model subjected to seismic
impulse produced by a shake table. In this experiment,
every story has same mass with value equal to 250 kg.
General information about this test along with the mea-
surement data are available at https://datacenterhub.org/
deedsdv/publications/view/564. The specific data consid-
ered in this case study have been taken from the TS1-Run2

https://datacenterhub.org/deedsdv/publications/view/564
https://datacenterhub.org/deedsdv/publications/view/564
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F IGURE 1 2 Results on four test calibration. Blue lines are the test results and, orange lines, the MAP model prediction

F IGURE 13 Inferred general model of degradation
parameters 𝐷1, 𝐷2, and 𝛽 versus axial load ratio values

experimental run, which contains records of accelerations
and displacements of the 4th, 8th, 9th, 13th, and the 17th
story. These measurements are presented with a frequency
of 1000 Hz, thus preprocessing of the data was required
to eliminate noise and reduce the size of the records,
which included a band-pass third-order Butterworth filter
between the range of frequencies 0.10 and 20 Hz, and a
downsampling to a frequency of 100 Hz. Also, a base-line
correction was performed to the acceleration records.
The mathematical model is conceived as a 17 in-series

mass-spring-dashpots, where the springs are assumed
to have an elastic-perfectly plastic behavior. Also, it is
assumed that the dynamical response of the building
can be fully captured by varying the stiffness, yield
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F IGURE 14 Comparison of Fourier amplitude spectrum of
the acceleration records of the test measurements and those
obtained from the inferred MAP model. The results are presented
for stories 4, 8, 9, 13, and 17

strength, and damping values for each floor, which
are a priori unknown; therefore, the challenge is to
infer them using the proposed Bayesian approach of
this paper. More specifically, the parameters considered
for this model inference include the elastic stiffness of
floor 1–17 (𝜃1 to 𝜃17), the yield strength of each floor
(𝜃18 to 𝜃34), along with the damping coefficient (𝜃35)
of the dashpots, which is assumed to be equal for
every floor. The 2BC-SubSim algorithm is applied to
infer the referred 35 model parameters of the 17-story
dynamical model, by adopting the following algorithm
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F IGURE 15 Comparison of the acceleration records of the test
measurements and those obtained from the inferred MAP model.
The results are presented for stories 4, 8, 9, 13, and 17

hyper-parameters: 𝑁 = 3000, 𝜉𝑓 = 0.04, 𝑚 = 20, along
with the values recommended in Section 2.4 for the rest of
hyper-parameters. Uniform PDFs are considered as prior
PDFs of the model parameters, such that 𝑝(𝜃1) = 𝑝(𝜃2) =

⋯ = 𝑝(𝜃17) =  [3 ⋅ 105, 3 ⋅ 108]; 𝑝(𝜃18) = 𝑝(𝜃19) = ⋯ =

𝑝(𝜃34) =  [5 ⋅ 105, 5 ⋅ 108], and finally 𝑝(𝜃35) =  [1 ⋅

103, 1 ⋅ 105], where the units are expressed in SI. In this
case, the metric is defined as the relative difference of
the Fourier amplitude spectrum of the modeled and
measured accelerations, respectively, which is mathemati-
cally described as follows:

𝜌 =
∑
𝑖

||||| �̂�
𝑖 − 𝐚𝑖

𝐀𝑖

||||| (15)

In the last equation, �̂�𝑖 and 𝐚𝑖 are vectors containing the
Fourier amplitude spectrum of themodeled andmeasured
accelerations of the 𝑖th story, respectively, whereas𝐀𝑖 is the
resulting sumof the components of the vector 𝐚𝑖 . The index
𝑖 = {4, 8, 9, 13, 17}.
The results of the inference are shown in Figure 14

that provides a comparison of the Fourier amplitude spec-
trum of the accelerations obtained from the inferred MAP
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F IGURE 16 Comparison of the displacement records of the
test measurements and those obtained from the inferred MAP
model. The results are presented for stories 4, 8, 9, 13, and 17

model, and the respective spectrum using the experimen-
tal accelerations. Besides, Figures 15 and 16, respectively,
show the accelerations and displacements obtained after
the model inference in comparison to their correspond-
ing experimental values. Note that these results are satis-
factory as the algorithm has effectively inferred the model
parameters so as to reproduce the experimental data with
precision, measured by the MAP predictions. Finally, it is
worthmentioning that, in average, the2BC-SubSimalgo-
rithm required 3.5 ⋅ 103 s to perform the model inference
of the 35 model parameters from this complex structural
application, in contrast to the 4.0 × 103 s required by the
original ABC-SubSim algorithm (approximately 15% differ-
ence). These results, which have been obtained using an
Intel R©CoreTM i7-7700K CPU, 4.20 GHz processor, with 64
GB of RAM running on Windows 10-64 bits, and using
Python 3.8.3, demonstrate that the proposed algorithm is
able to perform inference in complex nonlinear models
with a feasible computational cost. Also, the results con-
firm again that the computational burden is improvedwith
respect to the original ABC-SubSim algorithm.
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5 CONCLUDING REMARKS

This paper presented a new ABC algorithm named2BC-
SubSim. This algorithm is a variant of ABC-SubSim that
overcomes the need to tune the hyper-parameter𝑝0, which
highly controls the efficiency of the algorithm. This is car-
ried out by an original adaptive selection of this param-
eter based on a partial evaluation of the next subset.
The examples provided demonstrate both efficiency and
efficacy for structural nonlinear model calibration based
on test results. A comparison of calibrations done by
conventional methods (i.e., “by-hand”) demonstrate the
advantages of 2BC-SubSim algorithm for this purpose;
however, it is also advised that the specialist’s judgment is
required to attain consistency in the results. Themethod is
extended to perform the calibration of a set of tests, allow-
ing the inference of degradation parameters that are dif-
ficult or impossible to estimate using conventional meth-
ods. Finally, the method is applied on a complex structural
application to show the capacity to perform the inference
within large multi-dimensional nonlinear models using
real-world structural health monitoring data. Desirable
future work includes:

∙ Surrogate modeling to perform the parameter inference
of complex nonlinear structures.

∙ Applications on structural damage diagnostics based on
health monitoring data.

∙ Explore new variants for the algorithm to perform
Bayesian inference using very large (>100 parameters)
or extremely large (>1000 parameters) models.
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