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Abstract

Mistletoe–host systems exemplify an intimate and chronic relationship where mistle-

toes represent protracted stress for hosts, causing long-lasting impact. Although host

changes in morphological and reproductive traits due to parasitism are well known,

shifts in their physiological system, altering metabolite concentrations, are less

known due to the difficulty of quantification. Here, we use ecometabolomic tech-

niques in the plant–plant interaction, comparing the complete metabolome of the

leaves from mistletoe (Viscum album) and needles from their host (Pinus nigra), both

parasitized and unparasitized, to elucidate host responses to plant parasitism. Our

results show that mistletoe acquires metabolites basically from the primary metabo-

lism of its host and synthesizes its own defence compounds. In response to mistletoe

parasitism, pines modify a quarter of their metabolome over the year, making the

pine canopy metabolome more homogeneous by reducing the seasonal shifts in top-

down stratification. Overall, host pines increase antioxidant metabolites, suggesting

oxidative stress, and also increase part of the metabolites required by mistletoe,

which act as a permanent sink of host resources. In conclusion, by exerting biotic

stress and thereby causing permanent systemic change, mistletoe parasitism gener-

ates a new host-plant metabolic identity available in forest canopy, which could have

notable ecological consequences in the forest ecosystem.

K E YWORD S

ecometabolomic, mistletoe–host system, oxidative stress, permanent and systemic effects,
plant–plant interaction, seasonality

1 | INTRODUCTION

Plants react to biotic and abiotic stress, causing a wide range of well-

known biotic changes, for example by modifying plant ecophysiology,

growth, reproduction and phenology (Pérez-Ramos et al., 2020;

Strauss & Zangerl, 2002). These responses could be almost

instantaneous in response to a pulse disturbance or could cause a per-

manent reaction, leaving a long-lasting fingerprinting and, eventually,

causing a generalized effect throughout the system over time

(Bender, Case, & Gilpin, 1984; Sutherland, 1981). Thus, while insect

outbreaks and some abiotic disturbances (e.g., episodic drought

events, wildfires and strong storms) have short-term implications, the
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case of parasitic plants such as mistletoe represents a long-term host–

parasite interaction that might cause a permanent host reaction

(Lázaro-González, H�odar, & Zamora, 2019a).

Mistletoe are long-lived plants with a perennial endophytic sys-

tem called haustorium, which is embedded in the host xylem system

and serves to parasitize by extracting water and minerals from the

host (Ehleringer et al., 1985; Hawksworth & Wiens, 1996; Marshall &

Ehleringer, 1990). Vast literature is available on the visible changes

that mistletoe cause to their host, such as growth and reproductive

changes (Kuijt, 1955; Pennings & Callaway, 2002; Press &

Phoenix, 2005), as well as to their neighbouring plants (Hartley

et al., 2015; H�odar, Lázaro-González, & Zamora, 2018; Mellado &

Zamora, 2017) and insect community (Hartley et al., 2015; Lázaro-

González, H�odar, & Zamora, 2019b; Mellado, Hobby, Lázaro-

González, & Watson, 2019). However, less evident effects, such as

chemical profile alterations, have been less studied, with attention

usually focused on a single compound or group of metabolites

(e.g., Anselmo-Moreira, Teixeira-Costa, Ceccantini, & Furlan, 2019;

Lázaro-González et al., 2019a).

The first response of a plant to biotic or abiotic stress starts with

their phenotypical response including physiological and metabolic

acclimation. These metabolite changes could be episodic or perma-

nent according to the nature of the stress factor (e.g., Peters

et al., 2018 and references therein). The challenge of studying chemi-

cal and physiological plant responses to environmental stress is the

extraordinary variety of traits that can be altered, as well as the range

of analytical methods that researchers need in order to disentangle

the situation. A consequence of this complexity is that most of the

research studies using traditional techniques focus on a single com-

pound or a group of compounds, such as chemical defence by toxins

and deterrents (e.g., Chen, 2008; Sampedro, Moreira, & Zas, 2011).

Plant metabolite profiles comprise a complex set of primary metabo-

lites (sugars, amino acids, nucleotides, etc.) and secondary ones (terpe-

noids, phenolics, etc.), jointly called the metabolome, which is

synthesized by the system of plants and which shapes the real func-

tionality of plants at a specific time (Fiehn, 2002; Tomita &

Nishioka, 2005; Weckwerth, 2003). For this reason, metabolomic

techniques that have great sensitivity have been developed, allowing

us to combine ecological and biochemical studies on plants and to

capture these ecophysiological and functional changes in a dynamic

way at the finest metabolite level (Allwood, Clarke, Goodacre, &

Mur, 2010; Bundy, Davey, & Viant, 2008; Gargallo-Garriga

et al., 2017; Lima et al., 2010; Peñuelas & Sardans, 2009a; Sardans,

Peñuelas, & Rivas-Ubach, 2011).

Biotic stress exerted by mistletoe parasitism could alter pine

metabolomic identity in different ways. As modular organisms, pine

trees could have a high phenotypic plasticity, adjusting the response

of the entire module population against environmental conditions. In

addition, tree canopies offer a stratified top-down trait because they

are exposed under a vertical gradient of different microclimatic condi-

tions (e.g., light availability, wind speed, air temperature), generating

top-down differences in ecophysiological properties (Brooks, Flana-

gan, Varney, & Ehleringer, 1997; Lewis, McKane, Tingey, &

Beedlow, 2000; Parker & Brown, 2000). On a temporal scale, the

metabolome of any organism is dynamic and highly susceptible to

change under variations in environmental conditions. For example, in

spring, new shoots start a burst of growth, and therefore, their meta-

bolic requirements differ from those of more mature needles, which

contain compounds from other pathways (Gargallo-Garriga

et al., 2015; Meij�on et al., 2016). In a typical Mediterranean climate,

two crucial and metabolically different periods for current pine

needles could be early summer, after the first elongation, and early

autumn, after a stress period of hot temperatures and drought. For

these reasons, pine stratification and the time period become essen-

tial for researchers to analyse correctly the diversity and spatio-

temporal consistency of metabolic profile on the whole host–parasite

system.

Here, we focus on the European mistletoe (Viscum album subsp.

austriacum Wiesb. Vollman, hereafter V. album), an evergreen, epi-

phytic and dioecious parasitic plant native of most regions of Europe,

which specializes on conifers (Zuber, 2004). Part of changes in the

chemical profile of the main host, the black pine, Pinus nigra subsp.

salzmannii (Dunal) Franco (hereafter P. nigra), caused by V. album, have

recently been studied (Lázaro-González et al., 2019a). This prior study

shows how highly parasitized pines react against mistletoe parasitism,

provoking changes in the concentrations of nitrogen and defence

compounds in pine needles. However, the overall metabolic profile

(the complete set of metabolites) of the plant host–mistletoe interac-

tion has not yet been examined. Thus, a higher-level resolution in the

analyses of host metabolic profile could help to elucidate the diversity

and spatio-temporal consistency of metabolic profile of the host–

parasite system. In addition, metabolomics is a powerful tool for

improving our understanding of the changes in metabolism and bio-

chemical composition of organisms, that is the ultimate phenotypic

response to environmental changes (Fiehn et al., 2000; Peñuelas &

Sardans, 2009b). It is increasingly applied to ecological studies in what

has been called ecometabolomics (Gargallo-Garriga et al., 2016, 2018,

2020; Sardans et al., 2014, 2020). Ecometabolomics approaches have

specially been applied in plant–animal, plant–fungus and plant–

microbe interactions, but this is the first time such an approach has

been used in a plant–plant interaction, which are involved a host–

parasite system with two long-lived plants (Peters et al., 2018).

Our general hypothesis is that parasitized pines react perma-

nently to mistletoe due to the chronic parasitism, changing their

metabolome over the year. Thus, we expect the following:

(a) parasitized pines compared with unparasitized pines will increase

the concentration of metabolites according to mistletoe requirements,

and therefore, these metabolites of parasitized pines would show

more similar concentrations to mistletoes than those of non-

parasitized pines to mistletoe, and (b) parasitized pines will promote

their secondary metabolism to bolster the production of defence com-

pounds against mistletoe parasitism. In addition, due to the intimate

connection of the haustorium with the vascular vessels of the pine

and the long-lasting attack of the mistletoe, we expect (c) these

changes in metabolomics to manifest themselves systemically

throughout the parasitized pine canopy. This study advances our
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understanding of plant–parasitism ecology and the plant–host

responses at the finest metabolic level in two long-lived plants, a rela-

tionship that in turn can promote far-reaching ecological conse-

quences in forest ecosystems.

2 | MATERIALS AND METHODS

2.1 | Study zone

This study was conducted in a Mediterranean pine forest in Sierra de

Baza (Granada, south-eastern Spain, 2�510 4800 W—37�220 5700 N),

which has an altitudinal gradient of 850–2,269 m a.s.l. and represents

the southernmost limit of the V. album subsp. austriacum geographical

distribution. The climate is typically Mediterranean with a mean

annual temperature of 15.5�C (CMAOT, 2017) and annual mean (±SE)

precipitation of 495 ± 33 mm (1991–2006 period; Cortijo Narváez

meteorological station, 1,360 m a.s.l.) concentrated in spring and

autumn, hot and dry summers (June–September) and cold winters

(December–March). This site is dominated by conifers (43%), espe-

cially P. nigra Arn., which is the main host and frequently parasitized

by V. album (Mellado & Zamora, 2020). There are other species of

pines, such as Aleppo (Pinus halepensis Mill.), maritime (Pinus pinaster

Ait.) and Scots pine (P. sylvestris L.), as well as oaks (Quercus ilex,

Q. coccifera, 9%) and an ensemble of shrubs and herbaceous areas

(23%; CMAOT, 2008).

2.2 | Experimental design

The study was conducted in 2015 in a stand of afforested P. nigra

(57.3 ± 3.2 trees ha�1) located at 1450 m a.s.l. in Sierra de Baza.

These trees have the same age (�40 years old) and similar architec-

ture (M [±SE] DBH: 48.4 ± 2.6 cm, and height: 6.1 ± 0.3 m). In addi-

tion, due to the self-reinfection system of mistletoe (Mellado &

Zamora, 2014), pine hosts have a wide range of mistletoe parasite

loads, from mistletoe-free pines to heavily parasitized ones. We

selected 10 unparasitized pines and 10 highly parasitized ones (>50%

of canopy foliage occupied by mistletoe), paired by their structural

similarities (i.e., canopy configuration and size) and spatial proximity.

The pines were selected from within a maximum distance of 30 m and

a minimum of 10 m in order to ensure that the trees constituted inde-

pendent sampling units. We collected three samples of current-year

needles from terminal twigs in each pine, located at different cardinal

points with equivalent distances between them, per strata and at

three different strata within pine canopy (upper, medium and bottom

third of canopy). All samples were collected at the morning (9–10 hr)

and repeated in two seasons (early summer [July] and early autumn

[October]). Each sample was formed by mixing different terminal

twigs from the same canopy stratum. Therefore, the experimental

design contained a total of 120 pine-needle samples: 10 pine trees

per treatment (parasitized and unparasitized), two sampling seasons

(summer and autumn) and three strata for pine-needle samples due to

their vertical gradient (upper, medium and bottom third of the can-

opy). In addition, current-year mistletoe leaves (MLs) of three mistle-

toes randomly selected from the upper part of the parasitized pines

canopy were collected in both seasons.

2.3 | Collection and preparation of tissue samples

The samples were frozen immediately in liquid nitrogen and then

lyophilized and stored in plastic cans at �80�C. At the laboratory,

the samples were ground with a ball mill (Mikrodismembrator-U,

B. Braun Biotech International, Melsungen, Germany) at 1700 rpm

for 4 min, producing a fine powder that was stored at �80�C.

Finally, the powdered samples were extracted with a mix of 80% of

methanol and 20% of water. The rest of the sample preparation is

described in detail by Rivas-Ubach et al. (2013) and Gargallo-Garriga

et al. (2014).

2.4 | Analysis by liquid chromatography-mass
spectrometry (LC–MS)

The LC–MS platform (all from ThermoFisher Scientific, San Jose, CA,

USA, unless otherwise noted) consisted of an Accela U-HPLC system

with quaternary pumps, an HTC PAL autosampler (CTC Analytics AG,

Zwingen, Switzerland), a Keystone hot pocket column heater and an

Exactive Orbitrap mass spectrometer controlled by Xcalibur 2.1.

Reversed-phase LC separation used a Synergy Hydro-RP column

(100 � 2 mm, 2.5 μm particle size, Phenomenex, Torrance, CA, USA)

with the ion-pairing agent tributylamine in the aqueous mobile phase

to enhance retention and separation. The LC used a column with a

small particle size (2.5 μm instead of 4 μm) to reduce peak widths and

expedite analysis. The total run time was 25 min, and the flow rate

was 200 μl/min. Solvent A was 97:3 water:methanol with 10 mM tri-

butylamine and 15 mM acetic acid; solvent B was methanol. The gra-

dient was 0 min, 0% B; 2.5 min, 0% B; 5 min, 20% B; 7.5 min, 20% B;

13 min, 55% B; 15.5 min, 95% B; 18.5 min, 95% B; 19 min, 0% B;

25 min, 0% B. Afterwards, the column was washed and stabilized for

5 min before the next sample was injected. Other LC parameters were

autosampler temperature, 4�C; injection volume, 10 μl; and column

temperature, 25�C. HESI (heated electrospray ionization) was used for

MS detection. All samples were injected twice: once with the ESI

operating in negative ionization mode (�H) and once in positive ioni-

zation mode (+H). The Orbitrap mass spectrometer was operated in

FTMS (Fourier transform mass spectrometry) full-scan mode with a

mass range of 50–1,000 m/z and high-mass resolution (60,000). The

resolution and sensitivity of the spectrometer were monitored by

injecting a caffeine standard after every 10 samples, and the resolu-

tion was further monitored with lock masses (phthalates). Blank sam-

ples were also analysed during the sequence. The assignment of the

metabolites was based on standards, with the retention time and mass

of the assigned metabolites in both positive and negative ionization

modes.
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2.5 | Statistical analyses

First, the normality of each metabolite signal-intensity data was tested

by Kolmogorov–Smirnov tests. The data for all metabolites followed a

normal distribution, except 5 unidentified compounds (0.25%), which

were removed from the data set. Then, a permutational multivariate

analysis of variance (PERMANOVA) was performed to test differences

between pine needles, from parasitized (PPN) and unparasitized pines

(UPN), and MLs in both seasons. Thus, treatment (PPN, UPN and ML)

and season (summer and autumn) were included as fixed factors and

pine tree individual as a random factor. In the same way, a partial least

squares discriminant analysis (PLS-DA) was also performed to deter-

mine general trends on a sample ordination, and a linear mixed model

and Tukey post hoc test with score coordinates of the two first PLS-

DA components were used to test differences among metabolomes

of ML, PPN and UPN for summer and autumn. Finally, one-way ANO-

VAs were performed for each individual metabolic compound to iden-

tify any statistical differences between ML, PPN and UPN

metabolomes.

Second, the whole metabolomic profile of P. nigra needles (1991

metabolites), including 55 identified from our metabolite library, was

analysed in order to test global effects of mistletoe parasitism (parasit-

ized and unparasitized pines), canopy modularity (upper, middle and

bottom third of the pine canopy) and season (summer and autumn).

These three factors were run on a PERMANOVA using the Euclidean

distance, with 10,000 permutations, as fixed independent factors and

each pine tree as random factors. One-way ANOVAs between treat-

ment and season were also performed for each individual metabolic

compound. Multivariate ordination PLS-DAs were also performed to

detect general patterns of sample ordination in the metabolomes. The

PLS-DAs allowed us to reduce the dimensionality of the entire data

set of identified and unidentified metabolites and to project our sam-

ples and variables on a biplot. Therefore, we were able to identify

metabolomic trends of parasitized and unparasitized P. nigra, seasons

and canopy modularity. To test differences among the metabolome of

different groups across the scores coordinates of two first compo-

nents of the PLS-DAs, we used an linear mixed model (LMM) for each

component and a Tukey post hoc test, with three factors as fixed and

pine tree as the random factor.

All statistical analyses were conducted with R software (R Core

Team, 2020) and were performed to detect shifts in both the

metabolomes and individual metabolites as well as the variables con-

trolling them. The PERMANOVA was conducted with the adonis

functions in “vegan” package (Oksanen et al., 2019). One-way ANO-

VAs and the Kolmogorov–Smirnov test were performed by aov and

ks. test functions in “stats” package (R Core Team, 2020). PLS-DA

was conducted with the plsda function in the “mixOmics” package

(Rohart, Gautier, Singh, & Lê Cao, 2017). All data were scaled for the

PLS-DA by setting the parameter “scale = TRUE” in the function.

Finally, LMM and Tukey post hoc tests were performed with the lme

and lsmeans functions of the “nlme” (Pinheiro, Bates, DebRoy,

Sarkar, & R Core Team, 2020) and “lsmeans” (Lenth, 2016) packages,
respectively.

3 | RESULTS

3.1 | Metabolomic profile differences between
pine host and its hemiparasite

All metabolites detected in pine needles (1991 compounds in total)

were found in both pine treatments, PPN and UPN. However, the

metabolic profile of ML lacked 17 and 15 of metabolites when com-

pared to pine needles in summer and autumn season, respectively,

5 of these being absent in all cases. The PERMANOVA of the entire

data set indicated differences in the overall metabolomes among

treatments (F1 = 32.21; p < .001), seasons (F1 = 43.39; p < .001) and

their interaction (F1 = 4.73; p < .001).

Overall, the ML metabolome differed markedly from that of pine

needles, and although PPN metabolome was displayed close to UPN,

their metabolic profile was statistically different, being PPN more sim-

ilar to ML than UPN to ML. When all the data were analysed at once,

these differences were displayed on component 2 of PLS-DA

(Table 1, Figure 1). The one-way ANOVAs of all metabolic compounds

showed that the ML metabolome differed from UPN in 80% of the

compounds (1,542 out of 1991), whereas the metabolic profile of

PPN showed fewer differences with regard to ML (72.5%, 1,444 com-

pounds). The concentration of 933 and 842 metabolites was higher in

UPN and PPN, respectively, than that in ML, and the rest (609 and

602 compounds) proved higher in ML (see Figure 2 and Table S1 for

identified compounds). Thus, the metabolic profile of the ML showed

a higher proportion of most amino acids, most sugars, organic acids

TABLE 1 Post hoc results from LMMs of two first components from PLS-DA between treatment and season

Component 1 Component 2

ML-S ML-A PPN-S PPN-A UPN-S ML-S ML-A PPN-S PPN-A UPN-S

ML-A <0.001 — — — — <0.001 — — — —

PPN-S 0.898 <0.001 — — — <0.001 <0.001 — — —

PPN-A <0.001 <0.001 <0.001 — — <0.001 <0.001 <0.001 — —

UPN-S 0.444 <0.001 0.013 <0.001 — <0.001 <0.001 <0.001 <0.001 —

UPN-A <0.001 <0.001 <0.001 0.038 <0.001 <0.001 <0.001 0.677 <0.001 <0.001

Note: Bold type indicates significant effects (p < .05).

Abbreviations: A, autumn; ML, mistletoe leaves; PPN, parasitized pine needles; S, summer; UPN, unparasitized pine needles.
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associated with the Krebs cycle and a higher proportion of most of

the nitrogenous bases (Figure 2 and Table S1). The metabolic profile

of pine needles showed higher concentrations of most of the defence

compounds such as here determined phenolic compounds and ter-

penes, some amino acids and other secondary metabolites (Figure 2

and Table S1).

3.2 | Metabolomic responses of pine host to
mistletoe

All of the metabolites detected in pine needles were found in both

treatments (parasitized and unparasitized P. nigra) and seasons (sum-

mer and autumn), but with different concentrations and ratios. The

PERMANOVA of the entire data set revealed significant differences in

the overall metabolomic profile between parasitized and non-

parasitized pines. Moreover, seasonality and the interaction between

treatments (parasitized vs. non-parasitized pines) x season were also

significant (Table 2).

Differences between UPN and PPN were displayed in Compo-

nent 2 of PLS-DA (Figure 3). One-way ANOVAs show that mistletoe

presence was related to a shift in the concentrations of 26% of

metabolites detected in P. nigra needles (518 out of 1991). Approxi-

mately half of these metabolites (239) presented higher concentra-

tions in parasitized pines, whereas concentrations of the rest (279)

was lower (see Figure 4a for identified compounds). Therefore, the

metabolic profiles of the PPN had higher concentrations of most

amino acids, a higher proportion of the guanine nitrogenous bases,

some sugars such as arabitol and some secondary metabolites such as

phenols (Figure 4a). The UPN had higher concentrations of Vit. B5

(pantothenic acid) and some phenols among the determined metabo-

lites (Figure 4a).

3.3 | Seasonality of the host–mistletoe system and
the vertical within-canopy gradient

The concentrations of 38.3% (761 out of 1986) of the total detected

metabolites in the ML metabolome changed between seasons,

whereas the overall metabolic profile of the pine needles showed a

difference of 65.4% (1,303 out of 1991). The differences in seasonal-

ity between parasite–host metabolome were displayed on Compo-

nent 1 of PLS-DA (Figure 1 and Table 1). For MLs, the one-way

ANOVA identified a trend in which the concentration of 276 metabo-

lites (13.9% of the total detected metabolites) was higher during sum-

mer, including few amino acids, sugars and defence compounds.

Conversely, another 485 compounds (24.4%), including most amino

acids, some nucleotides, compounds associated with the Krebs cycle,

and growth factors such as Vit. B5 and gibberellic acid, increased their

concentrations in autumn.

On the other hand, the PERMANOVA of the entire data set of

PPN and UPN also reflected a significant interaction between season-

ality and parasitism status (Figure 3 and Table 2). The PLS-DAs of the

entire data clearly separated their component according to the PER-

MANOVA results, where Component 1 separated the cases by sea-

sons (Figure 3). One-third part of seasonally altered metabolites of

(b)

(a)

F IGURE 1 Component 1 versus Component 2 of the partial least
squares discriminant analysis (PLS-DA) conducted with all
metabolome of parasitized and unparasitized pine needles, and
mistletoe leaves. Biplots of the two first components of (a) the PLS-
DA of metabolomic data presenting the scores (M ± SE) of the Pinus
nigra needles (dark red and green, parasitized pines; orange and blue,
unparasitized pines) and mistletoe leaves (purple and pink), and
summer and autumn season. (b) The various metabolomic families are
represented by colours: green, amino acids; cyan, nucleotides; orange,
organic acids related to the tricarboxylic acid cycle; red, other
secondary metabolites; dark blue, sugars; yellow, phenolics; purple,
terpenes; and grey, unknown metabolites. Aspartic acid (Asp), serine
(Ser), lysine (Lys), asparagine (Asn), arginine (Arg), tyrosine (Tyr),
methionine (Met), histidine (His), glutamine (Gln), glutamic acid (Glu),
isoleucine (Iso), phenylalanine (Phe), hydroxyproline (ProH), alanine
(Ala), adenine (Ad), uracil (Ur), guanosine (Gua), guanine (Gu), cytidine
(Cy), cytosine (Cyt), adenosine (Ade), thymine (Thy), α-ketoglutaric
acid (KG), chlorogenic acid (CGA), citric acid (anhydrous) (Cit), L-
(�)-malic acid (Mal), lactic acid (Lac), pyruvic acid (Pyr), succinic acid
(Suc), D-(+)-arabitol (Ara), pentose (Pen), 2-deoxy-D-ribose (Rib), D-
(�)-lyxose (Lyo), D-(+)-sorbose (Sor), gibberellic acid (GA3) (Gib),
ascorbic acid (Asc), abscisic acid (ABA), riboflavin (RiF), pantothenic
acid hemicalcium salt (Pan), quinic acid (QA), (+)-catechin hydrate
(anhydrous) (Cat), epigallocatechin (EpG), 5,7-dihydroxy-
3,4,5-trimethoxyflavone (Fla), epicatechin (Epi), protocatechuic acid
(Prc), caffeic acid (CafA), kaempferol (Kae), D-pinitol (Pin), α-humulene
(Hum), aucubin (Acu), α-terpinene (Ter), caryophyllene oxide (CarO),

ocimene (Oci), α-terpineol (Teo) and carvone (Car) [Colour figure can
be viewed at wileyonlinelibrary.com]
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pine needles (420 out of 1,303) had higher concentrations in summer,

and two-thirds (883 of 1,303) had higher concentration values in

autumn (see Figure 4b and Table S1 for identified metabolites). Over-

all, pine needles in autumn had lower relative concentrations in some

amino acids, nucleotides and terpenes, but higher relative concentra-

tions of other nucleotides, organic acids typically related to the Krebs

cycle, sugars, phenolics compounds here determined, terpenes and

growth factors such as abscisic acid (Figure 4b).

In addition, the post hoc test from LMM, realized with score coor-

dinates of the two first PLS-DA components, showed an interaction

between treatment, season and canopy strata (Table 3). This interac-

tion showed that the metabolome from both parasitized and

unparasitized pines was homogeneous within the pine canopy during

summer, whereas the chemical profile of pine needles differed from

the bottom to the upper part of pine canopy, especially in

unparasitized pines in autumn (Figure 3 and Table 3).

4 | DISCUSSION

This study provides for the first time an integral view of overall shifts

in the metabolic profile caused by European mistletoe, V. album subsp.

austriacum, on its main host black pine, P. nigra subsp. salzmannii, in a

Mediterranean forest. Mistletoe parasitism has a systemic effect, mak-

ing the pine host a more unitary rather than modular organism in

space and time. Overall, by causing shifts in host metabolism, mistle-

toe is able to convert its host into a new plant metabolomic identity

available in the forest canopy. In addition, our results strongly suggest

that mistletoe acquires resources, derived from primary metabolism,

directly from their host, and changes in the metabolic profile of para-

sitized pines closely fits the hemiparasite metabolome. This indicates

that the pine host works for mistletoe, constituting a sink of host

resources.

4.1 | Metabolomic profile differences between the
pine host and its hemiparasite

Previous studies have shown that the concentration of functional

chemical groups (basically defence compounds) in the European MLs

F IGURE 2 Differences in total intensities of parasitized (filled bars) and unparasitized pine needles (open bars) of all identified compounds
with respect to mistletoe–leaf intensities. Bars show mean quantities (intensities) of N = 10 samples, where the bars above zero corresponds to
greater metabolite intensities in MLs, whereas the bars below zero correspond to greater metabolite intensities in pine needles. The asterisks
indicate significant results from the one-way ANOVA (p < .05 **; p < .1 *). Different metabolomic families are coloured and described in the

caption of Figure 1, and SE values are given in Table S1 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Effects of treatment (parasitized and unparasitized
pines), and stratification level of canopy (upper, medium and bottom
third part), and season (summer and autumn) in a complete set of the
metabolome of pine needles

Factors Df F.Model R2 Pr(>F)

Treatment 1 4.62 .031 <0.001

Stratification 2 0.45 .006 0.596

Season 1 39.32 .263 <0.001

Treatment * stratification 2 0.18 .003 0.979

Treatment * season 1 4.03 .027 0.048

Season * stratification 2 0.25 .003 0.892

Note: The results come from the PERMANOVA model, including all

metabolomic variables (1991 compounds). Bold type indicates significant

effects (p < .05).
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and black pine needles sharply differs (Lázaro-González et al., 2019a).

According to this, our study shows that these differences are evident

not only at the level of functional chemical groups (i.e., defence com-

pounds), but also at the finest metabolic level (i.e., amino acids, nucle-

otides). Overall, the main metabolome differences between MLs and

pine needles concern a high concentration of amino acids, nucleo-

tides, compounds related to the Krebs cycle and sugars, and therefore

involve a higher up-regulation of primary metabolism (Figure 2). All

these changes suggest, on the one hand, that the hemiparasite

requires high amounts of metabolic resources to invest in their devel-

opment in comparison with their plant host. Interestingly, mistletoe

acquires at least a part of these resources (Pate, True, & Kuo, 1991;

Stewart & Press, 1990), derived from primary metabolism, directly

from their host. At the same time, the host accumulates extra

amounts of these compounds, benefitting mistletoe, by acquiring part

of them (Pate et al., 1991; Stewart & Press, 1990), rather than the

host itself, for instance, showing a reduction in host primary and sec-

ondary growth (Mellado & Zamora, 2020). In addition, mistletoes have

high transpiration rates and low hydric potential (Ehleringer

et al., 1985; Schulze & Ehleringer, 1984; Schulze, Turner, &

Glatzel, 1984), guaranteeing the unidirectional flow from host to hem-

iparasite plant, especially for carbohydrates and amino acids (Glatzel &

Geils, 2009; Lamont, 1983; L�opez-Sáez, Catalán, & Sáez, 2002). Our

results reinforce the idea that the mistletoe–host relationship is a

one-way flow system—an asymmetrical relationship where the pine

host is forced to work for mistletoe becoming an irreversible sink of

resources and water, this being consistent with results of previous

non-ecometabolomic studies (Glatzel & Geils, 2009; L�opez-Sáez

et al., 2002; Schulze et al., 2019).

On the other hand, our results show that mistletoe has a weak

secondary metabolism relative to the pine host, where the concentra-

tion of mostly secondary metabolites, especially defence compounds

(e.g., flavonoids, tannins and terpenes), is practically absent in mistle-

toe (Figure 2, Table S1, Lázaro-González et al., 2019a). According to

Lázaro-González et al. (2019a), these results reinforce the idea that

V. album does not benefit from the pine host by acquiring anti-

herbivory properties. However, the higher concentrations of free

amino acids in mistletoe coming from the plant host are consistent

with the higher concentrations of N-rich herbivore deterrent sub-

stances in this parasite. These amino acids correspond to a series of

compounds necessary to synthesize the sequence of their own pro-

teins, which are toxic for animal cells, such as viscotoxin (Olson &

Samuelsson, 1972; Samuelsson, 1973; Samuelsson &

Pettersson, 1971) and lectins (Soler et al., 1996; Soler, Stoeva, &

Voelter, 1998). Lysine, for instance, required for the synthesis of

viscotoxins, shows higher concentrations in ML than in pines

(Figure 2). Thus, by generating a net flux of primary metabolites from

the host, mainly related to a source of matter and energy (C and nutri-

ents), but not to secondary plant compounds, mistletoe leads its

efforts to synthetize their own anti-herbivore defences rather than

anti-abiotic stress compounds.

4.2 | Metabolomic responses of pine host to
mistletoe

Mistletoe can modify the metabolic profile of their pine host by

altering the concentration of a quarter of their metabolome (26% of

the metabolites analysed). Overall, parasitized pines increase the

concentration of most of the primary metabolites intercepted by the

mistletoe such as amino acids, nucleobases, compounds related to

the Krebs cycle and carbohydrates, while decreasing the concentra-

tion of secondary metabolites such as vitamins and certain deter-

mined phenolic compounds (Figure 4a and Table S1). Therefore, as a

consequence of mistletoe requirements and their inability to take

up essential resources from soil, parasitized pines respond by

enhancing the concentrations of metabolites especially rich in

nitrogen.

(b)

(a)

F IGURE 3 Component 1 versus Component 2 of the partial least
squares discriminant analysis (PLS-DA) of the changes of the
metabolomes of pine-needle samples. Biplots of the two first
components of the PLS-DA of (a) metabolomic data presenting the
scores (M ± SE) of the different Pinus nigra treatments (red and green,
parasitized P. nigra; brown and blue, P. nigra uninfected) and different
season (red and brown, summer; green and blue; autumn). The
different intensities of the colour indicate the height (high intensity
indicated the top, the medium indicated the medium, and the lowest
indicated the bottom). (b) Different metabolomic families are coloured
and described in the caption of Figure 1 [Colour figure can be viewed
at wileyonlinelibrary.com]
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In addition, the pine reaction against mistletoe shows common

responses to other biotic stressors such as the specialist and more

abundant pine-feeding herbivore the pine processionary moth (PPM),

which also induces greater concentrations of amino acids, compounds

related to the Krebs cycle and carbohydrates (Rivas-Ubach

et al., 2016). Besides, PPM generate oxidative stress on pine (Rivas-

Ubach, H�odar, et al., 2016), a response commonly induced by folivory

in attacked plants (Bi & Felton, 1995). Overall, the metabolic profile of

mistletoe-infested pine trees also shows wide similarity with those of

pines suffering from water stress. This is because V. album keep the

stomata open in an almost unregulated way, thus maintaining high

transpiration rates under various environmental conditions, leading to

drought stress in the host (Escher et al., 2008; Hu et al., 2017; Schulze

et al., 1984). As a consequence, primary metabolism is altered by

increasing concentrations of soluble sugars and carbohydrate deriva-

tives, and frequently also by elevated concentrations of free amino

acids, whereas secondary metabolites, especially flavonoids and ter-

penes, also commonly exhibited increased concentrations (see

Sardans et al., 2020 for a deep analysis on the metabolomic responses

to drought in trees). Our results suggest that mistletoe parasitism also

provokes oxidative stress, since parasitized pines raise the concentra-

tion of some phenols such as flavonoids with antioxidant properties

(Figure 4 and Table S1). Despite the similarities of pine responses to

PPM attack and mistletoe parasitism, the folivory of PPM causes a

slighter effect, with only 12.9% of host metabolome altered (Rivas-

Ubach et al., 2016). Meanwhile, mistletoe parasitism has a greater

impact on the host pine, modifying 26% of the pine metabolome due

presumably to the chronic parasitism and intimate host–parasite

relationship.

Parasitized pines increase the relative concentration of aucubin

(Figure 4a), an iridoid glycoside known as a secondary defence

compound against generalist insect herbivory (Bowers &

Puttick, 1988; Nieminen, Suomi, Van Nouhuys, Sauri, &

Riekkola, 2003), but also attract specialist lepidopteran species for

oviposition and feeding (Harvey, Van Nouhuys, & Biere, 2005;

Nieminen et al., 2003; Peñuelas, Sardans, Stefanescu, Parella, &

Filella, 2006). Parasitized pines could attract the oviposition of the

main pine-feeding specialist, the PPM and, at the same time, provide a

low-quality food for caterpillar (Lázaro-González et al., 2019a). As a

consequence, pine woodland with mistletoe presence would make

pine processionary outbreaks less prevalent. Further studies are

needed to assess whether PPM, or other specialist lepidopterans,

preferably oviposit upon parasitized pines and whether hatched larvae

are able to sequester any defensive compound of pine host for their

own defence (Bowers & Collinge, 1992).

4.3 | Seasonality of the host–mistletoe system and
the vertical within-canopy gradient

MLs and pine needles undergo metabolomic changes from summer to

autumn, although MLs are more stable, showing less seasonal variance

in their metabolome (38.3% of metabolites change their concentra-

tion) than pines (65.4%). This indicates that V. album functionality

(metabolome) depends less on the environment than on the function-

ality (metabolome) of the host, as expected from the hemiparasite

habit. Thus, both ML and pine-needle metabolomes increase their

concentration of primary metabolites such as amino acids associated

with chlorophyll synthesis and nutrient assimilation (e.g., lysine and

arginine) in summer, whereas other amino acids, nucleotides, com-

pounds associated with the Krebs cycle and vitamins increase in

autumn (Table S1). This suggests that the host–parasite system, as

(b)(a)

F IGURE 4 Differences between (a) treatments (parasitized and unparasitized pines) and (b) season (summer and autumn) of compounds
identified. Asterisks indicate significant results from one-way ANOVA (p < .05 **; p < .01 *). Different metabolomic families are coloured and
described in the caption of Figure 1 [Colour figure can be viewed at wileyonlinelibrary.com]

8 L�AZARO-GONZ�ALEZ ET AL.

http://wileyonlinelibrary.com


well as mistletoe-free pines, begins to accumulate most primary and

some secondary metabolites for the growth period several months

before the resources are needed, showing similar responses to

seasonality.

At the canopy scale, the pine needles respond permanently to

mistletoe parasitism over the year (Figure 3). New needles sprout with

a common metabolic profile and shift to a vertical within-canopy gra-

dient in autumn, with changes being more intense from the crown to

the bottom part of canopy (Figure 3). However, the vertical gradient

in parasitized pines is less accentuated than in unparasitized ones, and

therefore, mistletoe parasitism makes the metabolome of parasitized

pine needles more homogeneous by softening the stratification during

autumn. This suggests that the metabolic responses of pines are sys-

temic at the canopy scale, turning a modular pine tree into an organ-

ism with unitary responses. Thus, mistletoe is an agent of systemic

changes (see also Cocoletzi, Angeles, Ceccantini, Patr�on, &

Ornelas, 2016), able to generate a new plant metabolic identity in the

host pine with respect to mistletoe-free pines, prompting ecological

consequences. Notably, this systemic reaction appears to be

mistletoe-specific in P. nigra, given that pines attacked by other biotic

stressors such as PPM react to folivory more at local level rather than

at the systemic level (Rivas-Ubach, H�odar, et al., 2016).

4.4 | The ecological consequences of mistletoe
parasitism

Mistletoe has a permanent and systemic effect on the metabolic pro-

file of pine hosts needles, as shown by the data presented in Figure 1.

On the one hand, mistletoe parasitism causes damage by permanent

oxidative stress (Mutlu, Ilhan, & Turkoglu, 2016) and resorbing N-rich

compounds from its host over the year in pine needles (Escher,

Eiblmeier, Hetzger, & Rennenberg, 2004). On the other hand, the host

has a systemic reaction (e.g., Anselmo-Moreira et al., 2019), which

prevents minimizing the effects of parasitism by discarding a part of

their canopy and acting as a more unitary rather than modular

TABLE 3 Post hoc results from LMMs of two first components from PLSDA between parasitism status, seasons, and stratification level

LMM of component 1

PPN-SL PPN-SM PPN-ST PPN-AL PPN-AM PPN-AT UPN-SL UPN-SM UPN-ST UPN-AL UPN-AM

PPN-SM 1 — — — — — — — — — —

PPN-ST 1 1 — — — — — — — — —

PPN-AL <0.001 <0.001 <0.001 — — — — — — — —

PPN-AM <0.001 <0.001 <0.001 0.888 — — — — — — —

PPN-AT <0.001 <0.001 <0.001 0.021 0.671 — — — — — —

UPN-SL 0.808 0.604 0.878 <0.001 <0.001 <0.001 — — — — —

UPN-SM 0.433 0.260 0.523 <0.001 <0.001 <0.001 0.999 — — — —

UPN-ST 0.392 0.231 0.479 <0.001 <0.001 <0.001 0.999 1 — — —

UPN-AL <0.001 <0.001 <0.001 0.944 1 0.864 <0.001 <0.001 <0.001 — —

UPN-AM <0.001 <0.001 <0.001 0.289 0.948 1 <0.001 <0.001 <0.001 0.968 —

UPN-AT <0.001 <0.001 <0.001 <0.001 0.014 0.310 <0.001 <0.001 <0.001 0.003 0.210

LMM component 2

PPN-SL PPN-SM PPN-ST PPN-AL PPN-AM PPN-AT UPN-SL UPN-SM UPN-ST UPN-AL UPN-AM

PPN-SM 0.992 — — — — — — — — — —

PPN-ST 0.965 1 — — — — — — — — —

PPN-AL 0.885 0.207 0.121 — — — — — — — —

PPN-AM 0.985 0.440 0.294 1 — — — — — — —

PPN-AT 1 0.951 0.872 0.971 0.999 — — — — — —

UPN-SL 0.031 0.098 0.123 0.005 0.008 0.023 — — — — —

UPN-SM 0.036 0.111 0.139 0.006 0.010 0.026 1 — — — —

UPN-ST 0.012 0.041 0.052 0.002 0.003 0.009 0.999 0.997 — — —

UPN-AL 0.010 0.031 0.039 0.002 0.003 0.00 0.981 0.963 1 — —

UPN-AM 0.003 0.009 0.011 <.001 <.001 0.002 0.446 0.374 0.894 0.994 —

UPN-AT <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.003 0.114

Note: Bold type indicates significant effects (p < .05).

Abbreviations: A, autumn; L, the bottom third of the tree; M, the middle third; PPN, parasitized pine needles; S, summer; T, the treetop; UPN, unparasitized

pine needles.
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organism. As a result, the pine-feeding herbivores cannot find safe

sites at different times of the year and in different parts of pine can-

opy free of the mistletoe impact, triggering spatio-temporal tritrophic

mediated indirect interactions. For instance, changes in the chemical

profile in response to mistletoe have direct detrimental effects, includ-

ing death, on many pine-feedings herbivores such as the summer fol-

ivore beetle Brachyderes sp. and the winter folivore PPM (Lázaro-

González et al., 2019b), one of the most severe and widespread pests

in the Mediterranean forests (H�odar, Castro, & Zamora, 2003; H�odar,

Zamora, & Castro, 2002). Thus, mistletoe generates non-trophic links

with pine-feeding herbivores, where the permanent and systemic

reaction of pine host has indirect effects on arthropod herbivores via

changes in the host quality as food (Lázaro-González et al., 2019a,

2019b).

In conclusion, by exerting a press disturbance, mistletoes cause

a permanent and long-lasting systemic effect, making the pine host a

more unitary rather than modular organism in space and time. By

causing shifts throughout the host metabolism, mistletoe is able to

generate a new metabolomic identity in host, which increases the

complexity and heterogeneity of the forest canopy. This in turn trig-

gers an ecological cascade of consequences, which exert detrimental

effects on pine herbivores (Lázaro-González et al., 2019b). Never-

theless, the new identity could mean a novel niche and new opportu-

nities for tolerant and adapted herbivores, promoting the local and

regional forest biodiversity at ecosystem level, which can have valu-

able implications for the conservation and management of pine

forests.
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