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Lie Derivatives of the Shape Operator
of a Real Hypersurface in a Complex
Projective Space

Juan de Dios Pérez and David Pérez-López

Abstract. We consider real hypersurfaces M in complex projective space
equipped with both the Levi-Civita and generalized Tanaka–Webster
connections. Associated with the generalized Tanaka–Webster connec-
tion we can define a differential operator of first order. For any nonnull
real number k and any symmetric tensor field of type (1,1) B on M ,

we can define a tensor field of type (1,2) on M , B
(k)
T , related to Lie de-

rivative and such a differential operator. We study symmetry and skew

symmetry of the tensor A
(k)
T associated with the shape operator A of

M .
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1. Introduction

We will denote by CPm, m ≥ 2, the complex projective space equipped
with the Kählerian structure (J, g), J being the complex structure and g the
Fubini-Study metric with constant holomorphic sectional curvature 4. Take a
connected real hypersurface without boundary M in CPm whose local normal
unit vector field is N . Take ξ = −JN . Then ξ is a tangent vector field to M
that we call the Reeb vector field (or the structure vector field) on M . For
any tangent vector field X on M , we write JX = φX + η(X)N , where φX is
the tangent component of JX and η(X) = g(X, ξ). Then (φ, ξ, η, g) defines
on M an almost contact metric structure [1], where g is the induced metric
on M .

Takagi, see Refs. [5,8–10], classified homogeneous real hypersurfaces of
CPm into six types. All of them are Hopf, that is, their structure vector
fields are principal (Aξ = αξ, for a function α on M). Denote by D the
maximal holomorphic distribution on M : at any point p ∈ M , Dp = {X ∈
TpM |g(X, ξp) = 0}. Kimura [5] proved that any Hopf real hypersurface M in
CPm whose principal curvatures are constant belongs to Takagi’s list.
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The unique real hypersurfaces in CPm with two distinct principal curva-
tures are geodesic hyperspheres of radius r, 0 < r < π

2 , see Ref. [2]. Their prin-
cipal curvatures are 2cot(2r) with eigenspace R[ξ] and cot(r) with eigenspace
D.

The canonical affine connection on a non-degenerate, pseudo-Hermitian
CR-manifold was defined, independently, by Tanaka [11], and Webster [13],
and it is known as the Tanaka–Webster connection. For contact metric man-
ifolds, Tanno [12] introduced a generalized Tanaka–Webster connection.

For a real hypersurface M of CPm and any nonnull real number k, Cho,
see [3,4], generalized Tanno’s definition to the concept of kth generalized
Tanaka–Webster connection by

∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY (1.1)

for any X,Y tangent to M . Then the four elements of the almost contact
metric structure on M are parallel for this connection and if the shape oper-
ator of the real hypersurface satisfies φA+Aφ = 2kφ, the real hypersurface is
contact and the kth generalized Tanaka–Webster connection coincides with
the Tanaka–Webster connection.

We define the kth Cho operator on M associated with the tangent
vector field X by F

(k)
X Y = g(φAX, Y )ξ − η(Y )φAX − kη(X)φY , for any

Y tangent to M . The torsion of the connection ∇̂(k) is given by T (k)(X,Y ) =
F

(k)
X Y − F

(k)
Y X for any X,Y tangent to M . We also define the kth torsion

operator associated with the tangent vector field X by T
(k)
X Y = T (k)(X,Y )

for any Y tangent to M .
Let L denote the Lie derivative on M . Then LXY = ∇XY − ∇Y X for

any X,Y tangent to M . On M we can also define a differential operator of
first order associated with the kth generalized Tanaka–Webster connection
by L(k)

X Y = ∇̂(k)
X Y − ∇̂(k)

Y X = LXY + T
(k)
X Y , for any X,Y tangent to M .

Let now B be a symmetric tensor of type (1,1) defined on M . We can as-
sociate with B a tensor field of type (1,2) B

(k)
T by B

(k)
T (X,Y ) = [T (k)

X , B]Y =
T

(k)
X BY − BT

(k)
X Y , for any X,Y tangent to M .

Consider the condition L(k)B = LB for some nonnull real number k.
This means that for any X,Y tangent to M (L(k)

X B)Y = (LXB)Y . This is
equivalent to having B

(k)
T = 0.

Generalizing this we can consider that the tensor B
(k)
T is symmetric, that

is, B
(k)
T (X, Y ) = B

(k)
T (Y,X) for any X,Y tangent to M . This is equivalent

to have the following Codazzi-type condition
((

L(k)
X − LX

)
B

)
Y =

((
L(k)

Y − LY

)
B

)
X (1.2)

for any X,Y tangent to M .
On the other hand, we can suppose that B

(k)
T is skew symmetric, that

is, B
(k)
T (X,Y ) = −B

(k)
T (Y,X), for any X,Y tangent to M . This is equivalent

to the following Killing-type condition:
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((
L(k)

X − LX

)
B

)
Y +

((
L(k)

Y − LY

)
B

)
X = 0 (1.3)

for any X,Y tangent to M .
In the particular case of B = A, the shape operator of M , in Ref. [7]

the first author proved non-existence of real hypersurfaces in CPm, m ≥ 3,
satisfying L(k)A = LA, that is, A

(k)
T = 0, for any nonnull real number k.

The purpose of the present paper is to study real hypersurfaces M in
CPm such that the shape operator satisfies either (1.2) or (1.3). In fact, we
will obtain the following.

Theorem 1. There does not exist any real hypersurface M in CPm, m ≥ 3,
such that, for some nonnull real number k, A

(k)
T is symmetric.

In the case of A
(k)
T being skew symmetric, we have a very different

situation given by the

Theorem 2. Let M be a real hypersurface M in CPm, m ≥ 3, and k a nonnull
real number. Then the tensor field A

(k)
T is skew symmetric if and only if M

is locally congruent to a geodesic hypersphere of radius r, 0 < r < π
2 , such

that cot(r) = k.

2. Preliminaries

Throughout this paper, all manifolds, vector fields, etc., will be considered
of class C∞ unless otherwise stated. Let M be a connected real hypersurface
in CPm, m ≥ 2, without boundary. Let N be a locally defined unit normal
vector field on M . Let ∇ be the Levi-Civita connection on M and (J, g) the
Kählerian structure of CPm.

For any vector field X tangent to M , we write JX = φX +η(X)N , and
−JN = ξ. Then (φ, ξ, η, g) is an almost contact metric structure on M , see
Ref. [1]. That is, we have

φ2X = −X+η(X)ξ, η(ξ)=1, g(φX, φY )=g(X,Y )−η(X)η(Y ) (2.1)

for any vectors X,Y tangent to M . From (2.1), we obtain

φξ = 0, η(X) = g(X, ξ). (2.2)

From the parallelism of J , we get

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ (2.3)

and
∇Xξ = φAX (2.4)

for any X,Y tangent to M , where A denotes the shape operator of the im-
mersion. As the ambient space has holomorphic sectional curvature 4, the
equation of Codazzi is given by

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ (2.5)

for any tangent vector fields X,Y to M . We will call the maximal holomor-
phic distribution D on M to the following one: at any p ∈ M , Dp = {X ∈
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TpM |g(X, ξp) = 0}. We will say that M is Hopf if ξ is principal, that is,
Aξ = αξ for a certain function α on M .

In the sequel, we need the following result, which consists of a combi-
nation of the Lemmas 2.1, 2.2 and 2.4 in Ref. [6].

Theorem 2.1. If ξ is a principal curvature vector with corresponding principal
curvature α, this is locally constant and if X ∈ D is principal with principal
curvature λ, then 2λ − α �= 0 and φX is principal with principal curvature
αλ+2
2λ−α .

3. Proof of Theorem 1

If M satisfies (1.2) for B = A, we get L(k)
X AY −LXAY −AL(k)

X Y +ALXY =
L(k)

Y AX −LY AX −AL(k)
Y X +ALY X for any X,Y tangent to M . Therefore,

we have F
(k)
X AY − F

(k)
AY X − 2AF

(k)
X Y + 2AF

(k)
Y X = F

(k)
Y AX − F

(k)
AXY , for

any X,Y tangent to M . This yields

2g(φAX,AY )ξ − η(AY )φAX − kη(X)φAY − g(φA2Y,X)ξ
+η(X)φA2Y + kη(AY )φX

−2g(φAX, Y )Aξ + 2η(Y )AφAX + 2kη(X)AφY + 2g(φAY,X)Aξ

−2η(X)AφAY − 2kη(Y )AφX

= −η(AX)φAY − kη(Y )φAX − g(φA2X,Y )ξ
+η(Y )φA2X + kη(AX)φY

(3.1)

for any X,Y tangent to M . If we suppose that X,Y ∈ D, (3.1) becomes

2g(φAX,AY )ξ − η(AY )φAX − g(φA2Y,X)ξ + kη(AY )φX

−2g(φAX, Y )Aξ + 2g(φAY,X)Aξ

= −η(AX)φAY − g(φA2X,Y )ξ + kη(AX)φY (3.2)

for any X,Y ∈ D. If M is Hopf, that is Aξ = αξ, then (3.2) gives 2g(φAX,
AY )ξ − g(φA2Y,X)ξ − 2αg(φAX, Y )ξ + 2αg(φAY,X)ξ = −g(φA2X,Y )ξ for
any X,Y ∈ D. This yields 2AφAX + A2φX − 2αφAX − 2αAφX = −φA2X
for any X ∈ D. Let us suppose that X ∈ D satisfies AX = λX. From
Theorem 2.1, we have AφX = μφX with μ = αλ+2

2λ−α . Therefore, we obtain
2λμ + μ2 − 2α(λ + μ) + λ2 = 0. That is, (λ + μ)(λ + μ − 2α) = 0.

If λ + μ = 0, as μ = αλ+2
2λ−α , we obtain 2λ2+2

2λ−α = 0. This yields λ2 + 1 = 0,
which is impossible.

If λ + μ = 2α, we should have λ2 − 2αλ + α2 + 1 = 0. This gives
λ = α ± √−1, which is also impossible. Thus, our real hypersurface must
be non-Hopf. This means that ξ is not principal. Therefore, we can write
Aξ = αξ + βU at least on a neighborhood of a point of M , where U is a
unit vector field in D and β a nonvanishing function on such a neighborhood.
From now on, we will denote DU = {X ∈ D|g(X,U) = g(X,φU) = 0} and
make the calculations on that neighborhood. Then (3.2) becomes

2g(φAX,AY )ξ − βg(Y,U)φAX − g(φA2Y,X)ξ + kβg(Y,U)φX
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−2g(φAX, Y )Aξ + 2g(φAY,X)Aξ

= −βg(X,U)φAY − g(φA2X,Y )ξ + kβg(X,U)φY (3.3)

for any X,Y ∈ D. The scalar product of (3.3) and φU yields −βg(Y,U)g(AX,
U) + kβg(Y,U)g(X,U) = −βg(X,U)g(AY,U) + kβg(X,U)g(Y,U), for any
X,Y ∈ D. As β �= 0, we obtain

g(Y,U)g(AX,U) = g(X,U)g(AY,U) (3.4)

for any X,Y ∈ D. If in (3.4) we take X = U , Y ∈ DU we obtain g(AU, Y ) = 0
for any Y ∈ DU , and if we take X = U , Y = φU we get g(AU, φU) = 0.
Therefore, we have

AU = βξ + γU (3.5)

for a certain function γ.
The scalar product of (3.3) and U yields −βg(Y,U)g(φAX,U) + kβg

(Y,U)g(φX,U) − 2βg(φAX, Y ) + 2βg(φAY,X) = −βg(X,U)g(φAY,U) +
kβg(X,U)g(φY,U), for any X,Y ∈ D. If Y = U it follows −βg(φAX,U) +
kβg(φX,U) − 2βg(φAX,U) + 2βg(φAU,X) = 0 for any X ∈ D. That is,
3g(AφU,X) − kg(φU,X) + 2γg(φU,X) = 0. Therefore,

AφU =
k − 2γ

3
φU. (3.6)

Take now X = ξ, Y ∈ D in (3.1). We obtain

2βg(AφU, Y )ξ − βη(AY )φU − kφAY + φA2Y − 2βg(φU, Y )Aξ + 2kAφY

−2AφAY = −αφAY + αβg(U, φY )ξ + βg(AU, φY )ξ + kαφY (3.7)

for any Y ∈ D. Its scalar product with ξ gives, being β �= 0, 2g(AφU, Y ) −
2αg(φU, Y ) + 2kg(φY,U) − 2g(φAY,U) = αg(U, φY ) + γg(U, φY ), for any
Y ∈ D. Therefore, we have 4AφU = (α + 2k − γ)φU , which is equivalent to

AφU =
α + 2k − γ

4
φU. (3.8)

From (3.6) and (3.8), it follows

3α + 2k + 5γ = 0. (3.9)

If we take Y = U in (3.7), it follows −β2φU −kφAU +φA2U +2kAφU −
2AφAU = −αφAU + kαφU . That is, −β2 − kγ + β2 + γ2 + 2kγ′ − 2γγ′ =
−αγ+kα, where γ′ = α+2k−γ

4 . This yields γ2−(2γ′−α+k)γ+k(2γ′−α) = 0.

Therefore, γ = 2γ′−α+k±
√

(2γ′−α−k)2

2 . From this, either γ = k or γ = 2γ′ −α.
Suppose now X,Y ∈ DU . Then (3.2) yields 2g(φAX,AY )ξ−g(φA2Y,X)

ξ−2g(φAX, Y )Aξ+2g(φAY,X)Aξ = −g(φA2Y,X)ξ. Its scalar product with
U gives −2βg(φAX, Y )+ 2βg(φAY,X) = 0. Then g((φA+Aφ)X,Y ) = 0 for
any X,Y ∈ DU . This implies that (φA + Aφ)X = 0 for any X ∈ DU . If we
suppose that AX = λX we obtain that AφX = −λφX. If we take such an
X in (3.7) we get −kφAX +φA2X +2kAφX − 2AφAX = −αφAX + kαφX.
Therefore, −kλ+λ2−2kλ+2λ2 = −αλ+kα. This yields 3λ2−(3k−α)λ−kα =
(λ − k)(λ + α

3 ) = 0. Thus, either λ = k or λ = −α
3 .
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From (3.6) and (3.9) if γ = k, a constant, γ′ = −k
3 is constant and

α = − 7
3 is also constant. Furthermore, all principal curvatures on DU are

also constant.
If γ = 2γ′ − α = 2k−4γ

3 − α, we obtain 3γ = 2k − 4γ − 3α. Then
2k − 7γ − 3α = 0 and from (3.9) 4k − 2γ = 0. This yields γ = 2k is constant,
α = −4k and γ′ = −k are also constant. As above, all principal curvatures
in DU are constant.

Take a unit X ∈ DU such that AX = λX. The Codazzi equation gives
(∇XA)ξ − (∇ξA)X = −φX. That is, ∇X(αξ + βU) − AφAX − ∇ξ(λX) +
A∇ξX = −φX. Therefore, αλφX + X(β)U + β∇XU + λ2φX − λ∇ξX +
A∇ξX = −φX. If we take φX instead of X, we have similarly αλX +
(φX)(β)U + β∇φXU − λ2X + λ∇ξφX + A∇ξφX = X. In both cases, taking
the scalar product with ξ, we have

g(∇ξX,U) = g(∇ξφX,U) = 0. (3.10)

The scalar product with U of the expression for X yields X(β) −
λg(∇ξX,U) + g(∇ξX,βξ + γU) = 0 In the case of φX we obtain (φX)(β) +
λg(∇ξφX,U) + g(∇ξφX, βξ + γU) = 0. Bearing in mind (3.10), we conclude
that

Z(β) = 0 (3.11)

for any Z ∈ D.
On the other hand, we have (∇φUA)ξ−(∇ξA)φU = U . That is, ∇φU (αξ+

βU) − AφAφU − ∇ξ(γ′φU) + A∇ξφU = U . This implies

αφAφU + β∇φUU + (φU)(β)U + γ′AU − γ′∇ξφU + A∇ξφU = U. (3.12)

Its scalar product with ξ gives βg(AφU, φU) + βγ′ + γ′g(Aξ,U) + g
(∇ξφU, αξ + βU) = 0. That is, 3βγ′ − αβ + βg(∇ξφU,U) = 0. Therefore,

g(∇ξφU,U) = −3γ′ + α. (3.13)

The scalar product of (3.12) with U gives −αg(AφU, φU) + (φU)
(β) + γγ′ − γ′g(∇ξφU,U) + g(∇ξφU, βξ + γU) = 1. From (3.13) this yields
−αγ′ + (φU)(β) + γγ′ − γ′(−3γ′ + α) − β2 − 3γγ′ + αγ = 1. Thus, we obtain

(φU)(β) = 1 + 2αγ′ + 2γγ′ − 3γ′2 + β2 − αγ. (3.14)

Now (∇UA)ξ − (∇ξA)U = −φU implies

αφAU + U(β)U + β∇UU − γγ′φU − ξ(β)ξ − βφAξ − γ∇ξU + A∇ξU = −φU.
(3.15)

Its scalar product with ξ gives −βg(U, φAU)−ξ(β)+γg(U, φAξ)+g(∇ξU,αξ+
βU) = 0. From this we have

ξ(β) = 0. (3.16)

The scalar product of (3.15) with U yields U(β)+g(∇ξU, βξ +γU) = 0.
This gives

U(β) = 0. (3.17)

From (3.11), (3.14), (3.16) and (3.17) we obtain

grad(β) = (β2 + 1 + 2αγ′ + 2γγ′ − 3γ′2 − αγ)φU. (3.18)
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We will call ω = β2 + 1 + 2αγ′ + 2γγ′ − 3γ′2 − αγ. We know that
g(∇Xgrad(β), Y ) = g(∇Y grad(β),X) for any X,Y tangent to M . In our case
we have X(ω)g(φU, Y ) + ωg(∇XφU, Y ) = Y (ω)g(φU,X) + ωg(∇Y φU,X). If
we take X = ξ, from (3.16) and the fact that the all the elements differ-
ent from β appearing in ω are constant, we have ξ(ω) = 0. Thus, we get
−ωg(U,AY ) = ωg(∇ξφU, Y ) for any Y tangent to M . Taking now Y = U
, bearing in mind (3.13) we arrive to −ωγ = ω(−3γ′ + α). If we suppose
ω �= 0 it follows −γ = −3γ′ + α. If γ = k, γ′ = −k

3 and α = − 7k
3 . Therefore,

−k = k − 7k
3 implies k = 0, which is impossible. In the other possible case

γ′ = −k, γ = 2k and α = −4k. Then −2k = 3k−4k gives also a contradiction.
Thus, we have proved that ω = 0. Then 1+2αγ′+2γγ′−3γ′2−αγ+β2 =

0. If γ = k, γ′ = −k
3 and α = − 7k

3 . This yields β2 + 1 + 4
3k2 = 0, which is

impossible. Then γ = 2k, α = −4k and γ′ = −k. Thus β2 + 9k2 + 1 = 0, also
impossible, and we have finished the proof. �

4. Proof of Theorem 2

If M satisfies (1.3) for B = A and any X,Y tangent to M we obtain

−η(AY )φAX − kη(X)φAY − g(φA2Y,X)ξ + η(X)φA2Y + kη(AY )φX
−η(AX)φAY − kη(Y )φAX − g(φA2X,Y )ξ + η(Y )φA2X + kη(AX)φY = 0.

(4.1)
for any X,Y tangent to M . If X,Y ∈ D (4.1) becomes

−η(AY )φAX − g(φA2Y,X)ξ + kη(AY )φX − η(AX)φAY
−g(φA2X,Y )ξ + kη(AX)φY = 0 (4.2)

for any X,Y ∈ D. If in (4.1) we take X = ξ, Y ∈ D, we obtain

− η(AY )φAξ − kφAY + φA2Y − η(Aξ)φAY − g(φA2ξ, Y )ξ + kη(Aξ)φY = 0
(4.3)

for any Y ∈ D.
Let us suppose that M is Hopf and Aξ = αξ. From (4.2) we obtain

−g(φA2Y,X)ξ − g(φA2X,Y )ξ = 0 for any X,Y ∈ D. Therefore, A2φX =
φA2X for any X ∈ D. If X ∈ D satisfies AX = λX, we know that AφX =
μφX with μ = αλ+2

2λ−α . Thus, we have λ2 = μ2 and either λ = μ or μ = −λ.
If αλ+2

2λ−α = −λ we obtain αλ + 2 = −2λ2 + λα. This implies λ2 + 1 = 0,
which is impossible. Therefore, λ = μ. Taking such a Y in (4.3), we have
−kφAY +φA2Y −αφAY +kαφY = 0. That is, −kλ+λ2−αλ+kα = 0. This
gives λ2 − (α + k)λ + kα = (λ − k)(λ − α) = 0, and the possible solutions are
either λ = k or λ = α. Then M has two distinct constant principal curvatures
and from Ref. [2] M must be locally congruent to a geodesic hypersphere
whose principal curvature on D is cot(r) = k.

If M is non-Hopf, as in the previous section, we write Aξ = αξ + βU ,
with the same conditions. From (4.2), it follows

−βg(U, Y )φAX − g(φA2Y,X)ξ + kβg(U, Y )φX
−βg(U,X)φAY − g(φA2X,Y )ξ + kβg(U,X)φY = 0 (4.4)

for any X,Y ∈ D. Its scalar product with U yields
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βg(U, Y )g(AφU,X) − kβg(U, Y )g(φU,X) + βg(U,X)g(AφU, Y )
−kβg(U,X)g(φU, Y ) = 0 (4.5)

for any X,Y ∈ D. If in (4.5) we take X ∈ DU , βg(U, Y )g(AφU,X) = 0. As
β �= 0, if Y = U we obtain g(AφU,X) = 0 for any X ∈ DU . If in (4.5) we take
X = Y = U we have 2βg(AφU,U) = 0. This implies g(AφU,U) = 0. Finally,
taking Y = φU in (4.5) we get βg(U,X)g(AφU, φU)−kβg(U,X) = 0 for any
X ∈ D. For X = U we obtain g(AφU, φU) = k. Therefore, we have seen that

AφU = kφU. (4.6)

The scalar product of (4.4) and φU gives −βg(Y,U)g(AU,X) + kβg
(U, Y )g(U,X)−βg(U,X)g(AU, Y )+kβg(U,X)g(U, Y ) = 0 for any X,Y ∈ D.
Taking X = Y = U we have −2βg(AU,U)+2kβ = 0 and then g(AU,U) = k.
On the other hand, (4.3) yields −β2g(Y,U)φU − kφAY + φA2Y − αφAY +
αg(Aξ, φY )ξ + βg(AU, φY )ξ + kαφY = 0 for any Y ∈ D. Its scalar product
with ξ implies

αg(Aξ, φY ) + βg(AU, φY ) = 0 (4.7)
for any Y ∈ D. If Y = φX, X ∈ DU , we obtain βg(AU,X) = 0 for any
X ∈ DU and if Y = φU in (4.7) it follows −αβ − βg(AU,U) = 0. Therefore,
g(AU,U) = −α and we get

α = −k (4.8)
and

AU = βξ + kU. (4.9)
Let X,Y ∈ DU . From (4.4) we have −g(φA2Y,X) − g(φA2X,Y ) = 0.

From (4.6) and (4.9) DU is A-invariant and we obtain φA2X = A2φX for any
X ∈ DU . Let us suppose that Y ∈ DU satisfies AY = λY . From (4.3) we get
−kλφY +λ2φY −αλφY +kαφY = 0. From (4.8) it follows λ2φY −k2φY = 0.
Thus, λ2 = k2 and λ is constant.

For such a Y ∈ DU the Codazzi equation gives (∇Y A)ξ − (∇ξA)Y =
−φY . Therefore, ∇Y (−kξ + βU) − AφAY − ∇ξ(λY ) + A∇ξY = −φY . Then
−kφAY + Y (β)U + β∇Y U − AφAY − λ∇ξY + A∇ξY = −φY . Its scalar
product with U yields Y (β) − λg(∇ξY,U) + g(∇ξY, βξ + kU) = 0 and

Y (β) = (λ − k)g(∇ξY,U). (4.10)

On the other hand, (∇Y A)U − (∇UA)Y = 0. From this we obtain
∇Y (βξ + kU) − A∇Y U − ∇U (λY ) + A∇UY = 0. That is, Y (β)ξ + βφAY +
k∇Y U − A∇Y U − λ∇UY + A∇UY = 0. Its scalar product with ξ gives
Y (β) − kg(U, φAY ) − g(∇Y U,αξ) + λg(Y, φAU) + g(∇UY, αξ + βU) = 0.
Then

Y (β) = −βg(∇UY,U). (4.11)
Its scalar product with U implies −g(∇Y U, βξ)−λg(∇UY,U)+g(∇UY,

βξ + kU) = 0. This yields (λ − k)g(∇Y U, Y ) = 0. If g(∇UY,U) = 0 from
(4.11) we get Y (β) = 0. If g(∇UY,U) �= 0, λ = k and from (4.10) again

Y (β) = 0 (4.12)

for any Y ∈ DU .
Moreover (∇UA)ξ − (∇ξA)U = −φU implies ∇U (−kξ +βU)−AφAU −

∇ξ(βξ + kU) + A∇ξU = −φU . Then −kφAU + U(β)U + β∇UU − AφAU −



MJOM Lie Derivatives of the Shape Operator of a Real Hypersurface Page 9 of 10   207 

ξ(β)ξ − βφAξ − k∇ξU + A∇ξU = −φU and its scalar product with ξ gives
−βg(U, φAU) − ξ(β) + kg(U, φAξ) + g(∇ξU,αξ + βU) = 0. Therefore,

ξ(β) = 0 (4.13)

and its scalar product with U yields U(β) + g(∇ξU, βξ) = 0. That is

U(β) = 0. (4.14)

Now we develop (∇φUA)ξ − (∇ξA)φU = U . Then ∇φU (−kξ + βU) −
AφAφU − ∇ξ(kφU) + A∇ξφU = U that implies −kφAφU + (φU)(β)U +
β∇φUU −AφAφU − k∇ξφU +A∇ξφU = U . Its scalar product with U yields

(φU)(β) = 1 + β2 − 2k2. (4.15)

Its scalar product with ξ gives βg(AφU, φU) + βg(AφU, φU) + kg(φU,
φAξ) + g(∇ξφU,−kξ + βU) = 0. Therefore,

g(∇ξφU,U) = −4k (4.16)

and
grad(β) = ωφU (4.17)

where ω = 1 + β2 − 2k2. Now, as in previous section, g(∇X(ωφU), Y ) =
g(∇Y (ωφU),X) for any X,Y tangent to M . This yields X(ω)g(φU, Y ) +
ωg(∇XφU, Y ) = Y (ω)g(φU, X) + ωg(∇Y φU,X). If X = ξ we get ωg(∇ξφU,
Y ) = ωg(∇Y φU, ξ) = −ωg(φU, φAY ) = −ωg(U,AY ). Take Y = U . Then
ωg(∇ξφU,U) − kω. This and (4.16) give ω = 0 and, therefore, β is constant
and equals 2k2 − 1.

Now (∇UA)φU−(∇φUA)U = −2ξ. Then ∇U (kφU)−A∇UφU−∇φU (βξ+
kU) + A∇φUU = −2ξ, that is, k∇UφU − A∇UφU − βφAφU − k∇φUU +
A∇φUU = −2ξ. If we take its scalar product with U we obtain 3kβ = 0,
which is impossible and finishes the proof. �
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