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ABSTRACT 14 

Tensegrity structures have developed greatly in recent years due to their unique 15 

mechanical and mathematical properties. In this work, the topology of the Octahedron 16 

family is presented. New tensegrity structures that belong to this family are defined based 17 

on their topology. As an example, the eleven-time-expanded octahedron is shown, a 18 

super-stable tensegrity formed by 12288 nodes, 6144 struts, and 24576 cables (the largest 19 

super-stable tensegrity reported in the literature in terms of number of nodes, cables, and 20 

struts so far). The values of the force:length ratios which satisfy the super-stability 21 

conditions have also been determined based on the topology of the Octahedron family. 22 

Consequently, the computational cost of the process of determining a suitable prestress 23 

state and its corresponding equilibrium shape (a process called form-finding) is 24 
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significantly reduced. The members of the Octahedron family could have promising 25 

engineering and bioengineering applications. 26 

 27 

 28 

Introduction 29 

Tensegrity structures are spatial structures composed of pre-stressed pin-jointed 30 

compression and tension members (struts and cables, respectively) that are self-31 

equilibrated. This type of structure has developed greatly in the last few decades due to 32 

their lightweight, ingenious forms, and their controllability and deployability. As a result, 33 

tensegrity structures are present in a wide range of scientific fields, such as civil 34 

engineering1,2, robotics3,4, aerospace,5–7 and biology8,9. 35 

The process used to find a self-equilibrated configuration (called a form-finding process) 36 

has a key role in the design of tensegrity structures. Tibert and Pellegrino10 carried out a 37 

review of form-finding methods for tensegrity structures. The Force Density Method11,12 38 

(FDM) and the dynamic relaxation method13 are the basis of most of these methods. 39 

Form-finding methods can be classified into numerical and analytical types. In the 40 

literature, there are several pieces of work about numerical form-finding methods14–17. 41 

On the other hand, only a few analytical form-finding methods can be found18–20. 42 

The FDM is based on the concept of force:length ratio or force density q11,12, which is 43 

defined as the ratio between the axial force and the length of each member of the 44 

tensegrity (q > 0 for cables and q < 0 for struts). The authors proposed in a previous work 45 

an analytical form-finding method of tensegrity structures based on FDM18,21. This 46 

method consists of finding a set of force:length ratios in a symbolic analysis that achieves 47 

an equilibrium shape of the tensegrity structures. 48 

Stability is another key aspect in the design of tensegrity structures. Super-stability is a 49 
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stability criterion for tensegrity structures with by which the tensegrity is always stable 50 

regardless of the level of self-stress and material properties considered22,23. 51 

The connectivity between the nodes of a tensegrity structure is an input of the form-52 

finding problem. Tensegrity structures can be constructed by using purely geometric 53 

intuition based on geometric bodies20,24,25 or by using topology21. A tensegrity family is 54 

a group of tensegrity structures that share a common connectivity pattern21,26,27. The 55 

Octahedron family (presented in Fernández-Ruiz et al.21) is composed of the octahedron, 56 

the expanded octahedron, and the double-expanded octahedron (see Figure 1). This 57 

family has the following properties21: 58 

1. The members of the family are composed of rhombic cells. 59 

2. Each member has twice the number of rhombic cells (and consequently, twice the 60 

number of nodes, cables and struts) of the previous member of the family. 61 

3. All the inferior members of the family are folded forms in the superior member. 62 

4. Rhombic cells are arranged in three groups. 63 

 64 
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 65 

Figure 1. Octahedron (a), expanded octahedron (b) and double-expanded octahedron (c) and their 66 

corresponding rhombic cells. Thick gray and thin black lines correspond to struts and cables, 67 

respectively 68 

 69 

Folded forms are tensegrity structures where some nodes in the equilibrium shape share 70 

the same position in the space18. On the other hand, full forms are tensegrity structures 71 

where all the nodes have different positions in the equilibrium configuration18. 72 

In the tensegrities of the Octahedron family shown in Figure 1, only two values of 73 

force:length ratio are considered: qc for cables and qb for bars/struts. The octahedron is 74 

the first and simplest member of the Octahedron family (see Figure 1.a). It is composed 75 

of 3 rhombic cells, 6 nodes, 3 struts, and 12 cables. The solution given by using the form-76 

finding method18,21 that leads to a super-stable equilibrium configuration is qb = -2qc. The 77 

second member of the Octahedron family is the expanded octahedron (see Figure 1.b). It 78 

is composed of 6 rhombic cells, 12 nodes, 6 struts, and 24 cables. The solutions to the 79 

form-finding problem are qb = -2qc and qb = -3/2qc. The solution corresponding to qb = -80 
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3/2qc is the super-stable full form of the expanded octahedron (see Figure 1.b). On the 81 

other hand, and according to the third property of the Octahedron family, the solution qb 82 

= -2qc corresponds to the folded form of the expanded octahedron (which is the 83 

octahedron whose members are all duplicated). Finally, the third member of the 84 

Octahedron family is the double-expanded octahedron (see Figure 1.c). It is composed of 85 

12 rhombic cells, 24 nodes, 12 struts, and 48 cables. In this case, the solutions to the form-86 

finding problem are qb = -2qc, qb = -3/2qc and qb = -4/3qc. The solution qb = -4/3qc 87 

corresponds to the super-stable full form of the double-expanded octahedron (see Figure 88 

1.c) and the solutions qb = -3/2qc and qb = -2qc correspond to the folded forms of the 89 

double-expanded octahedron (the expanded octahedron whose members are all 90 

duplicated and the octahedron whose members are all quadruplicated, respectively). 91 

These results indicate that, at the end of the folding process of an upper member of the 92 

Octahedron family, all the struts (and consequently, all the rhombic cells) will overlap 93 

each other in the three struts of the first member (the octahedron). For this reason, the 94 

cells of all the members of the family always form three groups, which duplicate the 95 

number of cells in each expansion. For example:  the expanded octahedron has two 96 

rhombic cells per group, the double-expanded octahedron has four rhombic cells per 97 

group (see Figure 1), and so on.  98 

The basic rhombic cell in the Octahedron family is formed by four nodes connected 99 

through four cables and one strut (see Figure 2). The top and bottom nodes are called 100 

principal nodes and, as can be seen in Figure 2, they are not connected by the strut. The 101 

two nodes connected by the strut are called secondary nodes. The numbering of the 102 

rhombic cells corresponding to the three first members of the Octahedron family (the ones 103 

known so far) have been obtained by following the connectivity pattern presented in 104 

Fernández-Ruiz et al.21. It is interesting to notice that the numbering of the nodes in a 105 
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tensegrity is free, but the connectivity between them has to be kept unchanged. 106 

 107 

 108 

Figure 2. Elementary rhombic cell 109 

 110 

The connectivity pattern presented in Fernández-Ruiz et al.21 can only be applied for the 111 

definition of the three first members of the family shown in Figure 1. In this work, the 112 

topology of the Octahedron family is completely defined, obtaining all its members 113 

without any exceptions. As the first three members of the family are already known, the 114 

folding process from a higher member of the family to the previous one is studied. By 115 

doing so, the topology of the Octahedron family emerges clearly. 116 

 117 

Results 118 

Topology of the Octahedron family  119 

The folding processes from the expanded octahedron to the octahedron and from the 120 

double-expanded octahedron to the expanded octahedron are analyzed in detail in order 121 

to define the topology of the Octahedron family. 122 

Figure 3.a shows the equilibrium configuration of the expanded octahedron depicted in 123 

Figure 1.b with qb = -2qc. It is an octahedron whose nodes, struts, and cables are all 124 

duplicated. This is because the octahedron is a folded form of the expanded octahedron 125 

(or, from another perspective, the expanded octahedron is the expansion of the 126 

octahedron). For this reason, there are pairs of nodes that have the same position in the 127 

space (see the numbering of nodes in Figure 3.a). It can be seen that struts 5 – 7 and 8 – 128 
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6 overlap because nodes 5 – 8 and 7 – 6 have the same coordinates in the space, 129 

respectively. Consequently, the struts 5 – 7 and 8 – 6 of Figure 1.b (that are both in group 130 

1) come from the expansion of the strut 3 – 4 of Figure 1.a. Figure 3.b shows the 131 

overlapped rhombic cells of the expanded octahedron. Each pair of nodes is composed of 132 

two nodes that belong to different rhombic cells (italic and bold numbers, respectively). 133 

This distinction has been made based on the rhombic cells shown in Figure 1.b. In Figure 134 

3.c the overlapped rhombic cells are shown separately. Obviously, the rhombic cells 135 

shown in Figure 3.c coincide with the ones shown in Figure 1.b. 136 

 137 

 138 

Figure 3. Expanded octahedron with qb = -2qc (a), overlapped rhombic cells (b) and rhombic cells (c). 139 

Thick gray and thin black lines correspond to struts and cables, respectively. 140 

 141 

Figure 4.a shows the equilibrium configuration of the double-expanded octahedron 142 

depicted in Figure 1.c with qb = -3/2qc. It corresponds to an expanded octahedron whose 143 

nodes, struts, and cables are all duplicated (see the numbering of nodes of Figure 4.a). In 144 

this case, 6 overlapped rhombic cells are shown in Figure 4.b, resulting in 12 rhombic 145 

cells (see Figure 4.c). As expected, the rhombic cells in Figure 4.c coincide with the ones 146 

in Figure 1.c. 147 
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 148 

 149 

Figure 4. Double-expanded octahedron with qb = -3/2qc (a), overlapped rhombic cells (b) and rhombic 150 

cells (c). Thick gray and thin black lines correspond to struts and cables, respectively. 151 

 152 

Let us consider Figure 3 and 4 from another point of view. Instead of studying the folding 153 

of a higher member to a lower one, at this point, the expansion of a lower member to a 154 

higher one is considered. Let p be the position of the tensegrity in the Octahedron family 155 

(p = 1 for the octahedron, p = 2 for the expanded octahedron, p = 3 for the double-156 

expanded octahedron and so on). Based on Figure 3 and 4, the rhombic cells of ALL the 157 

members of the Octahedron family can be obtained by following these steps (with the 158 

exception of the octahedron, because it is not the expansion of a previous member of the 159 

family): 160 

1. Draw a 3  2(p-2) matrix of overlapped rhombic cells. 161 
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2. Number consecutively all the pairs of principal nodes of each rhombic cell (see 162 

Figure 5.a). 163 

3. From left to right number the secondary nodes as the principal nodes of the 164 

following group of rhombic cells in consecutive order from left to right and from 165 

top to bottom (see Figure 5.b). Note that the groups of rhombic cells form a closed 166 

loop, so group 1 comes after group 3 (see the detail in Figure 5.b). 167 

4. Separate the overlapped rhombic cells so that one rhombic cell is defined by the 168 

top-left principal node, by both left secondary nodes and by the bottom-right 169 

principal node (see the squared numbers in Figure 5.b). The other rhombic cell is 170 

defined by the rest of nodes. 171 

The example shown in Figure 5 corresponds to the expansion of the expanded octahedron 172 

to the double-expanded octahedron. The way in which this has been determined is novel: 173 

from the expansion of the lower member of the family (expanded octahedron in this case) 174 

by following the topology of the Octahedron family. 175 

 176 

 177 

Figure 5. Expansion from the expanded octahedron to the double-expanded octahedron 178 

 179 

Superior members of the Octahedron family 180 
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Let us apply the topology of the Octahedron family to determine the fourth member: the 181 

triple-expanded octahedron (p = 4). The 24 rhombic cells of the triple-expanded 182 

octahedron have been defined following the steps described above. The solutions of the 183 

form-finding problem are qb = -2qc, qb = -3/2qc, qb = -4/3qc and qb = -5/4qc. The solution 184 

qb = -5/4qc corresponds to the full form of the triple-expanded octahedron (see Figure 6). 185 

This is a new super-stable tensegrity composed of 24 rhombic cells, 48 nodes, 24 struts 186 

and 96 cables. On the other hand, the solutions qb = -4/3qc, qb = -3/2qc and qb = -2qc 187 

correspond to the folded forms of the triple-expanded octahedron: the double-expanded 188 

octahedron, the expanded octahedron, and the octahedron, respectively. This confirms 189 

that this tensegrity belongs to the Octahedron family.  190 

 191 

 192 

Figure 6. Triple-expanded octahedron 193 

 194 

It can be concluded that this newly presented topology represents a general pattern that 195 

extends the connectivity pattern previously defined in Fernández-Ruiz et al.21. Moreover, 196 

the topology of the Octahedron family can be easily programmed in order to define the 197 

numbering of the rhombic cells of superior members. 198 

 199 
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Sequence of solutions 200 

For the sake of clarity and without loss of generality, in all the tensegrities shown in this 201 

work, only two force:length ratios have been considered (qc for cables and qb for 202 

bars/struts). The analytical form-finding method proposed in18,21 has been used to 203 

compute the force:length ratios that lead to an equilibrium configuration of the tensegrity. 204 

The biggest computing cost of the form-finding problem corresponds to the analytical 205 

calculation of qc and qb. 206 

The solutions to the form-finding problem of the full forms of the members of the 207 

Octahedron family are qb = -2qc for the octahedron, qb = -3/2qc for the expanded 208 

octahedron, qb = -4/3qc for the double-expanded octahedron and qb = -5/4qc for the triple-209 

expanded octahedron (all of which are super-stable tensegrities). It can be seen that the 210 

force:length ratios of the tensegrities of the Octahedron family follow the mathematical 211 

sequence shown in Eq. (1) and depicted in Figure 7. 212 

1b

c

q p

q p


   (1)

 213 

 214 
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Figure 7. Sequence of solutions of qb/qc of the Octahedron family shown in Eq. (1) 215 

 216 

It has been proved that the sequence shown in Eq. (1) is valid for all the members of the 217 

Octahedron family. Figure 8 shows the equilibrium configurations of the five-time-218 

expanded octahedron, six-time-expanded octahedron, nine-time-expanded octahedron, 219 

and eleven-time-expanded octahedron (all of them super-stable). It should be highlighted 220 

that the eleven-time-expanded octahedron shown in Figure 8.d is a super-stable tensegrity 221 

formed by 12288 nodes, 6144 struts and 24576 cables. As far as the authors know, a 222 

super-stable tensegrity with such a high number of nodes, struts, and cables has not been 223 

reported in the literature. Moreover, the procedure presented in this paper allows an 224 

endless number of new super-stable tensegrities based on the topology of the Octahedron 225 

family to be obtained. 226 

 227 
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 228 

Figure 8. Five-time-expanded octahedron (a), six-time-expanded octahedron (b), nine-time-expanded 229 

octahedron (c), and eleven-time-expanded octahedron (d) 230 

 231 

It can be seen in Figure 8 that the superior members of the Octahedron family have a 232 

quasiregular square honeycomb shape. Honeycomb materials have high strength, specific 233 

stiffness, and energy absorption efficiency28–30 and they are widely observed in natural 234 

materials31. Due to these characteristics, the members of the Octahedron family such as 235 

the eleven-time-expanded octahedron could have promising engineering and 236 

bioengineering applications. 237 
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 238 

Discussion 239 

The topology of the Octahedron family is completely developed. Up to now, only three 240 

members of the Octahedron family were known: the octahedron, the expanded 241 

octahedron and the double-expanded octahedron. The folding process from a higher 242 

member to a lower one has been analyzed in order to define the topology of the family. 243 

The topology presented in this work has been adapted to the definition of all the members 244 

of the Octahedron family. An analytical form-finding method has been used to compute 245 

the equilibrium configuration of the studied tensegrities. It is remarkable that no nodal 246 

coordinates or nodal connectivity are required as initial input data, only the position of 247 

the tensegrity in the Octahedron family p. The ratio between the force:length ratio of 248 

struts and cables (qb/qc) that leads to a super-stable equilibrium configuration of the 249 

members of the family follows a mathematical sequence that depends on p. Therefore, 250 

the computation cost of the analytical form-finding method is significantly diminished (it 251 

is reduced to the calculation of the eigenvectors of the force density matrix of the 252 

tensegrity). The eleven-time-expanded octahedron is depicted to illustrate the potential of 253 

the Octahedron family. This super-stable tensegrity is formed by 12288 nodes, 6144 254 

struts, and 24576 cables, and it is, the largest super-stable tensegrity reported in the 255 

literature (in terms of number of nodes, cables, and struts) so far. By applying the 256 

procedure presented in this paper, superior members of the Octahedron family can be 257 

defined. Finally, due to their quasiregular honeycomb shape, the members of the 258 

Octahedron family could have promising engineering and bioengineering applications. 259 

 260 

Methods 261 

Analytical form-finding method for tensegrity structures18,21 262 
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The equilibrium equations of a tensegrity with n nodes and m members can be formulated 263 

as14,32: 264 

= 0

= 0

= 0

D x 

D y 

D z 

 (2)

where D = CTQC (nn) is the force density matrix and x, y, z (n) the nodal 265 

coordinate vectors. The symbol []T represents the transpose operation of a matrix or 266 

vector. The force:length ratio q of each member of the family and the connectivity 267 

matrix C are the inputs of the form-finding method. The connectivity matrix C (mn) 268 

shows the connectivity between the nodes of the tensegrity and it is constructed in the 269 

following way: if a general member j connects nodes i and k (with i < k), the ith and kth 270 

elements of the jth row of C are set to 1 and -1 respectively. The values of the 271 

force:length ratio of each member are collected in the vector q = (q1, q2, ..., qm) (m), 272 

being Q the diagonal square matrix of vector q.  273 

A necessary condition for the development of a tensegrity with dimension d is that the 274 

rank deficiency of matrix D is at least d + 1 (non-degeneracy condition15,18). The non-275 

degeneracy condition is achieved imposing that the characteristic polynomial of D (see 276 

Eq. (3)) has d + 1 zero roots. By doing so, coefficients a3, a2, a1 and a0 of the 277 

characteristic polynomial must be zero in order to obtain a three-dimensional (3D) 278 

tensegrity. By construction of D, it is always singular and consequently coefficient a0 is 279 

always 0. The system of equations in terms of the force:length ratios of the members of 280 

the 3D tensegrity shown in Eq. (4) is analytically solved in order to obtain a rank 281 

deficiency of matrix D of at least d + 1. 282 

-1
-1 1 0( )= + +…+ +n n

np λ λ a λ a λ a  (3)
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3 1 m

2 1 m

1 1 m

( ,…, ) = 0

( ,…, ) = 0

( ,…, ) = 0

a q q

a q q

a q q

 (4)

A more detailed description of the analytical form-finding procedure used in this work 283 

can be seen in18,21. 284 

The highest computation cost of the form-finding method is the computation of the 285 

analytical solution of the system of equations shown in Eq. (4). The sequence of solutions 286 

of qb/qc followed by the members of the Octahedron family means that this step can be 287 

avoided. In addition, matrix D can be directly formulated using the values of the 288 

force:length ratio of the members as: 289 

      for =  

if  nodes  and  are connected by member 

0            otherwise                                              

k
k

ij k

q i j                                                      

-q           i j k





D

    








 (5)

With Γ as the set of members connected to the node i. Consequently, the form-finding 290 

process of the members of the Octahedron family is reduced to a calculation of the 291 

eigenvectors of D (Eq. (2)). 292 

A super-stable tensegrity is always stable, regardless of material properties and 293 

prestress22,23. The super-stability conditions of tensegrity structures are as follows22,23,32: 294 

1. The rank deficiency of the force density matrix D is exactly d + 1. 295 

2. The force density matrix D is positive semi-definite. 296 

3. The rank of the matrix G is (d 2 + d)/2. 297 

An in-depth  explanation on the geometry matrix G can be seen in32. The stability of 298 

tensegrity structures has been discussed in detail in 21,23,32. All the full forms of the 299 

members of the Octahedron family presented in this work fulfills all the super-stability 300 

conditions. 301 

 302 
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 386 

Figure legends 387 

Figure 1. Octahedron (a), expanded octahedron (b) and double-expanded 388 

octahedron (c) and their corresponding rhombic cells. Thick gray and thin black 389 

lines correspond to struts and cables, respectively. 390 

In Figure 1, all the members of the Octahedron family known so far are shown: the 391 

octahedron, the expanded octahedron and the double-expanded octahedron. These 392 

tensegrities can be constructed by assembling one-bar elementary rhombic cells. The 393 

rhombic cells that conform each tensegrity are also presented in the figure, where thick 394 

gray and thin black lines correspond to struts and cables, respectively. Rhombic cells are 395 

grouped in three main groups because all of them will overlap each other in the three 396 

struts of the first member (the octahedron). Finally, numbering of nodes is also shown in 397 

order to make clear that the connectivity between the nodes of the tensegrity is completely 398 

defined by the rhombic cells. 399 

 400 

Figure 2. Elementary rhombic cell 401 

In this figure the nomenclature of the nodes of a rhombic cell is defined: top and bottom 402 
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principal nodes and left and right secondary nodes. 403 

 404 

Figure 3. Expanded octahedron with qb = -2qc (a), overlapped rhombic cells (b) and 405 

rhombic cells (c). Thick gray and thin black lines correspond to struts and cables, 406 

respectively 407 

Figure 3.a shows the equilibrium configuration of the expanded octahedron with qb = -408 

2qc. This solution leads to a folded form: an octahedron whose nodes, cables and struts 409 

are all duplicated. Figure 3.b shows the overlapped rhombic cells of the resultant 410 

tensegrity. The pairs of nodes indicated in Figure 3.b correspond to two nodes that share 411 

the same position in the space. Italic and bold numbers indicate that their corresponding 412 

nodes belong to different rhombic cells. Figure 1.b has been used in order to make this 413 

distinction. Finally, Figure 3.c shows the rhombic cells that conform the folded form of 414 

the expanded octahedron.  415 

 416 

Figure 4. Double-expanded octahedron with qb = -3/2qc (a), overlapped rhombic cells 417 

(b) and rhombic cells (c). Thick gray and thin black lines correspond to struts and 418 

cables, respectively. 419 

Figure 4.a shows the equilibrium configuration of the double-expanded octahedron with 420 

qb = -3/2qc. This solution leads to a folded form: an expanded octahedron whose nodes, 421 

cables and struts are all duplicated. On the other hand, Figure 4.b shows the overlapped 422 

rhombic cells of the folded form of the double-expanded octahedron. As in Figure 3, the 423 

pairs of nodes indicated in Figure 4.b correspond to two nodes that share the same position 424 

in the space. Italic and bold numbers indicate that their corresponding nodes belong to 425 

different rhombic cells. Figure 1.c has been used in order to make this distinction. Finally, 426 

Figure 4.c shows the rhombic cells that conform the folded form of the double-expanded 427 
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octahedron.  428 

 429 

Figure 5. Expansion from the expanded octahedron to the double-expanded 430 

octahedron 431 

The procedure proposed in this work to obtain the rhombic cells of all the members of 432 

the Octahedron family is applied in Figure 5 to the double-expanded octahedron (p = 2). 433 

In Figure 5.a the principal nodes of the overlapped rhombic cells are numbered. It is 434 

interesting to remark that the numbering of these nodes is free. Figure 5.b shows the 435 

numbering of the secondary nodes, that is directly influenced by the numbering of the 436 

principal nodes, following the topology of the Octahedron family. Finally, the overlapped 437 

rhombic cells are separated (squared numbers in Figure 5.b). 438 

 439 

Figure 6. Triple-expanded octahedron 440 

Figure 6 shows the equilibrium configuration of the triple-expanded octahedron. The 441 

rhombic cells that conform this tensegrity have been obtained according to the topology 442 

of the Octahedron family. 443 

 444 

Figure 7. Sequence of solutions of qb/qc of the Octahedron family shown in Eq. (1) 445 

Figure 7 shows the graphical representation of the sequence of solutions of qb/qc of the 446 

Octahedron family (see Eq. (1)). This sequence of solutions is a very important 447 

contribution of the work because it significantly reduces the computation cost of the form-448 

finding process. 449 

 450 

Figure 8. Five-time-expanded octahedron (a), six-time-expanded octahedron (b), 451 

nine-time-expanded octahedron (c), and eleven-time-expanded octahedron (d) 452 
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Figure 8 shows the equilibrium shapes of the five-time-expanded octahedron, six-time-453 

expanded octahedron, nine-time-expanded octahedron, and eleven-time-expanded 454 

octahedron. These members of the Octahedron family have been obtained following the 455 

procedure proposed in this work. It should be noted that, as far as the authors know, the 456 

eleven-time-expanded octahedron is the largest super-stable tensegrity structure reported 457 

in literature. 458 


