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Abstract: An advanced new methodology is presented to improve parameter extraction in resistive
memories. The series resistance and some other parameters in resistive memories are obtained,
making use of a two-stage algorithm, where the second one is based on quasi-interpolation on non-
uniform partitions. The use of this latter advanced mathematical technique provides a numerically
robust procedure, and in this manuscript, we focus on it. The series resistance, an essential parameter
to characterize the circuit operation of resistive memories, is extracted from experimental curves
measured in devices based on hafnium oxide as their dielectric layer. The experimental curves
are highly non-linear, due to the underlying physics controlling the device operation, so that a
stable numerical procedure is needed. The results also allow promising expectations in the massive
extraction of new parameters that can help in the characterization of the electrical device behavior.

Keywords: resistive random access memories; series resistance; modeling; parameter extraction;
quasi-interpolation

1. Introduction

Advanced mathematics can be applied to solve many engineering problems. In fact,
centuries ago, many of the mathematical developments were born to solve specific problems
that came up as the different engineering disciplines unfolded. However, many techniques
developed currently in the context of research groups of mathematicians do not make
their way to the fields of applied physics and of other technical subjects. In fact, a quick
overview of the mathematical foundations taught in engineering colleges reveals content
created mainly in the 19th century. In this manuscript, we present a multidisciplinary
application where a clear and well-defined problem, contextualized in the field of electron
devices (in particular, related to Resistive Random Access Memories, RRAMs), can be
tackled with techniques based on state-of-the-art approximation theory tools, such as
spline-quasi-interpolation and other procedures. These advanced tools come to the rescue
when we are faced with complex numerical techniques. One of them is connected to
accurate derivative calculation. If, for example, a procedure depends on an accurate
derivative determination, a simple numerical calculation might not be enough, mostly if
the measured device current curves show strong discontinuities, as is the case here with
experimental current-voltage curves in RRAMs whose operation is based upon non-linear
physical processes. In order to address the intricacies of the numerical procedure presented
in this manuscript, we have proposed, in addition to the approximation theory approach,
an algorithm to detect particular curve shapes.

There is currently a great interest in research and development activities devoted to
RRAMs. These devices are compatible with conventional technologies in the electronics
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industry and present an exciting set of features for applications such as the possibility of
being used as entropy sources for random number generation circuits, their suitability for
non-volatile memories and their potential for neuromorphic computing circuits, such as
hardware neural networks [1–5]. For the fabrication of neuromorphic circuits [1,3,4,6], these
devices mimic biological synapses and allow for many compact circuits with lower power
consumption than in previous technological approaches.

The experimental characterization of electron devices is essential in electronics. A great
number of measurements are needed to extract parameters that describe a certain technol-
ogy [7–11]. Later on, these parameters can be included in analytical expressions to calculate
the device current, capacitances and other representative physical magnitudes that are re-
quired for their use in circuit design. The corresponding circuit simulation infrastructure is
built upon compact models (a set of analytical expressions and technology-dependent param-
eters) that describe the devices. The parameter extraction routines and the analytical models
can be complex; therefore, as stated above, advanced mathematics have to be employed to
deal with modeling problems with guaranties.

In relation to the latter issue, it is important to highlight that several works have been
presented on the subject. For instance, in [12], a numerical method based on smoothing
splines was proposed to extract the threshold voltage in Metal Oxide Semiconductor Field
Effect Transistors (MOSFETs). This method leads to the solution of a system of linear
equations whose order increases with the number of intervals of the spline space considered.
For this kind of device, a strategy relying on the use of a weighted essentially non-oscillatory
method was described in [13]. MOSFET devices operate differently from RRAMs; however,
some of the numerical issues that come up in the parameter extraction context are similar.
A modeling problem for MOSFETs with a square shape was successfully tackled with
advanced partial differential equation methodologies in [14]. For RRAMs, we can highlight
the approach followed in [15], where state-of-the-art techniques for derivative calculation
were employed.

We present here a mathematical technique to improve the extraction of the series
resistance in RRAMs [16–18]. The series resistance is an essential parameter that needs
to be obtained to represent the device correctly at the circuit level. A key issue in the
corresponding extraction technique lies in the curve slope determination, and this can be
performed by means of a derivative calculation. For this purpose, we study current curves
(representing the set process of the device, where the device resistance drastically drops
off due to the formation of an internal conductive filament) and go on with an in-depth
modeling process based on non-uniform spline quasi-interpolation. We have employed
related methodologies [19] based on the charge-flux domain; nevertheless, we have to
go a step forward in these methodologies to address this new problem due to the strong
non-linearity of our devices.

In Section 2, we shortly introduce the engineering problem and some details of the
devices employed and measured. Section 3 is devoted to describing the mathematical
foundations to deal with the numerical procedures needed. The final results are explained
in Section 4, along with the main conclusions.

2. The Problem

The devices analyzed here were fabricated at the Institute of Microelectronics of
Barcelona (CNM-CSIC) [18,20,21] and measured in our laboratory at the University of
Granada. A scheme of the structures fabricated and measured is shown in Figure 1a. The de-
vices were square-shaped with an area of 15 × 15 µm2. The bottom electrode (Wolfram) was
grounded with a titanium layer below. A voltage ramp of (0.08 V/s) was applied to the
top electrode (titanium with a TiN layer above) with a voltage step of 0.01 V. Hundreds of
curves (resistive switching cycles) were measured in a successive manner. That is why our
new technique has to be numerically stable and efficient, in order to be applied to many
different current curves. For the measurements employed here, we employed 200 points per
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curve. This is reasonable since this means the use of voltage steps in the order of 0.01, where
the main features of the devices under study are captured.

Figure 1. (a) RRAM structure cross-section. (b) Circuit scheme to explain the different voltages
employed in this work. (c) Current versus modified voltage for different series resistances. We choose
the curve with the maximum slope (in fact, it is a vertical region, shown in symbols) as the one that
allows us to extract the correct series resistances, as depicted in [18].

Figure 1c shows an experimentally measured curve and those resulting when the
variable corresponding to the X-axis is changed (from Vapplied to Vmodified). The original
applied voltage is corrected by the voltage in the series resistance; i.e., we reduce Vapplied
by a factor calculated as current × Rseries (see Figure 1b). When we do so, we obtain a
new voltage, Vmodified, the one we employ to replot the current curves for different series
resistances (see Figure 1c). Among the set of curves obtained for different series resistances,
we select the series resistance corresponding to the curve with the vertical section (plotted
with symbols in Figure 1c) [18].

Figure 2 shows several original (black) and modified (red) curves, once the series
resistance has been extracted. Observe that when the effects of the series resistance have
been eliminated, the current versus modified voltage can show a section of negative slope
(just after the VTS2 points) [16–18]. We define this new parameter as the turning point
of the curve for the region of the negative slope, when the curves turn left in the plot.
The threshold set voltage (VTS) is defined as the modified voltage corresponding to the
vertical region in the current curve, see Figure 2.

Figure 2. Current versus voltage for some resistive switching cycles. The original measured curves
are shown in black, the modified curves in red, the corresponding series resistances are also shown.
See the points marked by VTS (threshold set voltages) and VTS2 , the points where the slope of the
curve changes sign, marked with red dots in the modified curves.

Once the vertical slope is detected and the corresponding series resistance is ob-
tained, the algorithm to extract VTS and VTS2 needs a smooth approximant that accurately
represents the current-voltage curve.
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3. Algorithms Description

Let Vi and Ii be the voltage and current applied, at time ti, respectively, i = 0, . . . , n.
We assume here a non-uniform approach because, as a general rule, the measurement
instruments do not always provide a uniform set of data. Therefore, for the sake of
generality, a non-uniform quasi-interpolation scheme is followed. The proposed procedure
for extracting the parameters of interest associated with the curve Vapplied − I is structured
in two parts. In the first one, a procedure is established that provides the series resistance
Rseries such that the modified data {(Vi − Rseries Ii, Ii), i = 0, . . . , n} shows a nearly vertical
segment. It also provides the set of points that determine that segment. In the second part,
the quasi-interpolation spline on non-uniform partitions is used to deal with the modified
curve Vmodified − I data associated with the series resistence Rseries in order to extract other
parameters of interest.

3.1. Estimating the Series Resistance

In this section, we will propose the algorithm to estimate Rseries and the threshold
set voltage VTS. In the Vmodified − I curve, VTS corresponds to a vertical set of data for the
value Rseries [18].

In order to understand the behavior of the Vmodified − I curve, firstly, we represent
the measured values of a specific cycle (we consider a cycle as a set process followed by a
reset process; therefore, the device resistance is changed from high to low and the other
way around in each cycle that is repeated many times, 1000 in our case, in what is called
a resistive switching series in the RRAM characterization process). A series resistance
R = 0 Ω is applied to obtain the black plot in Figure 3, the original measurements. Then,
the initial values are modified with R = 28.25 Ω to obtain the red plot with symbols. Two
other curves are represented, for which R = 13 Ω (green plot) and R = 36 Ω (pink plot).

As shown in Figure 3a, the cycle starts and ends at (0, 0). We observe that the vertical
segment is approximately in the center of the cycle, so that, for our measurements, the be-
ginning and the end of the cycle are neglected [18], around 25% of the data in each part.
The admissible part of the cycle will begin at index i1, the index of the first point in the
25% limit to end at in, and the index of the last point in the 25% limit. The behavior of the
curves modified by using a resistance R is quite similar, so this procedure is reasonable, see
more details in [18].

Figure 3. (a) Current versus modified voltage for several series resistances. The selected series
resistance corresponds to the curve with the vertical slope, shown with symbols. (b) Modified voltage
versus current for the same curves shown on the left. The plots shown are parts of the graphs in (a)
with the X-axis and Y-axis exchanged. The curve with the vertical section in (a) presents in this case a
horizontal slope, as it is expected. In this manner, the algorithm to extract the series resistance can be
applied more easily in (b).

To detect the vertical set of data, we work with I − Vmod curves, where Vmod :=
Vapplied − R× Current, so we will detect a horizontal set from which Rseries will result (see
Figure 3b). We will consider constant segments formed by, at least, m points, with m ≥ 10.
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To find if a given I − Vmod cycle (with a fixed R value, starting from R = 0) has a
horizontal subset of data, we compute the least square constant

Vlsm(i1) :=
1
m

m

∑
j=1

Vmodij

for data starting at
(

Ii1 , Vmodi1

)
and ending at

(
Iim−1 , Vmodim−1

)
, and the least square

constant, Vlsm+1(i1), for data starting at
(

Ii1 , Vmodi1

)
and ending at (Iim , Vmodim). Define

also mmax = m.
Given a tolerance ε, and V̄ls(i1) being the mean value of the computed Vls(i1) starting

at index i1, if
max

m≤j≤mmax
|Vlsj(i1)− V̄ls(i1)| < ε,

then the segment formed by the points indexed i1 to im forms a constant segment within the
tolerance ε. In this case, we compute Vls ending at the next point im+1, define mmax = m + 1
and check again the tolerance criterion. We end the process when we find a point immax+1
where the tolerance checking does not hold. Then, we save the starting point ist(R) and the
ending point iend(R) of the constant segment, increase R by 1 and start again the process
of computing the constant segment with the new value of R.

If we have not found a constant segment in the previous process starting with i1, we
increase this index by 1 and check again for a constant segment. The process ends when
we find a constant segment or when the starting point ii is outside the valid data range,
i.e., in the 25% ending data limit.

We stop increasing R when we find negative values of Vmod. Now we have an interval
[Rmin, Rmax] of values of R that provide a constant segment of data in the I −Vmod circle
(as shown in Figure 3b, for the red curve) within the given tolerance ε. We have to select
the R value that gives the optimal segment, the “more” constant one.

In order to estimate the optimal value Rseries of R, we first select the maximal interval
(ist, iend) among all the intervals found for the different values of R we have checked.

For this maximal interval, we will perform a bisection search of the value Rseries in
[Rmin, Rmax] applied to the mean square error

E(R) :=
iend

∑
i=ist

(Vmodi(R)−Vls(R))2 (1)

to compute the value of R that provides the smallest E(R). In order to achieve that,
we compute the values E(Rmin), E(Rmax), and we take a new interval [Rmin, Rmax] as the
one with one of the endpoints at the midpoint of the interval [Rmin, Rmax] and the other
endpoint as the value of Rmin or Rmax with smaller E(R). We end the bisection process
when the length of the interval (or the value E(R)) is less than a certain tolerance.

The application of the explained process to the cycle that appears in Figure 3a (with
R = 0, black curve) provides the resistance R = 28.25 (red curve).

The algorithm is summarized, step by step, in the following lines:

1. Take R = 0.
2. If any value for Vmod(R) is negative, go to point 12.
3. Take a point ist = i1 starting 25% from the beginning of the data.
4. Take an ending point iend = im−1, with fixed m ≥ 10. If iend is outside the 25% limit,

go to stage 11.
5. Compute the mean-square constant Vlsiend

that aproximates (Ik(R), Vmodk(R)) with
k = ist, . . . , iend.

6. Compute
E∞ := max

im−1≤j≤iend
|Vlsj − V̄ls|,
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where V̄ls is the mean value of the computed Vls starting at index i1.
7. If iend > im−1 and E∞ < ε, the data with indexes between ist and iend form a con-

stant segment.
8. If iend = im−1 or the segment (ist, iend) is constant, increase iend = iend + 1 (ending

when the value is outside the 25% limit) and go to point 5.
9. If the segment (ist, iend−1) is constant, but E∞ > ε, for R, the segment (i1, iend−1) is

a potential candidate for the final horizontal segment. Save the values associated
with R.

10. If the segment (ist, iend) is not constant, increase ist = ist + 1 (ending when the value
is outside the 25% limit) and go to stage 4.

11. Increase R = R + 1 and go to stage 2.
12. For all the values of R with constant segments, take the reference interval as the

greatest one among the saved segment candidates.
13. Perform a bisection search between Rmin and Rmax applied to the mean square error

given by Equation (1) to compute the value of R that provides the smallest E(R).

3.2. Non-Uniform Quasi-Interpolating Splines for Parameter Extraction

Once the resistance R that provides the appropriate modified voltages has been
determined, the data {(Vi − R Ii, Ii), i = 0, . . . , n} should be approximated in order to
extract other parameters of interest. The variable change introduced demonstrates the
need of the non-uniform approach followed here evident. Therefore, now we propose a
general method to construct high-precision spline approximants to a function f defined on
an interval I := [a, b], from its values f (ti) at non-equally spaced points ti such that

a := t0 < t1 < t2 < · · · < tn−1 < tn := b. (2)

It will be applied to the voltage and current functions to define approximating splines from
their values at times ti.

Now, we introduce the space where the approximating splines will be defined and
recall some results [22,23].

Definition 1. Let n, d ∈ N, and let ∆ be a knot sequence satisfying (2). The spline space Sd(∆) of
order d + 1 is the space of all Cd−1(I)−piecewise polynomial functions whose restrictions to each
sub-interval [ti, ti+1], i = 0, . . . , n− 1 is a polynomial of degree at most d.

It is well-known that Sd(∆) is a linear space of dimension n + d. To get a good basis of
this space, an extended partition is needed. Among all options, we choose the one with
multiple end knots (see Figure 4):

t−d = · · · = t−1 = t0 < t1 < t2 < · · · < tn−1 < tn = tn+1 = · · · = tn+d. (3)

t−d = · · · = t−1 = t0

a
t1 t2 · · · tn−2 tn−1

b

tn = tn+1 = · · · = tn+d

Figure 4. Extended partition with multiple endpoints.

Proposition 1 ([23] (Th. 4.9)). Let ∆∗ be the extended partition given by (3). For i = 1, . . . ,n+d, let

Ni,d(t) := (ti − ti−d−1)[ti−d−1, . . . , ti](· − t)d
+,

where [z0, . . . , zk]g and (·)r
+ stand for the divided difference of g at z0, . . . , zk and the truncated

power of degree r, respectively. Then,
{

Ni,d
}

1≤i≤n+d forms a basis for Sd(∆) with

Ni,d(t) = 0 for t /∈ [ti−d−1, ti]
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and
Ni,d(t) > 0 for t ∈ (ti−d−1, ti).

Moreover,
n+d

∑
i=1

Ni,d(t) = 1 for all a ≤ t ≤ b.

Since monomials up to the degree d belong to the space Sd(∆), they are expressed
in terms of the B-splines. These representations are essential to define the approximating
splines we want to use to approximate a given function. They are obtained as a consequence
of Marsden’s identity [23] (Th. 4.21).

Proposition 2. For any non-negative integer r ≤ d, the monomial mr(t) := tr can be written as
a linear combination of the basis of B-splines as follows:

mr(t) =
n+d

∑
i=1

θ
(r)
i Ni,d(t), (4)

where

θ
(r)
i =

(
d
r

)−1
symmr−1(ti−d, . . . , ti−1), (5)

and the classical symmetric functions are

symm0
(
t1, . . . , tp

)
= 1,

symmj
(
t1, . . . , tp

)
= ∑

1≤i1<i2<···<ij≤p
ti1 ti2 · · · tij , 1 ≤ j ≤ p.

In particular, from (4) and (5), we obtain θ
(0)
i = 1 and

θ
(1)
i =

1
d

d

∑
`=1

ti−`,

so that

1 =
n+d

∑
i=1

Ni,d(t) and t =
n+d

∑
i=1

θ
(1)
i Ni,d(t).

As a consequence, the operator S : C(I)→ Sd(∆) defined as

S( f ) = S f =
n+d

∑
i=1

f
(

θ
(1)
i

)
Ni,d

is exact on P1, the space of polynomials of degree less than or equal to 1. That Schoenberg
operator provides an approximating spline for f , but only an approximation order equal to
O
(
h2) is obtained, where h := max0≤i≤n−1 hi and hi := ti+1 − ti.

Note that, when the ti’s are equally spaced values obtained by dividing the interval I
into n equal parts, then ti = a + i h with h = (b− a)/n and

θ
(1)
i = a + h

(
i− d + 1

2

)
, 1 ≤ i ≤ n + d.

Therefore, for an even d, the Greville’s abscissa θ
(1)
i is the mid-point of an interval.

However, when d is odd, θ
(1)
i is one of the knots. Since the function to be approximated is
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only known at the knots, in the general case, we will consider an odd degree d = 2k + 1,
k ≥ 1 and construct operators Qd : C(I)→ Sd(∆) having the form

Qd( f ) = Qd f =
n+d

∑
i=1

µi,d( f )Ni,d (6)

and yielding an approximation orderO
(

hd+1
)

. This is achieved by imposing the exactness
of Qd on the space Pd of all polynomials of degree at most d.

Lemma 1. Qd is exact on Pd if and only if

µi,d(mr) = θ
(r)
i , 0 ≤ r ≤ d, for all i = 1, . . . , n + d. (7)

Proof. Qd is exact on Pd if and only if Qdmr = mr, 0 ≤ r ≤ d. On the one hand, by (6) it
holds that

Qdmr =
n+d

∑
i=1

µi,d(mr)Ni,d.

On the other hand, by (4) we have

mr =
n+d

∑
i=1

θ
(r)
i Ni,d.

Then, Qdmr = mr if and only if µi,d(mr) = θ
(r)
i .

From now on we will assume that d is odd. For d + 1 ≤ i ≤ n, the B-splines Ni,d are
supported on [ti−d−1, ti] (see Figure 5) so that the linear functionals µi,d will be determined
by the values of f at d + 1 knots lying in the support, i.e.,

µi,d( f ) :=
d

∑
j=0

αi,j f
(

ti−d+j

)
. (8)

For 1 ≤ i ≤ d, the B-spline Ni,d is supported on [t0, ti]. Then, d− i + 1 additional knots
are needed to define

µi,d( f ) :=
d

∑
j=0

αi,j f
(
tj
)
. (9)

Analogously, for n− d ≤ i ≤ n− 1 we define

µi,d( f ) :=
d

∑
j=0

αi,j f
(

tn−d+j

)
. (10)

t0 t1

↑ ↑N1,d

t2

↑ ↑N2,d
...

· · · td

↑ ↑Nd,d

· · · · · · tn−d · · · tn−2 tn−1 tn

↑ ↑Nn+d,d

↑ ↑Nn+d−1,d
...↑ ↑Nn,d

tn−d−i · · · · · · ti

↑ ↑
Ni,d

Figure 5. Supports of the B-splines defined on an extended partition with multiple endpoints.
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Theorem 1. There exist unique values αi,j such that the quasi-interpolation Qd given by (6) and
the linear functionals defined by (8)–(10) are exact on Pd.

Proof. Let us suppose d + 1 ≤ i ≤ n. By (7), Qr is exact on Pd if and only if µi,d(mr) =

θ
(r)
i , 0 ≤ r ≤ d, i.e.,


1 1 · · · 1

ti−d ti−d+1 · · · ti
...

...
. . .

...
td
i−d td

i−d+1 · · · td
i




αi,0
αi,1

...
αi,d

 =


θ
(0)
i

θ
(1)
i
...

θ
(d)
i

.

The Vandermonde matrix of this system of linear equations is non-singular as the
involved knots are pairwise distinct. Therefore, the claim follows in this case.

The proof in the case 1 ≤ i ≤ d (resp. n − d ≤ i ≤ n − 1) is similar, but now the
linear functional given by (9) (resp. (10)) is involved, so that the matrix of coefficients is of
Vandermonde type based on the knots t0, . . . , td (resp. tn−d, . . . , tn).

In the cubic case, for s + 1 ≤ i ≤ n, it holds

θ
(0)
i = 1, θ

(1)
i =

ti−3 + ti−2 + ti−1

3
, θ

(2)
i =

ti−3ti−2 + ti−3ti−1 + ti−2ti−1

3
,

and θ
(3)
i = ti−3ti−2ti−1, and a straightforward calculation leads to the following result on

the unique quasi-interpolation operator Q3 defined from linear functionals based on point
evaluations at the knots and yields the optimal approximation order.

Proposition 3. The coefficients of the unique quasi-interpolation operator Q3 exact on P3 and
given by (6), defined by the linear functionals in (8)–(10), are given by the following expressions:

µ1,3( f ) = f (t0),

µ2,3( f ) =
2h1(h1 + h2) + h0(2h1 + h2)

3(h0 + h1)(h0 + h1 + h2)
f (t0) +

(h0 + h1)(h0 + h1 + h2)

3h1(h1 + h2)
f (t1)

−
h2

0(h0 + h1 + h2)

3h1h2(h0 + h1)
f (t2) +

h2
0(h0 + h1)

3h2(h1 + h2)(h0 + h1 + h2)
f (t3),

µk,3( f ) = αk f (tk−3) + βk f (tk−2) + γk f (tk−1), 3 ≤ k ≤ n + 1,

µn+2,3( f ) =
2hn−2(hn−2 + hn−3) + hn−1(2hn−2 + hn−3)

3(hn−1 + hn−2)(hn−1 + hn−2 + hn−3)
f (tn)

+
(hn−1 + hn−2)(hn−1 + hn−2 + hn−3)

3hn−2(hn−2 + hn−3)
f (tn−1)

−
h2

n−1(hn−1 + hn−2 + hn−3)

3hn−2hn−3(hn−1 + hn−2)
f (tn−2)

+
h2

n−1(hn−1 + hn−2)

3hn−3(hn−2 + hn−3)(hn−1 + hn−2 + hn−3)
f (tn−3),

µn+3,3( f ) = f (tn),

with

αk = −
h2

k−1
3hk−2(hk−2 + hk−1)

, βk =
(hk−2 + hk−1)

2

3hk−2hk−1
, γk = 1− αk − βk.

The resulting operator will be used to approximate the voltage-current curves. Note
that after solving the system ensuring the exactness of the quasi-interpolation operator,
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an approximating spline is immediately available for the function being considered, and no
specific system needs to be solved to determine it. Only the values of the function at the
knots determine the coefficients of the linear combination of B-splines.

4. Results and Discussion

To show the effectiveness of the proposed procedure to treat experimental data corre-
sponding to the considered non-linear devices, we will make use of two cycles. For the first
one, we will apply the algorithm of series resistance extraction that produces a modified set
that gives rise to a discrete curve with an almost vertical section. It has provided a resistance
of R = 28.97 ohms. Both the original and the modified curve are shown in Figure 6a.

Figure 6. Current versus voltage curves for two different cycles (a) cycle 2 and (b) cycle 106. The orig-
inal measured curves are shown in black symbols and the modified curves in red symbols. See in
lines, with the corresponding colors, the parametrized curves in each case. The VTS2 points are also
shown. The cycle numbers correspond to the order of these cycles in the sequence that forms the
resistive switching series measured, i.e., cycle 2 consists of the processes employed to change the
device resistance for the second time in the series.

For the second cycle (see Figure 6b), the algorithm gives a series resistance equal to
R = 21.25 ohms.

Therefore, to estimate the points VTS2 shown in Figure 6a, we have taken into account
that the modified curves show different regions. At low voltages, the current is low because
the conductive filament is not formed; therefore, the curve slope is also relatively low.
At the onset of the low resistance state, the conductive filament is formed and there is a
sudden current rise, as expected. This constitutes a second region where negative slopes
could be seen. The transition of these operation regions is marked by VTS2 . In some cases,
the voltage in the series resistance increases considerably, and the modified voltage is
reduced, even if the applied voltage goes on increasing.

For each cycle, the C2 cubic quasi-interpolants QVmod and QI to voltage and current,
respectively, are computed. The derivative of I as a function of V is estimated from the
derivatives of QI and QVmod as functions of t to yield dI

dV '
QI′(t)

QV′mod(t)
, and the latter is

computed to determine the first point at which the slope is negative. It is an estimate of
VTS2 . For the cycle considered in Figure 6a, it has been obtained that the slope is negative
at t` = 7.69 and VTS2 ' (0.43131V, 0.00166A). For the one in Figure 6b, t` = 8.17 and
VTS2 ' (0.43158V, 0.00457A). These results are in good agreement with the results shown
by the only information available, namely voltages and currents measured at non-uniformly
spaced times.

See in Figure 6 that the quasi-interpolant is built correctly both for the original and
modified curves. In addition, the vertical section of the curve is correctly detected to
extract the corresponding series resistance. For the cycle 2 (resp. 106), the point VTS is
attained at t` = 11.18 (resp. t` = 9.48) and VTS ' (0.27014V, 0.01770A) (resp. VTS '
(0.43319V, 0.0089A)).
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5. Conclusions

A new methodology based on an approximation theory approach is presented to deal
with the extraction of the series resistance and set transition voltage in resistive memories.
A robust procedure is presented in order to develop an algorithm that can be programmed
to analyze hundreds of consecutive current-voltage curves in an automatic way.
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