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Abstract: In recent years there has been a growing interest in resource sharing systems as one of
the possible ways to support sustainability. The use of resource pools, where people can drop a
resource to be used by others in a local context, is highly dependent on the distribution of those
resources on a map or graph. The optimization of these systems is an NP-Hard problem given its
combinatorial nature and the inherent computational load required to simulate the use of a system.
Furthermore, it is difficult to determine system overhead or unused resources without building the
real system and test it in real conditions. Nevertheless, algorithms based on a candidate solution
allow measuring hypothetical situations without the inconvenience of a physical implementation.
In particular, this work focuses on obtaining the past usage of bike loan network infrastructures to
optimize the station’s capacity distribution. Bike sharing systems are a good model for resource
sharing systems since they contain common characteristics, such as capacity, distance, and temporary
restrictions, which are present in most geographically distributed resources systems. To achieve this
target, we propose a new approach based on evolutionary algorithms whose evaluation function will
consider the cost of non-used bike places as well as the additional kilometers users would have to
travel in the new distribution. To estimate its value, we will consider the geographical proximity and
the trend in the areas to infer the behavior of users. This approach, which improves user satisfaction
considering the past usage of the former infrastructure, as far as we know, has not been applied to
this type of problem and can be generalized to other resource sharing problems with usage data.

Keywords: bike sharing systems; genetic algorithms; evolutionary optimization

1. Introduction

Bikes usage in cities has seen a dramatic increase in popularity, both in big and
medium size cities, with more than 2000 cities with a bike share program [1] and more than
3.5 million bikes [2]. Some of the main concerns in big cities are contamination and traffic
jams; in 2016, bike sharing in Shanghai saved 8358 tonnes of petrol and decreased CO2 and
NOX emissions by 25,240 and 64 tonnes, respectively [3]. Both, governments and citizens
are pushing a new paradigm of mobility based on bike transportation. Nevertheless,
crowded cities lack space for parking in central areas, and as reported by [4], dock-less
bikes exist in limbo between disposable and valuable, which makes them a target for
abuse and abandonment. To bring some ease, using such appropriate opportunities and
circumstances, a new model of bike sharing has been [5] taking place in the last few
years: Bike Sharing Systems (BSS). Based on the principle of a vehicle as a service, a new
wave of city institutions has implemented networks of docks in a park with shared bikes.
This strategy boosts the fluidity of traffic and keeps [6] the public space under control,
preventing the users from using their own bikes.
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The numbers speak for themselves, as one shared bike can be used several times by
different users with all the added benefits of bike transportation [7]: lower noise, and
improvement of physical and mental well-being for users and citizens, etc.

The operation of this network implies several problems, but we could consider that
the key of the system is user satisfaction. In [8], a study is conducted in the context of
bicycle sharing that identifies the aspects considered as most important for the customers.
A priori, it may appear that the biggest challenges to developing bike sharing systems
for sustainability are related to geographical considerations: rain, snow, high or freezing
temperatures, and other adverse weather conditions [9]; but one of the most common
complaints in vehicle sharing networks is availability: when users cannot find a bike
nearby or cannot find a dock to leave the bike, the sustainability of the system is in
danger. The system is unbalanced by nature, mainly caused by the asymmetry of demand
between variable requests and returns at different zones. i.e., the usage of Bicycle Sharing
Systems (BSS) brings the casuistry of traffic to the parking docks, i.e., peak hours and
unbalanced usage. Downtowns, universities and commercial areas act as sinks of bikes
while residential areas supply them. Ideally, at the end of the day the bikes will return to fill
the original places when users may occasionally return to their original departure. Several
dynamic protocols are in place to keep the number of bikes and places low: dynamic bike
redistribution, in which a truck redistributes, during the day, bikes from sinks to sources
with price incentives to ensure the system balanced is balanced [10]. The right number of
places and bikes that the network has to have in any of these situations is a study case not
yet solved. We can rely on a daily redistribution, real-time redistribution or even on an
oversized fleet and docking network, but having the correct dimensions of fleet and docks
in comparison with the needs is a must [11] to keep the system sustainable.

1.1. Capacity Distribution Problem

The other aspect to consider is the fixed part of the network: docks; these elements
are urban furniture with elevated costs of planning, execution and maintenance [12]. Even
an oversized network may not be optimal because of the inner distribution of docking
places in the city. Due to the nature of urban infrastructures, most of the effort on network
capacity is focused on design and implementation, based on general assumptions over
user interests in city zones.

The uncertainty over the behavior of such a complex system will be cleared up once
the system is alive. The network reliability is usually measured with the percentage of
times the network of bikes/docks are unusable because those dead periods will ultimately
derive from lost requests, either by a user that cannot find a place to hold the bike or by
not having a bike in a station for being picked up.

There are many proposals that optimize network distribution capacity. The authors
of [13] consider the number of bikes, and the authors of [14] consider the dynamic reallo-
cation of bikes. The allocation of the layout is handled in [15], which relies on the idea of
cluster and a greedy heuristic.

There have been a number of studies examining BSS functionality and human biking
behavior. The authors of [16] cited two types of data used in BSS bike sharing research:
based on automatics stocks (stations) and on trips. This paper states that stock-based
analysis hardly reflects movement patterns across a city, but it reflects fluctuation in demand
and availability. Stock-based data have analyzed prediction over availability: in [17], the
authors studied the stock behavior through clustering to give an availability prediction in
Barcelona BSS, and in [18], they had a similar outcome in Paris.

1.2. Capacity and User Satisfaction Optimization over a Real Usage Simulation

Reference [19] uses an optimization that considers network reliability by means of
two concepts, zero-vehicle time and full-port time, which reflected the duration of vehicle
shortage and parking stall unavailability in the stations, respectively. Nevertheless, this
proposal introduces lost users of the system, bringing the concept of user satisfaction, i.e.,
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not forcing the user to travel to other stations or turn/shift to other travel modes. The most
accepted measures in the literature are the ones based on the unsatisfied demands of users.

Other authors measure the same concept of loss of opportunity with different naming
but the same indirect calculations based on empty/saturated stations and a probability of
requests over time. References [20,21] identify problematic stations where users are unable
to obtain a bike or a place over time.

The capacity distribution over existing stations, considering user satisfaction and
budget as the number of docks needed at each station, is a combinatorial problem with an
exponential number of possible solutions.

The concept of user satisfaction in [22] measures the probability of a request being
held over a period of time by means of a randomized simulation on request. Even being
based on usage, from our point of view, this approach lacks granularity. In big cities, it is
common to have several stations in the same place or very close to each other, and the user
may use one of them after not finding an available place nearby.

This work proposes the combination of two metrics of the BSS performance:

• User satisfaction, based on the number of kilometers that a user has to walk or ride
in order to pick up a bike or leave the bike in a closer station when the one that was
originally selected is respectively empty or full.

• Total spare capacity, defined as the percentage of empty docks relative to the number
of total bicycles in the network to optimize the costs of the network without impacting
functionality.

The main goal of this work is to maximize user satisfaction, taking into account the
cost of the system and the limitations, in order to find the best distribution of the station
capacities based on real usage.

2. Materials and Methods

This paper shows an optimization methodology based on candidate solution algo-
rithms, such as local searches and genetic algorithms. In optimization, a candidate solution
is a member of a set of possible solutions to a given problem. A candidate solution does
not have to be a likely or reasonable solution to the problem—it is simply in the set that
satisfies all constraints. Within this section, we will describe the problem, the candidate
solution definition, the origin of our data, and the details of the algorithms that realize the
optimization of the BSS capacity distribution.

2.1. The Origin of Data

The data used in this paper are distributed under the Open Licence from Etalab and
were collected using the connector provided by JCDecaux [23]. This connector’s API
provides, for a certain city, an extensive set of attributes in real-time. We have selected
and retrieved the number of stations, capacity and occupation every 5 min, in order to
figure out the dynamic of users. Within this interval, we will transform the occupation into
requests of bikes or docks by means of subtracting consecutive occupation values.

The dataset is composed of the following fields: City as the name of the city, Station as
a unique numeric identifier for the station in the city network, Capacity as the number of
docks at the station, Docks and Bikes as the number of docks and bikes, respectively, that
are available at the station. Latitude and Longitude for geographical location of the station
and, finally, Date, as the instant of time where the measure was performed.

Table 1 shows a real sample of several tuples extracted over Santander city in April
2019. As named previously, these data are processed to produce the requests and also to
calculate several non-time-dependent constants, such as distance between stations, number
of bikes in the network, capacity of each station and total capacity.
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Table 1. Dataset sample.

City # Stat. Capac. Docks Bikes Lat. Lon. Date

Santander 2 20 7 13 43.4744 −3.7857 15 April 2019 11:50
Santander 4 20 10 10 43.4784 −3.7886 15 April 2019 11:50
Santander 17 20 13 7 43.4548 −3.8669 15 April 2019 11:50
Santander 16 20 8 12 43.4528 −3.8713 15 April 2019 11:50
Santander 12 15 15 0 43.4691 −3.7732 15 April 2019 11:50

...

2.2. Defining of a Candidate BSS

The candidate solution definition for the problem of capacity optimization of a BSS in
a time frame can be defined as a city (C) that has a series of stations (S), each with an exact
and constant capacity for the selected period that we are going to define. For this, we can
use C = (c1, . . . , cS) for the capacity vector of the city, with cj being the capacity of station j
in this configuration.

We must denote that the study time will be for T periods, so we will run the simu-
lation over a windows time with discrete increments for 0 to T . The capacity vector of a
distribution will be constant over time.

The occupation matrix (O) keeps the occupation number of each station at every stage
of the considered time window.

O =

 o1
1 . . . o1

S
...

. . .
...

oT1 . . . oTS

 (1)

Note that oj
i is restricted to each station j in every moment to (oj

i ≤ ci) ∀j ∈ {1, . . . , T ),
that is, a station will not accept more bikes than the number of available docks. The
remaining requests of docks will have to be redirected to other stations. Based on the
premise that the number of available docks in the BSS has to be greater or equal to zero, we
define spare capacity, spj

i , as the number of available docks when all the bikes are inside
the stations in time j, and must always be positive (or zero).

spj
i = ci − oj

i (2)

The occupation matrix does not show the system’s dynamics needed to perform a
simulation, just the status of each station at each time inside the time window; for this
purpose, we are interested in capturing movements of bicycles, that is, the number of
bicycles that are deposited or picked at a station between 2 consecutive instants of time.

In order to measure these movements, we used real data extracted from the source, as
explained in Section 2.1.

We define C∗ and O∗ as the capacity and occupation captured from real data that will
be transformed into dock/bike requests made over this time window. We call this the
request matrix (∆):

∆j = (O∗)j − (O∗)j−1 ; f or each j ∈ {1 . . . T } (3)

In order to apply this ∆ over an alternative candidate solution, we assume that the
initial state of the stations is empty. Therefore, the first request for every station will be the
occupation at this time of the base case. Therefore, ∆0 = (O∗)0.

From now on, ∆ will reflect the behavior inherent to the real data recorder in the form
of requests applied over a new capacity distribution (candidate solution). Consequently,
this chain of requests may generate a different occupation sequence and lead to a redis-
tribution of requests to other stations due to empty/full stations in the different capacity
distribution.
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2.3. Measuring the Performance of a Candidate BSS

The simulation of movements over a specific BSS capacity distribution reproduces the
system state at a given time. From our knowledge, existing simulations on BSS uses mostly
hourly demands averaged on weekdays that may not reflect particularities of some events
due to the data averaging. Using real trends in an accumulative model may help gain a
better understanding of the model limits without having to prove in detail the accuracy of
the probabilities in generic simulations versus real conditions.

From the point of view of our simulation, each ∆j
i is interpreted as a request made by

a user in a certain time j to obtain or to park a bike in a specific station i. The global process
can be summarized as the distribution of ∆ requests (dock’s or bike’s demands) over a set
of S stations during a time interval from {0, . . . , T }. Figure 1 presents the algorithm for
request distribution in a candidate solution in which each station i in a time j will receive ∆j

i
requests with an outcome measured in a number of kilometers performed by users when
they have to travel from the original station to this new one due to a lack of places/bikes.

Figure 1. Request distribution and calculation of kilometers performed by users.

In the case that some requests (p) (either a bike or a dock) could not be attended by
the current target, we allocate as many as possible, updating the current occupation and p
with the remaining ∆.

The remaining requests (updated p) will be distributed, following the same process,
in a set of distance ordered stations, from nearest to farthest, updating target. Every time
a request is attended by a station different from the original one where this request was
recorded, the distance from this target to the original one will be added to a kilometer
accumulator. This variable will keep the sum of kilometers traveled by the users due
to failed requests (F) in the new distribution. The formula that measures the number of
kilometers produced by the whole set of requests in the time window is:

Fkm(∆) =
T
∑
j=0

S
∑
i=1

F(∆j
i) (4)
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Figure 2 exhibits the trips made by users when this process is applied over a candidate
solution different from the original one. Red circles stand for the origin station, blue
triangles stand for the target station, and the thickness of the line is proportional to the
number of users that have performed the trip. Sometimes stations may serve as origin and
destination in different moments of the simulation process, stating the weakness of the
areas that lack docking stations or bikes, depending on the case.

Figure 2. Extra distribution of users produced in a simulation.

As named in the previous section, the proposed measure of the performance of a
distribution of docks over a set of predefined stations in a BSS is based on total capacity
(cost) and user satisfaction (amount of extra kilometers).

Fitness(C, ∆) = Fcap + Fuser_sat (5)

Regarding capacity usage, we consider the total spare capacity as the percentage of
non needed docks in a BSS, calculated as the ratio of non-used docks in the case all bikes
were are located at stations.

Fcap =
Tc ∗ Tb

Tb
(6)

Total capacity, Tc, is the sum of all station capacities for the candidate solution. Total
bikes number is known by the institutions managing the BSS but is not directly provided
by data. This constant is calculated using the number of docks used on the real case O∗

in the higher moment of occupation. As some of the users may be moving in the chosen
instant, traveling from one station to other, a percentage of security measured ξ is added to
prevent the possibility of not having enough docks available for all the bikes present in the
real case.

Tc =
S

∑
i=1

ci (7)

Tb = maxj(
S

∑
i=1

(o∗)j
i) ∗ ξ (8)

Both parameters are independent from time, and they can be calculated at once when
data are extracted and applied to every candidate solution evaluation.

2.4. Measuring the System Performance Based on a Real Usage

As expressed in Equation (3), the real occupation matrix (O∗) is transformed into a
matrix of requests ∆ to be applied over a different capacity distribution. The real case C∗ is
usually also known as base case Cb and we will use it interchangeably.
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The fitness measured in (Equation (5)), applied over Cb, will not generate any measure
of user satisfaction (no extra kilometers) because each request was attended in Cb; therefore,
there is no failed request information recorded.

Although we might guess that some users were not attended to, even if we do not
have the proof or evidence to ensure it, we argue that failed requests are prone to happen
when a station is full and a user requests an empty dock or vice-versa, when a station is
empty and a user request a bike.

To highlight these effects, we propose the use of trends of ∆, named as virtual move-
ments (θ), to model the probability of a failed request happening, even in Cb. The average
∆ quantity of these stations may predict the future demand on them, e.g., if one station
i becomes full (oi = ci) at a given moment j, in j + 1 the probability of it being similar is
pretty large. Trends are calculated in a time window (V) over station movements at time
j as the average of the last V movements when the station becomes full or empty and ∆
becomes zero.

θ
j
i = round(

1
V

V

∑
i=1

∆j−1
i + 0.5 ∗ sgn(∆)) (9)

θi’s are applied to the simulation in the same way as ∆ and called virtual requests.
A virtual request will be applied to calculate extra kilometers (named virtual extra kilo-
meters) in the same way as ∆ (see Algorithm 1) but will not change the occupation of the
stations because this would change the number of total bikes in the system. Thus, this
concept looks after the inertia of ∆ to predict future demands but does not change the
occupation when applied.

Based on (Equation (10)), each θ
j
i is used as a virtual request made at a certain time to

obtain or park a bike in a specific station and evaluated by Algorithm 1.

FVKm(∆, θi) =


Fkm(θi) i f ∆ = 0 and ( f ull or empty (i))

0 otherwise
(10)

Pondering these pieces, Fcap, Fkm and FVKm, the global measure criterion can be
summarized as a fitness function (Equation (11)); a function that expresses the wellness of
the proposed capacity distribution in terms of capacity cost and user satisfaction:

Fitness(C, ∆) = Fcap +
T

∑
i=0

(Fkm(∆, i) + FVKm(∆, θ, i)) (11)

2.5. Behavior of a Candidate Solution BSS

Simulations offer the chance to evaluate a possible scenario (candidate solution)
without the inherent costs of physical implementation or a prototype; while the simulation
is beingn executed, some indicators can be recorded that could help decision makers to
understand the differences between various candidate solutions.

The simulation of requests over a BSS is measured mainly in this paper through the
distance the user has to travel (Equations (4) and (10)); however, the number of failed
requests is also per se a valuable indicator of the performance of the candidate solution.
The number of times a station becomes empty or full is also useful information because
this situation indicates a possible point of improvement in the network by dynamically
managing the number of moving bikes from some stations to others or as a measure of
strength between similar candidate solutions.

Apropos of the evaluation of user satisfaction, the number of kilometers may be
described in more detail, breaking up total kilometers into two separated indicators: firstly,
those performed due to a failed request of a bike, because they are made by foot, and
those performed due to a failed request of a dock, which will be recorded by bike. These
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two indicators also inform about differences between candidate solutions in the ability of
serving bikes or docks.

The analysis of a simulation over the original distribution may serve as an analysis tool
to detect future improvements. For example, a stress factor can be introduced to multiply
by a factor the number of requests and predict where the capacity has to be reinforced
but does not propose a better distribution with the help of the named indicators; some
examples will be described in the results section on the convenience of these indicators to
compare different solutions.

2.6. Optimization Based on Candidate Solutions

The simulation of a candidate solution in BSS means applying some inputs (bike
or dock requests) over a distribution of capacities, C ′. This is a standard process of im-
provement validation over existing infrastructures in traffic and urban design [24], but it
also operates as the building block for one of the most powerful optimization strategies:
genetic algorithms and local searches. As far as we are able to obtain a numerical value to
a candidate solution, we may compare it with other ones to minimize or maximize depend-
ing on our goals. We can guide these changes between different proposals using expert
knowledge and improve the details in trying to understand the system behavior upon
those changes. However, sometimes the combinatorial nature of problems and non-evident
relation between parts of the solution may not help this discovery process. Optimization
algorithms do not rely on knowledge and can drive the problem to a space solution search
where the target is the minimum/maximum value for the candidate solution.

The candidate solution is defined in this problem as C ′ = (c′1, . . . , c′S), regardless of
whether the number of docks per station differs from the original Cb but the number of
stations S remains the same, that is, we will not create nor remove any existing station.
As the minimum size for a station capacity is not restricted, except for being greater or
equal to zero, the optimization could in fact remove all activity onto a station by setting the
capacity to zero. Candidate-based optimization algorithms need an evaluation function,
named in this work as Fitness (Equation (11)), and some way of generating new valid
candidates that may improve previously generated candidates once evaluated.

The candidate solution must be valid from the point of view of the network definition;
therefore, capacity modifications cannot be made with full degrees of freedom. There is a
(minimum of) fixed number of bikes (Tb, Equation (8)), and therefore, total capacity (Tc)
cannot be smaller than this number because each bike has to have at least a dock to be
allocated by definition.

Optimization algorithms based on candidate solutions are based on a proper equilib-
rium between exploration and exploitation. In the next sections, we will consider the usage
of several related algorithms that will be compared later in the results section in order to
observe the computation effort versus stability and the quality of the results.

2.6.1. Best Improvement Local Search

A local search algorithm [25] considers the optimization as a search space defined
by the possible variations of the elements in a candidate solution. The local optimality is
achieved by local perturbations. This operation is called neighbor generation in most of the
local search varieties. The inner component of the candidate solutions in the BSS problem
is station capacities. As each ci (station capacity) can have values from 0 to n (not restricted,
by definition), the neighbor generation can be made by the addition or subtraction of a
number of ci.

These two parameters (percentage of positions to be modified (pp) and maximum
amount to be added (max_am) to the selected stations) define the capacity of exploration in
a hill-climbing local search (see Algorithm 1).
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Algorithm 1: Best Improvement Local Search
1 function LocalSearch (base_case,neighbor_number):
2 Best_solution = generateNeighbor (base_case,%pp,max_am)
3 Best_fitness = Fitness (Best_Solution)
4 While not Stop_Criteria:
5 Best_neighbor = GetBestneighbor (number_of_neighbors,Best_Solution)
6 If fitness (Best_neighbor) < Best_fitness:
7 Best_fitness = fitness (Best_neighbor)
8 Best_solution = Best_neighbor
9 return Best_solution

The initial point in our algorithm proposal is the Cb, but it could be initialized with any
valid solution. Regarding the other parameters, the number of neighbors generated in each
iteration express the depth of the search by a randomized generation of neighbor instead
of an exhaustive loop with the length of the neighbor generation operator defined by pp
and max_am; Stop Criteria is based on a given number of iterations without improvements
on the best solution. The combination of these two parameters allows flexible management
of exploitation and exploration in the local search.

2.6.2. Variable Neighborhood Local Search

Best Improvement Local Search is based on a neighbor generation function with a
fixed range (number of changes made over the given candidate). These algorithms are
good enough to test the fitness function, valid candidates and the validation of the concept
but has a poor exploration power depending on input parameters pp and max_am. Thus,
Variable Neighborhood Search [26] is proposed as an improvement to fix the local range
search, keeping the same function for neighbor generation used in the Best Improvement
Local Search. This variation has a function, VNSNeighbor, that increases the number of
positions changed in one single neighbor generation every time the Best Improvement Local
Search stagnates. This variable range in the operator of neighbor generation provides a
way of escaping from local optima, allowing more exploration power to the search without
losing exploitation due to the dynamic reduction of the range k once a new local optimum
is found. The algorithm ends once the max range is reached without improvements in the
best solution (Algorithm 2).

Algorithm 2: Variable Neighborhood Local Search
1 function VNS (base_case,neighbor_number,max_range):
2 Best_solution = generateNeighbor(base_case)
3 Best fitness = simulation(Best_Solution)
4 K = 0
5 While K < max_range
6 Candidate = VNSneighbor(K, Best Solution)
7 Local_Search_Solution = LocalSearch(Candidate, neighbor_number)
8 If simulation (Local_Search_Solution) < Best_fitness
9 Best_fitness = simulation (Local_Search_Solution)
10 Best_solution = Local_Search_Solution
11 K = 0
12 Else K++
13 return Best_solution

2.6.3. Genetic Algorithms

Genetic algorithms are population-based algorithms [27] widely used for BSS problem
optimization. Some recent examples of related problems in genetic algorithms and local
searches in vehicle networks can be seen in [28,29]. These algorithms use an evolution
paradigm to select the best candidates (named as chromosomes) of the population and



Mathematics 2021, 9, 2227 10 of 18

mix their positions (named as genes) in a crossover and perform neighbor-like operations
(named as mutation here). The capacity distribution of each station may be seen as the
genes that will be mixed over generations to create solutions that bring not just variations
over previous solutions but completely new ones with the better genes of their parents.
A local search can be seen as a trajectory over a search space with the movement capacity
of the neighbor operator, but genetic algorithms break this view by a building block theory
in which a better combination will remain in the population in the form of genes and
statistically will guide the selection and build even better structures. The results of this
operation are offsprings (candidate solutions) that will remain in the population over time
if they are better than other individuals.

Genetic algorithms are able to explore complicated combinatorial problems if the equi-
librium between genetic diversity and selection pressure keeps the key genes improving
without falling in a local optimum because of a lack of diversity in the population.

Best Improvement Local Search, VNS and Genetic Algorithm share the same codifica-
tion for mutation (named neighbor generation in the local search) and fitness evaluation.

The genetic algorithm proposed can be outlined as a loop where in every iteration two
individuals are selected by tournament selection [30], selecting the best individual from
a random sampling of size k. The mutation operator makes the system explore outside
the initial values of the genes present in the population. This operator is the same one
used in the Best Improvement Local Search, named there as neighbor generation. The key
operation in the generation and improvement of new individuals is Crossover [31]. This
operator is applied over two elements and mutated to create new solutions that may have
a better value once evaluated. Crossover selects two points that crossover; this one may
generate invalid chromosomes due to restrictions on the minimum capacity, preventing
some bikes from finding an available dock; to avoid this issue, two random positions are
selected, and the list of positions is copied on the offsprings bearing in mind not to be
below the minimal capacity of the Tb factor.

It may happen that after copying the fragment, the resultant offspring may be invalid
due to the total capacity of the network being lower than the number of bikes. To fix the
chromosome, the following positions will be copied until this criterion (capacity greater or
equal than bike number) is fulfilled. No max Tc (Total capacity) restriction has been set for
the sake of clarity.

Let us see an example: being two candidates of a city with eight stations and 100 bikes:
C1 = [15, 20, 30, 4, 3, 30] and C2 = [15, 2, 4, 40, 25, 20], the crossover will produce the fol-
lowing results: random positions p1 = 2 , p2 = 3. O f f spring1 = [15, 2, 4, 4, 3, 30]. This
offspring is invalid due to the total capacity being lower than the number of bikes (58). The
algorithm will then extend the copied positions until it is valid on position 5, being the
result Offspring1 = [15, 2, 4, 40,25, 30]. The number of individuals in the population is fixed,
therefore these two solutions will replace some other one using a steady state population
type [32]. To increase the genetic pressure in a flexible way, these two offsprings will
replace two individuals from the population using tournament replacement [33], where the
selected ones are the worst element of a random set of size k. This strategy promotes the
probabilities of poor elements of being deleted and good elements to remain in the pool.

Finally, we propose a Hybrid Genetic Algorithm 3 with a local search as the better
approach for this optimization problem, thanks to the good capability of local search algo-
rithms to improve a good solution and the exploration capacity of the genetic search. These
hybrid heuristics, which combine concepts and strategies applied by other metaheuristics
such as population-based search and local search, are similar to Memetic Algorithms [34,35].
The main difference between the proposed Hybrid genetic algorithm and the Memetic
Algorithms is the fact that in Memetic algorithms [36] in any generation, the population
of individuals consists solely of local optima, and in the Hybrid Algorithm proposed, the
added local search only runs every certain number of iterations, reinforcing that closer
minimums to the optima finally become optimized to the optima. This approach provides
more time for the algorithm to explore the space before stagnation.
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Algorithm 3: Hybrid Genetic Algorithm
1 function Hybrid Genetic (base_case,neighbor_number,number_iterations):
2 Best solution = (base case)
3 Best fitness = simulation(Best Solution)
4 Generate Population (as Strong mutation of base case)
5 While not Stop_Criteria:
6 S1 = Mutation (Crossover(Selection(Population , k)))
7 If fitness (S1) < Best_fitness:
8 Best_fitness = fitness (S1)
9 Best_solution = S1
10 Population = replace (S1 , k)
11 Every (number_iterations):
12 Best_solution = localSearch (Best_Solution , neighbor_number)}
13 return Best_solution

2.7. Use Case: Santander Bike Sharing System

This proposal handles the simulation of a real BSS based on the Santander BSS (Spain)
as a representative case for validating some of the measures and techniques proposed
in this work. Santander has a small network of 16 stations with clear and differentiated
areas: on the left the industrial area, down in the middle the train station, in the inner
part some residential areas and lastly the coast and downtown, down and on the right,
respectively. It is a city with no rivers and short distances that ease the calculus extrap-
olation because each direction is equally probable in terms of user eligibility. It has a
network of dedicated paths for bikes 18 kms length in total, where most of the stations
are situated along the route, making the riding safer (Figure 3). The size of the city and
the small number of stations are within the preferred criteria for testing, being able to
understand the results and extrapolate conclusions keeping the complexity of the problem
high enough to overcome direct combination optimization. Concerning the size of the
stations, Cb = [15, 20, 30, 15, 15, 30, 20, 20, 15, 25, 20, 40, 25, 20, 20, 25] (Figure 4), the average
size is around 20 docks per station, with some doubling this quantity with a total capacity
of 355 docks and a total number of bikes in the system of 198.

Figure 3. Santander’s bike path. Black indicates already existing infrastructures.
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Each station is located at a certain position given by its latitude and longitude coor-
dinates and has a potentially different number of docks with a set of available docks at a
certain time of the day.

Figure 4. Stations and capacity distribution in Santander BSS.

We propose the use of real data in a simulation to measure changes in the capacity
distribution. In this setting, Santander has a mild climate with minor variability between
seasons. Ideally, several years of data could be used to ensure proper support to all the
cases, but for the sake of performance, we have evaluated the most demanding months
of the year and compared this period between years from 2017 to 2020. The month with
less variability between years and more accumulated usage per day was April 2019. This
month has the most demanding average usage per hour. Figure 5 shows the accumulated
requests in the network by hour. We have paid special attention to critical situations as to
whether some of the stations become full or empty and the probability of movements on
those stations remains high.

Figure 5. Movement distribution per hour in April over Santander BSS.

3. Results

The experimentation was executed for the four exposed algorithms; Best Improvement
Local Search (BL), Variable Neighborhood Search (VNS), Genetic Algorithm (GA) and
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Hybrid Genetic Algorithm (HGA). Each algorithm was executed with 10 seeds for the
dataset, showing the best results for each set of executions.

Metaheuristic optimization has a considerable number of parameters that may impact
on the quality of the solution and the time of execution. Initial experimentation with BL
and VNS using grid hyperparameter tuning [37] was performed to determine the better
values of the parameters. The Best Improvement Local Search is shown in Table 2.

Table 2. Best Improvement Local Search parameters.

Parameter Description Value

%Positions: Position changes in every neighbor generation. 10%
%Quantity: Max number of changes to add or subtract. 10%
%SpareFactor: The weight of the empty places over user satisfaction in fitness 10%
Max Epochs: Number of times without improvement before stopping. 20
Neigbors: Number of neighbors to be generated in each iteration 50

Both BL and VNS show an adequate convergence to the optima, Figure 6 shows the
behavior of the two parts of the fit: total spare capacity (a) and the extra virtual kilometers
(b) of the best individual within the BL optimization.

( a) ( b)

Figure 6. Fitness evolution in BL: (a) Total spare capacity. (b) Kilometers extra due to trends.

Based on the Local Search parameter tuning, we have better results for genetic and
hybrid algorithms, adding the additional parameters shown in Table 3.

Table 3. Additional parameters for genetic and hybrid algorithms.

Parameter Description Value

Population size: Number of individuals 30 individuals
Population type: Steady state single pop. with replacement
Selection operator: Tournament selection over 10% of pop.
Replacement operator: Tournament over 20% of pop.
Crossover: Crossover operator two points
Mutation: %positions %quantity (10% of length, 10% of station value)

Max Epochs: Number of times without
improvement before stopping 20

BL_Epochs: Number generations to launch
a BL in the hybrid scheme 20
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The problem chosen for this optimization has been solved in some of the executions
by all the optimization algorithms proposed, even if the total number of combinations is
bigger than 2016 (average_capacitystations). The evaluation of a single solution may take
around half a second using a one-week interval, which gives a time of more than seven
days of computation to arrive at the optima visiting all possible combinations compared to
a much lower execution time of the proposed algorithms, as can be seen in Table 4.

BL already obtained the optima, so VNS, GA and HGA return the same individual
in some of the executions. The optima for this problem in the chosen time frame is 22.16
corresponding to Copt = [16, 16, 23, 13, 13, 21, 17, 14, 13, 17, 16, 27, 12, 15, 18, 19]. The only
difference between them is stability and execution time. Meanwhile, BL and VNS obtain the
optima 53% and 75% of the time, respectively, the Genetic Algorithm arrives at the optima
97% and Genetic Hybrid Algorithms 100% of the time. Execution time is much higher
in VNS than the other algorithms. The Genetic Algorithm shows a good performance
regarding the quality of the solution and the reliability of the algorithm with the lower
execution time, whereas the Hybrid Genetic Algorithm has the better reliability finding the
optima for this problem 100% of the time at the expense of an execution time that nearly
doubles the Genetic Algorithm. Table 4 shows averaged and standard deviation for time
(minutes), evaluations, percentage of times the optima has been found and fitness.

Table 4. Algorithm comparison.

# Evaluations St. Dev Time St. Dev % Optima Fitness St. Dev

BL 6800 925 28.87 3.3 53% 22.31 1.70
VNS 21.099 2094 47.27 7.1 75% 22.25 0.10
GEN 5034 589 26.27 3.6 97% 22.11 0.04
HYB 8886 935 45.80 4.7 100% 22.16 0.00

Table 5 shows the comparison between the base case, the optimized one with capacity
optimization (OP), without capacity optimization (OP_NC, i.e., only dock reallocation
between stations, total capacity remains the same) and with an extra 10% of movements
than the original to represent the stress of adding new users (OP_ST). The capacity column
expresses the total number of docks in the network, Fkm represents total real kilometers,
FVkm is the total virtual kilometers, Spare is the percentage of empty places relative to the
number of bikes, full and empty for the number of times one station achieves this state
within the simulation, and finally, fitness (Equation (11)).

Table 5. Base case vs. optimized performance, Santander.

# Capacity Trk Tvk Spare Full Empty Fitness

Base 355 0.00 28.87 87 0 23 35.55
OP 270 0.46 17.49 42 4 11 22.16
OP_NC 355 0.46 17.49 87 4 11 26.63
OP_ST 292 0.71 22.40 53 0 17 28.48

The comparison between the optimized solution and the initial one shows that with
a much lower capacity, the system is able to obtain better results, increasing the real
kilometers by just 0.46 kms but decreasing the number of virtual movements from 28.87 to
17.49 kms. This result denotes a user satisfaction increase of 10.92 kms against Cb. Figure 7
shows the decrease in capacity of the majority of the stations and the increase in station #1.



Mathematics 2021, 9, 2227 15 of 18

( a) ( b)

Figure 7. Station capacity delta on optimized solutions: (a) optimized solution with capacity change, (b) optimized capacity
without capacity change. Blue represents decreased capacity. Red represents increased capacity and radius the amount of
difference with Cb.

With the reallocation of bikes from some stations to others (0.46 kms), produced by
lowering the capacity of some stations, the algorithm has lowered the number of empty
stations from 23 to 11. This optimization cannot improve this number without adding
more bikes to the systems, and this is out of the scope of the algorithm. Notice that as
predicted in the previous section, Cb does not produce real extra kilometers because what
was recorded were successful requests.

From the point of view of the behavior indicators stated in Table 6, it shows failed
requests as the exact number of requests that are not attended. Those can be virtual or
real ones. Input kilometers are those generated as a result of a failed request of requesting
a bike at an empty station, and output kilometers are created by a dock request at a full
station that could not be served. Base (Cb) shows a big number of failed requests all due to
requests of bikes at empty stations. Even if the reasonable outcome will be to increment
the number of bikes at those stations, by dynamical movements or just increasing the
total number of bikes, a look at the OP and OP_NC shows that with some minor extra
kilometers (3.68 kms by bike) due to not attending dock requests, the number of failed
requests is much lower (13) and the output kilometers are just 13.80. OP_ST shows that
even increasing the number of movements by 10%, a smaller distribution capacity is able
to achieve fewer failed requests and fewer extra kilometers.

Table 6. Base case vs. optimized behavior indicators, Santander.

# Capacity Trk Tvk Failed Requests Input kms Output kms

Base 355 0.0 28.87 46 0 28.87
OP 270 0.46 17.49 13 3.68 13.80
OP_NC 355 0.46 17.49 13 3.68 13.80
OP_ST 292 0.71 22.40 21 0 22.40

Regarding the behavior under modified conditions, some simulation has been per-
formed over the optimized solution with changes in the number of ∆. We have stressed
the number of requests by 10%, obtaining the results in Figure 8. This is not the same as
the result shown in Table 5 with OP_ST; this one exhibits the evaluation of the optimized
solution with capacity change (OP) measured with the stressed ∆. As can be observed in
this figure, the optimization capacity over-fits the current usage, with a great impact on
real kilometers when some extra movements are applied. The solution to predict future
behavior is to optimize (OP_ST) with the stressed movements, with an increase of just
5.16 kms. An interesting result is that the number of full stations decreases, so more
movement is not always a reason for a shortage of places because the interaction between
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negative and positive movements are not easy to predict when the users are reallocated to
the nearby stations.

Figure 8. Extra kilometers in optimized solution, 10% of stress over movements.

4. Conclusions

The simulation based on recorded requests of real usage over an alternative capacity
distribution offers a useful tool to understand BSS behavior. Nevertheless, a set of variables
and measures is needed to compare performance and behavior between several capacity
configurations.

From the point of view of behavior interpretation, a set of markers has been defined,
such as the number of times stations become full/empty, giving an overview of the peaks
in the BSS, number of failed requests, input and output kilometers, which makes the results
easy to understand. Furthermore, Figures 2 and 8, with the specific routes performed by
the user with failed requests, help to predict future behavior and assist experts on specific
improvements on the network.

On the standardized performance of BSS, two facets are considered; on the one hand,
user satisfaction defined as the number of kilometers pursued in the alternative distribution
and, on the other hand, the cost of the infrastructure as the total capacity of the BSS.

This simulation process can also serve as a fitness function for optimization algorithms
based on candidate solutions. This work has proposed an effective methodology to imple-
ment a set of optimization algorithms over existing BSS capacity records that create a better
distribution capacity to increase user satisfaction and minimize the total cost by reducing
the capacity of the BSS. The Hybrid Genetic Algorithm has proven to be the most reliable
algorithm with a reasonable execution time.

The case of Santander BSS was selected for its implicit characteristics without ge-
ographical barriers, distribution on inner stations and mild climate that may reflect an
average behavior in the usage of any of the stations at any time of the year. The results
show a clear user satisfaction increase by lowering the number of kilometers and also a
lower number of docks needed in the BSS. This dataset has been chosen as a first study
case over the main optimization criteria for BSS networks. In future works, we will use
bigger datasets and compare results considering other variables as physical barriers or
station distribution.
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