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Abstract: Strengthening the teaching of probability requires an adequate training of prospective
teachers, which should be based on the prior assessment of their knowledge. Consequently, the
aim of this study was to analyse how 139 prospective Spanish mathematics teachers relate the
classical and frequentist approaches to probability. To achieve this goal, content analysis was used
to categorize the prospective teachers’ answers to a questionnaire with open-ended tasks in which
they had to estimate and justify the composition of an urn, basing their answers on the results of
1000 extractions from the urn. Most of the sample proposed an urn model consistent with the data
provided; however, the percentage that adequately justified the construction was lower. Although
the majority of the sample correctly calculated the probability of an event in a new extraction and
chose the urn giving the highest probability, a large proportion of the sample forgot the previously
constructed urn model, using only the frequency data. Difficulties, such as equiprobability bias or
not perceiving independence of trials in replacement sampling, were also observed for a small part
of the sample. These results should be considered in the organisation of probabilistic training for
prospective teachers.

Keywords: probability; relating the classical and frequentist views; teacher’s knowledge; assessment

1. Introduction

As well as being a relevant part of mathematics, and applicable to other curricular
areas, probability is necessary in many fields of science, where it enables us to describe the
laws governing random phenomena [1]. Given this relevance, the teaching of probability in
Spain currently extends from primary education to high school, with the aim of providing
students with basic probabilistic literacy that will enable them to successfully deal with
random situations in their daily and professional lives [2].

An essential issue to ensure the success of this teaching is the adequate training of the
teachers who are responsible for this content. This preparation should include both the
mathematical characteristics of probability and the related pedagogical knowledge [3,4].

Nowadays, the knowledge and education of teachers is one of the broadest and
most productive lines of research in mathematics education. Some references can be
found in several sources [5–8] or in journals such as the Journal of Mathematics Teacher
Education. However, an analysis of this literature suggests that these studies have paid less
attention to the specific case of statistics and probability than to other mathematics topics.
This line of research started to increase following the Joint ICMI/IASE Study, “Teaching
Statistics in School Mathematics. Challenges for Teaching and Teacher Education”, which
was organised by the International Commission on Mathematical Instruction (ICMI) in
collaboration with the International Association for Statistical Education (IASE), with the
purpose of promoting research specifically focused on the education and professional
development of teachers to teach statistics [9], but is still scarce.
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As with other curricular content, the teachers’ knowledge includes content knowledge
and various components of pedagogical knowledge, described in different models, such
as the Mathematical Knowledge for Teaching (MKT) framework [10], or the Didactic-
Mathematical Knowledge and Competences model (DMKC) [11]. Moreover, this research
makes clear that pedagogical knowledge is specific to each content knowledge area [8] (in
particular, for probabilistic knowledge) and, therefore, that a sound knowledge of proba-
bility is the first step for teachers to acquire the different components of the pedagogical
knowledge that they will need to teach probability.

The above justifies new research that analyses the probabilistic knowledge of teach-
ers, in particular that of secondary and high school teachers who, in spite of having an
excellent mathematical background, have received only formal training in probability.
This formal teaching of probability is not in accord with current curricular recommenda-
tions in Spain [12], where an empirical approach based on simulations and experiments is
recommended to complement the classical definition of probability. Given that the time for
preparing teachers to teach probability is limited, it is important to assess their probabilistic
knowledge at the beginning of their preparation, as a basis for organising didactic activities
directed towards reinforcing both their content and pedagogical knowledge.

Consequently, the aim of this paper was to analyse the way in which prospective Span-
ish secondary and high school teachers relate the classical and frequentist views of probabil-
ity, as well as their possible difficulties in establishing this relationship. These perspectives
are reflected throughout the Spanish curriculum; specifically, the classical view is included
from the first year of compulsory secondary education (CSE), the frequentist approach in
the second year, supported by simulation, and both approaches are worked on from the
third year until the end of high school [12].

Although we count with some studies, summarised in Section 2.3, of how students
establish this link, most of these studies have analysed the evolution of small samples of
primary or secondary school students, through teaching experiments based on computer
simulation. Consequently, the results of this research are not directly applicable to Spanish
prospective secondary and high school teachers, who have previously received a strong
formal statistical and mathematical preparation.

To achieve our objective, we analysed the responses to a questionnaire with open-
ended tasks of a sample of 139 students who were preparing to become mathematics
teachers at these educational levels in Spain, taking part in a master’s programme that is
compulsory for applying to a teaching position in a public school.

2. Theoretical Background

The paper considers the classical and frequentist views of probability, previous re-
search on the connections between them, and research on teacher education.

2.1. Classical and Frequentist Views of Probability

The concept of probability has been conceived from different points of view through-
out history, including the intuitive, classical, frequentist, subjective, propensity, logical,
and axiomatic connotations, which still coexist in the applications of statistics, and some of
which (intuitive, classical, frequentist, subjective, and axiomatic) are included in school
curricula [13–15]. Specifically, in this paper we will consider the classical and frequentist
approaches, both considered in secondary education and at high school levels. In the
following, we summarise the main features of these two approaches and refer the reader to
other sources [13–15] for a deeper description of the different approaches to probability.

The classical definition originated from the resolution of problems related to games
of chance, among others those discussed by Pascal and Fermat in their correspondence.
A first definition following this conception was provided by de Moivre [16], as follows:

Wherefore, if we constitute a fraction whereof the numerator is the number of chances
whereby an event might happen, and the denominator the number of all the chances
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whereby it may either happen or fail, that fraction will be a proper definition of the
probability of happening (p. 1).

Laplace [17] refined this definition by proposing what is currently taught in schools as
“Laplace’s rule”, stating that:

Probability is thus simply a fraction whose numerator is the number of favourable cases
and whose denominator is the number of all cases possible [9], p. ix.

This definition has been considered circular since its publication, because it included
the term “equiprobable”; moreover, it can only be applied to experiments with a finite
number of possibilities, neglecting a large field of applications where these assumptions
do not hold. In didactic research, we often find authors who call this view a “theoretical
approach” to probability, stating that:

It makes use of an implicit assumption of equal likelihood of all single outcomes of the
sample space. It is an a priori approach to probability in that it allows calculations of
probabilities before any trial is made [18], p. 41.

The frequentist approach arose from life table studies in the United Kingdom, where
collecting and analysing large amounts of data showed the stabilisation over time of each
event to relative frequency [15,18]. Bernoulli [19] proved the first version of the law of large
numbers (LLN) concerning the difference between the relative frequency of an event and
its theoretical probability. The probability that this difference is smaller than a fixed amount
can approach 1 as much as desired, when a sufficiently large number of independent
repetitions of an experiment are performed [14].

Based on this theorem, Von Mises [20] defined the probability of an event as the
limiting value to which its relative frequency tends in a sufficiently large number of
independent trials. Although this definition significantly broadens the field of application
of probability, it is not free of controversy. For example, with this approach, we cannot
obtain the true value of probability, but only an estimate of this; moreover, it is not
always possible to perform a large number of independent repetitions of the experiment.
The frequentist approach is referred to by some mathematics educators as an “experimental
or empirical approach” to highlight the fact that the probability is estimated from the relative
frequency (e.g., [21]).

As Chaput, Girard, and Henry [22] have pointed out, these two approaches are
complementary and both of them require a sound understanding of probability. In the
same vein, Steinbring [23] indicated that these two views of probability “should be related to
each other as analogous forms of the same concept without, however, being identified” (p. 165).

Both the classical and the frequentist definitions of probability are included in the
Spanish mathematics curriculum for secondary education [12], the latter being highly
recommended because it connects statistics with probability. Prospective teachers must
have a good understanding of the characteristics and differences of these two approaches
and their relationship to each other. Such an understanding requires knowledge of the
LLN [21,24], as well as of the fundamental stochastic ideas of randomness, variability,
and independence [25]. This type of relational understanding is the one that we aim
to assess in this paper for a sample of prospective Spanish secondary and high school
mathematics teachers.

2.2. The Education of Mathematics Teachers

This paper is based on the Mathematical Knowledge for Teaching (MKT) model,
which the authors divide into the following components: Common Content Knowledge
(CCK), Specialised Content Knowledge (SCK), Knowledge of Content and Teaching (KCT),
and Knowledge of Content and Students (KCS) [10]. Hill, Ball, and Schilling [26] fur-
ther proposed that Horizon Content Knowledge (HCK), and Knowledge of Content and
Curriculum (KCC) be included. CCK refers to the knowledge brought into play by an
educated person to solve mathematical problems, for which a person with basic knowl-
edge is qualified. SCK describes the teacher’s special knowledge that enables him/her to
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plan and develop teaching sequences. HCK refers to the more advanced aspects of the
content, which provide insights for the teacher, e.g., knowledge of the history or detection
of possible errors with respect to the mathematical ideas underlying the topic.

This paper focuses on prospective high school mathematics teachers’ mathematical
knowledge of the classical and frequentist approaches to probability. Specifically, we
focus on their ability to estimate the composition of an urn model from frequency data on
extractions with replacement from an urn, and on their prediction of probability in new
experiments using the constructed model. Such knowledge about classical and frequentist
probability appears in the Spanish secondary school curriculum [12] and should be taught
to the students. However, since we propose some tasks that are not usually found in the
textbooks, we evaluate part of the teachers’ Common Content Knowledge (CCK) and
Horizon Content Knowledge (MHK).

2.3. Relating Different Views of Probability

There are few studies specifically analysing the relationship between the classical
and frequentist conceptions of probability, although in some research the authors have
described the emergence of intuitive ideas about this link in small samples of school
children, while they were working in a computational environment. For example, Pratt [27]
studied the meaning that 16 children aged 10 and 11 years assigned to chance when they
played in pairs with a computer game, where they had to make sense of the sum of two
dice. The author suggested that children constructed new ideas based on the interplay of
their previous intuitions and their work with the computer resource. Other examples of
case studies in a computer simulation experimental setting can be found in [28], in relation
to secondary students’ ideas of distribution, and of university students understanding of
random processes in [29].

More specifically related to our research, Ireland and Watson [24] conducted research
with 27 grade 5–6 students (11–12 years old), using the Tinkerplot software [30], to simulate
samples of increasing size from a random experiment consisting of drawing balls from an
urn of known composition. Their aim was to explore the understanding of probability, in
the transition from the theoretical (classical) to the experimental (frequentist) views, by
asking questions, followed by experiments, where the children had to predict the colours
of the balls in samples of increasing size. The authors concluded that the most difficult
element to understand was the LLN.

Sánchez and Valdez [25] studied the inferences made by a group of 30 high school
students in Mexico, using their knowledge of the classical and frequentist conceptions of
probability. The students were divided into three groups of 10 students, each of which was
given a different questionnaire, with variations of the same task that combined probability
comparison and sampling. These tasks provided data from 1000 extractions of black and
white balls from two urns with known or unknown composition, asking the students
to choose the urn that provided more chance of obtaining a given colour in the next
extraction, or to predict the colour of the next extraction, depending on the questionnaire.
The proposed tasks required relating the classical and frequentist visions of probability,
although the authors’ aim was to analyse the students’ use of the fundamental stochastic
ideas [31] of variability, randomness, and independence. From the analysis of the students’
responses, the authors proposed a hierarchy of levels of understanding each of these ideas.
These levels are as follows:

• Randomness: (1) making deterministic predictions; (2) deterministic predictions
qualified with probabilistic language; (3) recognising that the outcome cannot be
predicted with accuracy; (4) although the outcome cannot be predicted with accuracy,
recognising the stability of the frequency in the long run.

• Variability: (1) not considered; (2) thinking that differences between specified and
observed frequencies are always significant regardless of sample size; (3) consid-
ering a difference to be significant in a small sample but not in a large sample;
(4) understanding the relationship of variability with sample size.
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• Independence: (1) thinking that successive results depend on the previous outcomes;
(2) the result depends on whether the sample is representative; (3) using models to
determine a possible result; (4) recognising independence.

Sánchez and Valdez [32] analysed the way in which a group of Mexican high school
students understood the concept of probability in relation to the LLN. Using interviews,
they analysed their responses to physical and computational simulation tasks, using the
reasoning levels defined by Jones et al. [33]: subjective, transitional, informal quantitative,
and numerical. At the subjective level, probability is not assigned to events or it is done
subjectively, without the possibility of using probability to make inferences; at the transi-
tional level, probability is assigned to an event through a priori analysis of the experiment
or through the empirical results, without relating to each other; at the informal quantita-
tive level, both approaches are used, but variability is not taken into account; and at the
numerical level, both approaches are brought into play, valuing variability appropriately
to form inferences.

Regarding work with prospective teachers, we can quote Serrano [34], who analysed
the understanding of the frequentist approach to probability in a sample of 130 prospective
primary school teachers, using a questionnaire in which he presented problems of genera-
tion and recognition of random outcome sequences. In the first type of problem, subjects
were asked to write down a sequence of coin-toss outcomes in a way that might appear
random to another person, and in the second, they were given several sequences of heads
and tails and asked which ones they thought had been randomly generated. The analysis of
the responses and the characteristics of the generated sequences showed a high proportion
of prospective teachers expecting the convergence of relative frequency to probability in
small samples, i.e., reasoning according to the representativeness heuristic [35].

Parraguez et al. [4] analysed the way in which a sample of 60 prospective Spanish
primary school teachers related the classical and frequentist views of probability, presenting
them with a problem about the sum of two dice. First, the teachers were asked to solve
the problem with the classical approach, obtaining correct answers in two thirds of the
sample. When asked to estimate the expected value of the frequency over a series of
repetitions of the experiment, only 50% of participants were able to provide the estimate.
Most participants could suggest that the sample size was too small when given data
from 100 repetitions of an experiment where the relative frequency clearly deviated from
the expected frequency. The authors also noted biases, such as representativeness and
equiprobability [36], for some participants.

Our work complements previous research by focusing on prospective secondary and
high school teachers, who are more strongly trained in statistics than primary school
teachers. In addition, the way in which the prospective teachers build a model of urns from
experimental data of urn extractions is analysed, as well as their use of the model built to
make predictions or make decisions about future experiments.

3. Materials and Methods

The sample was composed of 139 students on a master’s programme, which is compul-
sory in Spain in order to become a mathematics teacher in compulsory secondary education
(students aged from 12 to 15 years) and high school (students aged from 16 to 17 years).
This master’s degree is taken after the completion of a discipline-specific bachelor’s degree,
which is formal in nature and does not provide pedagogical knowledge. This master’s
degree aims to fill this gap in initial teacher training [37], and provides prospective teachers
with didactic, curricular, and school organisation knowledge, as well as experience in
teaching practice.

This was a purposeful, controlled sample [38], which included all the participants
of the master’s degree in two successive academic years at the University of Granada
(66 and 73 students in the 2019–2020 and 2020–2021 academic years, respectively). Half of
these students had completed a university degree in mathematics and the remainder
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had undertaken other scientific subjects (e.g., statistics, physics, chemistry, architecture
or engineering).

These prospective teachers were given a questionnaire consisting of two open-ended
tasks, as shown in Figure 1.
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Figure 1. Questionnaire given to prospective teachers.

In Task 1, adapted from Sánchez and Valdez [25], the participants were asked to
estimate the number of white and black balls in the urn, using the result of 1000 extractions.
The probability of drawing a ball of each colour in the urns will be given by w/10 and
b/10, where w is the number of white balls, b the number of black balls, with w + b = 10.
Since the composition of the urns is unknown, in this first step, the probability of each
colour must be estimated from the relative frequency of results in the 1000 extractions.
That is, 0.324 and 0.676 in the first urn, and 0.510 and 0.490 in the second; this estimate
is based on the fact that the sample size is large and the results are independent (as this
is sampling with replacement). Since there are 10 balls (possible cases) in the urns, the
expected value of the number of white and black balls (favourable and unfavourable cases)
in each urn is given by the product of the relative frequency of each colour determined
above, multiplied by 10. That is, 3.24 and 6.76 in the first urn, and 5.1 and 4.9 in the second,
but since the number of balls is integer, by rounding to the nearest integer, the best estimate
of black and white balls is (3w,7b) in the first urn, and (5w,5b) in the second. Once the most
probable composition of the urns has been determined with this procedure, to answer the
second part of the task, it would be enough to apply the classical definition to obtain the
probabilities 0.7 and 0.3 in the first urn, and 0.5, and 0.5, in the second urn.

In Task 2, the prospective teachers’ choice of the urn that is most likely to yield a given
ball in further draws is assessed. The prospective teachers were expected to use the urn
model they have constructed in the first task and apply the classical view of probability
to make their decision. Therefore, the correct answer is that urn B is preferable, which,
according to the estimation of its composition in Task 1, has a higher number of favourable
cases. As a distractor, the subjects were given the results of 10 new draws from each urn,
which are consistent with the variability expected in a short sequence of trials and, in any
event, also favour urn B.

Consequently, the questionnaire assessed the knowledge of the classical and frequen-
tist views of probability and their relationship, the estimation of proportion, the expected
value over a number of trials, when the proportion is known, and the elementary charac-
teristics of a short series of random outcomes apply. Although these are all elementary
ideas of probability, since the task is not common in secondary school textbooks, we con-
sider that the questionnaire assessed aspects of Common Content Knowledge (CCK) and
Mathematical Horizon Knowledge (HCK).
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4. Results
4.1. Estimating the Number of White and Black Balls in the Urns

In Table 1 the results of the estimation of the number of black and white balls in the
two urns in Task 1a are presented. The answers obtained have been classified as follows:

• Correct. When 3 white and 7 black balls in the first urn and 5 balls of each colour in the
second urn are estimated from the relative frequency, by correctly relating the classical
and frequentist approaches to probability.

• Providing an interval of values. For one or both urns an interval of values that includes
the correct answer is given. For example, “in box A there are between 3 and 4 white
balls and between 6 and 7 black balls” (P18). This answer is incorrect, as can be de-
duced by considering that the mean and standard deviation in a binomial distribution
B (n, p) are respectively µ = np; σ =

√
npq, where n is the number of trials, p is the

probability of success, and q the probability of failure. If urn A is assumed to have
3 white balls, the number of white balls obtained in 1000 draws can be modelled by a
binomial distribution B (0.3, 1000), with µ = 300 and σ = 14.5; and if urn A contains
4 white balls, it is modelled by the binomial distribution B (0.4, 1000), with µ = 400
and σ = 15.5. By typifying the observed number of white balls in each of the two
assumptions, we obtain Z = 1.65 for the urn with 3 white balls and Z =−4.9 for the urn
with 4 white balls. While the first value of the standard normal distribution N (0, 1)
is acceptable, the second is too far away from the mean, and would lead us to reject
the solution of 4 white balls, as the data are very unlikely with such a composition of
the urn.

• Indicating only that there are fewer white balls than black balls in urn A, and therefore
failing to relate the relative frequency of results to the composition of the urn, i.e., not
linking the frequentist estimate of the probability obtained from the 1000 draws to the
theoretical probability of obtaining each colour, when defined in the classical sense.

• Incorrectly estimating the number of balls of each colour; for example, replying that
there are 3 white balls and 4 black balls in urn A, so that the total number of balls
is different from 10, or else indicating that the number of balls in each urn cannot
be known.

Table 1. Proposed composition of urns in Task 1a.

Number of White and Black Marbles Percentage

Correct: Urn A: (3w,7b), Urn B: (5w,5b) 71.9
Providing an interval of values for each urn 5.8

Urn A: More black marbles 5
Incorrect values or anything is possible 10.8

No response 6.5

The results of this question are displayed in Table 1, and indicate that the task was
straightforward for the prospective teachers, since a high percentage of them correctly
related the frequency estimate of the probability, given by the results of the 1000 experi-
ments, to the theoretical value of classical probability, given by the quotient of the number
of favourable and possible cases in each urn.

About 6% of the prospective teachers provided a range of values for the composition
of black and white balls in the urns. Although these prospective teachers used the idea
of variability in estimation, which is fundamental to relating the classical and frequentist
approaches to probability [25], they misinterpreted this variability, since, as we have
determined, a composition of the urns different to what is expected would be highly
improbable. These participants did not correctly consider sampling variability, although
they related the classical and frequentist views, and therefore they manifested an informal
quantitative reasoning (level 3), not reaching the higher level of understanding of variability
in the classification of Sánchez and Valdez [32].
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A proportion of the sample stated that any urn composition was possible, thus demon-
strating the equiprobability bias [36] by assuming that any urn could have given the results
obtained. Or, in other words, they suggested that all possible results were equiprobable
with any urn composition, consistent with what was observed in Parraguez et al. [4].
Other participants supplied a composition whose sum did not correspond to the total
number of balls in the urns. In conclusion, about 30% of the sample was unable to create a
plausible model of the distribution of balls in the urns, given the results obtained in the
1000 extractions. Thus, they failed to connect both approaches to probability, implying a
lack of understanding of the LLN [24].

In the following, the justifications given for the composition of the urns are analysed.

4.1.1. Correct Justifications

In correct justifications the participants related the classical and frequentist conceptions
of probability using different procedures:

• Estimating the probability by analysing the ratio between the numbers of black and white
balls in the 1000 extractions, and approximating the number of black and white balls
in the urn. This is a correct justification, based on proportional reasoning, which is an
essential component of probabilistic reasoning [39].
P31: (3,7) and (5,5) but it is not certain. Urn A: Based on the results we could as-
sume a direct relationship between the number of times a colour is drawn and the
number of balls inside the urn. A relationship B/W→7/3. Urn B: the same as in A.
Ratio B/W→ 5/5.

• Estimating the probability value by computing the relative frequency or percentage of balls
of each colour in 1000 outcomes, and then determining the expected number of balls
of each colour by multiplying the estimated probability by 10 (number of balls in the
urn). Finally, rounding the number of balls to the nearest integer:

P2:
f(w) = 324

1000= 0.324→ P(w) = nw
10 → nw= 3.24 ≈ 3 white

f(b) = 676
1000= 0.676→ P(b) = nb

10 → nb= 6.76 ≈ 7 black
• Some students also set up and solved an equation by equalling the ratio of black and

white balls in the results and inside the urn. They were working at the algebraic
level [40], since they used the linear function and dealt with equations in which they
found the unknown value, while, in the two previous categories, the students worked
at the arithmetic level. Finally, the result must be rounded, although some students
did not express this step explicitly. For example:
P32: 324

1000 = x
10 → x = 10· 324

1000
• Convergence of the proportion or of the sample mean to the population proportion or quoting

the LLN. Sometimes, the relationship between the frequentist and classical approach
to probability was re-emphasised by recalling the LLN, which states the conditions of
convergence of the relative frequency to the theoretical probability (see example P36).
A different way of expressing the idea that the relative frequency over a long series of
trials (frequentist approach) tends to the theoretical probability (classical approach) is
to use the idea of sampling. The composition of balls defines a finite population in
each urn and the series of outcomes constitute a sample of 1000 elements, taken with
replacement from that population. The proportion of balls of a colour in the urn is a
parameter in the population, while the sampling proportion is an unbiased estimator
of the population proportion.
P36. According to the law of large numbers, when an experiment is performed a
sufficiently large number of times, the probability of an event stabilises.
P25. The sample mean converges to the population mean; the sample mean is an
unbiased estimator of the population mean.

4.1.2. Incorrect or Incomplete Justifications

Other participants were inaccurate or relied on the following incorrect reasons:
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• They simply answered based on the observed results without being able to estimate
the probability. They pointed out that, apparently, the results indicated that there were
more or an equal number of balls of one colour than of another. These students did
not provide a specific composition for the urns, since they could not relate the relative
frequency in the 1000 experiments to an estimate of the number of black and white
balls in the urns.
P5: I believe that there are more black balls than white balls in urn A, because when
drawing 1.000 balls, 676 were black. In the second urn, the number of black and
white balls is more similar, so I think there are approximately the same number of
each colour.

• Incorrect application of classical probability, by interpreting the experiment outcomes as
favourable and possible cases. These prospective teachers failed to understand the
difference between event (element of the experiment sample space) and outcome
(event that occurred in each trial). Some participants, such as P80, offered a solution
that exceeded the total of 10 balls in the urn. In other cases, such as P105, they
explained that they did not calculate the probability because they did not know the
number of favourable cases.
P80: I think that in box A there are about 324 white balls and about 676 black balls.
I believe that in box B there are about 510 white balls and about 490 black balls. I can’t
know the exact numbers, but it seems reasonable to assume that the values will be
similar to these, when assuming that the draws are random. Therefore, the results of
the draws and the probability distribution they yield reflect the distribution of balls in
the urns.
P105: I don’t know how to calculate the number of balls. Not knowing the number of
favourable events, I don’t know how to calculate the probability. Besides, by putting
the ball back in the urn, the number of possible events is not reduced.

• Equiprobability bias. This biased reasoning arose when the participant suggested that
any composition was possible, because we dealt with a random experiment, so that
any outcome had the same probability. These participants explicitly showed the
equiprobability bias, described by Lecoutre [36], in which it is assumed that any
outcome of a random experiment is equiprobable. Consequently, these participants
thought that the given results could be obtained with any composition of the urn, and
that an estimation of the number of balls was impossible. They failed to link the two
approaches to probability.
P57. Assuming that we obtain 5 white balls and 5 black balls, the sample will always
be different, since it is possible to pick up a ball and leave it, and select the same one
again. Therefore, it is not feasible to deduce how many white or black balls there are
in the urn.
P98: There might be any number of black and white balls. There can be 1 black and
9 white balls or vice versa as each time one is picked up it is replaced. Or there can be
5 and 5 of each colour.

Table 2 lists the justifications, most of which were correct (45.2%). These are supple-
mented by 22.3% of participants who gave partially correct answers. These prospective
teachers related both approaches to probability, and were also aware of the properties that
this relationship enables, which have been discussed throughout the section. Therefore,
they have reached the top level (4) of understanding variability in the Sánchez and Valdez’s
model [25].
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Table 2. Justifications given to Task 1a.

Justifications Percentage

Correct

Ratio between black and white results 13.0
Frequentist estimation of probability 20.1
Setting up and solving an equation 7.2

Convergence of sample
proportion/mean or LLN 5.0

Partly correct Basing on experimental results, correct 22.3

Incorrect

Basing on experimental results, incorrect 12.2
Not able to estimate probability or
misapplying classical probability 5.8

Equiprobability bias 2.2
Do not justify or confuse justification 12.2

Some of these students stated some additional correct arguments in addition to the
four already mentioned, as follows:

• The number of trials is high enough. Some participants added the explicit description of
the experiment properties, which demonstrated their high knowledge of the mathe-
matical content. One of these properties is the high number of trials, which sufficiently
justifies the estimation of probability from the relative frequency, i.e., the application
of the frequentist approach. Thus, the understanding of the LLN, which according
to Ireland and Watson [24] is the main obstacle to linking the two approaches to
probability, was overcome.
P68: Since there is a large number of attempts, I assumed that the results will tend to
approximate to the actual probability of getting a white ball or a black ball in each urn.

• Independence of results in repeated trials, a property required to apply the frequentist
definition of probability [41]. This requirement is fulfilled in the proposed situation
because sampling with replacement was used. In the following example, A47 de-
scribed the two properties mentioned above; although he did not explicitly refer to the
classical and frequentist views of probability, he implicitly related them in his answer.
P47: Urn A: 3 white and 7 black; Urn B: 5 white and 5 black. Since there were many
extractions and because they are independent (the ball is always returned to its place)
we have obtained the probability of obtaining a white ball and a black ball in each urn,
because the large number of attempts tends to approach to what really happens.

There were fewer incorrect justifications, usually because of not being capable of
estimating the theoretical probability using the relative frequency. Those cases of confusing
outcomes with favourable or possible cases or showing the equiprobability bias were
infrequent (only 8%). Another part of the sample did not justify their response.

4.2. Assigning Probability in New Experiments

The aim of Task 1b, which explicitly asks for the probability of obtaining a result in the
next draw, was to analyse whether prospective teachers used the urn-composition model
they obtained in Task 1a. The answers were classified as follows:

• Correct answer. The subject uses the urn model that he/she has constructed in Task 1a
(3 black and 7 white balls in urn A and 5 of each colour in urn B) to assign the
probability of obtaining one black ball in each urn in the next draw. Consequently,
in urn A he assigns the probability 7/10 (or its decimal or percentage expression) to
obtain a white ball. Similarly in urn B he assigns a probability 1

2 .
• Partly correct answer, giving only the probability of getting black balls in one urn,

but taking into account the estimated number of balls of each colour in the urn
constructed in Task 1a. Basically the answer is similar to the previous one, although
not all calculations are completed.
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• Incorrect answer. The student uses only the results of the 1000 experiments to re-
obtain a frequency estimate of the probability, without taking into account that the
extraction will be made from an urn with only 10 balls. The construction of the urn
involved a modelling process [22], which started from reality (the results observed in
the 1000 drawings) and then, simplified this reality to accept certain hypotheses (the
total number of balls in each urn is 10; the relative frequency will be close to, but not
exactly equal to, to the theoretical probability). The last step in the modelling process
is to work with the mathematical model, in this case, to calculate the probability from
the assumed composition in the urn. Students who gave this answer built the model,
but were unable to use it to answer the new questions.

• Suggesting that the requested probability cannot be computed or not answering this question.
Therefore, again, the modelling process was not completed and the two approaches to
probability were not connected.

In Table 3 the answers to the probability of getting a black ball in each urn (Task 1b)
are presented. We observed a reduction in the correct answers when compared to Task 1a.
Thus, some of the prospective teachers who were able to correctly estimate the probability
from the relative frequency, and hence provided an adequate composition of each urn, in
Task 1b did not use the constructed model to calculate the probability of getting the black
ball. About half of those who provided a correct composition of the urns now referred only
to the results obtained in the 1000 extractions, a response inconsistent with the constructed
model. Finally, 18% indicated that it was not possible to calculate the probability or did
not answer.

Table 3. Responses given to Task 1b.

Justification Percentage

Correct Using the urn composition 38.1

Partly correct Only compute one probability 7.9

Incorrect
Do not take into account the urn composition 36.0

Suggest it is not possible to compute or do not compute 18.0

Table 4 contains the results of Task 2 on the choice of an urn to obtain a white ball in
a new selection. The answers given to this task have been classified according to the urn
chosen. An overwhelming majority of participants gave the correct answer, which they
have obtained either by using the urn model generated in Task 1, or by employing the
probability estimation from the relative frequency. However, 15.8% of them still gave the
wrong answer or did not reply.

Table 4. Responses given to Task 2.

Responses Percentage

Correct Urn B 84.2

Incorrect
Urn A 2.9

Any of them 4.3
No response 8.6

Table 5 presents the arguments used to choose the urn in Task 2, which have been
classified according to the criteria specified below:

• Correct, basing the argument solely on the estimated composition of the urns and the model
built in Task 1, while applying the classical probability approach. The answer is not
affected by the last 10 trials.
P102: Given that the urns are the former, and the probability of drawing a white ball in
urns A and B was 0.3 and 0.5 respectively, you would choose urn B, as the probability
is higher.
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• Correct, using the determined composition of the urns, as well as the 10 new results. For these
participants, the argument was also supported by the model of urns constructed, and
the participants giving this answer also alluded to the last 10 results, by comparing
them with the greater evidence provided by the 1000 drawings which constitute a
larger sample size.
P127: As we saw in the first question, the probability of drawing a white ball in urn
A is 1/3 and in urn B, 1/2. Therefore, there will be a greater chance of drawing a
white ball in urn b, regardless of the results obtained in this last table, since only
10 extractions are taken into account now, and 1000 in the previous questions.

• Partially correct, when using the data from the 1000 draws in task 1, but not the
composition of the urns. Although the answer would be correct if the students had
not previously constructed the urn models, in this response the two approaches to
probability were not completely linked. Thus, instead of considering the theoretical
probability 3/10 and 7/10 in urn A, the participant was guided by the relative fre-
quency of outcomes in the experiment, not clearly differentiating between relative
frequency and probability, which is a problem described by Chaput et al. [22].
P18: Urn A → P (white) = 0.324; Urn B → P(white) = 0.51. The previous sample
(item 1) is larger, more representative. Therefore, I would choose urn B.

• Partially correct, by using the data from the 1010 extractions, but not the composition
of the urns. As above, the subject used the relative frequency, which is an estimate of
the theoretical probability, and not the value of the theoretical probability given by
the composition of the urn. The difference is that the relative frequency calculation is
adjusted by adding the results of the 10 new trials.
P4: In this case, since we use the same previous urns, we already have 10 more out-
comes. I would choose urn B, since PA (white) = 329/1010, and PB (white) = 517/1010.

• Incorrect. Participants who relied solely on the 10 results given in Task 2, without
taking into account the estimated composition of the urns in Task 1 or the 1000 results
provided in Task 1.
P23: I would choose urn B because out of the 10 draws, 7 balls were white, while in
urn A only 5 were white. This leads to the conclusion that the probability of drawing
a white ball from urn B is higher.

• Other errors, which indicate biases in the participants’ reasoning. Thus, P29 suggested
that a decision cannot be made because we use sampling with replacement, which
manifests an equiprobability bias [36]. In another example, P124 showed a positive
recency bias [35], consisting of assuming that the trend of a short series of outcomes will
continue; this participant reasoned at the lowest level of understanding independence
in Heitele’s model [31].
P29: No matter the urn I select, as the balls are returned to the urn.
P124: Urn B, as we see that the while ball is on a run.

Table 5. Justifications of responses given to Task 2.

Justifications Percentage

Correct
Basing on the composition of urns (Task 1) 13.7

Using the urn composition and the last 10 results 17.3

Partly correct Using the 1000 results only 6.5
Using the 1010 results 1.4

Incorrect
Using only the last 10 results 41.7

Other errors or biases 11.5
Do not justify 7.9

The results in Table 5 show again that the vast majority of correct answers in this task
(84.2%) did not correspond to the correctness of the arguments, as only 31% of participants
correctly argued their choice. Moreover, the largest number of students relied only on the
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last 10 results, without either taking into account the identified composition of the urns or
the frequency information of the 1000 results given in Task 1.

5. Discussion and Implications for Teacher Education

To conclude, most of the prospective teachers taking part in the study showed their
competence in Task 1a, when estimating the most feasible composition of both urns from
the frequentist data of 1000 extractions, and thus found the theoretical probability of
obtaining balls of the two given colours. In other words, they went through the first steps
of the modelling process [22], by using the data from reality, simplifying the assumptions
about reality, and building a feasible mathematical model. In doing so, they were able to
move from the frequentist view of probability to the classical view and vice versa, linking
the two approaches together. Nevertheless, about 30% of these participants were unable to
estimate the urn composition, because they either misinterpreted the sampling variability
or demonstrated the equiprobability bias [36], failing to connect the classical and frequentist
views of probability in the first question.

Although one third of the sample provided wrong justifications, the reasons support-
ing this construction by the remaining participants were mostly correct, which reveals the
high mathematical knowledge of these participants, who used both proportional reasoning
and ideas of convergence, variability, and independence, which are required to connect
both approaches to probability [25].

However, only one third of the sample was consistent with the constructed urn
model when assigning the probability of getting a black ball in a new draw in Task 1b.
This means that only one third demonstrated an ability to work with the previously
constructed mathematical model and to decide when it is preferable to use the classical or
frequentist approaches to probability. The remaining participants in the study ignored such
a model, instead relying solely on the frequency data to assign a probability. In addition,
several reasoning biases were observed, such as equiprobability, or the confusion between
favourable and possible cases in an experiment with the experimental outcomes.

In the second task, although a large majority correctly selected the urn that provided
the highest probability, only one third of the participants were able to adequately argue
for their choice; in this task, most participants did not use the urn model constructed
previously, as well as the previous frequency information of 1000 trials, and relied only on
the last 10 results.

Consequently, the study adds new information on prospective teachers’ probabilistic
knowledge, in a topic with almost no previous research. The strong mathematical and
probabilistic preparation of the participants, and the problems described, suggest that a
formal study of probability alone is not enough to establish a complete link between the
classical and frequentist views of probability.

Moreover, although the task used was adapted from Sánchez and Valdez [25], their
focus was the analysis of students’ understanding of the fundamental ideas of variability,
randomness, and independence. We analysed the connection between two approaches of
probability and performed a deeper analysis of the participants’ responses to our question-
naire. The large sample size served to describe a variety of different correct responses, as
well as misconceptions that have been extensively described in the previous paragraphs.

Our results also suggest areas for improvement in the training of prospective teachers
in the classical and frequentist perspectives of probability and their articulation. Although
the results indicate that the prospective teachers in the sample differentiated between both
aspects of probability, they neither used them adequately, nor was the relationship between
both approaches to probability complete. Such training should emphasise the transition
from the classical to the frequentist conceptions and vice versa, by using tasks such as the
one proposed in this paper.

The education of teachers could also be supported by technology, by analysing sim-
ulations based on the task presented, or on another, such as, for example, the sampling
tasks analysed by Batanero et al. [42], in which the opposite task to those used in this
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research was provided: knowing the composition of a population or of a random generator,
the teachers were asked to generate possible results from samples obtained with that
population. Other useful activities are described by Abrahamson [29] in his experiments
with undergraduate students, to develop their reasoning about a binomial situation in the
context of sampling. These kinds of tasks are complementary, and a full understanding of
the classical and frequentist approaches and their articulation should take these types of
tasks into account.

Finally, in agreement with authors such as Chaput et al. [22], Eichler and Vogel [43],
and Pfannkuch and Ziedins [44], we belief that it is necessary to consider the teaching
and learning of probability from a modelling perspective. In this sense, technology and
the available tools help to establish the connections between frequentist and classical ap-
proaches to probability; this is a promising field for the exposition of probability modelling.
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