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a b s t r a c t

Urban resettlement projects involve a large number of stakeholders and impose tremen-
dous cost. Developing resettlement plans and reaching an agreement amongst stakehold-
ers about resettlement plans at a reasonable cost are some of the key issues in urban
resettlement. From this perspective, urban resettlement is a typical large-scale group
decision-making (GDM) problem, which is challenging because of the scale of participants
and the requirement of high consensus levels. Observing that residents who are affected by
a resettlement project often have tight social connections, this study proposes a framework
to improve the consensus reaching and uses the minimum consensus cost to reduce the
total cost for urban resettlement projects with more than 1000 participants. Firstly, we
construct a network topology that consists of two layers to deal with incomplete social
relationships amongst large-scale participants. An inner layer consists of participants
whose preference similarities and trust relations are known. Meanwhile, an outside layer
includes participants whose trust relations cannot be determined. Secondly, we develop
a classification method to classify participants into small subgroups based on their prefer-
ence similarities. We can then connect the participants whose trust relations are unknown
(the outside layer) with the ones in the inner layer using the classification results. To facil-
itate effective consensus reaching in large-scale social network GDM, we develop a three-
step approach to reconcile conflicting preferences and accelerate the consensus process at
the minimum cost. A real-life urban resettlement example is used to validate the proposed
approach. Results show that the proposed approach can reduce the total consensus cost
compared with the other two practices used in the actual urban resettlement operations.
� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Urban resettlement is related to regional economic development, improvement of residents’ living conditions, social sta-
bility and ending poverty [1,25]. The successful implementation of a resettlement project depends on many factors, such as
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politics, economics, sociology and law [39]. Developing resettlement plans and reaching an agreement amongst households
about resettlement plans at a reasonable cost are some of the key issues in urban resettlement. Households have various
knowledge backgrounds and social status and often have tight social connections. From this perspective, urban resettlement
is a large-scale social network group decision-making (LSSNGDM) problem, which is challenging because of the scale of the
participants and the requirement of high consensus levels.

In LSSNGDM, the social network relation includes trust relation and preference similarity relation [12]. The trust relation
is a Boolean function, which assumes the non-existence or existence of a trust relationship between two decision makers
(DMs). The preference similarity relation measures the similarity of two DMs’ preferences for a set of alternatives. Based
on the above two network relationships, a consensus reaching process consists of three steps: (1) build a social network
of DMs. A commonly used method constructs a social network based on trust relationships between DMs [12,35]. Wu
et al. [38] built a social network by using a trust degree calculation and a trust-based preference collection model. Another
way to build a social network is to utilise the preference similarities between DMs [24,41]. (2) Divide a large group of DMs
into smaller subgroups by using social network analysis. Dividing a large group of DMs into several subgroups is an effective
tool to reach a consensus in LSSNGDM [41]. Given that DMs in a subgroup have similar preferences and trust each other, they
are more likely to change their preferences to reach a consensus than DMs in a larger group. The mainstream methods
include clustering DMs based on individual preference relations [35] and classification based on opinion dynamics [12].
(3) Construct consensus models for each subgroup. The consensus reaching mechanism in social network GDM is similar
to traditional GDM [12,35,41]. The most widely used method is the interactive consensus reaching framework, in which
DMs are asked to modify their preferences by using feedback information until a consensus is reached [7,19].

The consensus reaching in LSSNGDM is more complex than that in small size social network GDM due to the following
reasons. Firstly, heterogeneous preferences exist in GDM because of DMs’ diverse educational backgrounds, knowledge and
decision habits [14,34,38]. Methods for measuring the distance amongst heterogeneous preferences must be developed for
classification purpose. Urena et al. [24] analysed the network structure on the basis of the similarity degree between hetero-
geneous preferences and proposed a consensus model on the basis of the confidence degree. Secondly, the trust relations are
partially missing, and the network structures of LSSNGDM are unknown [12,33,35]. Wu et al. [37] employed a trust propa-
gation method to visualise the consensus reaching process. Wu et al. [40] proposed a shortest path algorithm to divide the
network to reach a consensus for LSSNGDM. Lastly, traditional methods, such as the feedback adjustment mechanism and
DMs’ weight determination methods, are inefficient when dealing with LSSNGDM problems [35,41] which require new
methods to improve the efficiency of the consensus reaching process [23]. Cheng et al. [7] developed a minimum cost con-
sensus model for 20 DMs by using the social network information to determine the weights.

Although many consensus models have been developed to handle less than 200 experts [28.36.42.43] studies on large-
scale (with more than 1000 participants) social network structure, opinion classification and consensus reaching have been
scant [9]. Existing research is difficult to tailor to meet the needs of LSSNGDM problems. Firstly, the existing studies con-
struct social networks on the basis of the trust relations or similar preferences amongst DMs [12,34,35,37,38,41]. In real-
life LSSNGDM problems, a DM is influenced not only by people he/she trusts but also by people with similar preferences.
For example, in the urban resettlement project studied in this study, the residents with similar preferences and trust rela-
tions are more likely to reach an agreement. Secondly, the commonly used feedback adjustment mechanisms involve mul-
tiple rounds of negotiations, which largely increase the time and human resource costs when the number of DMs is large
[23,34,41]. This study takes the urban resettlement project as an example. The real estate developer hired 62 employees,
including seven senior managers, and took approximately 6 months to complete the household survey and discussions.
The salary expenditure alone cost approximately 1.02 million-yuan RMB. Gong et al. [16] proposed a minimum cost consen-
sus reaching model to improve the feedback adjustment consensus mechanism for small size GDM problems (five experts).
This study is different from [16] because we consider large-scale (with more than 1000 participants) social network relation-
ships between DMs. In addition, their model was designed for crisp value and cannot be directly used for the preference rela-
tion (matrix or vector). Lastly, trust relations between DMs are important information in the consensus-reaching process in
LSSNGDM. In real-life practice, only a small part of the trust relations amongst a limited number of DMs can be established
due to the resource constrains. If the trust relationship is incomplete, then a special consensus-building model needs to be
developed [12,17]. The existing studies use either the transitivity of the trust paths to predict the trust relations [12,40,41] or
the preference relationships to replace the trust relations [34,35]. Gupta [17] proposed to achieve consensus without filling
in the trust relations. They used the influence intensity of DMs, whose trust relationships were unknown, to determine the
possibility of change in their opinions and established a group consensus. The existing methods are not effective in filling
trust relations and reaching consensus for large-scale social networks. Thus, new approaches, such as classification algo-
rithms, are needed to improve the efficiency of consensus reaching in LSSNGDM.

This study aims to develop a consensus reaching framework for LSSNGDM (with more than 1000 participants) by using
analytical tools (social network analysis, data mining and optimisation) to achieve an automatic consensus building with
efficiency and controlled cost. To achieve this goal, we firstly propose a general topological structure to address the partially
missing trust relation problem by connecting DMs with complete trust relation DMs who do not have clear trust relations.
Then, we develop a classification method to divide a large-scale social network into small subgroups on the basis of individ-
ual preference relations. Thus, all DMs’ preferences can be reflected in the GDM process. Lastly, we build an optimisation
model to facilitate preference modifications, which replaces the repeated iterations and obtains an optimal consensus cost.
We apply the proposed approach to a real-life large-scale urban resettlement project to validate it. The results show that the
500



X. Chao, G. Kou, Y. Peng et al. Information Sciences 575 (2021) 499–527
proposed approach can improve the efficiency of consensus reaching of large-scale urban resettlement and reduce the total
consensus reaching cost.

This study contributes to the literature in two ways. Firstly, we develop a two-layer suspension social network structure
to fuse trust relation and preference similarity for large-scale decision-making participants. We propose a classification
method by using support vector machines (SVM) in vector space to deal with missing trust relations. Secondly, prior work
on LSSNGDM has mainly focused on problems with less than 200 participants. In addition, consensus cost is a crucial issue in
many real-life LSSNGDM projects. However, no current research in LSSNGDM has taken the consensus cost into considera-
tion. To the best of our knowledge, our study is one of the first few to optimise the consensus cost of a real-life LSSNGDM
project with 1861 participants. The minimum cost optimisation model constructed in this study enriches the toolbox of con-
sensus reaching in LSSNGDM problems.

The remainder of this paper is organised as follows. Section 2 introduces the basic features of LSSNGDM and outlines the
proposed three-step consensus reaching framework. Section 3 describes the first step in the proposed framework: how to
construct a social network structure. Section 4 describes the second-step: a classification approach to divide DMs into smal-
ler groups. Section 5 introduces the last step: develop a consensus-reaching process with minimum compensation cost. Sec-
tion 6 uses a real-life urban resettlement project to validate the usefulness and effectiveness of the proposed approach.
Section 7 concludes the paper.
2. Literature review and preliminaries

A consensus reaching process [19] is implemented to improve the consensus degree of LSSNGDM by dividing large-scale
groups into smaller subgroups and reaching satisfactory consensus in subgroups [35]. This section introduces prior literature
on the basic features of LSSNGDM and the components of a general consensus reaching framework in LSSNGDM and
describes the consensus reaching framework proposed in this study.

2.1. Basis features of LSSNGDM

The LSSNGDM has three prominent features (Fig. 1): a large number of DMs, heterogeneous preference formats used by
DMs and interactions between DMs [12].

A GDM problem is normally regarded as a large-scale GDM problem when the number of participants is larger than 20
[24,40,43]. The largest number of DMs that has been studied in the existing literature is less than 200.

Given that DMs use diverse preference expressions in LSSNGDM [12] the consensus reaching process under the hetero-
geneous preferences environment has been an important research topic in large-scale GDM [14,19] and social network GDM
(SNGDM) [34]. The common preference structures include preference ordering, preference value, multiplicative preference
relation and additive preference relation [22,33,34]. Appendix A introduces the four most frequently used preference repre-
sentation forms.

In a GDM problem, DMs in the same social network share experience and knowledge and may influence each other’s
viewpoints by either referring to others’ opinions or trusting neighbours [37,38]. Urban resettlement is a typical LSSNGDM
problem that involves thousands of residents with tight social connections in the consensus reaching process. A consensus is
difficult to reach in urban resettlement projects due to conflicting preferences and the requirement of reaching high consen-
sus levels at a reasonable cost.

2.2. General consensus reaching process for LSSNGDM

We propose a three-step consensus reaching framework to facilitate consensus reaching in LSSNGDM problems (Fig. 2).
The first step constructs a social network structure for a LSSNGDM problem, which will be described in Section 3. The second
step divides the DMs into smaller subgroups. The last step utilises a consensus reaching process to efficiently reach consen-
sus with minimum cost. The following subsections outline the second and third steps.
Fig. 1. Three basic features of LSSNGDM.
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Fig. 2. Proposed LSSNGDM consensus reaching framework.
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2.2.1. Subgroup partition
Subgroup partition is used to improve the efficiency of large GDM. Clustering and classification are the commonly used

methods to partition subgroups. Palomares et al. [27] proposed a fuzzy clustering and outlier detection method to cluster
DMs to small groups according to their preferences. Wu and Xu [42] proposed a changeable cluster algorithm to capture
preference evolution. Wu et al. [40] developed a two-stage subgroup partition algorithm to reduce the complexity of
large-scale GDM problems. Urena et al. [33] proposed to use the degree of self-confidence as a criterion to group DMs. In
the above-mentioned methods, the subgroups are partitioned through either clustering or the features of network struc-
tures. They require complete network structures and DMs’ information, such as trust relation, self-confidence degree and
support degree of opinions. Furthermore, they need repeated adjustments of individual preferences to reach a high consen-
sus degree, which is inefficient for large GDM.

Classification algorithms divide a large number of participants into small subgroups. In LSSNGDM, the labels for subgroup
classification are determined on the basis of the social relationships amongst DMs. Given that DMs in a subgroup have sim-
ilar preferences or trust each other, we can divide large-scale DMs into subgroups by using preference or trust relations. We
can identify preference and trust relations in a social network through interviews and surveys with DMs and assign labels to
subgroups, which are used to train classifiers.

The application of classification algorithms in subgroup partition requires two necessary conditions. Firstly, the training
data must have classification labels, which can be obtained on the basis of the management experiences, background knowl-
edge, interviews and questionnaires. The second condition is that the data should be transformed into a matrix, in which the
columns are attributes, and the rows are data records. Traditional classifiers cannot be directly used in LSSNGDM because a
preference relation is a matrix, and the entire matrix must be converted into a vector for training and prediction. Moreover,
classification labels are difficult to determine in large-scale social networks. This study proposes a classification approach,
which is described in Section 4, to handle these issues in LSSNGDM.
2.2.2. Consensus reaching in LSSNGDM
The traditional feedback mechanism of asking each DM to repeatedly modify their preferences to reach an agreement is

inapplicable when the number of DMs is large. The two major directions of applying social network analysis to reach con-
sensus in LSSNGDM are as follows. The first one is to build a trust relation to reach consensus within subgroups; the other
one is to use opinion dynamics to improve consensus reaching, which is based on the evolution of individual DM’s opinions
or preferences in a social network [12,34,35,42].

Time and cost are two important issues in LSSNGDM. Considerable time and resources are needed to investigate the pref-
erence and trust relations amongst DMs. In many real-life GDM problems, management or related institutions compensate
participants to change their opinions, which is called consensus cost. Furthermore, the complex structures of social networks
demand more human resources and costs to detect conflicts amongst DMs and coordinate their opinions. Labella et al. [23]
claimed that the time cost optimisation in the consensus process is a key issue because the traditional GDM models take
more time to converge when the number of DMs increases. Zhang et al. [46] analysed the efficiency of different consensus
processes and found that the interactive feedback adjustment mechanisms are often inefficient. Zhang et al. [45] proposed a
minimum cost consensus model under a soft consensus condition; however, their research did not consider social network
amongst DMs. Cheng et al. [7] developed a minimum cost consensus model in social network GDM, and only 20 DMs were
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involved. Many studies have assigned DMs with different weights to reflect their importance, such as the piecewise function
[43] matrix method [13] and local and whole weights modification [27] to cost-effectively and efficiently reach a consensus.

Previous work has shown that the amount of compensations required to change DMs’ preferences varies [6,16] which
implies that economic compensations can be used to avoid or reduce the number of repeated iterations of preference mod-
ifications. One possibility is to seek an equilibrium that balances the costs and benefits of DMs [6,16,20]. Zhang et al. [45]
showed that minimum consensus cost models can reduce the total cost and improve decision efficiency. In Section 5.2,
we develop an optimisation model to determine the optimal consensus cost for LSSNGDM.

Section 3 describes the first step of the proposed consensus reaching framework in detail.
Table 1 summarises the notations used in the rest of this paper.
3. Social network structure of LSSNGDM

In LSSNGDM, participants are connected through social relations. Establishing a social network structure helps in under-
standing the associations between participants and handling incomplete information. This section proposes an approach to
construct a network structure for LSSNGDM, detect different communities and identify their importance in a social network.

3.1. Social network analysis in GDM

A social network consists of a set of nodes, which indicate individuals or organisations, and dyadic ties, which represent
social relations and interactions amongst the nodes of the network [32]. Social network has been widely used to reveal the
structures and patterns of a social group [9,32]. Social relations that connect DMs are the basic components of a social net-
work. Individuals located at the centre of a social network have more influence in the consensus building process than others
because they have more connections in the social network [10,12,35]. Existing studies [10,12,35] construct social networks
of GDM by using mutual trust relationships or preference similarity relations between DMs. In practical LSSNGDM applica-
tions, the complete trust relationships between DMs are difficult to fully construct due to missing information and compli-
cated social relations.

This study aims to address this gap by developing a local network structure to establish social networks for LSSNGDM
with incomplete trust and similarity relations. The first step identifies DMs whose trust relationships and similarity relation-
ships are known and builds a local network with complete trust relations and similarity relationships amongst DMs. In the
second step, DMs whose trust relationships are unknown are divided into different classes on the basis of the preference
similarity relations between the external points and the points in the local network.

A social network can be illustrated using a graphic, algebraic or sociometric form. For example, the relation of n DMs in a
social network between any two DMs can be presented as a sociometric form that is an adjacent matrix with the following
function:
Table 1
Notatio

Sym

X
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DMv
�!
Sð p!i
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eij
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d0ij
D
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� ej

�
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where eiRej means that two DMs have a connection, which is either a preference similarity relation or a trust relation. Other-
wise, the entry is zero. A ¼ ðeijÞ is also an adjacent matrix.
ns used in the consensus reaching framework.

bols Descriptions Symbols Descriptions

Alternative set N Number of DM
Community of social network (Section 3.3.2) mv Number of suspend vertexes that belong to in Mv

DMs in each community sv Weighted centrality degree(Definition 1)
Vector x Derived priority vector of preference relation

; p!jÞ Similarity measure of two preference vectors U Utility value

Inner products of two vectors O Preference ordering
Adjacent matrix P Multiplicative preference relation
Entry of A B Additive preference relation
Weighted adjacent matrix (vector) ui Entry of the utility value

Entry ofA0 oi Entry of preference ordering
Distance matrix aij Entry of multiplicative preference relation
Entry ofD0 bij Entry of additive preference relation

Weighted distance matrix u0
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Dual social network (Fig. 4) DSð; Þ Distance measurement of different preference relations
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j

� �
Kernel function in SVM
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3.2. Local social networks in LSSNGDM

Mutual influence and group behaviour dominate the consensus building process in LSSNGDM [28,29,38]. The different
preference classes and the trust and preference similarity relations amongst DMs must be understood to efficiently reach
a high degree of consensus in social networks.

Although identifying all the trust relations of DMs in a large-scale social network is impossible due to privacy protection
and lack of information, a local social network (such as representatives of DMs) with its relative complete nodes and links
can be determined through questionnaires, statistics and interviews.
3.2.1. Proposed topological structure for LSSNGDM
Fig. 3 shows the proposed general social network structure. In this structure, the nodes are DMs, and the links are the

relationships amongst DMs, which include trust relation and preference similarity. The inner layer (inside the red circle)
is a complete local social network, in which the trust relationships between DMs are known, and the outside suspension
nodes are the DMs whose trust relations with the inner nodes cannot be determined. We need to investigate the preferences
of the outside nodes and the nodes in the local social network to connect the former to the local social network (Section 4).
3.2.2. Social relations in a local social network
This section investigates the inner structure of a local social network to formulate different preference classes. Existing

research on social network of GDM only established a single network, in which a link between two DMs is either a trust rela-
tion or a preference similarity [12,34,37,38]. In many real-life decision-making situations, a DM is influenced not only by
people he/she trusts but also by people with similar preferences. Two DMs with similar preferences and no trust relation
are more likely to reach an agreement than those have trust relation and opposite preferences. Thus, trust relation and pref-
erence similarity should be used in classifying DMs.

On the basis of this observation, we propose a dual structure of a local social network (Fig. 4), which considers preference
similarity and trust relation. In Fig. 4, the base layer is a connection relation in a social network graph (for instance, trust
relation), and the embedded layer is a preference similarity relation between nodes. The base layer is embedded in the net-
work established on the basis of the preference similarity degree.

In real-life decision problems, the base layer is constructed using the trust relations obtained from investigations, ques-
tionnaires and data analysis. The adjacent relation R is determined by mixed indexes, such as a distance in the social net-
Fig. 3. Topological structure of LSSNGDM.
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Fig. 4. Dual structured network of local social network.
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work, common friends and intimacy of the relationship [29]. The embedded layer is built on the basis of the similarities
amongst DMs, which are measured using individual preference relations.

The outside suspension nodes in Fig. 4 are connected with the inside nodes through the preference similarity relations
amongst the outside nodes and the nodes in the local network. The size of outside nodes is proportional to its influence
in a LSSNGDM problem.

3.2.3. Fusion of the trust relation and preference similarity relation in a local social network
The construction of the dual structured network follows three steps:
Step 1 Construction of the dual structure of a social network
1) The base layer (Fig. 4) is a network composed of nodes and links. In this network, the nodes are DMs, and the links are

trust relations. We use A to note an adjacent matrix representing trust relations.
2) The embedded layer (Fig. 4) is also a network, in which each link represents a preference similarity. In urban resettle-

ment, people with similar social status, such as household earnings and family structures, are likely to have similar prefer-
ences and make similar decisions. This study assumes that pi and pj are two preference relations in a local social network
provided by DMi and DMj, respectively. The distance measure based on similarity degree is defined as follows:
d0
ij ¼ Sðpi; pjÞ ð2Þ
where Sðpi; pjÞ is the cosine similarity measure of two preference vectors.
Step 2: Weighted vectorisation of the dual network
Let pv i be the number of suspension nodes attached to node v i in a local social network. Weighted vector C (belonging

toRn�1) is a normalised vector and an entry ci ¼ pv i=
P

kpvk, where k is the number of nodes in the local social network. Each
entry in this vector C is the ratio of DMs who have a similar preference with node v i. Step 2 uses weighted vector C to absorb
the influence of outside nodes on consensus reaching into the local social network. Then, weighted adjacent matrix A0 can be
formulated by A0 ¼ f ið Þ ¼ ACT at the base layer, wheref i is an entry of weighted adjacent matrix (vector) A0, and A is an adja-
cent matrix. The distance matrix is D0 ¼ ðd0

ijÞ, and the weighted distance matrix is D ¼ ðdiÞ ¼ D0CT .
Step 3: Unitisation and fusion
This step unitises the elements of each weighted adjacent matrix and weighted distance matrix by their standard

deviation:
f
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The following matrix (5) combines the weighted adjacent matrix and weighted distance matrix by using weight h to fuse
the above-mentioned two layers. Let H be a new matrix with two sub-blocks:
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H ¼ A0
n�1

��Dn�1
	 
 ð5Þ
where ‘|’ represents a block matrix. Then, we can use the singular value decomposition of H with matrixes Un�2 and V2�n to
determine the weights of two separate networks with the following formula:
H ¼ U
h
�
1 :

: h
�
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" #
V ð6Þ
Finally, the weights are computed as h
�
¼ h

�
1=
P

h
�
i and 1� h

�
¼ h

�
2=
P

h
�
i. m̂ij represents the combination of the base and

embedded layers:
m̂ij ¼ h
�
eij þ ð1� h

�
Þd0

ij ð7Þ
where eij and d0
ij are entry of the adjacent matrixes and distance matrix between DMs i and j, respectively. Parameter h com-

bines eij and d0
ij to form the composed link m̂ij.

3.2.4. Centrality of the local social network
We define a weighted eigenvector centrality to determine the centrality of each node in a dual social network (Definition

1). The idea is to detect the nodes that have the most connections to the other nodes in a network. In many cases, the cen-
trality reflects the influence of a DM in a social network. A node with a higher centrality has more influence because it has
more connected links with other nodes.

Definition 1. Weighted eigenvector centrality: In a given dual social network, M ¼ ðm̂ijÞ is a combination of the base and
embedded layers. The weighted eigenvector centrality of node v is defined as follows:
sv ¼ 1
r
Xn
j¼1

m̂tjv t ; ð8Þ
where r is a constant that is computed as the largest eigenvector of M.
The proposed centrality score sv can be used to minimise the induced modification cost. Decision makers with larger cen-

trality scores have greater influence on the collective opinion, and they have higher weights in a decision-making process.
Thus, their preference modification range is set smaller, and the corresponding consensus cost is lower.

4. Group classification in LSSNGDM

Classification is introduced to divide DMs into smaller groups to improve the efficiency of group negotiation and consen-
sus reaching in LSSNGDM. To do so, we assign labels to different communities in the local social network on the basis of their
complete trust relations. Then, we train a classifier and assign the outside nodes, whose complete trust relations are
unknown, to each class to ensure that all DMs can be divided into different subgroups. Although the data used in traditional
classifications are vectors, some preference relations (such as multiplicative and additive) are matrixes. Therefore, the
heterogeneous preference relations, which often occur in LSSNGDM, should be transformed into a standard classification
vector with labelled classes and vectorisation. To deal with heterogeneous preference relations that often occur in LSSNGDM,
we transform them into a uniform data format by using similarity measure. Appendix A provides the theoretical basis for this
transformation, which is an inner product space composed of different preference relations. This study chooses SVM as the
classifier because it is one of the widely used classification methods and is suitable for preference relation data, which has a
small number of dimensions and a large volume of data [31].

4.1. Inner product space

We use inner product space, instead of Euclidean space, to determine the ‘distances’ amongst different preference rela-
tions due to the diverse structures of different preference relations.

The commonly used preference relations include utility value, preference ordering, multiplicative preference relation and
additive preference relation. Kou and Lin [21] and Chao et al. [2] developed the cosine similarity relation between these pref-
erence relations and their derived vectors. However, the cosine similarity degree measure is not a mathematical distance
measure (does not satisfy the triangle inequality). We transform each preference into a unitised vector to make it suitable
for classification, and the cosine similarity degree of two preference relations becomes an inner product. The introduction of
the different preference relations and the detailed transformation process are summarised in Appendix A.

Definition 2. The unitized vector of utility value is u!, the preference ordering is o!, the unitized column vector of the
multiplicative preference relation is a!j, and the additive preference relation is p!j. The < �; � > is an inner product between
two vectors. Then, the distance measurement DS amongst different preference relations is computed as follows:
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Case 1: The inner product between column vectors (utility values and preference ordering) is defined as follows:
DSðU;OÞ ¼ 1
n

Xn
j¼1

< u!j; o
!

j >¼ 1
n

Xn
j¼1

Xn
h¼1

u
�
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�
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n
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uhjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

uij
� �2s ohjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
oij
� �2s ð9Þ
Case 2: The inner product between matrixes (multiplicative and additive preference relation) is defined as follows:
DSðA;BÞ ¼ 1
n

Xn
j¼1

< a!j; p
!

j >¼ 1
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Xn
j¼1

Xn
h¼1
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�
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Case 3: The inner product between a column vector and a matrix is defined as follows:
DSðU;MUÞ ¼ 1
n
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j¼1
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Moreover, it is easy to prove that 1
n

Pn
j¼1 < x!; p!j >¼< x!; 1n

Pn
j¼1 p

!
j > and 1

n

Pn
j¼1 < x!; a!j >¼< x!; 1n

Pn
j¼1 a

!
j > holds, where

x! is a column vector. Thus, the preference relation with a matrix structure can be transformed into a column vector by row
weighted algebraic mean and used to classify data.

According to the above-mentioned definitions, the transformed preference relations can be constructed as an inner pro-
duct metric space (Appendix A).

4.2. Label assignment

In classification tasks, labels are predetermined from historical data and used to train classifiers. In this study, DMs in a
community are assigned with the same class label, which is used to classify the outside suspension nodes by using SVM. DMs
with the same label belong to one subgroup, which means that DMs in a subgroup may come from the same community or
may be outside suspension nodes. The definitions of community and subgroup in this study are as follows:

Definition 3:. Community in a local social network. In a local social network, a set of nodes is called a community if the
nodes are internally densely connected, which are measured by the denseness of the links between nodes.
Definition 4:. Subgroup in a social network. A community and outside suspension nodes, which are connected to the nodes
in this community through classification, constitute a subgroup.

In this study, we divide a large-scale group into several subgroups. The following paragraphs introduce the procedure of
community detection and subgroup classification.

Community detection methods [11,15] can be used to divide a social network into smaller parts, in which the nodes have
a higher connection degree with each other (i.e. have more links in a network). Community detection methods are used to
decrease the number of class labels to deal with the large number of nodes and improve efficiency in LSSNGDM. We employ
a spectral analysis to detect different communities in a social network [11,15]. Fig. 5 shows the process of community
detection.

Spectral analysis is a well-known community detection method [11,15]. It is a clustering method based on the Laplacian
matrix, which is constructed using the network degree matrix and the correlation matrix. The Laplacian matrix constructed
in this study is introduced as follows:

Firstly, we construct a Laplacian matrix (L) transformed from a similarity matrix (S) of an inner product of the preference
relations amongst the DMs. Then, the K-means clustering algorithm based on a Laplacian matrix is implemented to identify
communities in the local social network.
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Fig. 5. Community detection [11].
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L ¼ D�1=2SD�1=2 ð13Þ
where D is the degree matrix, andS ¼ sij
� �

, in which sij ¼ e�
ð<pi ;pj>Þ2

2r2 , and pi; pj are preference relations of DMi;DMj.

4.3. Inner product SVM

Preference relations in LSSNGDM are characterised by a small number of features and a large volume of data. SVM, which
discovers an optimal hyperplane to separate data into different classes, is suitable to classify this type of data. The traditional
Euclidean space SVM is no longer applicable because DMs’ preferences are often heterogeneous in large-scale GDM. This
study develops an SVM on the inner product space for LSSNGDM. We need to build an optimisation model in the inner pro-
duct space to determine the support vectors in an inner product space.

Firstly, this study assumes that V is a plane in the n-dimensional inner product space with normal vector n! and arbitrary

point r!0. The equation of plane V is presented as n!; r!� r!0

D E
¼ 0, in which �; �h i is a vector inner product. In an arbitrary

vector r!i, i 2 1;2; . . . ; n in an n-dimensional inner product space, the inner product between n! and r!i with virtual vector y

(including entries� 1 and 1) is expected to be yi r!i; n
!D E

� ai < a
�
,i 2 1;2; . . . ;nwhen a

� ¼ maxfaig. The optimal a
_
is the objec-

tive function, and let a
_ ¼ a

�
=k n! k.
Min a
_

S:t:; yi r!i; n
!D E

� ai < a
_
; i 2 1;2; :::;n :

ð14Þ
Equation (14) can be transformed into the following equation:
Max 1
2 k n! k2

S:t:; yi r!i; n
!D E

< 1; i 2 1;2; :::;n :
ð15Þ
Secondly, a Lagrange multiplier a is introduced to the objective function of (15) to solve the model (Appendix B). The dual
Lagrange optimisation is as follows:
Max
a

Pn
i¼1ai �

Pn
i;j¼1aiajyiyj r

!T

i r!j

S:t:; ai > 0; i 2 1;2; :::;n :
ð16Þ
Solution a�
i can be obtained through sequential minimal optimisation or other iteration algorithms [36]. The inner pro-

duct space is determined by a normal vector of hyperplane.
n!� ¼
Xn
i¼1

ai � yi r!i
Finally, a kernel function is used to deal with the linearly inseparable data by transforming them into a higher dimen-
sional inner space. The Gaussian kernel function is commonly used to map lower dimensional data into a higher dimensional
inner product space because the preference relation values obey normal distribution and satisfy normal property [13]. The

kernel is K r!i; r
!

j

� �
¼ exp � k r!i� r!jk

2

2r2

 !
, and the optimisation model is as follows:
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Max
a
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Pn
i;j¼1aiajyiyjK r!i; r

!
j

� �
S:t:; ai > 0; i 2 1;2; :::;n :

ð17Þ
5. Group consensus reaching process

When the number of participants is large, a group consensus is difficult to directly achieve by aggregating each partici-
pant’s preference. This task needs some consensus reaching approaches to motivate nonconsensus DMs to change their pref-
erences. To deal with this problem, this section designs a three-step consensus reaching process, which is the third step of
the proposed framework in Section 2. The first step dynamically generates alternatives based on the subgroups’ opinion in a
social network. The second step builds an optimisation model to minimise the total compensation cost incurred during the
consensus reaching process. The third step generates a ranking of alternatives with the optimal consensus cost.
5.1. Dynamic generation of alternatives

In many LSSNGDM situations, alternatives are dynamically developed along with the changes of the external environ-
ment [18]. Negotiations would fail if the alternatives are completely unacceptable by DMs [8]. Approaches have been devel-
oped to dynamically generate alternatives, such as medical consultation under mobile and Web 2.0 [28]. In a local social
network, alternatives can be provided by a moderator or DMs (Fig. 6). A moderator is trusted by most participants in
LSSNGDM, and he/she can propose some initial alternatives after discussing with all involved parties. Meanwhile, DMs
can also propose their initial alternatives. These two sets of alternatives are discussed by all participants to generate an initial
set of alternatives by eliminating unreasonable alternatives with few supporters and keeping feasible alternatives backed up
by the majority of people. Fig. 6 shows the dynamic generation of alternatives for a real-life LSSNGDM problem: an urban
resettlement project.

We propose an aggregation operator for different preference forms in an inner product space for each node v in V . The
detailed process is shown in Appendix C. The collective opinion of a LSSNGDM can be aggregated from the opinions of dif-
ferent communities by using the optimisation model (Appendix C). The weights are the centrality degree of each community
in a local social network calculated using Equation (8).
5.2. Minimum consensus cost

Misclassifications can lead to cost biases and economic losses [44] in the consensus reaching process because they
increase the number of participants with nonconsensus preferences in subgroups/classes.

If a consensus cannot be achieved during the generation of the initial alternatives in the first step (Section 5.1), then DMs
with nonconsensus opinions are given suggestions to modify their preferences. One approach is to seek feasible strategies
with minimum cost paid to nonconsensus DMs, who reject to modify their preferences because the compensation does
not satisfy their demands [6,16]. This subsection determines the minimum cost that should be paid to each DM to modify
his/her preference [14].
Decision alternatives set

Initial alternatives

Moderator

DMs

Eliminated 
alternative

Fig. 6. Dynamic generation of initial alternatives.
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Let ri be a unit compensation cost paid to the ith DM DMi. oC ¼ oc1; oc2; :::; ocnð Þ is the order of alternatives based on the
group opinion where n is the number of alternatives. ðhvii ;hvi2; :::;hvinÞ represents the order of alternatives by DMv

i who belongs

to the vth subgroup. Then
Pn

j¼1 hvij � ocj

��� ��� is the deviation of DMi s opinion from the group opinion where j is the ranking of the

jth alternative. The total optimal cost for reaching a consensus is as follows [16]:
Min
P

N

Pmv
i¼1ri

Pn
j¼1 hvij � ocj
��� ���

S:t: oC 2 Of
ð18Þ
where O is a feasible ranking of alternatives. The solution oc1; oc2; :::; ocnð ÞT is nonempty and finite and can be easily solved.
The impacts of DMs on the collective opinion vary due to their different influences in social networks [12]. The collective
opinion is generally closer to communities with larger centralities because they have a greater influence in social networks.
Communities with less centralities have less influence on the collective opinion, and the deviations of their group opinions
from the collective opinion are larger than communities with higher centralities. Therefore, the moderators must identify the
centralities of communities in a social network and set the range of individual preference adjustments according to their
influences. A greater degree of preference adjustments is needed for communities with lower centralities to encourage con-
sensus reaching. Meanwhile, less degree of preference adjustments is needed for communities with larger centralities. With
regard to a given consensus degree n, which is introduced in Appendix D, the total sum of deviations of all DMs in each sub-
group is limited by the following deviation control:
nv ¼ n2s�1
v n ð19Þ
where nv is a distributed consensus degree calculated using sv in Equation (8). Each DM in a subgroup can modify his/her
preference within a controllable interval. The minimum cost model is established as follows:
Min
P

N

P
mv

ri
Pn

j¼1 hvij � ocj
��� ��� ;

S:t:

oC 2 O; ð20� 1Þ
1

Nmvn2
sv
Pn

j¼1 hvij � ocj
��� ��� � nð20� 2Þ

hvij � ocj
��� ��� � nv ; i 2 f1;2; :::;mvg;v 2 f1;2; :::;Ngð20� 3Þ

8>>><
>>>:

ð20Þ
where O is a feasible ranking of alternatives, in which O is the aggregation of individual preferences. r in Equation (20) indi-
cates the unit compensation cost, which is paid to DMs to encourage them to adjust their preferences to approaching the
collective opinion. The two compensation strategies are as follows: the first one is to adopt the same unit compensation cost
for each DM. In this case, the total cost is the product of the unit cost and the total opinion deviation, which is the distance
between the individual preference and the collective opinion [16]. The other strategy applies different unit compensation
costs for different DMs, according to the economic cost of different alternatives. For example, in an urban resettlement pro-
ject, different unit compensation costs are set according to the economic costs of different demolition plans. Another exam-
ple is in peer-to-peer online loans. A platform can set different compensation costs to borrowers according to their credit
status to reach an agreement between lenders and borrowers [45]. Misclassifying DMs will lead to larger deviations in
the objective function. Condition (20–2) means that the total consensus degree should be less than a given n. Condition
(20–3) represents that each DM should modify his/her preference in terms of his/her centrality defined in Equation (19).

Model (20) can be transformed into a weighted linear integer programming by replacing hvij � ocj
��� ��� ¼ uvij þ vvij and

hvij � ocj ¼ uvij � vvij , where uvij and vvij are non-negative real numbers [16]. Specifically:
Min
P

N

P
mv

ri
Pn

j¼1 uvij þ vvij
� �

;

S:t:

ocj þ uvij � vvij ¼ hvij ; i 2 f1;2; :::;mvg; j 2 f1;2; :::;ng

sv
Pn
j�1

uvij � vvij � nNmvn2

ocj � hvij þ nv ; i 2 f1;2; :::;mvg
ocj � hvij � nv ; i 2 f1;2; :::;mvg
uvij � 0;vvij � 0; nv � 0; oc 2 O:

8>>>>>>>>><
>>>>>>>>>:

:
ð21Þ
The solution of this linear system is:
X ¼ oc1; oc2; :::; ocn;uv11;u
v
12; :::;u

v
1n; :::;u

v
m1; um2; :::;uvmn; vv11;vv22; :::;vv2n; :::;vvm1;vvm2; :::;vvmn

� �T
;v 2 f1;2; :::;Ng: ð22Þ
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Table 2
Consensus reaching algorithm.

Consensus reaching algorithm

Input: initial local social network V; adjacent matrix A; initial consensus degree n; heterogeneous preference relations of DMDMv
i ; unit cost ri .

Output: X;X0;X
�

1. Community detection // spectral clustering
2. Train classification model // inner product SVM
3. for v ¼ 1 : 1 : Mv do
4. Compute sv ; // weighted eigenvector centrality based on dual network (Equation (8))
5. end
6. for i 2 DM do
7. Label DMi to node Mv ; // establish the subgroups belonged to each community in the local social network
8. end
9. for i ¼ 1 : 1 : mv do
10. Compute ri

Pn
j¼1ðuvij þ vvij Þ // minimum cost for each participant to modify his/her preference

11. end
12. return to the selection procedure
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However, condition hvij � ocj
��� ��� � nv in (20–3) may lead to no feasible solution if the deviations in different subgroups sur-

pass the preset thresholds. For example, if we need to obtain the optimal value oc between h1 ¼ 1 and h2 ¼ 10 and restrict
h1 � ocj j < 3 and h2 � ocj j < 3, then the optimal solution oc does not exist. In this case, the subgroups are regarded as a non-

consensus class, and the cost for consensus reaching in this case is the total deviation computed by
P

N

P
mv

ri
Pn

j¼1 hvij � ocj

��� ���.
The results of the following matrixes are the ranking of alternatives and the corresponding optimal consensus costs

ri
Pn

j¼1ðuvij þ vvijÞ:
X
�
¼ Mv|{z}

Subgroup

������� X0|{z}
consensus

2
64

3
75 ð23Þ
and
X 0 ¼ ovc|{z}
Ranking

Mvj ri
Xn

j¼1
ðuvij þ vvijÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Costs

�������
2
664

3
775 ð24Þ
Equation (24) is the consensus cost of each participant in a subgroup belonged to community v to reach a group
consensus.

5.3. Consensus reaching algorithm

The proposed consensus reaching model includes three main procedures: computing weighted eigenvector centrality,
classifying preference relations and minimising consensus cost. Table 2 summarises the consensus reaching algorithm.

6. Urban resettlement case study

Urban resettlement has been a popular research topic in the last few years [1,16,25,39]. Urban resettlement projects are
typical LSSNGDM problems because the number of stakeholders is large, and residents who are affected by a resettlement
project often have tight social connections. Another feature of urban resettlement is the requirement of a high group con-
sensus because it is related to the important assets of most families, and even a few disagreements can fail a project. This
situation indicates that minority opinions in urban resettlement projects cannot be ignored.

The example used in this paper is the resettlement of ‘69 mail box’ residence area built in 1950 s in Chengdu, China. The
resettlement is a commercial project involving 1861 households, a real estate developer and a government representative
who acts as a moderator in the GDM process. The local government stipulated that the resettlement plan must be agreed
by all the households to ensure democracy and satisfaction of all the participants, which means that the project cannot pro-
ceed if any household does not support the plan. The project was originally initiated in 2007, but it was terminated because
the residents and the real estate developer could not reach an agreement. After an initial survey from February 23 to March
5, 2017, a simulated demolition meeting was hold on June 18, 2017, and the results showed that all residences agreed to the
demolition. This project was restarted in July 2017 as part of a large government-supported plan ‘northern old town
improvement’. The goal of the GDM process in this urban resettlement project is to come up with a resettlement plan or
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a set of plans that consider all residents’ opinions and determine rational compensation costs, which are acceptable by the
residents and the real estate developer.

The GDM process of this project has four steps. Firstly, the real estate developer proposed alternatives, and the moderator
convened 20 representatives, including a neighbourhood committee, resident representatives and a government officer, for
discussion. A neighbourhood committee is a self-governing organisation at the grassroots level in urban areas to provide var-
ious types of public services to local communities. The committee is elected by local residents every 3 years and consists of
five to nine members. In this project, three members were invited to be representatives, and they coordinated with the
households during the whole negotiation. Secondly, all the residents have a thorough examination of the alternatives devel-
oped in the first step and expressed their preferences. Thirdly, the residents were divided into different subgroups according
to their preferences and were provided with the corresponding compensation proposals. Finally, the moderator analysed the
consensus and total costs and decided whether this project can proceed to the implementation stage.

This urban resettlement project exhibits some common features of a LSSNGDM: 1) A large number of participants (more
than 1000) are involved in the GDM problem, and the residences have complex social relations, which are difficult to fully
investigate and display. 2) Given that the deviation of each individual’s preference to a collective opinion varies, different
consensus costs are needed to persuade individuals to change their preferences to accept a group preference.

6.1. Basic features

An individual preference relation is the preference expressed by a DM for a set of alternatives. This relation is a vector or a
matrix with reciprocal or complementary features. In the urban resettlement, the preference of a household is expressed
through the ranking of the alternatives, the utility of the alternatives or the pairwise comparison of the alternatives. The
preference can be a simple ranking or utility value of the alternatives by directly assessing the importance of the alternatives,
which is a permutation function over the set of alternatives X l : X ! E where E is the domain of representation of ranking
and utility value of the alternatives. A pairwise comparison matrix is a matrix form of individual preference relationship. The
aforementioned matrix compares the importance of the alternatives in pairs, and the scale value constitutes a reciprocal or
complementary matrix. In this case, a preference relation on the set of alternatives X is a binary relation f : X � X#D, where
D is the domain of representation of preference degrees provided by the DM. In n alternatives, the preference relation con-
stitutes an n� nmatrix, in which entry f ðxi; xjÞ is the degree or intensity of the DM’s preference of alternative xi over xj. The
details of preference relations are presented in Appendix A.

All preference relations are vectorised using the cosine similarity relation to visualise their distribution (Appendix A).
Then, we build the inner products of all the preference relations by normalising the vectors in Equations (9)–(12). Finally,
we reduce the dimensionality of the vectors and represent it in a 2D space using the t-SNE algorithm [26] which is used
to observe the distribution of high-dimensional data. The basic idea of the t-SNE is to affine transform the distance between
high-dimensional data into conditional probability to express the proximity degree between data. These data are then con-
structed in a 2D space with a probability distribution as similar as possible to their high-dimensional space. Fig. 7 describes
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Fig. 7. Distribution of individual preference relations in the urban resettlement project.
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the distribution of individual preference relations of the 1861 households. The residents’ preference relations exhibit a wide
range of distribution because the points are scattered in an interval [�90, 80] which means that the households’ opinions are
quite different. This situation increases the difficulty of reaching a group consensus.

The participants of this urban resettlement can be divided into three parts (Table 3). A government officer is the moder-
ator whose role is to facilitate the formation of a consensus between the residents and the real estate developer. Residents
are the largest part of participants. These individuals want to maximise their compensations for loss of assets and expect
better living conditions. The real estate developer expects to make a profit by selling apartments built on the demolition site
and hope to pay the minimum resettlement cost to reach a consensus.

A local social network is formed by 20 representatives from the neighbourhood committee, the real estate developer and
the residents’ representatives. Table 4 summarises the initial alternatives that were formed by taking inputs from the 20
representatives.

Table 5 summarises the four types of preference relations and their usage frequency in the case study. The additive and
multiplicative preference relations, which contain richer information than simple ranking, were used more often than the
other two types. The additive or multiplicative preference relation can reveal the degree of preference differences for differ-
ent alternatives. Therefore, the use of preference relations can make negotiation and adjustment of individual opinions more
targeted and efficient.

The entire process is implemented in three steps: construct a dual local social network, classify participants into sub-
groups and reach a consensus with minimum cost. The results of each step are illustrated in the following subsections.
Table 3
Members in the ‘69 mail box’ large-scale GDM.

Participants Numbers

Moderator
Government officer
Local social network
Neighbourhood committee
Real estate developer
Residents’ representatives
Outside of the local social network (other residents)

1
1
20
3
1
16
1842

Remark: a family was treated as a basic unit in the case study. Each family
chose a representative to participate in the negotiation.

Table 4
Initial alternatives.

Serial Alternatives Notations

a Resettlement at the original address with purchase of
extra construction areas

Replacement at the original address and pay RMB 17,800/m2 for areas beyond
the original construction area

b Resettlement at the original address Replacement at the original address with the same size
c Reform by self-organisation Select a real estate developer by democratic consultation of all the residences
d Cash compensation Compensate RMB 17,000/m2 for demolished houses and provide the rental fees

during the transition period
e Replacement of new houses at an offsite address Provide houses of the same size at a new location, which is far away from the

original address

Table 5
Summary of preference relations.

Preference formats Total number Proportion

Multiplicative 580 31.2%
Additive 740 39.8%
Utility 254 13.6%
Ordering 287 15.4%
Total 1861 100%

Remark: The residents can either choose a simple ranking
or make pairwise comparisons. If the residents choose to
make pairwise comparisons, the we record their judg-
ments and convert them into appropriate preference
relations. The residents can also directly give the utility
value of each alternative or simply rank them.
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6.2. Main results

This subsection presents the results of applying the proposed framework to the urban resettlement project. We firstly
construct a local social network composed of the 20 representatives. If two representatives have a trust relation, which
are investigated through interviews and data analysis, then the two nodes representing them have a connection in this net-
work. The preferences of the residences were collected at the simulated demolition meeting on June 18, 2017. All the DMs
are divided into small subgroups on the basis of their preference similarities. Then, we establish a local dual network, which
is built with trust relations and preference relations. The weights of the subgroups are determined by their centralities.
Thereafter, we build an optimisation model to obtain the optimal consensus costs for each subgroup. Lastly, the real estate
developer discusses the collective opinion and compensation costs with each household to reach an agreement.

6.2.1. Construct a local social network
In the first step, social relationships between individuals are investigated through data analysis and interviews. Then, we

establish trust relations in the local social network, in which their weights and directions are assigned using the above-
mentioned data analysis and interviews (Fig. 8). Specifically, the data used in the case study include the basic information
(including the household income, educational level and occupation), the trust relations and the preference relations of the 20
representatives. All these data were collected through interviews. We used RMB 60,000, the median of the 19 households’
income (except the representative of the real estate developer) as the boundaries, to divide the households to obtain the
trust relationships between different types of households. Then, we combined the partial trust relationships obtained from
the interviews and constructed a local trust network. Fig. 8 illustrates the network graph of the local trust relation network.

6.2.2. Subgroup classification
All the DMs are divided into small subgroups based on the following two steps.
Step 1: Community detection. This step divides the local social network into communities based on the connections

between nodes. The local social network in this example has 20 nodes, including the neighbourhood committee, the real
estate developer and the representatives of households.

The preference similarity matrix and the degree matrix are deconstructed into a Laplace matrix using Equation (13). The
Laplace matrix serves as a project vector of each node (Equation (13)) and is used to detect communities. The Laplace matrix
includes the preference similarities and trust relations. Thus, DMs with trust relations and different preferences may also be
assigned in one community. The number of clusters is five, which is determined by the number of initial alternatives
(Table 4). The detailed process is discussed in Section 6.2.3. The clustering results are as follows:
1
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4
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6
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8
9

10
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16
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z}|{Serial number
�������������������������������������������������������

0:0588 0:2984 0:0348 0:4084 0:1995
0:4137 0:1110 0:2096 0:1978 0:0679
0:2883 0:0535 0:4595 0:1696 0:0291
0:4315 0:1348 0:1054 0:1239 0:2044
0:0295 0:3635 0:1401 0:2079 0:2590
0:0416 0:4648 0:0814 0:0895 0:3227
0:3020 0:0561 0:3934 0:0324 0:2161
0:1602 0:1968 0:3008 0:2364 0:1057
0:3942 0:1305 0:0315 0:3942 0:0496
0:0745 0:3789 0:0553 0:1006 0:3907
0:3871 0:1414 0:2099 0:0501 0:2114
0:0431 0:0638 0:3861 0:4184 0:0886
0:3157 0:0542 0:0737 0:4266 0:1298
0:0531 0:1848 0:2672 0:0237 0:4713
0:1328 0:0540 0:1513 0:5762 0:0856
0:3763 0:2958 0:0705 0:1745 0:0830
0:1457 0:2877 0:0530 0:2927 0:2209
0:5901 0:1092 0:1988 0:0517 0:0501
0:0829 0:0682 0:4686 0:1479 0:2324
0:0688 0:5453 0:0481 0:1130 0:2248

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Indiviual Preferencesðpriority vectorÞ
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Fig. 8. Constructed local social network for the ‘69 mail box’ project.

Table 6
Communities in the local social network.

Labels Representative opinion Ranking/order Number of
nodes

a b c d e

RS Cash compensation with resettlement at the original address without
extra expenditure

0.2020 0.5652 0.0857 0.6705 0.4068 5
4 2 5 1 3

BU Resettlement (replace or buy) at the original address 0.8057 0.2975 0.2926 0.2263 0.2347 5
1 2 3 5 4

CB Buy new houses after cash compensation or through self-financing 0.4899 0.1373 0.1442 0.7954 0.1529 3
2 5 4 1 3

CR Replacement of house property (original address or offsite address) 0.0935 0.6811 0.2111 0.1933 0.5895 2
5 1 3 4 2

RF Self-organisation reform 0.3245 0.1694 0.7349 0.3689 0.2487 5
3 5 1 2 4

Remark: the real estate developer is included in the community CB. The group opinion is integrated with weighted centrality degree.
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Table 6 shows the five communities in the local social network. The ranking/order column indicates the collective opinion
of each community about the five alternatives (Table 4), and the order is the same ranking result using Arabic numerals. The
right most column is the number of nodes in different communities. Appendix C provides the calculation details about how
the individual preferences are aggregated to form the ranking.

Each community in the local social network has its typical opinion, which is represented by the label column. RS repre-
sents a preference of cash compensation to buy a new house at the original address of the same size. Households in com-
munity BU want larger new houses at the original address, and they are willing to pay for the areas that exceed the
construction areas before the demolition. CB community hopes to obtain enough cash compensation that can be used to
buy a new house at the original address with extra construction areas. CR community wants a replacement of the same size
at the original or offsite addresses. RF wants to change the real estate developer and find a new one who can pay higher
compensations.

Although the labels in Table 6 and the alternatives in Table 4 have similarities, they are different. The labels in Table 6 are
obtained by integrating DMs’ preferences of the alternatives in each community. We analyse the collective opinion and the
top-ranking alternatives of each community to determine the preference characteristics of that community and assign labels
to communities using their main characteristics. For example, the top three ranking alternatives in the first community of
Table 6 are {d, b, e}. A common characteristic of these three alternatives is their reluctance to pay extra cost.

Step 2: Divide DMs into subgroups. The five communities identified in step 1 are used to train the inner product SVM.
This step classifies the outside nodes, which are the majority of the participants in this project, into the five subgroups.

In this step, each community is a class: {RS, BU, CB, CR, RF}, using the labels from Table 6. Individual preferences are trans-
formed into an inner product space (Appendix A). The classification is implemented using Equation (17) to classify the
heterogeneous preferences in LSSNGDM.

Table 7 presents the classification results. The largest subgroup is RS, and the smallest one is BU. Although CB and CR
together account for only 25% of the total number of representatives in the local social network (Table 6), they represent
37% of the participants in the whole social network.

The classification results are used to determine the structure of the dual network and evaluate the weighted eigenvector
centrality of each community. The centrality of one node is the degree of the connections from this node to other nodes in a
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Table 7
Classification results.

Subgroups Number of representatives Size of subgroups Total Centrality

RS 5 522 527 1.1404
BU 5 287 292 1.1112
CB 3 374 377 0.6249
CR 2 319 321 0.6259
RF 5 340 345 1.2021
Total:5 20 1842 1862
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social network and indicates the importance or influence of the node. The centrality has two roles in the proposed approach:
1) different subgroups can adjust their preferences to various degrees depending on their centralities; 2) centralities of com-
munities can be used as weights of communities to aggregate their opinions to obtain a collective opinion.

6.2.3. Weights of subgroups
The weights of subgroups, which are the weighted centralities of nodes in subgroups, are calculated by combining the

trust relations and the preference relations.
In the first step, the trust relations amongst the DMs are regarded as a base layer. Then, an adjacent matrix of the different

subgroups in this layer is built. The adjacent matrix A0 ¼ ðaijÞof subgroups is derived from the communities in the local social
network, whose transformation principle is as follows:
eij ¼
X

s2communityi
s2communityj

cest ð26Þ
where cest is the number of linked edges from the sth node to the tth node, and eij is the number of linked edges in commu-
nities i and j. The following adjacent matrix reflects the various connections amongst different communities. For example,
e12 ¼ 14 and e14 ¼ 5 indicate that more links exist between community RS and BU (e12 ¼ 14) than between RS and CR
(e14 ¼ 5).
A ¼ eij
� � ¼

RS

BU

CB

CR

RF

0 14 7 5 11
14 0 6 5 11
10 4 0 2 4
3 6 4 0 7

12 15 9 3 0

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Communities

12345

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

ð27Þ
This matrix can then be combined with a participant’s coefficient vector C using Equation (1), which is a normalised vec-
tor of the total column in Table 7.
C ¼ 0:2830 0:1568 0:2025 0:1724 0:1853ð ÞT ð28Þ

The coefficient of the base layer can be obtained as follows:
A0 ¼ AC ¼ 0:2093 0:2596 0:1460 0:1252 0:2599ð ÞT ð29Þ

In the second step, we construct a preference similarity matrix for different communities. The entries in this matrix are

cosine similarity relations of representative opinions, which are the third column in Table 6. For example, the preference
similarity of the community RS and BU is 0.5699. Specifically:
D0 ¼ ðdijÞ ¼

1:0000 0:5699 0:4503 0:8405 0:5850
0:5699 1:0000 0:7437 0:6312 0:7428
0:4503 0:7437 1:0000 0:8181 0:6860
0:8405 0:6312 0:8181 1:0000 0:6189
0:5850 0:7428 0:6860 0:6189 1:0000

0
BBBBBB@

1
CCCCCCA ð30Þ
and the coefficient of the preference similarity is computed by C:
D ¼ D0C ¼ ðdijÞ ¼ 0:1964 0:1960 0:1959 0:2164 0:1954ð ÞT ð31Þ
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The combination of two vectors S ¼ ½A0 Dj 	 can be decomposed by singular value decomposition using Equation (13):
h1 :

: h2

� �
¼ 1:3981 :

: 0:2131

� �
ð32Þ
Fig. 9 is the dual network, in which nodes with the same colour belong to one community:
Finally, we calculate the weights of the subgroups using Equation (8), which is the weighted eigenvector centrality of each

community (the last column in Table 7):
s!¼ ðsvÞ ¼

RS
BU

CB

CR

RF

1:1404;
1:1112;
0:6249;
0:6259;
1:2021:

0
BBBBBB@

1
CCCCCCA ð33Þ
Although BU has the smallest number of nodes, its weight is not the least. The highest centrality is RF, which is the third
largest subgroup. The preferences of subgroups RF, RS and BU have more influence in the social network than those of CB and
CR.
6.2.4. Group consensus process with minimum cost
A unanimous consensus is hard to reach due to certain factors, such as conflicting preferences, asymmetric information

and noncooperative DMs. Instead of a complete agreement, consensus building with compensation cost [6,1750] tries to
reach a certain degree of group consensus by compensating participants. This mechanism is a realistic approach in many
real-world GDM problems. In urban resettlement, most residents are willing to change their preferences if they receive ade-
quate compensation. The challenge is how to determine the optimal compensation cost that can stimulate residents to reach
a consensus under the total budget.

This subsection presents our approach of consensus reaching with minimum cost for the urban resettlement project.
Firstly, we set a preference deviation threshold nV using Equation (18). The threshold controls an interval

hvij � ocj

��� ��� � nv ; i 2 f1;2; . . . ;mvg;v 2 f1;2; . . . ;Ng in optimisation model (21), and this interval determines the range within

which the DMs’ preferences can be modified. A subgroup with a higher nV is allowed to make less change of their preferences.
This condition is similar to the real-world GDM situations. Important DMs are less likely to change their preferences, and
they have a greater influence on the collective opinions. Secondly, the solution oc1; oc2; :::; ocnð ÞT of Equation (22) is the col-

lective opinion, and the consensus cost compensated to the DMs is computed by ri
Pn

j¼1 uvij þ vvij
� �

.

We set the total preference deviation threshold n � 0:32 on the basis of management experience, which controls the total
deviation of individual preferences from the group collective opinion. We choose this threshold because more than 70% of
the residents in the ‘69 mail box’ resettlement project agreed on the demolition, which initiated the simulation demolition
meeting. In this case, the value 0.32 of n is calculated according to Equation (D-3) in Appendix D. The average deviation of
different subgroups nv is determined by the weighted centrality degrees. The optimal compensation cost for each subgroup is
Fig. 9. Local and dual networks.
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Table 8
Optimal results.

Labels Costs Centrality nv

RS 1898 1.1404 7.0149
BU 2130 1.1112 7.1997
CB 3630 0.6249 12.8011
CR 3970 0.6259 12.7811
RF 2920 1.2021 6.6552
Collective group opinion b a c e d

Total cost 14,548

Remark: In our consensus reaching framework, the collective group opinion is presented as an order of alternatives, rather than their weights, because the
goal of this selection process is to reach consensus while minimising consensus cost. However, this mechanism cannot show the gap between different
alternatives. In Equation (18), ri is a unit compensation cost, and it is a dimensionless unit. Mathematically, this variable is the coefficient of deviation
between individual preference and the collective opinion. Thus, the 2th column in Table 8 (and all the costs in Section 6) has no unit.
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calculated using optimisation model (21). The collective opinion is ranked as b 
 a 
 c 
 e 
 d, and the explanations of the
alternatives can be found in Table 4.

Table 8 shows the total cost and the preference deviation nv of each subgroup. Variable nv monotonically decreases when
the centrality degree increases, which means the higher nV of a subgroup, the smaller its preference needs to be modified.
Given that the cost here is the compensation paid to the DMs to change their preferences, a subgroup with a higher centrality
degree will receive less compensation due to their less preference modifications. Meanwhile, subgroups CB and CR receive
more compensation because they have lower centrality degrees, and their original preferences are far from the collective
opinion of the group.

Remark:. Although providing the same plan and compensation to every household sounds fair and simple, it doesn’t work
well in real-life urban resettlement projects. Households have diverse situations and want different alternatives. For
example, in the ‘69 mail box’ resettlement project, residents have different expectations for compensation not only because
they have varying preferences but also because their apartments have diverse sizes, types, floors and orientations. In
addition, the local government stipulates that the resettlement plan must be agreed by all the households, which means that
the project cannot proceed if any household does not support the plan. All these factors make it difficult to for all the
residents to agree with the same compensation plan. Existing studies support that dividing residents into subgroups can
improve management efficiency, increase residents’ satisfaction and achieve final consensus [25]. In real-life urban
resettlement projects, residents were divided into different groups and treated according to their personal identities and
residence status and were compensated differently [30].
6.2.5. Alternative selection process for each household
The collective opinion and the compensation cost obtained from the previous steps are provided to each household. The

real estate developer needs to negotiate with different subgroups about their compensation. The cost–consensus matrix is as
follows:
RS

BU

CB

CR

RF

z}|{subgroups

|fflfflffl{zfflfflffl}
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�����������������
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b e c d a

c d a e b
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|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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������������������
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c

e
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z}|{Collective opinion

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ranking

1898
2130
3630
3970
2920

zfflfflffl}|fflfflffl{compensation

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
costs

����������������

2
6666666666664

3
7777777777775

ð34Þ
The first ranked alternatives in subgroups CB and CR are the two most expensive alternatives (3630 and 3970). These
alternatives represent 44% of the participants, but they account for 52.1% of the consensus costs.

6.3. Comparison analysis

6.3.1. Comparison with methods used in reality
We compare our approach with the current management practices in the ‘69 mail box’ resettlement project in terms of

the total consensus cost to verify the effectiveness of the proposed approach. In the actual urban resettlement project, the
real estate developer and residences provide their alternatives (Section 5.1) and expect to reach a consensus plan after mul-
tiple rounds of negotiations. The compensation plan is guided by an officer from the local government, who averages the
preferences of all households and suggests that the real estate developer will equally compensate every household under
the budget to ensure fairness and reach a consensus.
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Table 9
Total consensus cost comparison.

Methods Collective group opinion Total consensus costs Cost reduction (%)

Average of all the households’ preferences c 
 d 
 a 
 b 
 e 14,934 2.34
Real estate developer’s plan e 
 d 
 a 
 b 
 c 15,070 3.22
Our approach b 
 a 
 c 
 e 
 d 14,585 –
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The first row in Table 9 computes the total consensus cost using the average preference of all the households. Given that
the collective opinions using the preference means of each subgroup (Table 6) are {0.1981, 0.1972, 0.2084, 0.2022, 0.1941},
the order is c 
 d 
 a 
 b 
 e, and the total consensus cost is 14,934. In this project, the initial preference for the alternatives
provided by the real estate developer is e 
 d 
 a 
 b 
 c, which means that they want to obtain ownership of the land to be
demolished through relocating residents at off-site address (e) or cash compensation (d). The second row shows the total
consensus cost (15,070) if the real estate developer’s plan e 
 d 
 a 
 b 
 c is adopted. The third row presents the results
using our approach. The collective group opinion is b 
 a 
 c 
 e 
 d, and the total consensus cost is 14,585. Our approach
can reduce the cost by 2.34% and 3.22% compared with the two approaches currently used. In this project, the unit compen-
sation cost ri is RMB 112,806. The economic costs of the three methods, namely, average of all the households’ preferences,
the real estate developer’s plan and our approach, are RMB 168.465, RMB 169.999 and RMB 164.528 million, respectively.
Our method reduced by approximately RMB 54.71 million (USD 7.85 million) compared with the business strategy launched
by the real estate developer.

A common demolition strategy (the first row in Table 9) averages all residents’ preferences, and the alternative ranked the
first in this strategy is ‘reform by self-organisation’ (c). Given that this alternative needs to use a large part of the demolition
land to build resettlement departments, it reduces the real estate developer’s profit margin. The second common demolition
strategy (the second row in Table 9) adopts the solution provided by the real estate developer, who is more interested in
developing new commercial departments by fully obtaining the ownership of the original land. Urban resettlement projects
often involve lands that are located at the centre of the city and have high commercial value. Thus, the top two alternatives of
this strategy are ‘Replacement of new houses at an offsite address’ (e) and ‘Cash compensation’ (d), which require a larger
cost to compensate the residents to resettle at off-site addresses. The demolition costs of these two strategies are higher than
that of our approach.

The diverse results of the three strategies are because of the different rankings result in varying deviation degrees
between the collective opinion and the individual preferences. The ranking of different alternatives needs to be optimised
to minimise the deviations between the collective opinion and the individual preferences because the distribution of indi-
vidual preferences greatly varies (Fig. 7). The real estate developer’s plan focuses on its own interests and deviates from the
wishes of most residents; thus, its cost is higher. Averaging all preference of DMs does not consider the distribution charac-
teristics of individual preferences; thus, it is difficult to reduce costs. The proposed approach can achieve lower compensa-
tion costs than the previous two strategies because our framework optimises the demolition cost through the classification
of preference similarities and trust relations amongst the residents.

6.4. Comparison with existing consensus reaching methods in social network GDM

Major consensus reaching methods for social network GDM include minimum cost consensus method [7,45] feedback
adjustment mechanism [34,38] punishment mechanism [10] and TOPSIS selection [41]. The minimum cost model encour-
ages DMs to adjust their preferences by compensation, whilst the feedback adjustment mechanism provides ranges of feed-
back preference modification information to DMs for references. These methods adopt different approaches when they deal
with varying numbers of DMs. A feedback adjustment mechanism is adopted for less than 25 DMs to ensure consensus
reaching through weight adjustments. The minimum cost model is applied to numerical preference relation and less than
20 DMs. A penalty mechanism is often used for larger than 50 DMs to adjust the weights of DMs to achieve rapid consensus
convergence. Table 10 shows that the time complexity of various consensus reaching methods is basically at a polynomial
level. The feedback mechanism has the lowest time complexity, belonging to the O n2

� �
level, because the mechanism does

not use optimisation methods. The complexity of other methods is at the O n3
� �

level. Therefore, no significant difference
exists in the time complexity of these methods. Our method includes three parts: community detection, support vector

machine classification and cost optimisation. The complexities for these three parts are O n3 þ 2n
� �

,O Mn2 þM3 þM
� �

andO 2n3 þ 3n2 þ 2n
� �

, respectively. M is the number of DMs, and n is the number of the alternatives. The complexity of
the proposed method is approximately O 3n3

� �
.

6.4.1. Comparison with existing subgroup partition methods in social network GDM
The problems studied by existing subgroup partition methods in social network GDM are different in the number of DMs,

the form of preference relations and the structure of social networks. Table 11 compares the proposed subgroup partition
approach with the existing methods from three aspects:
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Table 10
Comparisons of the complexity and characteristic of different methods.

Methods Preference
formats

Social network
relation

Large-scale GDM Consensus reaching process Calculation
complexity

Trust
relation

Preference
similarity
(distance)

Is it a
large
group?

Number
of DMs

Subgroup
partition

Weight
allocation

Adjustment
strategy

Minimum cost
soft consensus
model [45]

Crisp values ✗ ✗ No 5 ✗ ✗ Minimum
cost

O 2n3 þ 3n2 þ 2n
� �

Fuzzy TOPSIS
model [41]

Interval type-2
fuzzy sets

✗ U Yes 50 U U TOPSIS-
based
selection

O n3 þ 2n2
� �

Similarity–
confidence–
consistency
model [34]

Intuitionistic
fuzzy
preferences

✗ U Yes 25 U U Feedback
mechanism

O 4n2
� �

Trust
propagation
model [38]

Interval-valued
fuzzy reciprocal
preference

U ✗ No 6 ✗ U Feedback
mechanism

O 3n2
� �

Social network
DeGroot
Model [10]

Individual
opinion

U ✗ Yes 200 ✗ U Penalty
mechanism

O 3n3 þ 2n
� �

Our methods Heterogenous
preferences

U U Yes 1861 U ✗ Minimum
cost

O 3n3 þ 3þMð Þn2

þ4nþM3 þM

� �

Remark: [34] and [38] need a feedback preference adjustment to achieve consensus convergence.

Table 11
Comparisons of different subgroup partition methods.

Methods Partition algorithms Is it applicable to sparse
trust relationship?

Can it handle heterogeneous
preference information?

Is it applicable to a large-
scale GDM problem?

Changeable cluster model [42] Clustering No No Yes
Two-stage social trust

network partition model
[40]

Aforementioned
shortest path method

No No Yes

Subnetwork split model [41] Louvain method No No Yes
Opinion dynamics model [4] Opinion dynamic No Yes No
Our methods Classification Yes Yes Yes
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1) Is it applicable to sparse trust relationship? Our approach uses the trust relation and preference similarity in the con-
sensus reaching process compared with the approaches of building social networks through a single network relation-
ship [12,35,38,41]. The complementary nature of the trust relation and preference relation can better reflect the
relationship between DMs in social networks.

2) Can it handle heterogeneous preference information? In contrast with the current subgroup partition methods
[4,40,41,42] the proposed approach uses a support vector machine based on vector space to form subgroups. This algo-
rithm can not only be used for the heterogenous preferences but also effectively classify decision makers when the
trust relationship is partially missing in a large-scale decision-making problem.

3) Is it applicable to a large-scale GDM problem? In contrast with the traditional feedback-adjusted social network GDM
consensus framework [34,38] the minimum cost model proposed in this study optimises compensation costs on the
basis of the subgroup partition, which makes it not only suitable to obtain the minimum consensus compensation cost
but also appropriate for large-scale social network problems under heterogeneous preference information.

6.5. Discussions

Although this study aims to improve the efficiency of consensus reaching for large-scale urban resettlement projects, it
can be applied to other real-life GDM problems with the following features:

1) In many real-life large-scale GDM situations, the complete trust relations amongst DMs are difficult to investigate. The
proposed approach can be used to facilitate consensus reaching in this case through the topological structure of the local
social network and preference classification.

2) When subgroups within a social network have quite different preferences, providing differentiated compensations to
different subgroups is more effective and cost-saving. In the actual urban resettlement projects, compensating differently for
households with various preferences is often necessary.
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3) When the interests of participants are closely related to the decision results, such as urban resettlement (another
example is Appendix E), the proposed approach can be used to optimise compensation cost in the consensus reaching
process.

7. Conclusions

Urban resettlement projects involve a large number of DMs, who have tight social connections, and these connections
have an important impact on the consensus reaching process. LSSNGDM problems are challenging due to the size of DMs
(more than 1000 persons) and incomplete social relations. Issues, such as how to determine the structure of social networks,
how to classify DMs based on their preferences and how to optimise the consensus costs, are still unsolved.

We proposed a consensus reaching framework for LSSNGDM to tackle these questions. This framework firstly divided
large-scale social network into a local network and external suspension nodes. A small portion of the DMs are in the local
network with completely known trust relations and preference similarity relations, which are collected through data anal-
ysis and interviews. Secondly, we combined the two social relations and identified communities in the local network.
Thirdly, we assigned labels to the communities for subgroup divisions. We divided all DMs into subgroups by using the pro-
posed inner product space SVM and determined the consensus compensation mechanism. Finally, we developed a minimum
consensus cost optimisation model to guide the consensus reaching process on the basis of the centralities of subgroups. A
real-life example of urban resettlement project in China was used to show how the framework works. The results demon-
strated that the proposed consensus reaching framework can improve the efficiency and reduce the total cost of consensus
reaching in LSSNGDM.

One of our future research directions is to develop a large-scale decision support system in Mobile system and web2.0 to
assist real-world LSSNGDM-related management problems.
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Appendix A. This appendix introduces four most frequently used preference representation forms and investigates the
similarity relation between the preferences and their derived weight vectors. Lastly, the inner product of different
preference relations is established.

A preference relation is a function X � X (alternative set X ¼ fx1; x2; . . . ; xng) to a preference set D, which is measured by a
crisp number or fuzzy value indicating the relative important degree of two alternatives provided by DMs.

1) Utility value. The preference set D is a utility vector of alternatives, and the values in the vector are in the interval ½0;1	.
The larger the utility value, the more important the alternative is. For example, the utility value {0.6, 0.9, 0.7, 0.4} of alter-
natives x1; x2; x3; x4f g means that their ranking based on weights is x2 
 x3 
 x1 
 x4.

2) Preference ordering. The preference set D is a ranking of the alternatives in terms of their relative important degrees.
For example, f3;1;2;4g means that the ordering of the alternatives is x2 
 x3 
 x1 
 x4.

3) Multiplicative preference relation. The preference set D is a preference matrix ðaijÞn�n. aij 2 ½1=9;9	 represents a com-
parison preference of two alternatives with a relation aijaji ¼ 1. aij ¼ 9 indicates that the alternative xi is the most preferred,
and xj is the least preferred when they are compared with each other. Meanwhile, aij ¼ 1=9 means the opposite situation.
When aij ¼ 1, the two alternatives are the same for DMs.

4) Additive preference relation. The preference set D is a preference matrix ðaijÞn�n. aij 2 ½0;1	 represents a comparison
preference of two alternatives with a relationaij þ aji ¼ 1. aij > 0:5 means that a DM prefers the alternative xi to xj. When
aij ¼ 0:5, the two alternatives are the same for DMs.

Now, we can illustrate the cosine similarity relation of different preference forms:
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1) Utility value: This study assumes that u!¼ ðu1;u2; :::;unÞ is a utility value for a given alternative set, and
x ¼ x11;x2; . . . ;xnð Þ is the derived weight vector. The following relation holds when the utility value is consistent with
the derived weight vector:
S u!j;x
� �

¼
Pn

i¼1
uixi
ujffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

ui
uj

� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

x2
i

s ¼
Pn

i¼1
xi
xj
xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

xi
xj

� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

x2
i

s ¼ 1; ðA-1Þ
where u!j ¼ ðu1uj ;
u2
uj
; :::; unuj

ÞT ; j ¼ 1;2; . . . ;n:

2) Preference ordering. Let o!j ¼ o1; o2; . . . ; onð Þ be a preference ordering to evaluate a given alternative set, and
x ¼ x11;x2; . . . ;xnð Þ is a derived weight vector. The similarity relation holds if the preference ordering is consistent with
the derived weight vector:
S o!j;w
� �

¼
Pn

i¼1
ðn�oiÞxi
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x2
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s ¼ 1; ðA-2Þ
where o!j ¼ ðn�o1
n�oj

; n�o2
n�oj

; :::; n�on
n�oj

ÞT ; j ¼ 1;2; . . . ;n:

3) Multiplicative preference relation. In multiplicative preference relation ðaijÞn�n, x ¼ x11;x2; . . . ;xnð Þ is a derived
weight vector. The following similarity relation can be hold under the prefect consistency condition:
S a!j;x
� �

¼
Pn
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a2ij
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s ffiffiffiffiffiffiffiffiffiffiffiffiffiPn
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i

s ¼ 1; ðA-3Þ
where a!j is the column vector of multiplicative preference relation. The above equation is discussed in Kou and Lin [21].
4) Additive preference relation. Let ðbijÞn�nbe an additive preference relation, andðpijÞn�n

is a transformation matrix of
ðbijÞn�n, wherepij ¼ bij=ð1� bijÞ. The following relation can be induced if the perfect consistency condition holds:
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r ¼ 1; ðA-4Þ
where p!j is a column vector of ðpijÞn�n
.

Based on the similarity relation between the preference relation and the derived weight vector, the preference relation
can be transformed into following unitised matrix.

Let uij ¼ ui=uj; then, ðui=ujÞn�n; i; j ¼ 1;2; . . . ;n. The column vector is similar to priority vector x.
U
�
¼ u

�
ij

� �
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Let oij ¼ n� oi=n� oj, and the unitised matrix is
O
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Unitised multiplicative preference relation matrix is as follows:
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A
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Unitised additive preference relation matrix is as follows:
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Based on the unitisation of preference relations (A-5 to A-8), k u!j k ¼ k o!j k ¼ k a!j k ¼ k p!j k ¼ 1 holds.
Thus, the distances denoted by Definition 2 in Section 4.2 are inner products, and the inner product space is constructed.

Appendix B. Transformation of the dual optimisation model of SVM:
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The Lagrange function can be transformed into the following equation using the KKT conditions
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Appendix C. Aggregation of subgroup preferences [2,3]

The perfect consistencies (A-1 to A-4) are difficult to hold in real-life decision-making problems because the perfect con-
sistency condition is not always satisfied due to insufficient experience or knowledge of DMs about alternatives [3,21] and
equations (A-1 to A-4) do not always equal to one. The collective opinion is the closest preference to each preference relation
based on the similarity measure, that is:
Max C ¼Pk2XU

Pn
i¼1

Pn
j¼1kkx

�
iu
�ðkÞ
ij þPk2XO

Pn
i¼1

Pn
j¼1kkx

�
io
�ðkÞ
ij

þ P
k2XA

Pn
i¼1

Pn
j¼1

kkx�
ia�

ðkÞ
ij þ P

k2XB

Pn
i¼1

Pn
j¼1

kkx�
ip�ðkÞ

ij

S:t:
Pn

i¼1x
� 2

i ¼ 1;

0 � x
�

i � 1:

( ðC-1Þ
where kk ¼ svP
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, andx
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ij is the unitised entries in matrixes (A-5) to (A-

8).
Therefore, the collective preference of each subgroup is calculated using the following formula [2]:
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Appendix D. Initial consensus degree

The consensus degrees in GDM are normally measured by two ways: the similarity of a preference relation at different
levels [27] and the deviation of individual ranking to collective ranking of alternatives [15,19]. Cardinal and ordinal consen-
sus degrees are the most frequently used indexes to compare ranking positions of alternatives.

In GDM, a unanimous agreement is difficult to achieve using deviation measures, regardless of ‘hard’ or ‘soft’ index [5,18].
However, an acceptable consensus can be achieved if DMs can obtain adequate economic compensations. In this study, a
consensus degree (D-3) is defined to show the changes of the total costs for a consensus reaching process with different
parameters.

To preset a consensus degree n > 0, a DM DMv
i ,i ¼ 1;2; :::;mv (mv is the number of DMs in a subgroup) belongs to a com-

munity that is attached to node v in a local social network. The order of alternatives in the derived weights of DMv
i is

hvi ¼ hvi1;h
v
i2; :::;h

v
in

� �
. The collective opinion is pvc ¼ pvc1; p

v
c2; :::; p

v
cn

� �
. The ordinal consensus degree [14] is:
OCDðDMv
i Þ ¼

1
n2

Xn
j¼1

hvij � pvcj
��� ��� ðD-1Þ
and the consensus degree of subgroup Mv is:
OCDðMvÞ ¼ 1
mv

Xmv

v¼1

OCDðDMvÞ ðD-2Þ
where mv is the number of DMs in node v .

Definition 5. Consensus Degree: the total consensus degree is the weighted mean of subgroup consensus degree, that is:
TOCDðVÞ ¼ 1
N
sv
Xmv

v¼1

OCDðMvÞ ðD-3Þ
where N is the number of vertexes in a local social network, and sv is the weighted centrality degree of each subgroup in
Equation (8).

Appendix E. Example

The example comes from Financial Inclusion, which aims to provide financial services at an affordable cost to low-income
groups in need. A new alternative method of credit evaluation was developed through a GDM because farmers and herdsmen
in extremely poor areas do not have enough financial activity information to evaluate their credit status [4]. Fifty-two par-
ticipants in this method include local credit unions, village representatives and local government officials. These individuals
often communicate with the evaluated objects. Therefore, the evaluation and ranking of the evaluated objects can be carried
out through these representatives. The social network relationship often affects these individuals to make their own judg-
ments, including mutual trust relations and individual preferences. In this example, five alternatives will apply an interest-
free loan. The five alternatives were provided to the 52 DMs; then, they make their choice and reach consensus through the
subgroup partition with minimum cost.

In this example, five alternatives will apply an interest-free loan. The information is listed as follows:
Alternative 1: The potential beneficiary is 55 years old. His family has three laborers. The purpose of the loan is to build a

field free-range chicken farm.
Alternative 2: The potential beneficiary is 51 years old single male. The purpose of the loan is to receive a living support

when he is out-migration for work.
Alternative 3: The potential beneficiary is 42 years old. His family has two laborers. His family income is agricultural

products trading. The purpose of the loan is to obtain a circulating capital for his business.
Alternative 4: The potential beneficiary is 45 years old. His family has four laborers and owns eight cows and 24 sheep.

The purpose of the loan is to buy a tractor to improve agricultural production.
Alternative 5: The potential beneficiary is 42 years old and divorced. He needs to take care of his father at home and has a

daughter attending high school. The purpose of the loan is to rebuild his house collapsed in heavy rain.
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The five alternatives were provided to the 52 DMs, and then they make their choice. The preference relation of the other
village representatives (the detailed data have been opened in [4]). However, the trust relation is not considered in their
application, and a feedback mechanism is used for consensus reaching. To compare the GDM problems with and without
social network, we preset the trust relation amongst part of the representatives who are investigated, loan officers, poverty
alleviation administrators, village head and central bank officials. The detailed calculation process is listed as follows:

Step 1: community detection
The 10 representatives with trust relation are detected into three communities using Equation (13). The individual pref-

erence and community number are listed as follows:
Table E
Classific

Subg

No. 1
No. 2
No. 3
Tota
Serial number

1
2
3
4
5
6
7
8
9
10

���������������������������

���������������������������

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

0:1427 0:3167 0:1009 0:1231 0:3167
0:0883 0:2869 0:2105 0:2665 0:1478
0:2372 0:1210 0:2093 0:1583 0:2742
0:3015 0:1117 0:1932 0:2179 0:1615
0:3015 0:1117 0:1932 0:2179 0:1615
0:1063 0:4159 0:0869 0:1442 0:1607
0:0922 0:1501 0:1520 0:3819 0:1936
0:1829 0:0944 0:3731 0:0657 0:2106
0:1915 0:1850 0:3219 0:1500 0:1683
0:2565 0:2241 0:2011 0:1544 0:2247

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Indiviual Preferencesðpriority vectorÞ
Community number

2
1
1
1
1
2
1
3
3
2

���������������������������

���������������������������

���������������������������

���������������������������

ðE-1Þ
Step 2: subgroup partition
The 52 DMs are divided into three subgroups using SVM in the inner product space (Equation (17)), and the training set

and labels are based on Equation (E-1). The remaining DMs will be divided into different groups. The results are listed as
follows (see Table E-1):
1
ation results.

roups Number of representatives Size of subgroups Community preference Centrality

5 31 0.2066 0.1581 0.1939 0.2515 0.1899 0.4395
3 15 0.1699 0.3216 0.1307 0.1417 0.2360 0.3001
2 8 0.1926 0.1438 0.3576 0.1110 0.1950 0.2604

l: 3 10 52
Step 3: weight determination
The adjacent matrix of the three communities is as follows (E-2):
A ¼
1
2
3

0 12 10
12 0 3
10 3 0

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Communities0
BBBBB@

1
CCCCCA ðE-2Þ
and the similarity of each community is as follows (E-3):
D0 ¼ ðdijÞ ¼
1 0:8935 0:9710

0:8935 1 0:9623
0:9710 0:9623 1

0
B@

1
CA ðE-3Þ
This matrix can then be combined with a participant’s coefficient vector C by using Equation (1)
C ¼ 0:5741 0:2778 0:1481ð ÞT ðE-4Þ
Then, the S ¼ ½ACT D0CT
��� 	 can be decomposed into:
h1
h2

� �
¼ 0:9743

0:0257

� �
ðE-5Þ
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We calculate the weights of the subgroups by using Equation (8), which is the weighted eigenvector centrality of each
community:
Table E
Compar

Orde

1
2
3
4
5

s!¼ ðsvÞ ¼
1
2
3

0:4395
0:3001
0:2604

0
B@

1
CA ðE-6Þ
Step 4: optimal ranking of the alternatives with minimum cost
We set the consensus degree OCD ¼ 0:2113 because this is the final threshold obtained in [4]. We can obtain the prefer-

ence modification interval for each community as follows:
nv ¼
12:0192
17:6004
20:2893

0
B@

1
CA ðE-8Þ
Thus, we can obtain an optimal collective group opinion of the five alternatives as follows:
Oc ¼ 0:2254 0:1752 0:2030 0:2110 0:1854ð Þ ðE-9Þ

We can observe the following similarities and differences in the results of the two methods from Table E-2. The first alter-

native (x1) and the last alternative (x2) will not change their ranking during the influence of social networks; however, the
intermediate alternatives (x3x5x4) will have a ranking change. The weights of the alternatives will be closer through the
social network. For example, the difference between the first and the last alternatives is 0.0767, and that between the can-
didate solutions in the social network is reduced to 0.0502. This notion indicates that opinions between different subgroups
are neutralised through the preference similarity classification and trust relationships in social networks, which will help in
reducing possible conflicts in the choice of alternatives.
2
isons of the alternatives’ ranking.

r Feedback mechanism [57] Our method

Alternatives Weights Change Alternatives Weights Change

x1 0.2508 � x1 0.2254 �
x3 0.2051 " x4 0.2110 "
x5 0.1900 " x3 0.2030 ;
x4 0.1799 ; x5 0.1854 ;
x2 0.1741 � x2 0.1752 �
Appendix F. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ins.2021.06.047.
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