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Ruled Surfaces of Generalized Self-Similar
Solutions of the Mean Curvature Flow

Rafael López

Abstract. In Euclidean space, we investigate surfaces whose mean cur-
vature H satisfies the equation H = α〈N,x〉 + λ, where N is the Gauss
map, x is the position vector, and α and λ are two constants. There sur-
faces generalize self-shrinkers and self-expanders of the mean curvature
flow. We classify the ruled surfaces and the translation surfaces, proving
that they are cylindrical surfaces.
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1. Introduction and Statement of the Results

In Euclidean space R
3, the theory of self-shrinkers, and to a lesser extent

also expander-shrinkers, has developed a great interest in the last decades.
Self-shrinkers are surfaces M characterized by the equation

H(x) = −1
2
〈N(x),x〉, x ∈ M, (1.1)

where N is the Gauss map of M and 〈, 〉 is the Euclidean metric of R3. Here, H
is the trace of the second fundamental form, so the mean curvature of a sphere
of radius r > 0 is 2/r with respect to the inward normal. Analogously, self-
expanders satisfy (1.1) but replacing the factor −1/2 by 1/2. Self-shrinkers
play an important role in the study of the mean curvature flow, because
they correspond to rescaling solutions of an early time slice. Moreover, self-
shrinkers provide information about the behaviour of the singularities of the
flow. The literature in the topic of self-shrinkers is sufficiently large to give a
summary. We address the reader to [8,10,15] and references therein as a first
approach.

There are very few explicit examples of self-shrinkers. First examples are
vector planes, the sphere of radius 2 centered at the origin, and the round
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cylinder of radius
√

2 whose axis passes through the origin. Other examples
appear when one assumes some type of invariance of the ambient space. A first
family of surfaces are those one that are invariant by a uniparametric group
of translations. In such a case, Eq. (1.1) reduces in an ordinary differential
equation that describes the curvature of the generating planar curve [1,2,13,
16]. A second type or surfaces are the helicoidal surfaces, including rotational
surfaces. Rotational and helicoidal shrinkers were studied in [14,16].

Self-shrinkers can be also seen as weighted minimal surfaces in the con-
text of manifolds with density: see [11,18]. Let eϕ be a positive density in R

3,
where ϕ is a smooth function in R

3. We use the density eϕ as a weight for the
surface and the volume area. Let M be a surface and let Φ : (−ε, ε)×M → R

3

be a compactly supported variation of M with Φ(0,−) = M . Denote by Aϕ(t)
and Vϕ(t) the weighted area and the enclosed weighted volume of Φ({t}×M),
respectively. The formulae of the first variation of Aϕ(t) and Vϕ(t) are

A′
ϕ(0) = −

∫
M

Hϕ〈N, ξ〉 dAϕ, V ′
ϕ(0) =

∫
M

〈N, ξ〉 dAϕ,

where ξ is the variational vector field of Φ and

Hϕ = H − 〈N,∇ϕ〉
is called the weighted mean curvature. Consequently, M is a critical point of
the functional area Aϕ if and only if Hϕ = 0. If we choose the function ϕ as

ϕ(x) = α
|x2|
2

, x ∈ R
3, (1.2)

the expression of Hϕ is Hϕ = H(x)−α〈N,x〉. In particular, self-shrinkers are
critical points of the weighted area functional Aϕ for α = −1/2. In case that
we seek critical points of Aϕ for arbitrary variations preserving the weighted
volume, we deduce that the function Hϕ is constant. After this motivation,
and for the function ϕ given in (1.2), we generalize the notion of self-shrinkers.

Definition 1.1. Let α, λ ∈ R. A surface M in R
3 is said to be a α-self-similar

solution of constant λ if

H(x) = α〈N(x),x〉 + λ, x ∈ M. (1.3)

The case α = 0 corresponds with the surfaces of constant mean curva-
ture. This situation will be discarded in this paper and we will assume α �= 0.
Examples of solutions of Eq. (1.3) are again spheres centered at the origin
and round cylinders whose axis passes through the origin, but now, and in
both cases, the radius is arbitrary. Also, affine planes are solutions of (1.3).

When α = −1/2 in Eq. (1.3), self-shrinkers of constant λ were studied
independently by Cheng and Wei [7] and McGonagle and Ross [17]. Since
then, and if α = −1/2, these surfaces have received the interest for geometers:
[4–6,12,19,20].

Let us point out that Eq. (1.3) is invariant by linear isometries of R3.
Therefore, if A : R

3 → R
3 is a linear isometry and M is a α-self-similar

solution of constant λ, then A(M) satisfies (1.3) with the same constants α
and λ. We also notice that a surface can be a solution of (1.3) for different
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values of α and λ. For example, the sphere of radius 2 centered at the origin
satisfies (1.3) for (α, λ) = (−1/2, 0) and (α, λ) = (1/2, 2).

In this paper, we investigate α-self-similar solutions of constant λ under
the geometric assumption that M is a ruled surface. A ruled surface is a
surface that is the union of a one-parameter family of straight lines. A ruled
surface can be parametrized locally by

X(s, t) = γ(s) + tβ(s), (1.4)

where t ∈ R and γ, β : I ⊂ R → R
3 are smooth curves with |β(s)| = 1 for all

s ∈ I. The curve γ(s) is called the directrix of the surface and a line having
β(s) as direction vector is called a ruling of the surface. In case that γ reduces
into a point, the surface is called conical. On the other hand, if the rulings
are all parallel to a fixed direction (β(s) is constant), the surface is called
cylindrical. It is clear that a ruled surface is cylindrical if and only if it is
invariant by a uniparametric group of translations whose direction is β.

In this paper, we classify all ruled surfaces that are solutions of the
α-self-similar equation (1.3).

Theorem 1.2. Let M be a α-self-similar solution of constant λ. If M is a
ruled surface, then M is a cylindrical surface.

This result was proved in [3] for self-shrinkers. Cylindrical surfaces with
α = −1/2 and λ �= 0 were classified in [4]. The key in the proof of Theorem
1.2 is that, by means of the parametrization (1.4), Eq. (1.3) is a polynomial
equation on the variable t whose coefficients are functions on the variable s.
Thus, all these coefficients must vanish and this allows us to prove the result.
The proof of Theorem 1.2 will be carried out in Sect. 2.

Our second result refers to the study of the solutions (1.3) by the method
of separation of variables. We stand for (x, y, z) the canonical coordinates of
R

3. Let M be a graph z = u(x, y), where u is a function defined in some
domain R

2. If M is a α-self-similar solution of constant λ, then u is a solution
of

div
Du√

1 + |Du|2 = α
u − 〈(x, y),Du〉√

1 + |Du|2 + λ. (1.5)

This equation is a quasilinear elliptic equation and, as one can expect from
the theory of minimal surfaces, it is hard to find explicit solutions of (1.5). A
first approach to solve this equation is by means of the method of separation
of variables. The idea is to replace a function u(x, y) by a function that is the
sum of two functions, each one depending in one variable. Thus, we consider
u(x, y) = f(x) + g(y), where f : I ⊂ R → R and g : J ⊂ R → R are smooth
functions. In such a case, we prove the following result.

Theorem 1.3. If z = f(x) + g(y) is a α-self-similar solution of constant λ,
then f or g is a linear function. In particular, the surface is cylindrical.
Moreover, and after a linear isometry of R

3, we have g(y) = 0 and f(x)
satisfies the equation

f ′′(x)
(1 + f ′(x)2)3/2

= α
−xf ′(x) + f(x)√

1 + f ′(x)2
+ λ. (1.6)
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The proof of this result will done in Sect. 3. Since the function u(x, y)
is the sum of two functions of one variable, Eq. (1.5) leaves to be a partial
differential equation and converts into an ordinary differential equation where
appears the derivatives of the functions f and g. This will permits us, after
successive differentiations, to deduce that one of the functions is linear.

2. Classification of Ruled Surfaces

In this section, we prove Theorem 1.2. The proof consists in assuming that the
ruled surface is parametrized by (1.4) and that the rulings are not parallel. In
such a case, we shall prove that a α-self-similar solution of constant λ must be
a plane, which it is a cylindrical surface. Let us observe that a plane is a ruled
surface and that can be parametrized by (1.4) but being β a non-constant
curve.

On the other hand, the cylindrical surfaces that satisfy (1.3) are the
one-dimensional version of the α-self-similar solutions. Indeed, after a linear
isometry of the ambient space, we assume that the rulings are parallel to the
y-line. We parametrize the surface as X(s, t) = γ(s) + t(0,−1, 0), where γ is
a curve contained in the xz-plane Π parametrized by arc-length. Then, (1.3)
is

κγ(s) = α〈n(s), γ(s)〉 + λ, (2.1)

where κγ is the curvature of γ as planar curve in Π and {γ′(s),n} is a
positive orthonormal frame in Π for all s ∈ I. Therefore, finding α-self-similar
solutions converts into a problem of prescribing curvature for planar curves.

Consider a ruled surface parametrized by X(s, t) = γ(s) + tβ(s) as in
(1.4), |β(s)| = 1, and suppose that β is not a constant curve. Since |β(s)| = 1,
the curve β is a curve in the unit sphere S

2 = {x : |x| = 1}. Without loss
of generality, we assume that β is parametrized by arc-length, |β′(s)| = 1
for all s ∈ I. From now, we drop the dependence of the variable of the
functions. Let us take the so-called Sabban frame for spherical curves, namely,
B = {β, β′, e3 := β × β′}. Furthermore

β′′ = −β + Θ e3, Θ = (β, β′, β′′).

e′
3 = −Θβ′.

(2.2)

Here, we stands for (u, v, w) the determinant of the vectors u, v, w ∈ R
3.

First, we need to obtain an expression of Eq. (1.3) for the parametriza-
tion X(s, t). We denote with the subscripts s and t the derivatives of a func-
tion with respect to the variables s and t. Let us notice that Xt = β and
Xtt = 0. The coefficients of the first fundamental form with respect to X are
E = |Xs|2, F = 〈Xs,Xt〉 and G = |Xt|2 = 1. Set W = EG − F 2. Consider
the unit normal vector field N = (Xs × Xt)/

√
W . Then, Eq. (1.3) is

(Xs,Xt,Xss) − 2fF (Xs,Xt,Xst) = αW (X,Xs,Xt) + λW 3/2. (2.3)

A first case to discuss is when X(s, t) is a conical surface.
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Proposition 2.1. Planes are the only conical surfaces that are α-self-similar
solutions of constant λ.

Proof. Suppose that M is a conical surface parametrized by X(s, t) = p0 +
tβ(s), where p0 ∈ R

3 is a fixed point. Then, F = 0, W = t2, and Eq. (2.3) is

t2(β′, β, β′′) − αt3(p0, β′, β) − λt3 = 0.

This is a polynomial equation in the variable t, where the coefficients depend
only on the variable s. Thus, we deduce (β, β′, β′′) = 0 and α(p0, β, β′)−λ =
0. Since β is a curve in the unit sphere S

2 parametrized by arc-length, it is
not difficult to conclude from (β, β′, β′′) = 0 that β is a great circle of S

2.
This proves that the surface is a plane containing the point p0, proving the
result. �

From now, we assume that the ruled surface is not conical, that is, γ is
not a constant curve. The next step of the proof of Theorem 1.2 is to choose
a suitable parametrization of the ruled surface. In a ruled surface, it is always
possible to take a (not unique) special parametrization that consists in taking
for γ a curve orthogonal to the rulings, that is, 〈γ′(s), β(s)〉 = 0 for all s ∈ I.

The derivatives of X with respect to s and t are

Xs = γ′(s) + tβ′(s), Xt = β(s)
Xss = γ′′(s) + tβ′′(s), Xst = β′(s), Xtt = 0.

Then, F = 〈Xs,Xt〉 = 〈γ′, β〉 = 0, G = 1 and

E = 〈Xs,Xs〉 = |γ′|2 + 2t〈γ′, β′〉 + t2. (2.4)

The unit normal vector field is

N =
γ′ × β − te3√

E
.

Equation (2.3) is now

L = αE ((γ′, β, γ) − t〈e3, γ〉) + λE3/2, (2.5)

where

L = −(β, β′, β′′)t2 + t ((β′, β, γ′′) + (γ′, β, β′′)) + (γ′, β, γ′′).

Using (2.2), we write this equation as

L = −Θ t2 − t (〈e3, γ′′〉 + Θ〈γ′, β′〉) + (γ′, β, γ′′).

We distinguish the cases λ = 0 and λ �= 0.
1. Case λ = 0. We see (2.5) as a polynomial on the variable t, which is of

degree 3 by the expression of E in (2.4). From the coefficient for t3, we
have

α〈e3, γ〉 = 0.

Since α �= 0, we deduce 〈e3(s), γ(s)〉 = 0 for all s ∈ I. Then, γ(s) belongs
the plane determined by β(s) and β′(s). Let

γ(s) = u(s)β(s) + v(s)β′(s) (2.6)
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for some smooth functions u = u(s) and v = v(s). Now, Eq. (2.5) is
L = αE(γ′, β, γ). Matching the coefficients on t of degree 2, 1, and 0,
we obtain, respectively

Θ = −α(γ′, β, γ)
〈e3, γ′′〉 + Θ〈γ′, β′〉 = −2α〈γ′, β′〉(γ′, β, γ)

(γ′, β, γ′′) = α|γ′|2(γ′, β, γ).

Using the basis B and Eq. (2.6), we calculate the velocity of γ(s), ob-
taining

γ′ = (u′ − v)β + (u + v′)β′ + vΘ e3. (2.7)

Since 〈γ′, β〉 = 0, we have u′ − v = 0. From this expression of γ′ in
combination with (2.2), we obtain (γ, γ′, β) = v2Θ. Then, the three
above identities become

Θ = −αv2Θ (2.8)
〈e3, γ′′〉 + Θ〈γ′, β′〉 = −2αv2〈γ′, β′〉Θ (2.9)

(γ′, β, γ′′) = αv2|γ′|2Θ. (2.10)

From (2.8)

(1 + αv2)Θ = 0.

We discuss two cases.
(a) Case Θ = 0. As in Proposition 2.1, the curve β(s) describes a

great circle of S
2. In particular, e3 = β × β′ is a unit constant

vector orthogonal to the plane P containing β. Moreover, from
(2.6), 〈γ(s), e3〉 = 0 for all s ∈ I. Thus

〈X(s, t), e3〉 = 〈γ(s) + tβ(s), e3〉 = 〈γ(s), e3〉 = 0.

This proves that the surface is part of the plane P .
(b) Case Θ �= 0. Then

1 + αv2 = 0. (2.11)

In particular, v is a non-zero constant function and v′ = 0. More-
over, from (2.2) and (2.7)

γ′ = uβ′ + vΘe3,

γ′′ = −uβ + v(1 − Θ2)β′ + (uΘ + vΘ′)e3.
(2.12)

From these expressions, we compute the terms of the identity (2.9),
obtaining

2uΘ + vΘ′ = −2αuv2Θ.

Due to (2.11), the above equation is simply vΘ′ = 0. Since v �= 0
from (2.11), we have shown that Θ is a constant function.
We now compute the terms of the identity (2.10). Because Θ is
constant, and taking into account (2.11) and (2.12), we find

(γ′, β, γ′′) = (v2 − u2)Θ − v2Θ3,

αv2|γ′|2Θ = −(u2 + v2Θ2)Θ.
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Thus, (2.10) reduces v2Θ = 0, obtaining a contradiction.
2. Case λ �= 0. Squaring Eq. (2.5)

(
(L − αE((γ′, β, γ) − t〈e3, γ〉)

)2

− λ2E3 = 0. (2.13)

Set Γ = |γ′|2. Equation (2.13) is polynomial equation on t of degree 6
whose coefficients are functions on the variable s, and hence, all them
must vanish. The coefficients for t6 and t0 are, respectively

λ2 − α2〈e3, γ〉2 = 0, (2.14)

λ2Γ3 − (αΓ(γ′, β, γ) − (γ′, β, γ′′))2 = 0. (2.15)

Then, λ = ±α〈e3, γ〉 and λΓ3/2 = ±(αΓ(γ′, β, γ) − (γ′, β, γ′′)). We may
assume the sign + in both cases, namely

λ = α〈e3, γ〉, λΓ3/2 = αΓ(γ′, β, γ) − (γ′, β, γ′′), (2.16)

and the reasoning in the other cases of sign is analogous.
We now compute the coefficient of t5 of (2.13). From (2.14) and

after some simplifications, we find

α〈e3, γ〉
(
Θ + α〈e3, γ〉〈γ′, β′〉 + α(γ′, β, γ)

)
= 0.

We use that λ �= 0. Because 〈e3, γ〉 �= 0 by (2.14)

Θ + α〈e3, γ〉〈γ′, β′〉 + α(γ′, β, γ) = 0.

From here, we obtain an expression for Θ,

Θ = −α〈e3, γ〉〈γ′, β′〉 − α(γ′, β, γ). (2.17)

Similarly, and for the coefficient for t of (2.13) and using (2.2) and (2.15)

3αΓ1/2〈e3, γ〉〈γ′, β′〉 − 2α〈γ′, β′〉(γ′, β, γ) + Θ〈γ′, e3〉
+αΓ〈e3, γ〉 − 〈e3, γ′′〉 = 0;

hence

(γ′, β, γ) =
αΓ〈e3, γ〉 − 〈e3, γ′′〉 + 3Γ1/2〈e3, γ〉〈γ′, β′〉 + Θ〈γ′, e3〉

2α〈γ′, β′〉 .

We now take the coefficient of t4 in (2.13). This is a long expression
that can be simplified by replacing the value (γ′, β, γ) from the above
equation, together (2.14) and (2.17). By vanishing this coefficient, we
arrive to

−3α〈e3, γ〉2
(
Γ1/2 + 〈γ′, β′〉

)2

= 0.

Thus

Γ = 〈γ′, β′〉2. (2.18)

On the other hand, since 〈γ′, β〉 = 0 and from the basis B, we have
γ′ = 〈γ′, β′〉β′ + 〈γ′, e3〉e3. Then

Γ = |γ′|2 = 〈γ′, β′〉2 + 〈γ′, e3〉2.
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Combining with (2.18), we deduce 〈γ′, e3〉 = 0, so γ′ = 〈γ′, β′〉β′. Using
the basis B again, it is immediate from (2.6) that

(γ′, β, γ) = −〈γ, e3〉〈γ′, β′〉.
Replacing in (2.17), we deduce Θ = 0. This proves that β(s) is a great
circle of S2. Thus, e3 = β × β′ is a unit constant vector orthogonal to
the plane P containing β. From (2.16), it follows that:

〈e3, γ(s)〉 =
λ

α

for all s ∈ I. Finally, from the parametrization (1.4), we deduce

〈X(s, t), e3〉 = 〈γ(s), e3〉 + t〈β(s), e3〉 =
λ

α
,

proving that X(s, t) is contained in a plane parallel to P .
After the discussion of the cases λ = 0 and λ �= 0, and from Proposition 2.1,
we conclude that the surface is a plane of R

3. This completes the proof of
Theorem 1.2.

3. Classification of Translation Surfaces

In this section, we study the solutions of (1.3) [or equivalently of (1.5)] by
the method of separation of variables. Let M be the graph of a function
u(x, y) = f(x) + g(y) where f : I ⊂ R → R and g : J ⊂ R → R are smooth
functions. If we parametrize by X(x, y) = (x, y, f(x)+g(y)), the set of points
of the surface M is the sum of two planar curves, namely

X(x, y) = (x, 0, f(x)) + (0, y, g(y)). (3.1)

In the literature, surfaces of type z = f(x) + g(y) are called translation
surfaces and they form part of a large family of “surfaces définies pour des
propertiés cinématiques” following the terminology of Darboux in [9]. In case
that one of the functions f or g is linear, the surface is a ruled surface. Indeed,
if for example, g(y) = ay+b where a, b ∈ R, then η(x) = (x, 0, f(x)+b) is the
directrix of the surface and its parametrization is X(x, y) = η(x) + y(0, 1, a).
This means that M is a ruled surface where all rulings are parallel to the
fixed direction (0, 1, a); in particular, the surface is cylindrical.

The proof of Theorem 1.3 is by contradiction. We assume that both
functions f and g are not linear. In particular, f ′f ′′ �= 0 and g′g′′ �= 0 in
some subintervals Ĩ ⊂ I and J̃ ⊂ J , respectively. Thus, f ′f ′′g′g′′ �= 0 in
Ĩ × J̃ .

We use the parametrization (3.1) to calculate the Gauss map N of M

N =
Xx × Xy

|Xx × Xy| =
(−f ′,−g′, 1)√
1 + f ′2 + g′2 .

Here, we denote by prime ′ the derivative of f or g with respect to its variables.
The mean curvature H of M is

H =
(1 + g′2)f ′′ + (1 + f ′2)g′′

(1 + f ′2 + g′2)3/2
.
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Then, the self-similar solution equation (1.3) is

(1 + g′2)f ′′ + (1 + f ′2)g′′

(1 + f ′2 + g′2)3/2
= α

−xf ′ − yg′ + f + g√
1 + f ′2 + g′2 + λ.

The determinant of the first fundamental form is W = 1 + f ′2 + g′2. Then,
the above equation can be expressed as

(1 + g′2)f ′′ + (1 + f ′2)g′′ = α(−xf ′ − yg′ + f + g)W + λW 3/2. (3.2)

The differentiation of (3.2) with respect to the variable x gives(
1 + g′2) f ′′′ + 2f ′f ′′g′′

= −αxf ′′ W + 2αf ′f ′′(−xf ′ − yg′ + f + g) + 3λ f ′f ′′W 1/2.

A differentiation of this equation with respect to the variable y leads to

2g′g′′f ′′′ + 2f ′f ′′g′′′ = −2αxg′g′′f ′′ − 2αyf ′f ′′g′′ + 3λf ′f ′′g′g′′W−1/2,

or equivalently

2(f ′′′ + αxf ′′)g′g′′ + 2(g′′′ + αyg′′)f ′f ′′ = 3λ f ′f ′′g′g′′W−1/2. (3.3)

We separate the discussion in two cases according the constant λ.
1. Case λ = 0. We divide (3.3) by f ′f ′′g′g′′, obtaining

f ′′′ + αxf ′′

f ′f ′′ = −g′′′ + αyg′′

g′g′′ .

Since the left-hand side of this equation depends on the variable x, and
the right-hand one on y, it follows that there is a constant a ∈ R, such
that

f ′′′

f ′f ′′ + α
x

f ′ = − g′′′

g′g′′ − α
y

g′ = 2a. (3.4)

From a first integration of both equations, we find m,n ∈ R, such that

f ′′ + αxf ′ − αf = af ′2 + m,

g′′ + αyg′ − αg′ = −ag′2 + n.
(3.5)

By substituting into (3.2), we obtain

(n + a − αf)f ′2 + αxf ′3 = (a − m + αg)g′2 + αyg′3 − m − n.

Again, we deduce the existence of a constant b ∈ R, such that

(n + a − αf)f ′2 + αxf ′3 = b,

(a − m + αg)g′2 + αyg′3 − m − n = b.
(3.6)

We now give an argument for the function f , and it may similarly done
for g. The function f satisfies the first equation in (3.5) and (3.6). Dif-
ferentiating the first equation of (3.6) with respect to x, it follows that:

(2(n + a − αf) + 3αxf ′) f ′f ′′ = 0.

Taking into account that f ′f ′′ �= 0, we deduce

2(n + a − αf) + 3αxf ′ = 0.
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Instead to solve this equation, and to avoid the constants a and n, we
differentiate again this equation with respect to x. Simplifying, we arrive
to

f ′′ = − 1
3x

f ′.

The solution of this equation is f(x) = cx2/3 + k where c, k ∈ R. Since
f is not a constant function, then the constant c is not 0. Once we
have the expression of f(x), we come back to the first equation of (3.5)
obtaining

4ac2

9
x−2/3 +

1
3
αcx2/3 +

4c

9
x−4/3 + αk + m = 0

for all x ∈ I. This equation is a polynomial equation on the function
x2/3. Then, all coefficients vanish, in particular, c = 0, which it is a
contradiction.

2. Case λ �= 0. We divide (3.3) by f ′f ′′g′g′′, obtaining

2(f ′′′ + αxf ′′)
f ′f ′′ +

2(g′′′ + αyg′′)
g′g′′ = 3λ

1√
1 + f ′2 + g′2 .

In view of the left-hand side of this equation is the sum of a function
of x with a function depending on y, if we differentiate with respect to
x, and next with respect to y, the left-hand side vanishes. On the other
hand, in the right-hand side, the same differentiations give

9λ
f ′f ′′g′g′′

(1 + f ′2 + g′2)5/2
= 0.

This is a contradiction, because λ �= 0 and f ′f ′′g′g′′ �= 0. This finishes
the proof of Theorem 1.3.

As a final remark, we point out that the parametrization (3.1) does
not coincide with (2.1), because for the translation surface (3.1), the rulings
are not necessarily orthogonal to the plane containing the directrix η(x) =
(x, 0, f(x) + b) (except if a = 0), such it occurs in the parametrization (2.1).
If a = 0 (and b = 0), Eq. (1.6) is Eq. (2.1) for curves y = f(x). However, the
cylindrical solutions given by Theorem 1.3 coincide, up to a linear isometry,
with the ones given in Theorem 1.2.
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