



# Article Simultaneous Comparison of Sensitivities and Specificities of Two Diagnostic Tests Adjusting for Discrete Covariates

José Antonio Roldán-Nofuentes 回

Department of Statistics, School of Medicine, University of Granada, 18016 Granada, Spain; jaroldan@ugr.es

**Abstract:** Adjusting for covariates is important in the study of the performance of diagnostic tests. In this manuscript, the simultaneous comparison of the sensitivities and specificities of two binary diagnostic tests is studied when discrete covariates are observed in all of the individuals in the sample. Four methods are presented to simultaneously compare the two sensitivities and the two specificities: a global hypothesis test and three other methods based on individual comparisons. The maximum likelihood method was applied to adjust the overall estimators of sensitivities and specificities. Simulation experiments were carried out to study the asymptotic behaviors of the four proposed methods when the covariate is binary, giving general rules of application. The results were applied to a real example.

Keywords: binary diagnostic test; sensitivity; specificity; simultaneous comparison



Citation: Roldán-Nofuentes, J.A. Simultaneous Comparison of Sensitivities and Specificities of Two Diagnostic Tests Adjusting for Discrete Covariates. *Mathematics* 2021, 9, 2029. https://doi.org/10.3390/ math9172029

Academic Editor: Maria Laura Manca

Received: 28 July 2021 Accepted: 20 August 2021 Published: 24 August 2021

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

# 1. Introduction

A diagnostic test is a medical test that is applied to a patient to determine the presence or absence of a certain disease. When the result of a diagnostic test may be either positive or negative, the diagnostic test is called a binary diagnostic test (BDT). The exercise test for the diagnosis of coronary artery disease is an example of a BDT. The fundamental parameters to measure the effectiveness of a BDT are its sensitivity and the specificity. The sensitivity (Se) is the probability that the BDT result is positive when the individual has the disease, and the specificity (Sp) is the probability that the BDT result is negative when the individual does not have the disease. Both parameters depend only on the intrinsic properties (physical, biological, chemical, etc.) of the BDT. The effectiveness of a BDT is assessed in relation to a gold standard. A gold standard (GS) is a medical test used to objectively diagnose the presence (or absence) of a certain disease. Therefore, a GS is an error-free test. An angiography for diagnosis of coronary artery disease is an example of a GS.

The comparison of the sensitivities (specificities) of two BDTs is an important topic in the study of statistical methods for diagnosis in medicine. The most common type of sample design to compare these parameters is the paired design. The paired design consists of applying the two BDTs to a random sample of *n* patients whose disease state is known by applying a GS. When the sensitivities and specificities of two BDTs are compared under a paired design, the problem is traditionally solved by conditioning on the disease status and applying a comparison test of two paired binomial proportions (e.g., the McNemar test). Therefore, the comparison of the two sensitivities is made conditioning on the diseased individuals and solving the test  $H_0 : Se_1 = Se_2$  vs.  $H_1 : Se_1 \neq Se_2$  applying the McNemar test to an  $\alpha$  error [1]. Similarly, the comparison of the two specificities is made conditioning on the non-diseased individuals and solving the test  $H_0 : Sp_1 = Sp_2$  vs.  $H_1 : Sp_1 \neq Sp_2$ by applying the same method. Therefore, sensitivities and specificities are compared independently, by solving the hypothesis tests  $H_0 : Se_1 = Se_2$  and  $H_0 : Sp_1 = Sp_2$ , to the same  $\alpha$  error. Roldán-Nofuentes and Sidaty-Regad [2] studied the simultaneous comparison of sensitivities and specificities, and showed that comparing the two sensitivities and the two specificities independently can give rise to global type I errors that greatly exceed the nominal error (and therefore can lead to wrong conclusions).

In clinical practice, when evaluating the effectiveness of a BDT, covariates are frequently observed in all patients in the sample. When the covariate is related to the disease and to the diagnostic test, it is necessary to adjust for covariates [3]. For example, in the diagnosis of coronary disease, smoking is a risk factor for the disease. Because smoking speeds up the heart rate, constricts the main arteries, and can cause disturbances in the rhythm of the heartbeat, if an exercise test is used, adjustment for smoking is needed to properly describe the diagnostic effectiveness of the exercise test. Another topical example is the diagnosis of COVID-19. Lahner et al. [4] studied the diagnosis of this disease in health workers using IgG serology as a diagnostic test (among other tests). Lahner et al. showed that the diagnostic performance of IgG serology is associated with the number of days elapsed (at least 14 or 20 days) after the nasopharyngeal swab. Therefore, adjusting for elapsed days is necessary to evaluate the diagnostic effectiveness of IgG serology. This problem also arises when comparing the effectiveness of two BDTs [3]. Therefore, when two BDTs are compared, it is necessary to eliminate the effect that the covariates have on the estimation of sensitivities and specificities, and on the comparison of these parameters.

This manuscript is an extension of the study by Roldán-Nofuentes and Sidaty-Regad [2], to the situation in which a discrete covariate is observed in all patients in the sample. Therefore, a global hypothesis test was studied to simultaneously compare the sensitivities and specificities of two BDTs when discrete covariates are observed in all patients in the sample. Other alternatives to the global hypothesis test were also studied. Adjusting for covariates in this situation eliminates the effect of covariates in the simultaneous comparison of the two sensitivities and specificities. This problem is approached by applying the maximum likelihood method to the estimation of the parameters and the delta method to the estimation of the variances-covariances. This manuscript is structured as follows. In Section 2, the model to simultaneously compare the sensitivities and specificities of two BDTs in the presence of a discrete covariate is described, in addition to other alternative methods. In Section 3, simulation experiments are carried out to study the sizes and the powers of the methods proposed in Section 2. In Section 4, a function written in R [5] is presented that allows the problem studied in this manuscript to be solved. In Section 5, the results are applied to the diagnosis of coronary heart disease, and in Section 6 the results are discussed.

### 2. Global Hypothesis Test

The objective is to study the simultaneous comparison of overall sensitivities and overall specificities of the two BDTs, i.e., to solve the global hypothesis test:

$$H_0: (Se_1 = Se_2 \text{ and } Sp_1 = Sp_2) \text{ vs. } H_1: (Se_1 \neq Se_2 \text{ and/or } Sp_1 \neq Sp_2)$$
 (1)

when the two BDTs are applied to all individuals in a sample with a size of *n* and a discrete covariate is observed in all of them. Therefore, let us consider two BDTs, Test 1 and Test 2, that are applied to all *n* individuals in a random sample. The disease state (disease present or disease absent) of all of the individuals in the sample is known by applying a GS. Let  $T_h$  be the binary random variable that models the result of the *h*th BDT:  $T_h = 1$  when the result of the BDT is positive and  $T_h = 0$  when it is negative. Let the binary random variable *D* that models the result of the GS: D = 1 when the individual is diseased and D = 0 when the individual is non-diseased. Moreover, let us consider that for all of the *n* individuals of the sample we observe a vector  $\mathbf{X} = (X_1, X_2, \dots, X_M)$  of a discrete covariate, where  $X_m$  is each of the different values or patterns that the covariate can take with  $m = 1, \dots, M$ . Let us suppose that the number of individuals that verify  $\mathbf{X} = X_m$  is  $n_m$ , and therefore  $n = \sum_{i=1}^{M} n_m$ . Table 1 shows the observed frequencies for  $\mathbf{X} = X_m$ , where  $n_{ijm} = s_{ijm} + r_{ijm}$ .

**Table 1.** Observed frequencies for  $\mathbf{X} = X_m$ .

|       | $T_1$ :          | = 1              | $T_1 =$                        | TF ( 1                         |                |
|-------|------------------|------------------|--------------------------------|--------------------------------|----------------|
|       | $T_2 = 1$        | $T_2 = 0$        | $T_2 = 1$                      | $T_2 = 0$                      | Iotal          |
| D = 1 | s <sub>11m</sub> | s <sub>10m</sub> | s <sub>01m</sub>               | s <sub>00m</sub>               | s <sub>m</sub> |
| D = 0 | $r_{11m}$        | $r_{10m}$        | <i>r</i> <sub>01<i>m</i></sub> | <i>r</i> <sub>00<i>m</i></sub> | r <sub>m</sub> |
| Total | $n_{11m}$        | $n_{10m}$        | <i>n</i> <sub>01<i>m</i></sub> | <i>n</i> <sub>00<i>m</i></sub> | $n_m$          |

The sample of *n* individuals is the product of a multinomial distribution whose probabilities are:

$$\tau_{mij} = P(\mathbf{X} = X_m, D = 1, T_1 = i, T_2 = j)$$

and:

$$v_{mij} = P(\mathbf{X} = X_m, D = 0, T_1 = i, T_2 = j),$$

with:

$$\sum_{m=1}^{M} \sum_{i,j=0}^{1} \tau_{mij} + \sum_{m=1}^{M} \sum_{i,j=0}^{1} v_{mij} = 1$$

From the multinomial distribution sized *n* and probabilities  $\tau_{mij}$  and  $v_{mij}$ , 8M - 1 parameters can be estimated, because in total there are 8*M* probabilities that are subject to  $\sum_{m=1}^{M} \sum_{i,j=0}^{1} \tau_{mij} + \sum_{m=1}^{M} \sum_{i,j=0}^{1} v_{mij} = 1$  (i.e.,  $v_{M11} = 1 - \sum_{m=1}^{M} \sum_{i,j=0}^{1} \tau_{mij} - \sum_{m=1}^{M} \sum_{i,j=0}^{1} v_{mij}$ ). If the  $(m,i,j) \neq (M,1,1)$ 

covariate is binary, then 15 parameters can be estimated.

Let  $\psi_m = P(\mathbf{X} = X_m)$  be the probability that an individual  $\mathbf{X} = X_m$  and  $\mathbf{\psi} = (\psi_1, \dots, \psi_M)^T$ , with  $\sum_{m=1}^{M} \psi_m = 1$ . Let  $\phi_{ijm}$  and  $\varphi_{ijm}$  be the probabilities defined as

$$\phi_{ijm} = P(D = 1, T_1 = i, T_2 = j | \mathbf{X} = X_m)$$
 and  $\varphi_{ijm} = P(D = 0, T_1 = i, T_2 = j | \mathbf{X} = X_m)$ ,

then probabilities  $\tau_{mij}$  and  $v_{mij}$  can be written as:

$$\tau_{mij} = \psi_m \phi_{ijm} \text{ and } v_{mij} = \psi_m \phi_{ijm}.$$
<sup>(2)</sup>

The sample of *n* individuals can be seen as a sample of a mixture of *M* multinomial independent  $2 \times 4$  tables. By conditioning on the *m*th table, i.e., conditioning on  $\mathbf{X} = X_m$ , and applying the conditional dependence model of Berry et al. [6], it holds that:

$$\phi_{ijm} = P(D = 1, T_1 = i, T_2 = j | \mathbf{X} = X_m) = P(D = 1 | \mathbf{X} = x_m) [P(T_1 = i | \mathbf{X} = X_m, D = 1) \times P(T_2 = j | \mathbf{X} = X_m, D = 1) + \delta_{ij} \varepsilon_{1m}] = p_m \Big[ Se^i_{1m} (1 - Se_{1m})^{1-i} Se^j_{2m} (1 - Se_{2m})^{1-j} + \delta_{ij} Se_{1m} Se_{2m} (\alpha_{1m} - 1) \Big]$$

and:

$$\begin{aligned} \varphi_{ijm} &= P(D=0, T_1=i, T_2=j | \mathbf{X} = X_m) = \\ P(D=0 | \mathbf{X} = x_m) \left[ P(T_1=i | \mathbf{X} = X_m, D=0) \times P(T_2=j | \mathbf{X} = X_m, D=0) + \delta_{ij} \varepsilon_{0m} \right] = \\ q_m \left[ S p_{1m}^{1-i} (1-S p_{1m})^i S p_{2m}^{1-j} (1-S p_{2m})^j + \delta_{ij} (1-S p_{1m}) (1-S p_{2m}) (\alpha_{0m}-1) \right], \end{aligned}$$

where  $p_m = P(D = 1 | \mathbf{X} = X_m) = \sum_{i,j=0}^{1} \phi_{ijm}$  is the disease prevalence for the individuals with  $\mathbf{X} = X_m$ ,  $q_m = 1 - p_m$ ,  $\delta_{ij} = 1$  if i = j and  $\delta_{ij} = -1$  if  $i \neq j$ , and the parameter  $\alpha_{1m}$  ( $\alpha_{0m}$ ) is the covariance [6] between both BDTs when D = 1 (D = 0) and  $\mathbf{X} = X_m$ . The covariances verify [6] that  $1 \le \alpha_{1m} \le 1/\max\{Se_{1m}, Se_{2m}\}$  and  $1 \le \alpha_{0m} \le 1/\max\{(1 - Sp_{1m}), (1 - Sp_{2m})\}$ . If  $\alpha_{1m} = \alpha_{0m} = 1$ , then both BDTs are conditionally inde-

pendent on the disease when  $\mathbf{X} = X_m$ , an assumption that is not realistic, so in practice  $\alpha_{1m} > 1$  and/or  $\alpha_{0m} > 1$ .

For the *m*th table (i.e.,  $\mathbf{X} = X_m$ ), let  $\boldsymbol{\omega}_m = (\phi_{11m}, \phi_{10m}, \phi_{01m}, \phi_{00m}, \varphi_{11m}, \phi_{10m}, \phi_{00m})^T$  be the vector whose components are the probabilities  $\phi_{ijm}$  and  $]\varphi_{ijm}$ . Therefore, conditioning on  $\mathbf{X} = X_m$ ,  $\boldsymbol{\omega}_m$  is the probability vector of a multinomial distribution. Let  $\boldsymbol{\omega} = (\boldsymbol{\omega}_1, \dots, \boldsymbol{\omega}_M)^T$  be the vector whose components are  $\boldsymbol{\omega}_m$ . In  $\mathbf{X} = X_m$ , the sensitivities of the BDTs are:

$$Se_{1m} = P(T_1 = 1 | D = 1, \mathbf{X} = X_m)$$
 and  $Se_{2m} = P(T_2 = 1 | D = 1, \mathbf{X} = X_m)$ ,

and the specificities are:

$$Sp_{1m} = P(T_1 = 0 | D = 0, \mathbf{X} = X_m)$$
 and  $Sp_{2m} = P(T_2 = 0 | D = 0, \mathbf{X} = X_m)$ .

Let  $p = \sum_{m=1}^{M} \psi_m p_m = \sum_{m=1}^{M} \psi_m \left( \sum_{i,j=0}^{1} \phi_{ijm} \right)$  be the overall prevalence and q = 1 - p

 $= \sum_{m=1}^{M} \psi_m q_m = \sum_{m=1}^{M} \psi_m \left( \sum_{i,j=0}^{1} \varphi_{ijm} \right).$  The overall sensitivity and the overall specificity of each BDT are:

$$Se_{h} = P(T_{h} = 1|D = 1) = \frac{\sum_{m=1}^{M} \psi_{m} p_{m} Se_{hm}}{p} \text{ and } Sp_{h} = P(T_{h} = 0|D = 0) = \frac{\sum_{m=1}^{M} \psi_{m} q_{m} Sp_{hm}}{q},$$
(3)

With h = 1, 2, and where:

$$Se_{1m} = \frac{\phi_{11m} + \phi_{10m}}{p_m}$$
 and  $Sp_{1m} = \frac{\phi_{01m} + \phi_{00m}}{q_m}$ 

are the sensitivity and specificity of Test 1 in  $\mathbf{X} = X_m$ , and:

$$Se_{2m} = \frac{\phi_{11m} + \phi_{01m}}{p_m}$$
 and  $Sp_{2m} = \frac{\phi_{10m} + \phi_{00m}}{q_m}$ 

are the sensitivity and specificity of Test 2 in  $\mathbf{X} = X_m$ . The overall sensitivity and the overall specificity of each BDT are written in terms of  $\psi_m$ ,  $\phi_{ijm}$  and  $\varphi_{ijm}$  as:

$$Se_{1} = \frac{\sum_{m=1}^{M} \psi_{m}(\phi_{11m} + \phi_{10m})}{\sum_{m=1}^{M} \left(\psi_{m} \sum_{i,j=0}^{1} \phi_{ijm}\right)} \text{ and } Sp_{1} = \frac{\sum_{m=1}^{M} \psi_{m}(\varphi_{00m} + \varphi_{01m})}{\sum_{m=1}^{M} \left(\psi_{m} \sum_{i,j=0}^{1} \varphi_{ijm}\right)}$$

for Test 1, and:

$$Se_{2} = \frac{\sum_{m=1}^{M} \psi_{m}(\phi_{11m} + \phi_{01m})}{\sum_{m=1}^{M} \left(\psi_{m} \sum_{i,j=0}^{1} \phi_{ijm}\right)} \text{ and } Sp_{2} = \frac{\sum_{m=1}^{M} \psi_{m}(\varphi_{00m} + \varphi_{10m})}{\sum_{m=1}^{M} \left(\psi_{m} \sum_{i,j=0}^{1} \varphi_{ijm}\right)}$$

for Test 2.

The parameters of the model are estimated by applying the maximum likelihood method. If the covariate has M patterns then 8M - 1 parameters must be estimated: 2M sensitivities, 2M specificities, 2M covariances, M prevalences and M - 1 probabilities  $\psi_m$  (since  $\sum_{m=1}^{M} \psi_m = 1$ ). If the covariate is binary (M = 2) then 15 parameters must be estimated:

four sensitivities ( $Se_{11}$ ,  $Se_{21}$ ,  $Se_{12}$  and  $Se_{22}$ ), four specificities ( $Sp_{11}$ ,  $Sp_{21}$ ,  $Sp_{12}$  and  $Sp_{22}$ ), four covariances ( $\alpha_{11}$ ,  $\alpha_{01}$ ,  $\alpha_{12}$  and  $\alpha_{02}$ ), two prevalences ( $p_1$  and  $p_2$ ) and the probability  $\psi_1$  (since  $\psi_2 = 1 - \psi_1$ ). Therefore, all the parameters of the model can be estimated from the sample of *n* individuals, since the number of parameters that must be estimated is equal to the number of parameters that can be estimated from the initial multinomial distribution. The log-likelihood function based on *n* individuals is:

$$l(\psi, \omega) = \sum_{i,j=0}^{1} \sum_{m=1}^{M} x_{ijm} \log(\psi_m \phi_{ijm}) + \sum_{i,j=0}^{1} \sum_{m=1}^{M} y_{ijm} \log(\psi_m \varphi_{ijm})$$

This function can be written as:

$$l(\mathbf{\psi}, \mathbf{\omega}) = l_1(\mathbf{\psi}) + l_2(\mathbf{\omega}), \tag{4}$$

where:

$$l_1(\Psi) = \sum_{i,j=0}^{1} \sum_{m=1}^{M} n_{ijm} \log(\psi_m)$$
(5)

and:

$$l_{2}(\boldsymbol{\omega}) = \sum_{i,j=0}^{1} \sum_{m=1}^{M} x_{ijm} \log(\phi_{ijm}) + \sum_{i,j=0}^{1} \sum_{m=1}^{M} y_{ijm} \log(\varphi_{ijm}).$$
(6)

Maximum likelihood estimators of  $\psi$  and  $\omega$  are easily obtained from Functions (5) and (6), i.e.,

$$\hat{\psi}_m = \frac{n_m}{n}, \ \hat{\phi}_{ijm} = \frac{s_{ijm}}{n_m} \text{ and } \hat{\phi}_{ijm} = \frac{r_{ijm}}{n_m}.$$

The estimators of sensitivities and specificities in  $\mathbf{X} = X_m$ , the estimator of overall prevalence, and the estimators of overall sensitivities and of overall specificities are easily obtained by substituting the parameters for their estimators into their respective equations. The Fisher information matrix of function (4) is:

$$I(\mathbf{\psi}, \mathbf{\omega}) = \text{Diag}\{I_1, I_2\},\$$

where  $I_1 = I(\psi)$  and  $I_2 = I(\omega)$  are the Fisher information matrixes of Functions (5) and (6) respectively, verifying that:

$$I^{-1}(\boldsymbol{\psi},\boldsymbol{\omega}) = \text{Diag}\Big\{I_1^{-1},I_2^{-1}\Big\}$$

and, therefore, the covariances between  $\psi$  and  $\omega$  are zero. Because vector  $\psi$  is the probability vector of a multinomial distribution, the variance-covariance matrix of  $\hat{\psi}$  is:

$$\sum_{\hat{\boldsymbol{\psi}}} = I_1^{-1} = \left\{ Diag(\boldsymbol{\psi}) - \boldsymbol{\psi} \boldsymbol{\psi}^T \right\} / n.$$

The variance-covariance matrix of  $\hat{\boldsymbol{\omega}}_m$  is:

$$\sum_{\hat{\boldsymbol{\omega}}_m} = \left\{ Diag(\boldsymbol{\omega}_m) - \boldsymbol{\omega}_m \boldsymbol{\omega}_m^T \right\} / n_m$$

and the variance-covariance matrix of  $\hat{\boldsymbol{\omega}}$  is:

$$\sum_{\hat{\boldsymbol{\omega}}} = I_2^{-1} = Diag\left\{\sum_{\hat{\boldsymbol{\omega}}_1} \dots \sum_{\hat{\boldsymbol{\omega}}_M}\right\}.$$

The proof can be seen in Appendix A.

Let  $\theta = (Se_1, Sp_1, Se_2, Sp_2)^T$  be a vector whose components are the overall sensitivities and the overall specificities; then, by applying the delta method [7], the variance-covariance matrix of  $\hat{\theta}$  is:

$$\sum_{\hat{\theta}} = \left(\frac{\partial\theta}{\partial\psi}\right) \sum_{\hat{\Psi}} \left(\frac{\partial\theta}{\partial\psi}\right)^T + \left(\frac{\partial\theta}{\partial\omega}\right) \hat{\sum}_{\hat{\omega}} \left(\frac{\partial\theta}{\partial\omega}\right)^T$$

The estimated variance-covariance matrix  $\hat{\Sigma}_{\hat{\theta}}$  is obtained by substituting into this expression the parameters for their estimators.

The global hypothesis test (1) is equivalent to the hypothesis test:

$$H_0: \mathbf{A}\mathbf{\theta} = 0 \text{ vs. } H_1: \mathbf{A}\mathbf{\theta} \neq 0$$

where **A** is a complete range matrix with the size  $2 \times 4$ , i.e.,

$$\mathbf{A} = \left( \begin{array}{rrrr} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{array} \right)$$

By applying the multivariate central limit theorem, it is verified that  $\sqrt{n}(\hat{\theta} - \theta) \rightarrow N(0, \sum_{\theta})$  when *n* is large. Then, the statistic:

$$Q^{2} = \hat{\boldsymbol{\theta}}^{T} \mathbf{A}^{T} \left( \mathbf{A} \hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{\theta}}} \mathbf{A}^{T} \right)^{-1} \mathbf{A} \hat{\boldsymbol{\theta}}$$

is distributed according to a Hotelling T-squared distribution. This distribution has 2 and n degrees of freedom, where 2 is the dimension of the vector  $\mathbf{A}\hat{\theta}$ . When n is large,  $Q^2$  is distributed according to a central chi-squared distribution with 2 degrees of freedom when the null hypothesis is true, i.e.,

$$Q^{2} = \hat{\boldsymbol{\eta}}^{T} \mathbf{A}^{T} \left( \mathbf{A} \hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{\eta}}} \mathbf{A}^{T} \right)^{-1} \mathbf{A} \hat{\boldsymbol{\eta}} \xrightarrow[n \to \infty]{} \chi_{2}^{2}.$$
(7)

To calculate this test statistic, it is necessary to verify that  $s_{10m} + s_{01m} + r_{10m} + r_{01m} > 0$ . The global hypothesis test (1) can also be solved from the individual hypothesis test, i.e.,  $H_0 : Se_1 = Se_2$  and  $H_0 : Sp_1 = Sp_2$ , each of which are independent of the  $\alpha$  error. In this situation, the corresponding test statistics are:

$$z = \frac{\hat{S}e_1 - \hat{S}e_2}{\sqrt{\hat{V}ar(\hat{S}e_1) + \hat{V}ar(\hat{S}e_2) - 2\hat{C}ov(\hat{S}e_1, \hat{S}e_2)}}$$
(8)

and:

$$z = \frac{\hat{S}p_1 - \hat{S}p_2}{\sqrt{\hat{V}ar(\hat{S}p_1) + \hat{V}ar(\hat{S}p_2) - 2\hat{C}ov(\hat{S}p_1, \hat{S}p_2)}}.$$
(9)

Both test statistics have a normal standard distribution when the sample size *n* is large. Another method used to solve the global test consists of solving each of the individual tests along with a method of multiple comparisons, such as the Bonferroni method [8] or the Holm method [9]. The Bonferroni and Holm methods are very easy to apply and are based on the *p*-values of the individual hypothesis tests. In the situation studied here, the Bonferroni method consists of solving each individual hypothesis test with an  $\alpha/2$  error. The Holm method is a less conservative method than the Bonferroni method. Let  $p_1$  and  $p_2$  be the *p*-values obtained in each individual hypothesis test and let us suppose that  $p_1 \leq p_2$ ; then, the Holm method [9] consists of the following two steps:

- (1) If  $p_1 > \alpha/2$ , then none of the two null hypothesis  $H_0 : Se_1 = Se_2$  and  $H_0 : Sp_1 = Sp_2$  are rejected. If  $p_1 \le \alpha/2$ , then the null hypothesis corresponding to that hypothesis test is rejected and we go on to the next step.
- (2) If  $p_2 > \alpha$ , then the corresponding null hypothesis is not rejected. If  $p_2 \le \alpha$ , then the null hypothesis is rejected and the process ends.

In this proposed model, it is assumed that a discrete covariate is observed in all of the individuals in the sample. If several discrete covariates are observed, the problem is solved in a similar manner. In this situation, a single discrete covariate is considered, whose number of patterns is the product of the patterns of the observed covariates [10]. For example, if two covariates are observed with two and three patterns, respectively, for example, sex and age group (young, adult, and older), then a covariate that has six patterns is considered (young man, adult man, older man, young woman, adult woman, and older woman).

## 3. Simulation Experiments

Monte Carlo simulation experiments were carried out to study the sizes and the powers of the four methods described in Section 2: global hypothesis tests with  $\alpha = 5\%$ ; individual hypothesis tests along with the Bonferroni method and  $\alpha = 5\%$ ; and individual hypothesis tests along with the Holm method and  $\alpha = 5\%$ ; For the global hypothesis test with  $\alpha = 5\%$ , the global type I error is the error that is committed when the alternative hypothesis is accepted ( $Se_1 \neq Se_2$  and/or  $Sp_1 \neq Sp_2$ ) when the null hypothesis is true ( $Se_1 = Se_2$  and  $Sp_1 = Sp_2$ ). Regarding the individual hypothesis tests with  $\alpha = 5\%$  (with or without a multiple comparison method), the objective is to study the magnitude and behavior of the global type I error and of the global power. The global type I error is the error made when we reject  $H_0 : Se_1 = Se_2$  and/or  $H_0 : Sp_1 = Sp_2$  when both are true, whether or not each test is with  $\alpha = 5\%$  or applies the Bonferroni (or Holm) method. The argument for the global power is similar to this.

These experiments consisted of generating N = 10,000 random samples with multinomial distributions with a size of  $n = \{50, 100, 200, 500, 1000, 2000\}$ , whose probabilities were calculated from Equation (2). It was considered that the discrete covariate **X** is binary (M = 2) with patterns  $X_1$  and  $X_2$ , such as the presence of a risk factor (Yes or No), family history of the disease (Yes or No), or sex; this situation is very frequent in clinical practice. As values for  $\psi_1$  ( $\psi_2 = 1 - \psi_1$ ), we considered 0.25 and 0.50, and for the prevalence  $p_m$ , we considered the values 10%, 25%, and 50%. As values of the sensitivities ( $Se_{11}$ ,  $Se_{12}$ ,  $Se_{21}$ and  $Se_{22}$ ) and specificities ( $Sp_{11}$ ,  $Sp_{12}$ ,  $Sp_{21}$  and  $Sp_{22}$ ) in each pattern of the covariate, we took the values  $\{0.70, 0.80, 0.90\}$ . Then, from the values  $Se_{hm}$  and  $Sp_{hm}$ , we calculated the maximum values of the covariances  $\alpha_{1m}$  and  $\alpha_{0m}$ , and as values of  $\alpha_{1m}$  and  $\alpha_{0m}$ , we took intermediate and high values, i.e.,

$$\alpha_{1m} = \frac{f}{Max\{Se_{1m}, Se_{2m}\}} + 1 - f$$

and:

$$\alpha_{0m} = \frac{f}{Max\{(1 - Sp_{1m}), (1 - Sp_{2m})\}} + 1 - f$$

with  $f = \{0.10, 0.50, 0.90\}$ . From all of the above values, the overall sensitivities and overall specificities were calculated by applying Equation (3). The simulation experiments were designed in such a manner that, if it is not possible in a sample to estimate a parameter (for example, if  $\hat{S}e_{hm} = 0$ ), then that sample is discarded and another is generated in its place until *N* samples are obtained.

## 3.1. Type I Errors

Tables 2 and 3 show the type I errors obtained for the four methods proposed in Section 2, considering different scenarios. Table 2 shows some results for  $Se_h = 0.90$  and  $Sp_h = \{0.70, 0.80\}$  ( $Se_h > Sp_h$ ), and Table 3 shows some results for  $Se_h = \{0.70, 0.80\}$  and  $Sp_h = 0.90$  ( $Se_h < Sp_h$ ).

| Se <sub>1</sub> = Se <sub>2</sub> = 0.90, Sp <sub>1</sub> = Sp <sub>2</sub> = 0.70, p <sub>1</sub> = 10%, p <sub>2</sub> = 25%, $\psi_1$ = 25%, $\psi_2$ = 75% |                                                                                                                                                                                                                                                         |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                | $\alpha_{11} \\ \alpha_{12}$                                                                                                                                                                                                                            | $\begin{array}{c} \alpha_{01} = 0 \\ \alpha_{02} = 0 \end{array}$                                                               | .021<br>.021                                                                                                                                                                                                                                                                                                                                                                                                                              | $\alpha_{11}$<br>$\alpha_{12}$                                                                                                                                         | = 0.045<br>= 0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{aligned} \alpha_{01} &= 0\\ \alpha_{02} &= 0 \end{aligned}$                                                            | .105<br>.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{l} \alpha_{11}=0.081 \; \alpha_{01}=0.189 \\ \alpha_{12}=0.081 \; \alpha_{02}=0.189 \end{array}$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                 |
| п                                                                                                                                                              | M1                                                                                                                                                                                                                                                      | M2                                                                                                                              | M3                                                                                                                                                                                                                                                                                                                                                                                                                                        | M4                                                                                                                                                                     | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M2                                                                                                                             | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M4                                                                                                                                                                                                                                                                                            | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M2                                                                                                                                             | M3                                                                                                                                                               | M4                                                                                                                              |
| 50                                                                                                                                                             | 0.34                                                                                                                                                                                                                                                    | 2.14                                                                                                                            | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.08                                                                                                                                                                   | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.88                                                                                                                           | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.34                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                              | 0                                                                                                                                                                | 0                                                                                                                               |
| 100                                                                                                                                                            | 1.28                                                                                                                                                                                                                                                    | 4.10                                                                                                                            | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.08                                                                                                                                                                   | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.88                                                                                                                           | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.42                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                           | 0                                                                                                                                                                | 0                                                                                                                               |
| 200                                                                                                                                                            | 1.40                                                                                                                                                                                                                                                    | 4.52                                                                                                                            | 2.36                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.36                                                                                                                                                                   | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.70                                                                                                                           | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.64                                                                                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.82                                                                                                                                           | 0.16                                                                                                                                                             | 0.16                                                                                                                            |
| 500                                                                                                                                                            | 1.98                                                                                                                                                                                                                                                    | 4.48                                                                                                                            | 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.60                                                                                                                                                                   | 1.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.66                                                                                                                           | 2.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.46                                                                                                                                                                                                                                                                                          | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.00                                                                                                                                           | 1.38                                                                                                                                                             | 1.38                                                                                                                            |
| 1000                                                                                                                                                           | 2.30                                                                                                                                                                                                                                                    | 5.24                                                                                                                            | 2.74                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.78                                                                                                                                                                   | 1.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.82                                                                                                                           | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.38                                                                                                                                                                                                                                                                                          | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.26                                                                                                                                           | 1.48                                                                                                                                                             | 1.48                                                                                                                            |
| 2000                                                                                                                                                           | 3.50                                                                                                                                                                                                                                                    | 7.24                                                                                                                            | 3.58                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.60                                                                                                                                                                   | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.26                                                                                                                           | 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.40                                                                                                                                                                                                                                                                                          | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.18                                                                                                                                           | 1.96                                                                                                                                                             | 1.96                                                                                                                            |
|                                                                                                                                                                | Se <sub>1</sub>                                                                                                                                                                                                                                         | = Se <sub>2</sub> =                                                                                                             | 0.90, S <sub>l</sub>                                                                                                                                                                                                                                                                                                                                                                                                                      | $p_1 = Sp_2$                                                                                                                                                           | $_{2}=0.70,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $p_1 = 10$                                                                                                                     | 9% , p <sub>2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 25%, ψ                                                                                                                                                                                                                                                                                      | $v_1 = 50\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\phi, \psi_2 =$                                                                                                                               | 50%                                                                                                                                                              |                                                                                                                                 |
|                                                                                                                                                                | $\alpha_{11}$                                                                                                                                                                                                                                           | = 0.009                                                                                                                         | $\alpha_{01} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                         | .021                                                                                                                                                                   | <i>α</i> <sub>11</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0.045                                                                                                                        | $\alpha_{01} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .105                                                                                                                                                                                                                                                                                          | $\alpha_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 0.081                                                                                                                                        | $\alpha_{01} = 0$                                                                                                                                                | .189                                                                                                                            |
|                                                                                                                                                                | <i>α</i> <sub>12</sub>                                                                                                                                                                                                                                  | = 0.009                                                                                                                         | $\alpha_{02} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                         | .021                                                                                                                                                                   | <i>α</i> <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0.045                                                                                                                        | $\alpha_{02} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .105                                                                                                                                                                                                                                                                                          | $\alpha_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 0.081                                                                                                                                        | $\alpha_{02} = 0$                                                                                                                                                | .189                                                                                                                            |
| п                                                                                                                                                              | M1                                                                                                                                                                                                                                                      | M2                                                                                                                              | M3                                                                                                                                                                                                                                                                                                                                                                                                                                        | M4                                                                                                                                                                     | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M2                                                                                                                             | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M4                                                                                                                                                                                                                                                                                            | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M2                                                                                                                                             | M3                                                                                                                                                               | M4                                                                                                                              |
| 50                                                                                                                                                             | 0.58                                                                                                                                                                                                                                                    | 2.42                                                                                                                            | 1.26                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.26                                                                                                                                                                   | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.02                                                                                                                           | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.22                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                              | 0                                                                                                                                                                | 0                                                                                                                               |
| 100                                                                                                                                                            | 1.20                                                                                                                                                                                                                                                    | 4.08                                                                                                                            | 1.86                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.86                                                                                                                                                                   | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.88                                                                                                                           | 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.16                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04                                                                                                                                           | 0                                                                                                                                                                | 0                                                                                                                               |
| 200                                                                                                                                                            | 1.76                                                                                                                                                                                                                                                    | 4.40                                                                                                                            | 2.22                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.22                                                                                                                                                                   | 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.64                                                                                                                           | 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.58                                                                                                                                                                                                                                                                                          | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.68                                                                                                                                           | 0.14                                                                                                                                                             | 0.14                                                                                                                            |
| 500                                                                                                                                                            | 2.44                                                                                                                                                                                                                                                    | 4.98                                                                                                                            | 2.42                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.42                                                                                                                                                                   | 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.20                                                                                                                           | 1.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.82                                                                                                                                                                                                                                                                                          | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.08                                                                                                                                           | 1.20                                                                                                                                                             | 1.20                                                                                                                            |
| 1000                                                                                                                                                           | 3.22                                                                                                                                                                                                                                                    | 7.06                                                                                                                            | 3.08                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.10                                                                                                                                                                   | 2.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.82                                                                                                                           | 2.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.04                                                                                                                                                                                                                                                                                          | 1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.66                                                                                                                                           | 1.76                                                                                                                                                             | 1.76                                                                                                                            |
| 2000                                                                                                                                                           | 4.20                                                                                                                                                                                                                                                    | 8.16                                                                                                                            | 4.22                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.28                                                                                                                                                                   | 3.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.14                                                                                                                           | 3.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.32                                                                                                                                                                                                                                                                                          | 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.48                                                                                                                                           | 2.06                                                                                                                                                             | 2.06                                                                                                                            |
|                                                                                                                                                                |                                                                                                                                                                                                                                                         |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                 |
|                                                                                                                                                                | Se <sub>1</sub>                                                                                                                                                                                                                                         | = Se <sub>2</sub> =                                                                                                             | • <b>0.90, S</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                        | $p_1 = Sp_1$                                                                                                                                                           | <sub>2</sub> = 0.80,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $p_1 = 10$                                                                                                                     | )%, p <sub>2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25%, ψ                                                                                                                                                                                                                                                                                        | 1 = 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\phi_{1}, \psi_{2} = 2$                                                                                                                       | 75%                                                                                                                                                              |                                                                                                                                 |
|                                                                                                                                                                | <b>Se</b> <sub>1</sub><br>α <sub>11</sub>                                                                                                                                                                                                               | = Se <sub>2</sub> =<br>= 0.009                                                                                                  | $\alpha_{01} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>p</b> <sub>1</sub> = <b>Sp</b><br>.016                                                                                                                              | $a_2 = 0.80,$<br>$\alpha_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $p_1 = 10$<br>= 0.045                                                                                                          | $p_{0}, p_{2} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>25%, ψ</b><br>.080                                                                                                                                                                                                                                                                         | $\alpha_1 = 25\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\psi_2 = 2^{-1}$<br>= 0.081                                                                                                                   | 75%<br>$\alpha_{01} = 0$                                                                                                                                         | 0.144                                                                                                                           |
|                                                                                                                                                                | $Se_1$ $\alpha_{11}$ $\alpha_{12}$                                                                                                                                                                                                                      | = Se <sub>2</sub> =<br>= 0.009<br>= 0.009                                                                                       | $\begin{array}{l} \mathbf{c} \ \mathbf{0.90, S} \\ \mathbf{\alpha}_{01} = 0 \\ \mathbf{\alpha}_{02} = 0 \end{array}$                                                                                                                                                                                                                                                                                                                      | <b>p</b> <sub>1</sub> = <b>Sp</b><br>.016<br>.016                                                                                                                      | $\alpha_{11} = \alpha_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $p_1 = 10$<br>= 0.045<br>= 0.045                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 <b>5%, ψ</b><br>.080<br>.080                                                                                                                                                                                                                                                                | $\alpha_1 = 25\%$<br>$\alpha_{11}$<br>$\alpha_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\psi_2 = 2$<br>= 0.081<br>= 0.081                                                                                                             | $   \begin{array}{l}         \alpha_{01} = 0 \\         \alpha_{02} = 0   \end{array} $                                                                          | ).144<br>).144                                                                                                                  |
| n                                                                                                                                                              | $Se_1$ $\alpha_{11}$ $\alpha_{12}$ M1                                                                                                                                                                                                                   | = Se <sub>2</sub> =<br>= 0.009<br>= 0.009<br>M2                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>p</b> <sub>1</sub> = <b>Sp</b><br>.016<br>.016<br>M4                                                                                                                | $\alpha_{11} = 0.80,$<br>$\alpha_{11} = \alpha_{12}$<br>M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $p_1 = 10$<br>= 0.045<br>= 0.045<br>M2                                                                                         | <b>0%</b> , $\mathbf{p}_2 =$<br>$\alpha_{01} = 0$<br>$\alpha_{02} = 0$<br>M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25%,ψ<br>0.080<br>0.080<br>M4                                                                                                                                                                                                                                                                 | $\alpha_1 = 25\%$<br>$\alpha_{11}$<br>$\alpha_{12}$<br>M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\psi_2 = 2$<br>= 0.081<br>= 0.081<br>M2                                                                                                       | $   \begin{array}{l}       \pi_{01} = 0 \\       \alpha_{02} = 0 \\       M3   \end{array} $                                                                     | 0.144<br>0.144<br>M4                                                                                                            |
|                                                                                                                                                                | $Se_1$ $\alpha_{11}$ $\alpha_{12}$ M1 0.24                                                                                                                                                                                                              | = Se <sub>2</sub> =<br>= 0.009<br>= 0.009<br>M2<br>1.38                                                                         | $\begin{array}{c} \textbf{a}_{01} = 0\\ \alpha_{01} = 0\\ \alpha_{02} = 0\\ M3\\ 0.58 \end{array}$                                                                                                                                                                                                                                                                                                                                        | <b>p</b> <sub>1</sub> = <b>Sp</b><br>.016<br>.016<br>M4<br>0.58                                                                                                        | $\alpha_{11} = \frac{\alpha_{11}}{\alpha_{12}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $p_1 = 10$<br>= 0.045<br>= 0.045<br>M2<br>0.45                                                                                 | $p_{0}, p_{2} = 0$<br>$\alpha_{01} = 0$<br>$\alpha_{02} = 0$<br>M3<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25%,ψ<br>0.080<br>0.080<br>M4<br>0.05                                                                                                                                                                                                                                                         | $\frac{\alpha_{11}}{\alpha_{12}} = 25\%$ $\frac{\alpha_{11}}{\alpha_{12}}$ $M1$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{\psi_{2} = 2}{0}, \psi_{2} = 2$ $= 0.081$ $= 0.081$ $M2$ $= 0$                                                                          | $   \begin{array}{r} 75\% \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline M3 \\ 0 \end{array} $                                                                  | 0.144<br>0.144<br><u>M4</u><br>0                                                                                                |
| <i>n</i><br>50<br>100                                                                                                                                          | $     Se_1          $                                                                                                                                                                                                                                   | $= Se_2 = 0.009 = 0.009$ $= 0.009$ $M2$ $1.38$ $3.30$                                                                           | $\begin{array}{c} \textbf{a}_{01} = 0\\ \alpha_{01} = 0\\ \alpha_{02} = 0\\ \hline \textbf{M3}\\ 0.58\\ 1.68 \end{array}$                                                                                                                                                                                                                                                                                                                 | p <sub>1</sub> = Sp<br>.016<br>.016<br>.016<br>.016<br>.016<br>.016<br>.058<br>1.68                                                                                    | $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{M1}$ 0 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $p_1 = 10$<br>= 0.045<br>= 0.045<br>M2<br>0.45<br>2.15                                                                         | $ \frac{0\%, \mathbf{p}_{2} = 0}{\alpha_{01} = 0} \\ \frac{\alpha_{01} = 0}{\alpha_{02} = 0} \\ \frac{M3}{0.05} \\ 0.75 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25%, 4<br>0.080<br>0.080<br>M4<br>0.05<br>0.75                                                                                                                                                                                                                                                | $     \frac{\alpha_{11}}{\alpha_{12}} = 25\% $<br>$     \frac{\alpha_{11}}{\alpha_{12}} $<br>M1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{p_{2}, \psi_{2} = 2}{0.081}$ $= 0.081$ $\frac{M2}{0}$ $0$                                                                               | $   \begin{array}{r} 75\% \\         \alpha_{01} = 0 \\         \alpha_{02} = 0 \\         M3 \\         0 \\         0   \end{array} $                          | 0.144<br>0.144<br><u>M4</u><br>0<br>0                                                                                           |
| <i>n</i><br>50<br>100<br>200                                                                                                                                   | $     Se_1          $                                                                                                                                                                                                                                   | $= Se_{2} =$ $= 0.009$ $= 0.009$ M2 1.38 3.30 4.24                                                                              | $\begin{array}{c} \textbf{a}_{01} = 0\\ \alpha_{01} = 0\\ \alpha_{02} = 0\\ \hline \textbf{M3}\\ 0.58\\ 1.68\\ 1.90 \end{array}$                                                                                                                                                                                                                                                                                                          | <b>p</b> <sub>1</sub> = <b>Sp</b><br>.016<br>.016<br>M4<br>0.58<br>1.68<br>1.90                                                                                        | $\alpha_{11} \\ \alpha_{12} \\ M1 \\ 0 \\ 0.40 \\ 0.75 \\ 0.80 \\ 0.75 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $p_1 = 10$<br>= 0.045<br>= 0.045<br>M2<br>0.45<br>2.15<br>2.75                                                                 | $ \frac{0\%, p_2 = 0}{\alpha_{01} = 0} \\ \frac{\alpha_{01} = 0}{\alpha_{02} = 0} \\ \frac{M3}{0.05} \\ 0.75 \\ 1.15 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25%, 4<br>0.080<br>0.080<br>M4<br>0.05<br>0.75<br>1.15                                                                                                                                                                                                                                        | $     \frac{\alpha_{11}}{\alpha_{12}} = 25\% $ $     \frac{\alpha_{11}}{\alpha_{12}} = 0 $ $     0 $ $     0 $ $     0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                | $   \begin{array}{r} 75\% \\       \alpha_{01} = 0 \\       \alpha_{02} = 0 \\       M3 \\       0 \\       0 \\       0.05 \\   \end{array} $                   | 0.144<br>0.144<br><u>M4</u><br>0<br>0<br>0.05                                                                                   |
| <i>n</i><br>50<br>100<br>200<br>500                                                                                                                            | $     Se_1          $                                                                                                                                                                                                                                   | $= Se_{2} =$ $= 0.009$ $= 0.009$ $M2$ $1.38$ $3.30$ $4.24$ $4.68$                                                               | $\begin{array}{c} \textbf{a}_{01} = 0\\ \alpha_{01} = 0\\ \alpha_{02} = 0\\ \hline \textbf{M3}\\ 0.58\\ 1.68\\ 1.90\\ 2.36 \end{array}$                                                                                                                                                                                                                                                                                                   | $p_1 = Sp_1$ 0.016 0.016 0.58 0.58 0.58 0.68 0.90 2.36                                                                                                                 | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.40 \\ 0.75 \\ 1.40 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $p_1 = 10$ $= 0.045$ $= 0.045$ $0.45$ $2.15$ $2.75$ $3.75$                                                                     | $ \frac{p_{00}}{\alpha_{01}} = 0 \\ \frac{a_{01}}{\alpha_{02}} = 0 \\ \frac{m_{00}}{m_{00}} \\ \frac{m_{00}}{m_{00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25%, 4<br>0.080<br>0.080<br>M4<br>0.05<br>0.75<br>1.15<br>1.85                                                                                                                                                                                                                                | $     \frac{\alpha_{11}}{\alpha_{12}} = 25\% $ $     \frac{\alpha_{11}}{\alpha_{12}} = 0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                | $   \begin{array}{r} 75\% \\         \alpha_{01} = 0 \\         \alpha_{02} = 0 \\         M3 \\         0 \\         0.05 \\         0.70 \\     \end{array} $  | 0.144<br>0.144<br>M4<br>0<br>0<br>0.05<br>0.70                                                                                  |
| <i>n</i><br>50<br>100<br>200<br>500<br>1000                                                                                                                    | $\begin{array}{c} \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ \hline \mathbf{M1} \\ 0.24 \\ 0.92 \\ 1.14 \\ 1.76 \\ 2.48 \end{array}$                                                                                                                | $= Se_{2} =$ $= 0.009$ $= 0.009$ $M2$ $1.38$ $3.30$ $4.24$ $4.68$ $5.08$                                                        | $\begin{array}{c} \textbf{a}_{01} = 0\\ \alpha_{01} = 0\\ \alpha_{02} = 0\\ \hline \textbf{M3}\\ 0.58\\ 1.68\\ 1.90\\ 2.36\\ 2.68\\ \end{array}$                                                                                                                                                                                                                                                                                          | <b>p</b> <sub>1</sub> = <b>Sp</b><br>.016<br>.016<br>.016<br>.016<br>.016<br>.058<br>1.68<br>1.90<br>2.36<br>2.68                                                      | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.40 \\ 0.75 \\ 1.40 \\ 1.55 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $p_1 = 10$ $= 0.045$ $M2$ $0.45$ $2.15$ $2.75$ $3.75$ $4.80$                                                                   | $ \begin{array}{c} \mathbf{p}, \mathbf{p}_{2} = \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \mathbf{M3} \\ 0.05 \\ 0.75 \\ 1.15 \\ 1.85 \\ 2.15 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25%, 4<br>0.080<br>0.080<br>M4<br>0.05<br>0.75<br>1.15<br>1.85<br>2.15                                                                                                                                                                                                                        | $     \frac{\alpha_{11}}{\alpha_{12}} = 25\% $ $     \frac{\alpha_{11}}{\alpha_{12}} = 0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $ $     0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                | $   \begin{array}{r} 75\% \\   \alpha_{01} = 0 \\   \alpha_{02} = 0 \\   \hline   \\   \hline   \\   \\   \\   \\   \\   \\  $                                   | 0.144<br>0.144<br>0.144<br>0<br>0<br>0.05<br>0.70<br>1.65                                                                       |
| <i>n</i><br>50<br>100<br>200<br>500<br>1000<br>2000                                                                                                            | $\begin{array}{c} \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ \mathbf{M1} \\ 0.24 \\ 0.92 \\ 1.14 \\ 1.76 \\ 2.48 \\ 3.28 \end{array}$                                                                                                               | $= Se_2 = 0.009$ $= 0.009$ $M2$ $1.38$ $3.30$ $4.24$ $4.68$ $5.08$ $6.22$                                                       | $\begin{array}{c} \textbf{0.90, S} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{0.58} \\ 1.68 \\ 1.90 \\ 2.36 \\ 2.68 \\ 3.22 \\ \end{array}$                                                                                                                                                                                                                                                     | <b>p</b> <sub>1</sub> = <b>Sp</b><br>.016<br>.016<br>.016<br>.016<br>.016<br>.058<br>1.68<br>1.90<br>2.36<br>2.68<br>3.22                                              | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.40 \\ 0.75 \\ 1.40 \\ 1.55 \\ 2.80 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $p_1 = 10$ $= 0.045$ $= 0.045$ $2.15$ $2.75$ $3.75$ $4.80$ $6.45$                                                              | $\frac{0\%, \mathbf{p}_2 = \alpha_{01} = 0}{\alpha_{02} = 0}$ $\frac{0}{M3}$ $\frac{0.05}{0.75}$ $1.15$ $1.85$ $2.15$ $3.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25%, 4<br>0.080<br>0.080<br>0.05<br>0.75<br>1.15<br>1.85<br>2.15<br>3.20                                                                                                                                                                                                                      | $\frac{\alpha_{11}}{\alpha_{12}} = 25\%$ $\frac{\alpha_{11}}{\alpha_{12}}$ M1 0 0 0 0 0.25 1.00 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\psi_2 = 2}{0}, \psi_2 = 2$ $= 0.081$ $= 0.081$ $M2$ $0$ $0.30$ $2.25$ $3.15$ $3.95$                                                    | $ \frac{75\%}{\alpha_{01} = 0} \\ \frac{\alpha_{02} = 0}{M3} \\ \frac{0}{0.05} \\ 0.70 \\ 1.65 \\ 2.35 $                                                         | 0.144<br>0.144<br>0.144<br>0<br>0<br>0<br>0.05<br>0.70<br>1.65<br>2.35                                                          |
| <i>n</i><br>50<br>100<br>200<br>500<br>1000<br>2000                                                                                                            | $\begin{array}{c} {\bf Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ M1 \\ 0.24 \\ 0.92 \\ 1.14 \\ 1.76 \\ 2.48 \\ 3.28 \\ {\bf Se_1} \end{array}$                                                                                                             | = Se <sub>2</sub> =<br>= 0.009<br>= 0.009<br>M2<br>1.38<br>3.30<br>4.24<br>4.68<br>5.08<br>6.22<br>= Se <sub>2</sub> =          | $\begin{array}{c} \textbf{0.90, S} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{0.58} \\ \textbf{1.68} \\ \textbf{1.90} \\ \textbf{2.36} \\ \textbf{2.68} \\ \textbf{3.22} \\ \hline \textbf{s} \textbf{0.90, S} \end{array}$                                                                                                                                                                     | <b>p</b> <sub>1</sub> = <b>Sp</b><br>.016<br>.016<br>.016<br>.058<br>1.68<br>1.90<br>2.36<br>2.68<br>3.22<br><b>p</b> <sub>1</sub> = <b>Sp</b>                         | $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{12}}{\alpha_{12}}$ $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{12}}{\alpha_{12}}$ $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{12}}{\alpha_{12}}$ $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{12}}{\alpha_{12}}$ $\alpha_$ | $p_1 = 10$<br>= 0.045<br>= 0.045<br>0.45<br>2.15<br>2.75<br>3.75<br>4.80<br>6.45<br>$p_1 = 10$                                 | $\frac{9\%, \mathbf{p}_2 = \alpha_{01} = 0}{\alpha_{02} = 0}$ $\frac{3}{M3}$ $\frac{0.05}{0.75}$ $\frac{0.75}{1.15}$ $\frac{1.85}{2.15}$ $\frac{3.20}{3.20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25%, ψ<br>0.080<br>0.080<br>0.05<br>0.75<br>1.15<br>1.85<br>2.15<br>3.20<br>25%, ψ                                                                                                                                                                                                            | $ \frac{\alpha_{11}}{\alpha_{12}} = 25\% \\ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{\alpha_{12}}$ | $p_{1}, \psi_{2} = 2$ $= 0.081$ $= 0.081$ $M2$ $0$ $0$ $0.30$ $2.25$ $3.15$ $3.95$ $p_{2} = 3$                                                 | $75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0$ $0.05$ $0.70$ $1.65$ $2.35$ $50\%$                                                                       | 0.144<br>0.144<br>0<br>0<br>0<br>0<br>0.05<br>0.70<br>1.65<br>2.35                                                              |
| <i>n</i><br>50<br>100<br>200<br>500<br>1000<br>2000                                                                                                            | $\begin{array}{c} \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ \mathbf{M1} \\ 0.24 \\ 0.92 \\ 1.14 \\ 1.76 \\ 2.48 \\ 3.28 \\ \mathbf{Se_1} \\ \mathbf{\alpha_{11}} \end{array}$                                                                      | $= Se_{2} = 0.009$ $= 0.009$ $M2$ $1.38$ $3.30$ $4.24$ $4.68$ $5.08$ $6.22$ $= Se_{2} = 0.009$                                  | $\begin{array}{c} \textbf{0.90, S} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{0.58} \\ 1.68 \\ 1.90 \\ 2.36 \\ 2.68 \\ 3.22 \\ \hline \textbf{c} \textbf{0.90, S} \\ \hline \textbf{a}_{01} = 0 \\ \end{array}$                                                                                                                                                                                 | <b>p</b> <sub>1</sub> = <b>Sp</b><br>.016<br>.016<br>.016<br>.016<br>.016<br>.058<br>1.68<br>1.90<br>2.36<br>2.68<br>3.22<br><b>p</b> <sub>1</sub> = <b>Sp</b><br>.016 | $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{\alpha_{12}}$ M1 0 0.40 0.75 1.40 1.55 2.80 2 = 0.80, $\alpha_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $p_1 = 10$ $= 0.045$ $= 0.045$ $2.15$ $2.75$ $3.75$ $4.80$ $6.45$ $p_1 = 10$ $= 0.045$                                         | $\frac{0\%, \mathbf{p}_2 = \alpha_{01} = 0}{\alpha_{02} = 0}$ $\frac{0}{M3}$ $\frac{0.05}{0.75}$ $\frac{0.75}{1.15}$ $\frac{1.85}{2.15}$ $\frac{2.15}{3.20}$ $\frac{0\%, \mathbf{p}_2 = \alpha_{01} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>25%, ψ</li> <li>0.080</li> <li>0.080</li> <li>0.05</li> <li>0.75</li> <li>1.15</li> <li>1.85</li> <li>2.15</li> <li>3.20</li> <li>25%, ψ</li> <li>0.080</li> </ul>                                                                                                                   | $\frac{\alpha_{11} = 25\%}{\alpha_{11}}$ $\frac{\alpha_{12}}{M1}$ $\frac{M1}{0}$ $0$ $0.25$ $1.00$ $1.75$ $\alpha_{1} = 50\%$ $\alpha_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{\psi_2}{\psi_2} = \frac{1}{2}$ $= 0.081$ $= 0.081$ $M2$ $0$ $0.30$ $2.25$ $3.15$ $3.95$ $\psi_2 = \frac{1}{2}$ $= 0.081$                | $75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0.05$ $0.70$ $1.65$ $2.35$ $50\%$ $\alpha_{01} = 0$                                                         | 0.144<br>0.144<br>0<br>0<br>0<br>0.05<br>0.70<br>1.65<br>2.35<br>0.144                                                          |
| <i>n</i><br>50<br>100<br>200<br>500<br>1000<br>2000                                                                                                            | $\begin{array}{c} {\bf Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ {\bf M1} \\ 0.24 \\ 0.92 \\ 1.14 \\ 1.76 \\ 2.48 \\ {\bf 3.28} \\ \hline \\ {\bf Se_1} \\ \alpha_{11} \\ \alpha_{12} \end{array}$                                               | $= Se_{2} = 0.009$ $= 0.009$ $M2$ $1.38$ $3.30$ $4.24$ $4.68$ $5.08$ $6.22$ $= Se_{2} = 0.009$ $= 0.009$                        | $\begin{array}{c} \textbf{0.90, S} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{0.58} \\ \textbf{1.68} \\ \textbf{1.90} \\ \textbf{2.36} \\ \textbf{2.68} \\ \textbf{3.22} \\ \hline \textbf{c0.90, S} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \end{array}$                                                                                                                               | <b>p</b> <sub>1</sub> = <b>Sp</b><br>.016<br>.016<br>.016<br>.058<br>1.68<br>1.90<br>2.36<br>2.68<br>3.22<br><b>p</b> <sub>1</sub> = <b>Sp</b><br>.016<br>.016         | $\frac{\alpha_{11}}{\alpha_{12}} = 0.80,$ $\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $p_1 = 10$ $= 0.045$ $= 0.045$ $2.15$ $2.75$ $3.75$ $4.80$ $6.45$ $p_1 = 10$ $= 0.045$                                         | $\frac{9\%, \mathbf{p}_2 = \alpha_{01} = 0}{\alpha_{02} = 0}$ $\frac{M3}{0.05}$ $\frac{0.05}{0.75}$ $\frac{1.15}{1.85}$ $\frac{2.15}{3.20}$ $\frac{3.20}{2\%, \mathbf{p}_2 = 0}$ $\frac{\alpha_{01} = 0}{\alpha_{02} = 0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25%, ψ<br>0.080<br>0.080<br>0.05<br>0.75<br>1.15<br>1.85<br>2.15<br>3.20<br>25%, ψ<br>0.080<br>0.080                                                                                                                                                                                          | $ \frac{\alpha_{11}}{\alpha_{12}} = 25\% \\ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{\alpha_{17}} \\ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{\alpha_{12}} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $p_{1}, \psi_{2} = 2$ $= 0.081$ $= 0.081$ $M2$ $0$ $0$ $0.30$ $2.25$ $3.15$ $3.95$ $p_{2}, \psi_{2} = 3$ $= 0.081$ $= 0.081$                   | $75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0.05$ $0.70$ $1.65$ $2.35$ $50\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$                                       | 0.144<br>0.144<br>0<br>0<br>0<br>0.05<br>0.70<br>1.65<br>2.35<br>0.144<br>0.144                                                 |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000                                                                                                                   | $\begin{array}{c} \mathbf{Se_{1}} \\ \alpha_{11} \\ \alpha_{12} \\ \mathbf{M1} \\ 0.24 \\ 0.92 \\ 1.14 \\ 1.76 \\ 2.48 \\ 3.28 \\ \mathbf{Se_{1}} \\ \alpha_{11} \\ \alpha_{12} \\ \mathbf{M1} \end{array}$                                             | $= Se_{2} = 0.009$ $= 0.009$ $M2$ $1.38$ $3.30$ $4.24$ $4.68$ $5.08$ $6.22$ $= Se_{2} = 0.009$ $= 0.009$ $M2$                   | $\begin{array}{c} \textbf{i} \ \textbf{0.90, S} \\ \textbf{\alpha}_{01} = 0 \\ \textbf{\alpha}_{02} = 0 \\ \textbf{M3} \\ \textbf{0.58} \\ \textbf{1.68} \\ \textbf{1.90} \\ \textbf{2.36} \\ \textbf{2.68} \\ \textbf{3.22} \\ \textbf{i} \ \textbf{0.90, S} \\ \textbf{i} \\ \textbf{\alpha}_{01} = 0 \\ \textbf{\alpha}_{02} = 0 \\ \textbf{M3} \end{array}$                                                                           | $p_1 = Sp$ .016 .016 .016 .016 .058 1.68 1.90 2.36 2.68 3.22 $p_1 = Sp$ .016 .016 .016                                                                                 | $\frac{\alpha_{11}}{\alpha_{12}} = 0.80,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.80,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.80,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.80,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.81,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.81,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $p_1 = 10$ $= 0.045$ $0.045$ $2.15$ $2.75$ $3.75$ $4.80$ $6.45$ $p_1 = 10$ $= 0.045$ $M2$                                      | $ \frac{9\%, p_2 = 3}{\alpha_{01} = 0} \\ \frac{\alpha_{01} = 0}{\alpha_{02} = 0} \\ \frac{3}{\alpha_{02} = 0} \\ \frac{3}{\alpha_{02} = 0} \\ \frac{3}{\alpha_{01} = 0} \\ \frac{3}{\alpha_{02} = 0} \\ \frac{3}{\alpha_{02} = 0} \\ \frac{3}{\alpha_{01} = 0} \\ \frac{3}{\alpha_{01$ | 25%, ψ<br>0.080<br>0.080<br>0.05<br>0.75<br>1.15<br>1.85<br>2.15<br>3.20<br>0.080<br>0.080<br>0.080<br>M4                                                                                                                                                                                     | $\frac{\alpha_{11}}{\alpha_{12}} = 25\%$ $\frac{\alpha_{11}}{\alpha_{12}}$ M1 0 0 0 0 0 0.25 1.00 1.75 1.00 1.75 $\alpha_{11} = 50\%$ $\frac{\alpha_{11}}{\alpha_{12}}$ M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $p_{1}, \psi_{2} = 2$ $= 0.081$ $= 0.081$ $M2$ $0$ $0$ $0.30$ $2.25$ $3.15$ $3.95$ $y_{2} = 5$ $= 0.081$ $= 0.081$ $M2$                        | $75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0$ $0.05$ $0.70$ $1.65$ $2.35$ $50\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$                              | 0.144<br>0.144<br>0<br>0<br>0<br>0.05<br>0.70<br>1.65<br>2.35<br>0.144<br>0.144<br>M4                                           |
| <i>n</i><br>50<br>100<br>200<br>500<br>1000<br>2000<br><i>n</i><br>50                                                                                          | $\begin{array}{c} {\bf Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0.24 \\ 0.92 \\ 1.14 \\ 1.76 \\ 2.48 \\ 3.28 \\ \hline \\ {\bf Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0.32 \end{array}$                                   | $= Se_{2} = 0.009$ $= 0.009$ $M2$ $1.38$ $3.30$ $4.24$ $4.68$ $5.08$ $6.22$ $= Se_{2} = 0.009$ $= 0.009$ $M2$ $1.78$            | $\begin{array}{c} \textbf{i} \ \textbf{0.90, S} \\ \textbf{\alpha}_{01} = 0 \\ \textbf{\alpha}_{02} = 0 \\ \textbf{M3} \\ \textbf{0.58} \\ \textbf{1.68} \\ \textbf{1.90} \\ \textbf{2.36} \\ \textbf{2.68} \\ \textbf{3.22} \\ \textbf{i} \ \textbf{0.90, S} \\ \textbf{i} \\ \textbf{\alpha}_{01} = 0 \\ \textbf{\alpha}_{02} = 0 \\ \textbf{M3} \\ \textbf{0.66} \end{array}$                                                          | $p_{1} = Sp$ .016 .016 .016 .016 .04 .058 1.68 1.90 2.36 2.68 3.22 p_{1} = Sp .016 .016 .016 .04 0.66                                                                  | $\frac{\alpha_{11}}{\alpha_{12}} = 0.80,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{11}}{\alpha_{11}} = 0.04,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{11}}{\alpha_{1$                                                                                                                                                                                                                                                                                                          | $p_1 = 10$ $= 0.045$ $= 0.045$ $2.15$ $2.75$ $3.75$ $4.80$ $6.45$ $= 0.045$ $= 0.045$ $= 0.045$ $M2$ $0.74$                    | $ \frac{0\%, \mathbf{p}_2 = \alpha_{01} = 0}{\alpha_{02} = 0} \\ \frac{M_3}{0.05} \\ 0.75 \\ 1.15 \\ 1.85 \\ 2.15 \\ 3.20 \\ 0\%, \mathbf{p}_2 = \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \frac{M_3}{0.22} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>25%, ψ</li> <li>0.080</li> <li>0.080</li> <li>0.05</li> <li>0.75</li> <li>1.15</li> <li>1.85</li> <li>2.15</li> <li>3.20</li> <li>25%, ψ</li> <li>0.080</li> <li>0.080</li> <li>M4</li> <li>0.22</li> </ul>                                                                          | $r_{1} = 25\%$ $\frac{\alpha_{11}}{\alpha_{12}}$ $M1$ $0$ $0$ $0.25$ $1.00$ $1.75$ $r_{1} = 50\%$ $\alpha_{11}$ $\alpha_{12}$ $M1$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $p_{1}, \psi_{2} = 2$ $= 0.081$ $= 0.081$ $M2$ $0$ $0$ $0.30$ $2.25$ $3.15$ $3.95$ $(p_{1}, \psi_{2} = 1)$ $= 0.081$ $M2$ $0$                  | $75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0.05$ $0.70$ $1.65$ $2.35$ $50\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$                              | 0.144<br>0.144<br>0<br>0<br>0<br>0.05<br>0.70<br>1.65<br>2.35<br>0.144<br>0.144<br>0.144<br>0                                   |
| <i>n</i><br>50<br>100<br>200<br>500<br>1000<br>2000<br><i>n</i><br>50<br>100                                                                                   | $\begin{array}{c} \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ \mathbf{M1} \\ 0.24 \\ 0.92 \\ 1.14 \\ 1.76 \\ 2.48 \\ 3.28 \\ \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ \mathbf{M1} \\ \mathbf{M1} \\ 0.32 \\ 1.22 \end{array}$                  | $= Se_{2} = 0.009$ $= 0.009$ $M2$ $1.38$ $3.30$ $4.24$ $4.68$ $5.08$ $6.22$ $= Se_{2} = 0.009$ $= 0.009$ $M2$ $1.78$ $3.62$     | $\begin{array}{c} \textbf{0.90, S} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{0.58} \\ \textbf{1.68} \\ \textbf{1.90} \\ \textbf{2.36} \\ \textbf{2.68} \\ \textbf{3.22} \\ \hline \textbf{c} \textbf{0.90, S} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{0.66} \\ \textbf{1.84} \\ \end{array}$                                                      | $p_1 = Sp$ .016 .016 .016 .016 .04 .058 1.68 1.90 2.36 2.68 3.22 $p_1 = Sp$ .016 .016 .016 .016 .04 .066 1.84                                                          | $\frac{\alpha_{11}}{\alpha_{12}} = 0.80,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{11}}{\alpha_{11}} = 0.04,$<br>0.04,<br>0.42,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $p_1 = 10$ $= 0.045$ $= 0.045$ $2.15$ $2.75$ $3.75$ $4.80$ $6.45$ $p_1 = 10$ $= 0.045$ $M2$ $0.74$ $2.40$                      | $\frac{9\%, \mathbf{p}_2 = \alpha_{01} = 0}{\alpha_{02} = 0}$ $\frac{M3}{0.05}$ $\frac{0.05}{0.75}$ $\frac{1.15}{1.85}$ $\frac{2.15}{3.20}$ $\frac{3.20}{2\%, \mathbf{p}_2 = 0}$ $\frac{M3}{0.22}$ $\frac{0.22}{0.84}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25%, ψ<br>0.080<br>0.080<br>0.080<br>0.05<br>0.75<br>1.15<br>1.85<br>2.15<br>3.20<br>25%, ψ<br>0.080<br>0.080<br>M4<br>0.22<br>0.84                                                                                                                                                           | $     \frac{\alpha_{11}}{\alpha_{12}} = 25\% \\     \frac{\alpha_{11}}{\alpha_{12}} \\     \frac{\alpha_{11}}{\alpha_{12}} \\     \frac{\alpha_{11}}{\alpha_{10}} \\     \frac{\alpha_{11}}{\alpha_{11}} \\     \frac{\alpha_{11}}{\alpha_{12}} \\     \frac{\alpha_{11}}{\alpha_{11}} \\     0 \\     0     0   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $p_{1}, \psi_{2} = 2$ $= 0.081$ $= 0.081$ $M2$ $0$ $0$ $0.30$ $2.25$ $3.15$ $3.95$ $p_{2} = 3$ $= 0.081$ $= 0.081$ $M2$ $0$ $0$                | $75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0.05$ $0.70$ $1.65$ $2.35$ $50\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0$                          | 0.144<br>0.144<br>0<br>0<br>0<br>0.05<br>0.70<br>1.65<br>2.35<br>0.144<br>0.144<br>0.144<br>0<br>0<br>0                         |
| <i>n</i><br>50<br>100<br>200<br>500<br>1000<br>2000<br><i>n</i><br>50<br>100<br>200                                                                            | $\begin{array}{c} \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ \mathbf{M1} \\ 0.24 \\ 0.92 \\ 1.14 \\ 1.76 \\ 2.48 \\ 3.28 \\ \mathbf{Se_1} \\ \mathbf{\alpha}_{12} \\ \mathbf{M1} \\ \alpha_{12} \\ \mathbf{M1} \\ 0.32 \\ 1.22 \\ 1.52 \end{array}$ | $= Se_{2} = 0.009$ $= 0.009$ $M2$ $1.38$ $3.30$ $4.24$ $4.68$ $5.08$ $6.22$ $= Se_{2} = 0.009$ $M2$ $1.78$ $3.62$ $4.48$        | $\begin{array}{c} \textbf{0.90, S} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{0.58} \\ 1.68 \\ 1.90 \\ 2.36 \\ 2.68 \\ 3.22 \\ \hline \textbf{0.90, S} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{0.66} \\ 1.84 \\ 2.04 \\ \end{array}$                                                                                                               | $p_1 = Sp$ .016 .016 .016 .016 .058 1.68 1.90 2.36 2.68 3.22 $p_1 = Sp$ .016 .016 .016 .016 .04 0.66 1.84 2.04                                                         | $\frac{\alpha_{11}}{\alpha_{12}} = 0.80,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{12}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{12}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{12}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{12}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{12}}{\alpha_{1$                                                                                                                                                                                                                                                                                                          | $p_1 = 10$ $= 0.045$ $= 0.045$ $2.15$ $2.75$ $3.75$ $4.80$ $6.45$ $- p_1 = 10$ $= 0.045$ $= 0.045$ $M2$ $0.74$ $2.40$ $3.50$   | $\frac{9\%, \mathbf{p}_2 = 1}{\alpha_{01} = 0}$ $\frac{\alpha_{02} = 0}{\alpha_{02} = 0}$ $\frac{1}{3}$ $\frac{1}$                                                                                                                                                                                                                                                          | <ul> <li>25%, ψ</li> <li>0.080</li> <li>0.080</li> <li>0.05</li> <li>0.75</li> <li>1.15</li> <li>1.85</li> <li>2.15</li> <li>3.20</li> <li>25%, ψ</li> <li>0.080</li> <li>0.080</li> <li>M4</li> <li>0.22</li> <li>0.84</li> <li>1.46</li> </ul>                                              | $     \frac{\alpha_{11}}{\alpha_{12}} = 25\% \\     \frac{\alpha_{11}}{\alpha_{12}} \\     \frac{\alpha_{11}}{\alpha_{12}} \\     \frac{\alpha_{11}}{\alpha_{10}} \\     \frac{\alpha_{11}}{\alpha_{11}} \\     \frac{\alpha_{11}}{\alpha_{12}} \\     \frac{\alpha_{11}}{\alpha_{11}} \\     0 \\     0 \\     0 \\     0     0     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $p_{1}, \psi_{2} = 2$ $= 0.081$ $= 0.081$ $M2$ $0$ $0$ $0.30$ $2.25$ $3.15$ $3.95$ $y_{2} = 3$ $= 0.081$ $= 0.081$ $M2$ $0$ $0$ $0.48$         | $75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0.05$ $0.70$ $1.65$ $2.35$ $50\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0.02$                       | 0.144<br>0.144<br>0<br>0<br>0<br>0.05<br>0.70<br>1.65<br>2.35<br>0.144<br>0.144<br>0.144<br>M4<br>0<br>0<br>0<br>0.02           |
| <i>n</i><br>50<br>100<br>200<br>500<br>1000<br>2000<br><i>n</i><br>50<br>100<br>200<br>500                                                                     | $\begin{array}{c} \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ \mathbf{M1} \\ 0.24 \\ 0.92 \\ 1.14 \\ 1.76 \\ 2.48 \\ 3.28 \\ \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ \mathbf{M1} \\ 0.32 \\ 1.22 \\ 1.52 \\ 2.40 \end{array}$                 | $= Se_{2} = 0.009$ $= 0.009$ $M2$ $1.38$ $3.30$ $4.24$ $4.68$ $5.08$ $6.22$ $= Se_{2} = 0.009$ $M2$ $1.78$ $3.62$ $4.48$ $5.28$ | $\begin{array}{c} \textbf{i} \ \textbf{0.90, S} \\ \textbf{\alpha}_{01} = 0 \\ \textbf{\alpha}_{02} = 0 \\ \textbf{M3} \\ \textbf{0.58} \\ \textbf{1.68} \\ \textbf{1.90} \\ \textbf{2.36} \\ \textbf{2.68} \\ \textbf{3.22} \\ \textbf{i} \ \textbf{0.90, S} \\ \textbf{\alpha}_{01} = 0 \\ \textbf{\alpha}_{02} = 0 \\ \textbf{M3} \\ \textbf{0.66} \\ \textbf{1.84} \\ \textbf{2.04} \\ \textbf{2.66} \\ \end{array}$                  | $p_1 = Sp$ .016 .016 .016 .016 .058 1.68 1.90 2.36 2.68 3.22 $p_1 = Sp$ .016 .016 .016 .016 .04 0.66 1.84 2.04 2.66                                                    | $\frac{\alpha_{11}}{\alpha_{12}} = 0.80,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{11}}{\alpha_{12}} = 0.00,$<br>$\frac{\alpha_{11}}{\alpha_{1$                                                                                                                                                                                                                                                                                                          | $p_1 = 10$ $= 0.045$ $= 0.045$ $2.15$ $2.75$ $3.75$ $4.80$ $6.45$ $-p_1 = 10$ $= 0.045$ $M2$ $0.74$ $2.40$ $3.50$ $4.54$       | $\frac{0\%, \mathbf{p}_2 = \alpha_{01} = 0}{\alpha_{02} = 0}$ $\frac{M3}{0.05}$ $\frac{0.05}{0.75}$ $\frac{1.15}{1.85}$ $\frac{2.15}{3.20}$ $\frac{3.20}{0\%, \mathbf{p}_2 = 0}$ $\frac{M3}{0.22}$ $\frac{0.84}{1.46}$ $\frac{1.46}{2.22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>25%, ψ</li> <li>25%, ψ</li> <li>0.080</li> <li>0.080</li> <li>0.75</li> <li>1.15</li> <li>1.85</li> <li>2.15</li> <li>3.20</li> <li>25%, ψ</li> <li>0.080</li> <li>0.080</li> <li>0.080</li> <li>0.44</li> <li>0.22</li> <li>0.84</li> <li>1.46</li> <li>2.22</li> </ul>             | $     \frac{\alpha_{11}}{\alpha_{12}} = 25\% \\     \frac{\alpha_{11}}{\alpha_{12}} \\      \frac{\alpha_{11}}{\alpha_{12}} \\     \frac{\alpha_{11}}{\alpha_{12}} \\     \frac{\alpha_{11}}{\alpha_{12}$                                                                                                                                                                                                                                                                | $p_{1}, \psi_{2} = 2$ $= 0.081$ $= 0.081$ $M2$ $0$ $0$ $0.30$ $2.25$ $3.15$ $3.95$ $3.95$ $p_{2} = 3$ $= 0.081$ $M2$ $0$ $0$ $0$ $0.48$ $2.02$ | $75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0$ $0.05$ $0.70$ $1.65$ $2.35$ $50\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0$ $0.02$ $0.56$        | 0.144<br>0.144<br>0<br>0<br>0<br>0.05<br>0.70<br>1.65<br>2.35<br>0.144<br>0.144<br>0.144<br>0<br>0<br>0<br>0.02<br>0.56         |
| <i>n</i><br>50<br>100<br>200<br>500<br>1000<br>2000<br><i>n</i><br>500<br>100<br>200<br>500<br>1000                                                            | $\begin{array}{c} \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ \mathbf{M1} \\ 0.24 \\ 0.92 \\ 1.14 \\ 1.76 \\ 2.48 \\ 3.28 \\ \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ \mathbf{M1} \\ 0.32 \\ 1.22 \\ 1.52 \\ 2.40 \\ 3.22 \end{array}$         | $= Se_{2} = 0.009$ $= 0.009$ M2 1.38 3.30 4.24 4.68 5.08 6.22 $= Se_{2} = 0.009$ M2 1.78 3.62 4.48 5.28 6.78                    | $\begin{array}{c} \textbf{i} \ \textbf{0.90, S} \\ \textbf{\alpha}_{01} = 0 \\ \textbf{\alpha}_{02} = 0 \\ \textbf{M3} \\ \textbf{0.58} \\ \textbf{1.68} \\ \textbf{1.90} \\ \textbf{2.36} \\ \textbf{2.68} \\ \textbf{3.22} \\ \textbf{i} \ \textbf{0.90, S} \\ \textbf{\alpha}_{01} = 0 \\ \textbf{\alpha}_{02} = 0 \\ \textbf{M3} \\ \textbf{0.66} \\ \textbf{1.84} \\ \textbf{2.04} \\ \textbf{2.66} \\ \textbf{3.12} \\ \end{array}$ | $p_1 = Sp$ .016 .016 .016 .016 .04 .058 1.68 1.90 2.36 2.68 3.22 $p_1 = Sp$ .016 .016 .016 .016 .04 0.66 1.84 2.04 2.66 3.12                                           | $\begin{array}{c} \mathbf{a}_{11} \\ \mathbf{a}_{12} \\ \mathbf{a}_{11} \\ \mathbf{a}_{12} \\ \mathbf{a}_{12} \\ \mathbf{a}_{12} \\ \mathbf{a}_{12} \\ \mathbf{a}_{12} \\ \mathbf{a}_{12} \\ \mathbf{a}_{10} \\ \mathbf{a}_{10} \\ \mathbf{a}_{11} \\ \mathbf{a}_{12} \\ \mathbf{a}_{12} \\ \mathbf{a}_{11} \\ \mathbf{a}_{12} \\$                                                                                                                                                                                                                                      | $p_1 = 10$ $= 0.045$ $= 0.045$ $2.15$ $2.75$ $3.75$ $4.80$ $6.45$ $P_1 = 10$ $= 0.045$ $M2$ $0.74$ $2.40$ $3.50$ $4.54$ $5.24$ | $\frac{0\%, \mathbf{p}_2 = \alpha_{01} = 0}{\alpha_{02} = 0}$ $\frac{\alpha_{03} = 0}{M3}$ $\frac{0.05}{0.75}$ $\frac{0.75}{1.15}$ $\frac{1.85}{2.15}$ $\frac{3.20}{3.20}$ $\frac{0\%, \mathbf{p}_2 = 0}{M3}$ $\frac{0.22}{0.84}$ $\frac{1.46}{2.22}$ $\frac{2.32}{2.32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>25%, ψ</li> <li>0.080</li> <li>0.080</li> <li>0.05</li> <li>0.75</li> <li>1.15</li> <li>1.85</li> <li>2.15</li> <li>3.20</li> <li>25%, ψ</li> <li>0.080</li> <li>0.080</li> <li>0.080</li> <li>0.44</li> <li>0.22</li> <li>0.84</li> <li>1.46</li> <li>2.22</li> <li>2.32</li> </ul> | $     \begin{array}{r} \mu_{1} = 25\% \\        \alpha_{11} \\        \alpha_{12} \\ \hline \\        M1 \\ 0 \\ 0 \\ 0 \\ 0.25 \\ 1.00 \\ 1.75 \\ \hline \\ 1.75 \\ \hline \\ 1 = 50\% \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0 \\ 0 \\ 0.32 \\ 0.88 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_{1}, \psi_{2} = 2$ $= 0.081$ $= 0.081$ $M2$ $0$ $0$ $0.30$ $2.25$ $3.15$ $3.95$ $= 0.081$ $= 0.081$ $M2$ $0$ $0$ $0.48$ $2.02$ $3.52$       | $75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0$ $0.05$ $0.70$ $1.65$ $2.35$ $50\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0$ $0.02$ $0.56$ $1.48$ | 0.144<br>0.144<br>0<br>0<br>0<br>0.05<br>0.70<br>1.65<br>2.35<br>0.144<br>0.144<br>0.144<br>0<br>0<br>0<br>0.02<br>0.56<br>1.48 |

| Se <sub>1</sub> = Se <sub>2</sub> = 0.70, Sp <sub>1</sub> = Sp <sub>2</sub> = 0.90, p <sub>1</sub> = 10%, p <sub>2</sub> = 25%, $\psi_1$ = 50%, $\psi_2$ = 50% |                                                                                                                                                                                                                     |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         |                                                                                                                                                      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                | $lpha_{11} \ lpha_{12}$                                                                                                                                                                                             | = 0.021<br>= 0.021                                                                                                                           | $\begin{aligned} \alpha_{01} &= 0\\ \alpha_{02} &= 0 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .009<br>.009                                                                                                                                                                                                                                                                                          | $lpha_{11} \ lpha_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0.105<br>= 0.105                                                                                                                                  | $\begin{array}{l} \alpha_{01} = 0 \\ \alpha_{02} = 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                  | ).045<br>).045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{l} \alpha_{11}=0.189 \ \alpha_{01}=0.081 \\ \alpha_{12}=0.189 \ \alpha_{02}=0.081 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         |                                                                                                                                                      |  |
| п                                                                                                                                                              | M1                                                                                                                                                                                                                  | M2                                                                                                                                           | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M4                                                                                                                                                                                                                                                                                                    | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M2                                                                                                                                                  | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M3                                                                                                                                      | M4                                                                                                                                                   |  |
| 50                                                                                                                                                             | 0.10                                                                                                                                                                                                                | 0.66                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.20                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.08                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                       | 0                                                                                                                                                    |  |
| 100                                                                                                                                                            | 0.72                                                                                                                                                                                                                | 2.40                                                                                                                                         | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.06                                                                                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.68                                                                                                                                                | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                       | 0                                                                                                                                                    |  |
| 200                                                                                                                                                            | 1.88                                                                                                                                                                                                                | 4.78                                                                                                                                         | 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.74                                                                                                                                                                                                                                                                                                  | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.60                                                                                                                                                | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                    | 0.02                                                                                                                                                 |  |
| 500                                                                                                                                                            | 2.68                                                                                                                                                                                                                | 6.04                                                                                                                                         | 2.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.70                                                                                                                                                                                                                                                                                                  | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.38                                                                                                                                                | 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.24                                                                                                                                    | 0.24                                                                                                                                                 |  |
| 1000                                                                                                                                                           | 3.88                                                                                                                                                                                                                | 8.64                                                                                                                                         | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.04                                                                                                                                                                                                                                                                                                  | 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.26                                                                                                                                                | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.10                                                                                                                                    | 1.10                                                                                                                                                 |  |
| 2000                                                                                                                                                           | 4.54                                                                                                                                                                                                                | 8.84                                                                                                                                         | 4.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.58                                                                                                                                                                                                                                                                                                  | 4.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.82                                                                                                                                                | 4.08                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.48                                                                                                                                    | 1.48                                                                                                                                                 |  |
|                                                                                                                                                                | $Se_1 = Se_2 = 0.70$ , $Sp_1 = Sp_2 = 0.90$ , $p_1 = 10\%$ , $p_2 = 50\%$ , $\psi_1 = 25\%$ , $\psi_2 = 75\%$                                                                                                       |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         |                                                                                                                                                      |  |
|                                                                                                                                                                | $\alpha_{11} = 0.021 \ \alpha_{01} = 0.009 \\ \alpha_{12} = 0.021 \ \alpha_{02} = 0.009$                                                                                                                            |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\alpha_{11} = 0.105 \alpha_{01} = 0.045$<br>$\alpha_{12} = 0.105 \alpha_{02} = 0.045$                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\alpha_{11} = 0.189 \ \alpha_{01} = 0.081$<br>$\alpha_{12} = 0.189 \ \alpha_{02} = 0.081$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                         |                                                                                                                                                      |  |
| п                                                                                                                                                              | M1                                                                                                                                                                                                                  | M2                                                                                                                                           | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M4                                                                                                                                                                                                                                                                                                    | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M2                                                                                                                                                  | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M3                                                                                                                                      | M4                                                                                                                                                   |  |
| 50                                                                                                                                                             | 0                                                                                                                                                                                                                   | 0.22                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                       | 0                                                                                                                                                    |  |
| 100                                                                                                                                                            | 0.26                                                                                                                                                                                                                | 1.82                                                                                                                                         | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.42                                                                                                                                                                                                                                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.56                                                                                                                                                | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                       | 0                                                                                                                                                    |  |
| 200                                                                                                                                                            | 0.88                                                                                                                                                                                                                | 2.98                                                                                                                                         | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.20                                                                                                                                                                                                                                                                                                  | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.96                                                                                                                                                | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                       | 0                                                                                                                                                    |  |
| 500                                                                                                                                                            | 2.26                                                                                                                                                                                                                | 4.46                                                                                                                                         | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.98                                                                                                                                                                                                                                                                                                  | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.24                                                                                                                                                | 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12                                                                                                                                    | 0.12                                                                                                                                                 |  |
| 1000                                                                                                                                                           | 3.18                                                                                                                                                                                                                | 6.68                                                                                                                                         | 3.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.22                                                                                                                                                                                                                                                                                                  | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.92                                                                                                                                                | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.66                                                                                                                                    | 0.66                                                                                                                                                 |  |
| 2000                                                                                                                                                           | 3.78                                                                                                                                                                                                                | 8.20                                                                                                                                         | 3.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.86                                                                                                                                                                                                                                                                                                  | 3.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.88                                                                                                                                                | 3.22                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.40                                                                                                                                    | 1.40                                                                                                                                                 |  |
|                                                                                                                                                                | So.                                                                                                                                                                                                                 | - 60 -                                                                                                                                       | 0.00 €                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C I                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 1/                                                                                                                                                | 20/                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 050/ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         |                                                                                                                                                      |  |
|                                                                                                                                                                | Je1                                                                                                                                                                                                                 | $= 5e_2 =$                                                                                                                                   | = 0.80, 5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $p_1 = Sp$                                                                                                                                                                                                                                                                                            | $_2 = 0.90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $, p_1 = 10$                                                                                                                                        | $J^{\infty}, p_2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                | : 25%, ų                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $p_1 = 25\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\psi_{2} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75%                                                                                                                                     |                                                                                                                                                      |  |
|                                                                                                                                                                | α <sub>11</sub>                                                                                                                                                                                                     | $= 3e_2 =$<br>= 0.016                                                                                                                        | $\alpha_{01} = 0.80, S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p <sub>1</sub> = Sp<br>.009                                                                                                                                                                                                                                                                           | $\alpha_{11} = 0.90$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $p_1 = 10$<br>= 0.080                                                                                                                               | $\alpha_{01} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : <b>25%,</b> ψ<br>).045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\alpha_{11} = 25\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\psi_2 = 0.144$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{75\%}{\alpha_{01} = 0}$                                                                                                          | 0.081                                                                                                                                                |  |
|                                                                                                                                                                | α <sub>11</sub><br>α <sub>12</sub>                                                                                                                                                                                  | $= 3e_2 =$<br>= 0.016<br>= 0.016                                                                                                             | $  a_{01} = 0   a_{01} = 0   a_{02} = 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>p</b> <sub>1</sub> = Sp<br>.009<br>.009                                                                                                                                                                                                                                                            | $\alpha_{11} \\ \alpha_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $p_1 = 10$<br>= 0.080<br>= 0.080                                                                                                                    | $a_{01} = 0$<br>$a_{02} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                       | = <b>25%,</b> ψ<br>).045<br>).045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\alpha_{11} = 25\%$<br>$\alpha_{11}$<br>$\alpha_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\psi_2 = 0.144$<br>= 0.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\alpha_{01} = 0$<br>$\alpha_{02} = 0$                                                                                                  | 0.081<br>0.081                                                                                                                                       |  |
| n                                                                                                                                                              | $\frac{\alpha_{11}}{\alpha_{12}}$ M1                                                                                                                                                                                | $= 3e_2 =$<br>= 0.016<br>= 0.016<br>M2                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p <sub>1</sub> = Sp<br>.009<br>.009<br>M4                                                                                                                                                                                                                                                             | $\alpha_{11}$<br>$\alpha_{12}$<br>M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $p_1 = 10$<br>= 0.080<br>= 0.080<br>M2                                                                                                              | $a_{01} = 0$<br>$a_{01} = 0$<br>$a_{02} = 0$<br>M3                                                                                                                                                                                                                                                                                                                                                                                                                 | = 25%, ψ<br>).045<br>).045<br>M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\alpha_{11} = 25\%$<br>$\alpha_{11} = \alpha_{12}$<br>M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\psi_2 = 0.144$<br>= 0.144<br>= 0.144<br>M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75%<br>$\alpha_{01} = 0$<br>$\alpha_{02} = 0$<br>M3                                                                                     | 0.081<br>0.081<br>M4                                                                                                                                 |  |
| $\frac{n}{50}$                                                                                                                                                 |                                                                                                                                                                                                                     | $= 3e_2 =$<br>= 0.016<br>= 0.016<br>M2<br>0.60                                                                                               | $a_{01} = 0$ $a_{01} = 0$ $a_{02} = 0$ M3 $0.14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $p_1 = Sp$<br>.009<br>.009<br>M4<br>0.14                                                                                                                                                                                                                                                              | $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{M1}$ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $p_1 = 10$<br>= 0.080<br>= 0.080<br>M2<br>0.04                                                                                                      | $J^{\phi}, p_2 = 0$<br>$\alpha_{01} = 0$<br>$\alpha_{02} = 0$<br>M3<br>0.02                                                                                                                                                                                                                                                                                                                                                                                        | 25%, ψ<br>0.045<br>0.045<br>M4<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{M1}$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\psi_2 = 0.144$<br>= 0.144<br>= 0.144<br><u>M2</u><br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$                                                                                     | 0.081<br>0.081<br>M4<br>0                                                                                                                            |  |
| <i>n</i><br>50<br>100                                                                                                                                          | $   \begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline M1 \\ 0.06 \\ 0.72 \end{array} $                                                                                                                          | $= 3e_2 =$ $= 0.016$ $= 0.016$ $M2$ $0.60$ $2.66$                                                                                            | $ \begin{array}{c}         a_{01} = 0 \\         a_{01} = 0 \\         a_{02} = 0 \\         M3 \\         0.14 \\         1.08 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{\mathbf{p_1} = \mathbf{S}\mathbf{p}}{0.009}$ $\frac{\mathbf{M4}}{0.14}$ 1.08                                                                                                                                                                                                                   | $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{M1}$ 0 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \mathbf{p_1} = 10 \\ = 0.080 \\ = 0.080 \\ \hline \mathbf{M2} \\ \hline 0.04 \\ 0.74 \end{array}$                                 | $     \begin{array}{r}       J_{00}, \mathbf{p}_{2} = 0 \\       \alpha_{01} = 0 \\       \alpha_{02} = 0 \\       M3 \\       0.02 \\       0.16     \end{array} $                                                                                                                                                                                                                                                                                                | 25%, ψ<br>0.045<br>0.045<br><u>M4</u><br>0.02<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{M1}$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\psi_{2}}{\psi_{2}} = 0.144$ $= 0.144$ $\frac{W2}{0}$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{75\%}{\alpha_{01} = 0}$ $\frac{\alpha_{01} = 0}{M3}$ $\frac{0}{0}$                                                               | 0.081<br>0.081<br>M4<br>0<br>0                                                                                                                       |  |
| <u>n</u><br>50<br>100<br>200                                                                                                                                   | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ M1 \\ 0.06 \\ 0.72 \\ 1.58 \end{array}$                                                                                                                             | $= 3e_2 =$ $= 0.016$ $= 0.016$ $M2$ $0.60$ $2.66$ $4.50$                                                                                     | $ \begin{array}{c} \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline M3 \\ 0.14 \\ 1.08 \\ 1.44 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_1 = Sp$ 1.009 1.009 $M4$ 0.14 1.08 1.46                                                                                                                                                                                                                                                            | $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{M1}$ 0 0.06 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $p_1 = 10$ $= 0.080$ $= 0.080$ $M2$ $0.04$ $0.74$ $2.48$                                                                                            | $     \begin{array}{r}       J_{00}, \mathbf{p}_{2} = 0 \\       \alpha_{01} = 0 \\       \alpha_{02} = 0 \\       M3 \\       0.02 \\       0.16 \\       0.98 \\     \end{array} $                                                                                                                                                                                                                                                                               | 25%, ψ<br>0.045<br>0.045<br>M4<br>0.02<br>0.16<br>0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{M1}$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \frac{\psi_2}{\psi_2} = 0.144 \\ = 0.144 \\ \underline{W_2} \\ 0 \\ 0 \\ 0.02 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{75\%}{\alpha_{01} = 0}$ $\frac{\alpha_{01} = 0}{M3}$ $\frac{M3}{0}$ $0$ 0                                                        | 0.081<br>0.081<br>M4<br>0<br>0<br>0<br>0                                                                                                             |  |
| n<br>50<br>100<br>200<br>500                                                                                                                                   | $ \begin{array}{r} \alpha_{11} \\ \alpha_{12} \\ \hline M1 \\ 0.06 \\ 0.72 \\ 1.58 \\ 3.24 \end{array} $                                                                                                            | $= 3e_2 = 0.016$ $= 0.016$ $M2$ $0.60$ $2.66$ $4.50$ $6.30$                                                                                  | $ \begin{array}{c} \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline M3 \\ 0.14 \\ 1.08 \\ 1.44 \\ 2.84 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $     \begin{array}{r} \mathbf{p_1} = \mathbf{Sp} \\     \hline         0.009 \\         \hline         0.009 \\         \hline         0.14 \\         1.08 \\         1.46 \\         2.88 \\         \end{array}     $                                                                             | $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{M1}$ 0 0.06 0.62 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     | $     \begin{array}{r} \mathbf{J}^{*}_{0}, \mathbf{p}_{2} = \\        \alpha_{01} = 0 \\        \alpha_{02} = 0 \\ \hline \mathbf{M3} \\ \hline 0.02 \\        0.16 \\        0.98 \\        2.06 \\ \end{array} $                                                                                                                                                                                                                                                 | 25%, ψ<br>0.045<br>0.045<br>M4<br>0.02<br>0.16<br>0.98<br>2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $     \frac{\alpha_{11}}{\alpha_{12}} = 25\% \\     \frac{\alpha_{11}}{\alpha_{12}} \\     \frac{M1}{0} \\     0 \\     0 \\     0.06   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{r} \psi_2 = 0 \\ = 0.144 \\ = 0.144 \\ \hline M2 \\ \hline 0 \\ 0 \\ 0.02 \\ 0.84 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $75\%$ $a_{01} = 0$ $a_{02} = 0$ $M3$ $0$ $0$ $0$ $0.14$                                                                                | 0.081<br>0.081<br>M4<br>0<br>0<br>0<br>0<br>0.14                                                                                                     |  |
| n<br>50<br>100<br>200<br>500<br>1000                                                                                                                           | $ \begin{array}{r} \alpha_{11} \\ \alpha_{12} \\ \hline M1 \\ 0.06 \\ 0.72 \\ 1.58 \\ 3.24 \\ 3.62 \\ \end{array} $                                                                                                 | $= 3e_2 = 0.016$ $= 0.016$ $M2$ $0.60$ $2.66$ $4.50$ $6.30$ $8.12$                                                                           | $ \begin{array}{c} \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline M3 \\ 0.14 \\ 1.08 \\ 1.44 \\ 2.84 \\ 3.66 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $p_1 = Sp$ 0.009 0.009 $M4$ 0.14 1.08 1.46 2.88 3.76                                                                                                                                                                                                                                                  | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.06 \\ 0.62 \\ 1.96 \\ 2.78 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                     | $   \begin{array}{r} \mathbf{J}^{*}, \mathbf{p}_{2} = \\   \alpha_{01} = 0 \\   \alpha_{02} = 0 \\ \hline \mathbf{M3} \\ 0.02 \\ 0.16 \\ 0.98 \\ 2.06 \\ 2.76 \\ \end{array} $                                                                                                                                                                                                                                                                                     | 25%, ψ<br>0.045<br>0.045<br>0.02<br>0.16<br>0.98<br>2.06<br>2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $     \frac{\alpha_{11}}{\alpha_{12}} = 25\% \\     \frac{\alpha_{11}}{\alpha_{12}} \\     \frac{\alpha_{11}}{\alpha_{12}} \\     \frac{\alpha_{11}}{\alpha_{12}} \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c}       \phi_{1}, \psi_{2} = 0 \\       = 0.144 \\       = 0.144 \\       \hline       M2 \\       0 \\       0.02 \\       0.84 \\       2.30 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $75\%$ $a_{01} = 0$ $a_{02} = 0$ $M3$ $0$ $0$ $0$ $0$ $0.14$ $0.88$                                                                     | 0.081<br>0.081<br>M4<br>0<br>0<br>0<br>0.14<br>0.88                                                                                                  |  |
| <i>n</i><br>50<br>100<br>200<br>500<br>1000<br>2000                                                                                                            | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0.06 \\ 0.72 \\ 1.58 \\ 3.24 \\ 3.62 \\ 5.10 \\ \end{array}$                                                                                        | $= 3e_2 = 0.016$ $= 0.016$ $M2$ $0.60$ $2.66$ $4.50$ $6.30$ $8.12$ $9.82$                                                                    | $\begin{array}{c} \alpha_{01} = 0\\ \alpha_{02} = 0\\ \hline M3\\ \hline 0.14\\ 1.08\\ 1.44\\ 2.84\\ 3.66\\ 5.06\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 009<br>009<br>014<br>0.14<br>1.08<br>1.46<br>2.88<br>3.76<br>5.12                                                                                                                                                                                                                                     | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline M1 \\ 0 \\ 0.06 \\ 0.62 \\ 1.96 \\ 2.78 \\ 4.28 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \mathbf{p_1} = 10 \\ = 0.080 \\ = 0.080 \\ \hline \mathbf{M2} \\ \hline 0.04 \\ 0.74 \\ 2.48 \\ 4.62 \\ 6.58 \\ 8.08 \end{array}$ | $     \begin{aligned}       F_{0}, \mathbf{p}_{2} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       M3 \\       0.02 \\       0.16 \\       0.98 \\       2.06 \\       2.76 \\       4.00     \end{aligned} $                                                                                                                                                                                                                                           | 25%, 4<br>0.045<br>0.045<br>0.045<br>0.02<br>0.16<br>0.98<br>2.06<br>2.86<br>4.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{M1} \\ 0 \\ 0 \\ 0.06 \\ 0.54 \\ 1.60 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \mathbf{p}, \psi_2 = \mathbf{p}\\ = 0.144\\ = 0.144\\ \hline \mathbf{M2}\\ \hline 0\\ 0\\ 0.02\\ 0.84\\ 2.30\\ 4.16 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $75\%$ $a_{01} = 0$ $a_{02} = 0$ $M3$ $0$ $0$ $0$ $0.14$ $0.88$ $1.94$                                                                  | 0.081<br>0.081<br>0<br>0<br>0<br>0<br>0<br>0.14<br>0.88<br>1.94                                                                                      |  |
| <i>n</i><br>50<br>100<br>200<br>500<br>1000<br>2000                                                                                                            | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ 0.06 \\ 0.72 \\ 1.58 \\ 3.24 \\ 3.62 \\ 5.10 \\ \hline \\ \mathbf{Se_1} \end{array}$                                                                      | $= Se_{2} = 0.016$ $= 0.016$ $M2$ $0.60$ $2.66$ $4.50$ $6.30$ $8.12$ $9.82$ $= Se_{2} = 0.000$                                               | $\begin{array}{c} \alpha_{01} = 0\\ \alpha_{02} = 0\\ \hline M3\\ \hline 0.14\\ 1.08\\ 1.44\\ 2.84\\ 3.66\\ 5.06\\ \hline \bullet 0.80, S \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $p_{1} = Sp$ $.009$ $.009$ $M4$ $0.14$ $1.08$ $1.46$ $2.88$ $3.76$ $5.12$ $p_{1} = Sp$                                                                                                                                                                                                                | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.06 \\ 0.62 \\ 1.96 \\ 2.78 \\ 4.28 \\ \hline \\ 2 = 0.90 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $p_1 = 10$ $= 0.080$ $= 0.080$ $M2$ $0.04$ $0.74$ $2.48$ $4.62$ $6.58$ $8.08$ $p_1 = 10$                                                            | $     \begin{aligned}       J''_0, \mathbf{p}_2 &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       M3 \\       0.02 \\       0.16 \\       0.98 \\       2.06 \\       2.76 \\       4.00 \\       \hline       J''_0, \mathbf{p}_2 =     \end{aligned} $                                                                                                                                                                                                 | 25%, ↓<br>0.045<br>0.045<br>0.045<br>0.02<br>0.16<br>0.98<br>2.06<br>2.86<br>4.04<br>± 50%, ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{M1}{0}$ $0$ $0.06$ $0.54$ $1.60$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} \phi, \psi_2 = 0 \\ = 0.144 \\ = 0.144 \\ \hline M2 \\ 0 \\ 0 \\ 0.02 \\ 0.84 \\ 2.30 \\ 4.16 \\ \hline \phi, \psi_2 = 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0$ $0$ $0$ $0$ $0.14$ $0.88$ $1.94$ $75\%$                                         | 0.081<br>0.081<br>0<br>0<br>0<br>0<br>0.14<br>0.88<br>1.94                                                                                           |  |
| <i>n</i><br>50<br>100<br>200<br>500<br>1000<br>2000                                                                                                            | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ 0.06 \\ 0.72 \\ 1.58 \\ 3.24 \\ 3.62 \\ 5.10 \\ \hline \\ \mathbf{Se_1} \\ \alpha_{11} \end{array}$                                                       | $= 3e_2 = 0.016$ $= 0.016$ $M2$ $0.60$ $2.66$ $4.50$ $6.30$ $8.12$ $9.82$ $= 3e_2 = 0.016$                                                   | $\begin{array}{c} \alpha_{01} = 0\\ \alpha_{02} = 0\\ \hline \\ M3\\ \hline \\ 0.14\\ 1.08\\ 1.44\\ 2.84\\ 3.66\\ \hline \\ 5.06\\ \hline \\ \hline \\ e 0.80, S\\ \hline \\ \alpha_{01} = 0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p <sub>1</sub> = Sp<br>.009<br>.009<br>M4<br>0.14<br>1.08<br>1.46<br>2.88<br>3.76<br>5.12<br>p <sub>1</sub> = Sp<br>.009                                                                                                                                                                              | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.06 \\ 0.62 \\ 1.96 \\ 2.78 \\ 4.28 \\ 2 = 0.90 \\ \alpha_{11} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $p_1 = 10$ $= 0.080$ $= 0.080$ $M2$ $0.04$ $0.74$ $2.48$ $4.62$ $6.58$ $8.08$ $p_1 = 10$ $= 0.080$                                                  | $     \begin{aligned}       F_{0}, \mathbf{p}_{2} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       \alpha_{02} &= \\       \hline       M3 \\       0.02 \\       0.16 \\       0.98 \\       2.06 \\       2.76 \\       4.00 \\       \hline       W_{0}, \mathbf{p}_{2} &= \\       \alpha_{01} &= \\       \alpha_{01} &= \\       \end{aligned} $                                                                                                  | 25%, ↓<br>0.045<br>0.045<br>0.045<br>0.16<br>0.98<br>2.06<br>2.86<br>4.04<br>50%, ↓<br>0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $     \frac{\alpha_{11}}{\alpha_{12}} \\     \frac{\alpha_{11}}{\alpha_{12}} \\     \frac{M1}{0} \\     0 \\     0 \\     0.06 \\     0.54 \\     1.60 \\     \hline     p_1 = 25\% \\     \alpha_{11} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} \psi_2 = \psi_2 \\ = 0.144 \\ = 0.144 \\ \hline M2 \\ \hline 0 \\ 0 \\ 0.02 \\ 0.84 \\ 2.30 \\ 4.16 \\ \hline \phi, \psi_2 = \psi_2 \\ = 0.144 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0$ $0$ $0$ $0$ $1.44$ $0.88$ $1.94$ $75\%$ $\alpha_{01} = 0$                       | 0.081<br>0.081<br>0<br>0<br>0<br>0<br>0.14<br>0.88<br>1.94                                                                                           |  |
| <i>n</i><br>50<br>100<br>200<br>500<br>1000<br>2000                                                                                                            | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0.06 \\ 0.72 \\ 1.58 \\ 3.24 \\ 3.62 \\ 5.10 \\ \hline \\ \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \end{array}$                                  | $= 3e_{2} = 0.016$ $= 0.016$ $M2$ $0.60$ $2.66$ $4.50$ $6.30$ $8.12$ $9.82$ $= 3e_{2} = 0.016$ $= 0.016$                                     | $\begin{array}{c} \mathbf{a}_{01} = 0 \\ \mathbf{a}_{02} = 0 \\ \mathbf{a}_{02} = 0 \\ \mathbf{a}_{02} = 0 \\ \mathbf{a}_{01} = 0 \\ \mathbf{a}_{01} = 0 \\ \mathbf{a}_{01} = 0 \\ \mathbf{a}_{02} = 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p1 = Sp           .009           .009           M4           0.14           1.08           1.46           2.88           3.76           5.12           p1 = Sp           .009           .009                                                                                                          | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ \hline \\ 0 \\ 0.06 \\ 0.62 \\ 1.96 \\ 2.78 \\ 4.28 \\ \hline \\ 2 = 0.90 \\ \alpha_{11} \\ \alpha_{12} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $p_1 = 10$ $= 0.080$ $= 0.080$ $M2$ $0.04$ $0.74$ $2.48$ $4.62$ $6.58$ $8.08$ $p_1 = 10$ $= 0.080$ $= 0.080$                                        | $     \begin{aligned}       F'_{0}, \mathbf{p}_{2} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       \alpha_{02} &= \\       \alpha_{01} &= \\       \alpha_{01} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       \end{aligned}   $                                                                                                                                                                                                           | 25%, ↓<br>0.045<br>0.045<br>M4<br>0.02<br>0.16<br>0.98<br>2.06<br>2.86<br>4.04<br>50%, ↓<br>0.045<br>0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ \hline \\ 0 \\ 0 \\ 0 \\ 0.06 \\ 0.54 \\ 1.60 \\ \hline \\ p_1 = 25\% \\ \alpha_{11} \\ \alpha_{12} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \mathbf{\psi}_{2} = \mathbf{\psi}_{2} \\ = 0.144 \\ = 0.144 \\ \hline \mathbf{W2} \\ \hline 0 \\ 0.02 \\ 0.84 \\ 2.30 \\ 4.16 \\ \hline \mathbf{\psi}_{2} = \mathbf{\psi}_{2} \\ = 0.144 \\ = 0.144 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $75\%$ $a_{01} = 0$ $a_{02} = 0$ $M3$ $0$ $0$ $0$ $0.14$ $0.88$ $1.94$ $75\%$ $a_{01} = 0$ $a_{02} = 0$                                 | 0.081<br>0.081<br>0<br>0<br>0<br>0<br>0.14<br>0.88<br>1.94                                                                                           |  |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000                                                                                                                   | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0.06 \\ 0.72 \\ 1.58 \\ 3.24 \\ 3.62 \\ 5.10 \\ \hline \\ \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ \end{array}$               | $= 3e_{2} = 0.016$ $= 0.016$ $M2$ $0.60$ $2.66$ $4.50$ $6.30$ $8.12$ $9.82$ $= 3e_{2} = 0.016$ $= 0.016$ $M2$                                | $\begin{array}{c} \alpha_{01} = 0\\ \alpha_{02} = 0\\ \hline \\ M3\\ 0.14\\ 1.08\\ 1.44\\ 2.84\\ 3.66\\ 5.06\\ \hline \\ \hline \\ \alpha_{01} = 0\\ \alpha_{02} = 0\\ \hline \\ M3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p1 = Sp           .009           .009           M4           0.14           1.08           1.46           2.88           3.76           5.12           p1 = Sp           .009           .009           .009                                                                                           | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.06 \\ 0.62 \\ 1.96 \\ 2.78 \\ 4.28 \\ 2 = 0.90 \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $p_1 = 10$ $= 0.080$ $= 0.080$ $M2$ $0.04$ $0.74$ $2.48$ $4.62$ $6.58$ $8.08$ $p_1 = 10$ $= 0.080$ $= 0.080$ $M2$                                   | $     \begin{aligned}       F_{0}, \mathbf{p}_{2} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       \overline{\mathbf{M}}_{3} \\       0.02 \\       0.16 \\       0.98 \\       2.06 \\       2.76 \\       4.00 \\       \hline       0_{0}, \mathbf{p}_{2} &= \\       \overline{\mathbf{M}}_{01} &= \\       \alpha_{01} &= \\       \mathbf{M}_{3} \\       \end{aligned} $                                                                         | 25%, ↓<br>0.045<br>0.045<br>0.045<br>0.02<br>0.16<br>0.98<br>2.06<br>2.86<br>4.04<br>50%, ↓<br>0.045<br>0.045<br>0.045<br>0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0 \\ 0 \\ 0.06 \\ 0.54 \\ 1.60 \\ \hline \\ p_1 = 25\% \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \mathbf{\psi}_{2} = \mathbf{\psi}_{2} \\ = 0.144 \\ = 0.144 \\ \hline \mathbf{M2} \\ \hline \mathbf{M2} \\ \hline 0 \\ 0 \\ 0.02 \\ 0.84 \\ 2.30 \\ 4.16 \\ \hline 0, \mathbf{\psi}_{2} = \mathbf{\psi} \\ = 0.144 \\ = 0.144 \\ \hline \mathbf{M2} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0$ $0$ $0$ $0$ $0$ $1.4$ $0.88$ $1.94$ $75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ | 0.081<br>0.081<br>0<br>0<br>0<br>0<br>0.14<br>0.88<br>1.94<br>0.081<br>0.081<br>0.081                                                                |  |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000<br>2000                                                                                                           | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ M1 \\ 0.06 \\ 0.72 \\ 1.58 \\ 3.24 \\ 3.62 \\ 5.10 \\ \hline \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ M1 \\ 0 \\ \end{array}$                                 | $= 3e_{2} = 0.016$ $= 0.016$ $M2$ $0.60$ $2.66$ $4.50$ $6.30$ $8.12$ $9.82$ $= 3e_{2} = 0.016$ $= 0.016$ $M2$ $0.20$                         | $\begin{array}{c} \mathbf{\alpha}_{01} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{M}_{3} \\ 0_{14} \\ 1_{.08} \\ 1_{.44} \\ 2_{.84} \\ 3_{.66} \\ 5_{.06} \\ \mathbf{c}_{.080}, \mathbf{S}_{1} \\ \mathbf{c}_{01} = 0 \\ \mathbf{\alpha}_{01} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{M}_{3} \\ 0_{.02} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p1 = Sp           .009           .009           M4           0.14           1.08           1.46           2.88           3.76           5.12           p1 = Sp           .009           .009           .009           .009           .009           .009           .009           .002                | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.06 \\ 0.62 \\ 1.96 \\ 2.78 \\ 4.28 \\ 2 = 0.90 \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $p_{1} = 10$ $= 0.080$ $= 0.080$ $M2$ $0.04$ $0.74$ $2.48$ $4.62$ $6.58$ $8.08$ $p_{1} = 10$ $= 0.080$ $= 0.080$ $M2$ $0$                           | $     \begin{aligned}       F_{0}, \mathbf{p}_{2} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       \alpha_{02} &= \\       \alpha_{01} &= \\       0.16 \\       0.98 \\       2.06 \\       2.76 \\       4.00 \\       9%, \mathbf{p}_{2} &= \\       \alpha_{01} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       M3 \\       0   \end{aligned} $                                                                                         | 25%, ↓<br>0.045<br>0.045<br>M4<br>0.02<br>0.16<br>0.98<br>2.06<br>2.86<br>4.04<br>2.86<br>4.04<br>50%, ↓<br>0.045<br>0.045<br>0.045<br>M4<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \mathbf{p}, \mathbf{\psi}_{2} = \mathbf{y}\\ = 0.144\\ = 0.144\\ \hline \mathbf{M2}\\ \hline 0\\ 0\\ 0.02\\ 0.84\\ 2.30\\ 4.16\\ \hline \mathbf{p}, \mathbf{\psi}_{2} = \mathbf{y}\\ = 0.144\\ = 0.144\\ \hline \mathbf{M2}\\ \hline 0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $75\%$ $a_{01} = 0$ $a_{02} = 0$ $M3$ $0$ $0$ $0$ $0.14$ $0.88$ $1.94$ $75\%$ $a_{01} = 0$ $a_{02} = 0$ $M3$ $0$                        | 0.081<br>0.081<br>0<br>0<br>0<br>0<br>0.14<br>0.88<br>1.94<br>0.081<br>0.081<br>0.081<br>0.081<br>0.081                                              |  |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000<br>2000                                                                                                           | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ M1 \\ 0.06 \\ 0.72 \\ 1.58 \\ 3.24 \\ 3.62 \\ 5.10 \\ \hline \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ M1 \\ 0 \\ 0.10 \\ \end{array}$                         | $= 3e_{2} = 0.016$ $= 0.016$ $M2$ $0.60$ $2.66$ $4.50$ $6.30$ $8.12$ $9.82$ $= 3e_{2} = 0.016$ $= 0.016$ $M2$ $0.20$ $1.58$                  | $\begin{array}{c} \mathbf{\alpha}_{01} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{M}_{3} \\ 0_{14} \\ 1_{.08} \\ 1_{.44} \\ 2_{.84} \\ 3_{.66} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06$ | $p_{1} = Sp$ .009 .009 .009 .009 .009 .004 .008 .008 .009 .009 .009 .009 .009 .009                                                                                                                                                                                                                    | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.06 \\ 0.62 \\ 1.96 \\ 2.78 \\ 4.28 \\ 2 = 0.90 \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $p_{1} = 10$ $= 0.080$ $= 0.080$ $M2$ $0.04$ $0.74$ $2.48$ $4.62$ $6.58$ $8.08$ $p_{1} = 10$ $= 0.080$ $M2$ $0$ $0.32$                              | $     \begin{aligned}       F_{0}, \mathbf{p}_{2} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       \alpha_{02} &= \\       \alpha_{01} &= \\       \alpha_{01} &= \\       \alpha_{01} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       \hline       M3 \\       0 \\       0.06     \end{aligned} $                                                                                                                                         | 25%, ↓<br>0.045<br>0.045<br>M4<br>0.02<br>0.16<br>0.98<br>2.06<br>2.86<br>4.04<br>5.06<br>2.86<br>4.04<br>5.06<br>2.86<br>4.04<br>5.06<br>2.86<br>4.04<br>0.045<br>0.045<br>M4<br>0<br>0.045<br>0.045<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.99<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.98<br>0.99<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90<br>0.90 | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \alpha_{11} \\ \alpha_{12} \\ \hline \alpha_{11} \\ \alpha_{12} \\ \hline \alpha_{11} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \mathbf{p}, \mathbf{\psi}_2 = \mathbf{y}\\ = 0.144\\ = 0.144\\ \hline \mathbf{M2}\\ \hline 0\\ 0\\ 0.02\\ 0.84\\ 2.30\\ 4.16\\ \hline \mathbf{p}, \mathbf{\psi}_2 = \mathbf{y}\\ = 0.144\\ \hline \mathbf{m2}\\ \hline 0\\ 0\\ 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $75\%$ $a_{01} = 0$ $a_{02} = 0$ $M3$ $0$ $0$ $0$ $0.14$ $0.88$ $1.94$ $75\%$ $a_{01} = 0$ $a_{02} = 0$ $M3$ $0$ $0$                    | 0.081<br>0.081<br>0<br>0<br>0<br>0<br>0.14<br>0.88<br>1.94<br>0.081<br>0.081<br>0.081<br>0.081<br>0.081<br>0.081                                     |  |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000<br>n<br>500<br>100<br>200                                                                                         | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ M1 \\ 0.06 \\ 0.72 \\ 1.58 \\ 3.24 \\ 3.62 \\ 5.10 \\ \hline \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ M1 \\ 0 \\ 0.10 \\ 1.06 \\ \end{array}$                 | $= 3e_{2} = 0.016$ $= 0.016$ $M2$ $0.60$ $2.66$ $4.50$ $6.30$ $8.12$ $9.82$ $= 3e_{2} = 0.016$ $= 0.016$ $M2$ $0.20$ $1.58$ $3.14$           | $\begin{array}{c} \mathbf{\alpha}_{01} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{M}_{3} \\ 0_{14} \\ 1_{.08} \\ 1_{.44} \\ 2_{.84} \\ 3_{.66} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06} \\ 5_{.06$ | p1 = Sp           .009           .009           M4           0.14           1.08           1.46           2.88           3.76           5.12           p1 = Sp           .009           .009           .009           .009           .009           .009           .009           .018           1.52 | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.06 \\ 0.62 \\ 1.96 \\ 2.78 \\ 4.28 \\ \hline \\ 2 = 0.90 \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.02 \\ 0.26 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     | $     \begin{aligned}       J''_{0}, \mathbf{p}_{2} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       \alpha_{02} &= \\       u \\       \alpha_{02} &= \\       0 \\       0.16 \\       0.98 \\       2.06 \\       2.76 \\       4.00 \\       \hline       J''_{0}, \mathbf{p}_{2} &= \\       \alpha_{01} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       \hline       M3 \\       0 \\       0.06 \\       0.56 \\     \end{aligned} $ | 25%, ↓<br>0.045<br>0.045<br>M4<br>0.02<br>0.16<br>0.98<br>2.06<br>2.86<br>4.04<br>50%, ↓<br>0.045<br>0.045<br>0.045<br>M4<br>0<br>0.06<br>0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \kappa_{11} \\ \kappa_{12} \\ \hline \\ \kappa_{11} \\ \kappa_{12} \\ \hline \\ m_{1} \\ \hline \\ m_{1} \\ \hline \\ m_{1} \\ \hline \\ m_{1} \\ m_{1} \\ \hline \\ \hline \\ \hline \\ m_{1} \\ \hline \\ $ | $\begin{array}{c} \mathbf{p}, \mathbf{\psi}_{2} = \mathbf{y}_{0}^{2}, \mathbf{\psi}_{2} = \mathbf{y}_{0}^{2}, \mathbf{\psi}_{2} = \mathbf{y}_{0}^{2}, \mathbf{\psi}_{2} = \mathbf{y}_{0}^{2}, \mathbf{\psi}_{2}^{2}, \mathbf$ | $75\%$ $a_{01} = 0$ $a_{02} = 0$ $M3$ $0$ $0$ $0$ $0.14$ $0.88$ $1.94$ $75\%$ $a_{01} = 0$ $a_{02} = 0$ $M3$ $0$ $0$ $0$                | 0.081<br>0.081<br>0<br>0<br>0<br>0<br>0.14<br>0.88<br>1.94<br>0.081<br>0.081<br>0.081<br>0.081<br>0.081<br>0.081                                     |  |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000<br>n<br>50<br>100<br>200<br>500                                                                                   | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ M1 \\ 0.06 \\ 0.72 \\ 1.58 \\ 3.24 \\ 3.62 \\ 5.10 \\ \textbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ M1 \\ 0 \\ 0.10 \\ 1.06 \\ 1.78 \end{array}$                   | $= 3e_{2} = 0.016$ $= 0.016$ $M2$ $0.60$ $2.66$ $4.50$ $6.30$ $8.12$ $9.82$ $= 8e_{2} = 0.016$ $= 0.016$ $M2$ $0.20$ $1.58$ $3.14$ $4.34$    | $\begin{array}{c} \mathbf{\alpha}_{01} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{\alpha}_{01} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{M3} \\ 0.02 \\ 0.18 \\ 1.52 \\ 1.92 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p <sub>1</sub> = Sp<br>.009<br>.009<br>M4<br>0.14<br>1.08<br>1.46<br>2.88<br>3.76<br>5.12<br>p <sub>1</sub> = Sp<br>.009<br>.009<br>.009<br>M4<br>0.02<br>0.18<br>1.52<br>1.92                                                                                                                        | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.06 \\ 0.62 \\ 1.96 \\ 2.78 \\ 4.28 \\ 2 = 0.90 \\ \hline \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.02 \\ 0.26 \\ 1.46 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     | $     \begin{aligned}       F'_{0}, \mathbf{p}_{2} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       \alpha_{02} &= \\       \alpha_{01} &= \\       \alpha_{01} &= \\       \alpha_{01} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       \hline       M3 \\       0 \\       0.06 \\       0.56 \\       1.76     \end{aligned} $                                                                                                            | 25%, 4<br>0.045<br>0.045<br>0.045<br>0.045<br>0.045<br>2.06<br>2.86<br>4.04<br>2.86<br>4.04<br>2.86<br>4.04<br>50%, 4<br>0.045<br>0.045<br>0.045<br>0.045<br>M4<br>0<br>0.06<br>0.56<br>1.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \kappa_{11} \\ \kappa_{12} \\ \hline \\ \kappa_{11} \\ \kappa_{12} \\ \hline \\ \kappa_{11} \\ \hline \\ \kappa_{12} \\ \hline \\ m_{11} \\ \hline \\ \kappa_{10} \\ \hline \\ \kappa_{11} \\ \kappa_{12} \\ \hline \\ m_{11} \\ \hline \\ \kappa_{11} \\ \hline \\ \kappa_{12} \\ \hline \\ m_{11} \\ \hline \\ m_{12} \\ \hline \\ m_{11} \\ \hline \\ $                                                                                                                                                                                                              | $\begin{array}{c} \mathbf{p}, \mathbf{\psi}_2 = \mathbf{\psi}_2 \\ = 0.144 \\ = 0.144 \\ \hline \mathbf{M2} \\ \hline 0 \\ 0 \\ 0.02 \\ 0.84 \\ 2.30 \\ 4.16 \\ \hline \mathbf{p}, \mathbf{\psi}_2 = \mathbf{\psi}_2 \\ = 0.144 \\ \hline \mathbf{m}_2 \\ \hline 0 \\ 0 \\ 0 \\ 0.42 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $75\%$ $a_{01} = 0$ $a_{02} = 0$ $M3$ $0$ $0$ $0$ $0.14$ $0.88$ $1.94$ $75\%$ $a_{01} = 0$ $a_{02} = 0$ $M3$ $0$ $0$ $0$ $0$ $14$       | 0.081<br>0.081<br>0<br>0<br>0<br>0<br>0<br>0.14<br>0.88<br>1.94<br>0.081<br>0.081<br>0.081<br>0.081<br>0.081<br>0.014                                |  |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000<br>n<br>50<br>100<br>200<br>500<br>1000                                                                           | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ M1 \\ 0.06 \\ 0.72 \\ 1.58 \\ 3.24 \\ 3.62 \\ 5.10 \\ \hline \mathbf{Se_1} \\ \alpha_{11} \\ \alpha_{12} \\ M1 \\ 0 \\ 0.10 \\ 1.06 \\ 1.78 \\ 2.44 \\ \end{array}$ | $= 3e_2 = 0.016$ $= 0.016$ $M2$ $0.60$ $2.66$ $4.50$ $6.30$ $8.12$ $9.82$ $= 8e_2 = 0.016$ $= 0.016$ $M2$ $0.20$ $1.58$ $3.14$ $4.34$ $6.02$ | $\begin{array}{c} \mathbf{\alpha}_{01} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{\alpha}_{01} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{M3} \\ \hline 0.02 \\ 0.18 \\ 1.52 \\ 1.92 \\ 2.62 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $p_1 = Sp$ .009 .009 .009 .009 .004 .008 .008 .009 .009 .009 .009 .009 .009                                                                                                                                                                                                                           | $\begin{array}{c} \alpha_{11} \\ \alpha_{12} \\ \hline \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ M1 \\ 0 \\ 0.06 \\ 0.62 \\ 1.96 \\ 2.78 \\ 4.28 \\ 2 \\ \textbf{2} \\ \textbf{0} \\ \textbf{0} \\ \textbf{0} \\ \textbf{0} \\ \textbf{2} \\ \textbf{0} \\ \textbf$ |                                                                                                                                                     | $     \begin{aligned}       F'_{0}, \mathbf{p}_{2} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       \alpha_{02} &= \\       \alpha_{01} &= \\       \alpha_{02} &= \\       \hline       M3 \\       0 \\       0.06 \\       0.56 \\       1.76 \\       2.10     \end{aligned} $                                                                      | 25%, ↓<br>0.045<br>0.045<br>0.045<br>0.02<br>0.16<br>0.98<br>2.06<br>2.86<br>4.04<br>2.86<br>4.04<br>0.045<br>0.045<br>0.045<br>M4<br>0<br>0.06<br>0.56<br>1.76<br>2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \kappa_{11} \\ \kappa_{12} \\ \hline \\ \kappa_{11} \\ \kappa_{12} \\ \hline \\ \kappa_{11} \\ \hline \\ \kappa_{12} \\ \hline \\ \kappa_{11} \\ \hline \\ \kappa_{12} \\ \hline \\ \kappa_{11} \\ \kappa_{12} \\ \hline \\ \kappa_{11} \\ \hline \\ \kappa_{12} \\ \hline \\ \kappa_{12} \\ \hline \\ \kappa_{11} \\ \hline \\ \kappa_{12} \\ \hline \\ \hline \\ \kappa_{12} \\ \hline \\ \\ \kappa_{12} \\ \hline \\ \hline \\ \\ \kappa_{12} \\ \hline \\ \hline \\ \\ \kappa_{12} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \mathbf{p}, \mathbf{\psi}_2 = \mathbf{y}\\ = 0.144\\ = 0.144\\ \hline \mathbf{M2}\\ \hline 0\\ 0\\ 0.02\\ 0.84\\ 2.30\\ 4.16\\ \hline \mathbf{p}, \mathbf{\psi}_2 = \mathbf{y}\\ = 0.144\\ \hline \mathbf{m2}\\ \hline 0\\ 0\\ 0\\ 0\\ 0.42\\ 1.68\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $75\%$ $a_{01} = 0$ $a_{02} = 0$ $M3$ $0$ $0$ $0$ $0.14$ $0.88$ $1.94$ $75\%$ $a_{01} = 0$ $a_{02} = 0$ $M3$ $0$ $0$ $0$ $0.14$ $0.58$  | 0.081<br>0.081<br>0<br>0<br>0<br>0<br>0.14<br>0.88<br>1.94<br>0.081<br>0.081<br>0.081<br>0.081<br>0.081<br>0.081<br>0.081<br>0.081<br>0.081<br>0.081 |  |

**Table 3.** Type I errors (in %) of different methods to simultaneously compare the sensitivities  $(Se_h = \{0.70, 0.80\})$  and specificities  $(Sp_h = 0.90)$  of two BDTs in the presence of a binary covariate.

In the study, it is considered that the type I error exceeds the nominal error when the global type I error is equal to or greater than or than 7%. The covariances  $\alpha_{1m}$  and  $\alpha_{0m}$  have an important effect on the type I errors of the four methods: type I errors decrease when the values of the covariances increase. From the results, the following general conclusions were obtained:

(a). Global hypothesis test. The type I error of the global hypothesis test is very small when the sample size is small and increases as the sample size increases, until it approaches the nominal error without exceeding it. Therefore, the global hypothesis test is a conservative test when the sample size is small (n = 50) or moderate (n = 100-200), and its global type I error approaches the nominal error (without exceeding it) when the sample size is large (n = 500-1000) or very large (n = 2000).

- (b). Individual tests with  $\alpha = 5\%$ . The type I error of the individual tests with  $\alpha = 5\%$  is less than the nominal error when the sample size is small and increases as the sample size increases. The type I error can clearly exceed the nominal error when the sample size is large. Therefore, the method based on individual tests with  $\alpha = 5\%$  can give false significance when the sample size is large and should not be used.
- (c). Individual tests combined with the Bonferroni method. The type I error of the method based on the individual tests combined with the Bonferroni method has a behavior very similar to the type I error of the global hypothesis test, and there is no important difference between both type I errors
- (d). Individual tests combined with the Holm method. The type I error of the method based on the individual tests combined with the Holm method is very similar (even the same in many cases) to the type I error of the individual tests combined with the Bonferroni method.

# 3.2. Powers

Tables 4 and 5 show the powers obtained for the four methods proposed in Section 2, considering different scenarios. The covariances  $\alpha_{1m}$  and  $\alpha_{0m}$  have an important effect on the powers of the methods: the powers increase when the values of the covariances increase. From the results, the following general conclusions are obtained:

- (a). The power of the method based on the individual tests with  $\alpha = 5\%$  is greater than the powers of the other methods, due to the fact that its global type I error is also greater than that of the other methods (clearly exceeding the nominal error when the sample size is large).
- (b). The power of the method based on individual tests combined with the Bonferroni method and the power of the method based on individual tests combined with the Holm method are practically equal. Therefore, both methods show an asymptotic behavior, in terms of type I error and power, that is practically identical.
- (c). In very general terms, the power of the method based on the individual tests combined with Bonferroni (Holm) is slightly greater than the power of the global hypothesis test when the sample size is small or moderate. When the sample size is large or very large, the power of the global hypothesis test is, in very general terms, slightly higher than that of the method based on individual tests with Bonferroni (Holm). In these situations, all of these methods have a very similar type I error.

**Table 4.** Powers (in %) of different methods to simultaneously compare the sensitivities  $(Se_h = \{0.70, 0.90\})$  and specificities  $(Sp_h = \{0.70, 0.90\})$  of two BDTs in the presence of a binary covariate.

| Se <sub>1</sub> = 0.70, Se <sub>2</sub> = 0.90, Sp <sub>1</sub> = 0.90, Sp <sub>2</sub> = 0.90, p <sub>1</sub> = 10%, p <sub>2</sub> = 25%, $\psi_1$ = 25%, $\psi_2$ = 75% |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                            | $\begin{aligned} &\alpha_{11} = 0.007 \ \alpha_{01} = 0.009 \\ &\alpha_{12} = 0.007 \ \alpha_{02} = 0.009 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 0.035<br>= 0.035                                                                                                                                                                                                                                  | $\alpha_{01} = 0$<br>$\alpha_{02} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .045<br>.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{aligned} \alpha_{11} &= 0.063 \; \alpha_{01} = 0.081 \\ \alpha_{12} &= 0.063 \; \alpha_{02} = 0.081 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| n                                                                                                                                                                          | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M2                                                                                                                                                                                                                                           | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M4                                                                                                                                                                                                     | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M2                                                                                                                                                                                                                                                  | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M2                                                                                                                                                            | M3                                                                                                                                                                                                    | M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.48                                                                                                                                                                                                                                         | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.14                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.10                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                             | 0                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 100                                                                                                                                                                        | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 240                                                                                                                                                                                                                                          | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.14                                                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.10                                                                                                                                                                                                                                                | 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                          | 0.01                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 200                                                                                                                                                                        | 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.12                                                                                                                                                                                                                                         | 1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.68                                                                                                                                                                                                   | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.90                                                                                                                                                                                                                                                | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.30                                                                                                                                                          | 0.02                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 500                                                                                                                                                                        | 5.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.98                                                                                                                                                                                                                                         | 3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.84                                                                                                                                                                                                   | 4.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.92                                                                                                                                                                                                                                                | 3.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.38                                                                                                                                                          | 1.46                                                                                                                                                                                                  | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1000                                                                                                                                                                       | 21.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.78                                                                                                                                                                                                                                        | 20.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.64                                                                                                                                                                                                  | 23.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.16                                                                                                                                                                                                                                               | 22.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.66                                                                                                                                                         | 22.76                                                                                                                                                                                                 | 22.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2000                                                                                                                                                                       | 56.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70.72                                                                                                                                                                                                                                        | 58.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58.42                                                                                                                                                                                                  | 66.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78.72                                                                                                                                                                                                                                               | 68.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.60                                                                                                                                                         | 81.30                                                                                                                                                                                                 | 81.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| S                                                                                                                                                                          | $5e_1 = 0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0, Se <sub>2</sub> =                                                                                                                                                                                                                         | 0.90, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p <sub>1</sub> = 0.9                                                                                                                                                                                   | 0, Sp <sub>2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.90, p                                                                                                                                                                                                                                             | L = 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $p_2 = 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )%, ψ <sub>1</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 25%, u                                                                                                                                                      | $\psi_2 = 75\%$                                                                                                                                                                                       | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                            | <i>α</i> <sub>11</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 0.007                                                                                                                                                                                                                                      | $\alpha_{01} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .009                                                                                                                                                                                                   | <i>α</i> <sub>11</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 0.035                                                                                                                                                                                                                                             | $\alpha_{01} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>α</i> <sub>11</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.063                                                                                                                                                       | $\alpha_{01} = 0$                                                                                                                                                                                     | 0.081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                            | <i>α</i> <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 0.007                                                                                                                                                                                                                                      | $\alpha_{02} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .009                                                                                                                                                                                                   | <i>α</i> <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 0.035                                                                                                                                                                                                                                             | $\alpha_{02} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>α</i> <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 0.063                                                                                                                                                       | $\alpha_{02} = 0$                                                                                                                                                                                     | 0.081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| n                                                                                                                                                                          | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M2                                                                                                                                                                                                                                           | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M4                                                                                                                                                                                                     | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M2                                                                                                                                                                                                                                                  | M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M2                                                                                                                                                            | M3                                                                                                                                                                                                    | M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50                                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.28                                                                                                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.04                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                             | 0                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 100                                                                                                                                                                        | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.68                                                                                                                                                                                                                                         | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.26                                                                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.36                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                          | 0.01                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 200                                                                                                                                                                        | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.40                                                                                                                                                                                                                                         | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.28                                                                                                                                                                                                   | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.16                                                                                                                                                                                                                                                | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                                                                          | 0.02                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 500                                                                                                                                                                        | 5.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.34                                                                                                                                                                                                                                         | 3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.08                                                                                                                                                                                                   | 4.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.28                                                                                                                                                                                                                                                | 3.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.90                                                                                                                                                          | 1.72                                                                                                                                                                                                  | 1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1000                                                                                                                                                                       | 20.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.50                                                                                                                                                                                                                                        | 20.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.96                                                                                                                                                                                                  | 21.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.68                                                                                                                                                                                                                                               | 21.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37.88                                                                                                                                                         | 22.88                                                                                                                                                                                                 | 23.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2000                                                                                                                                                                       | 55.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69.84                                                                                                                                                                                                                                        | 56.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57.22                                                                                                                                                                                                  | 65.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77.58                                                                                                                                                                                                                                               | 67.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89.38                                                                                                                                                         | 81.39                                                                                                                                                                                                 | 81.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| S                                                                                                                                                                          | $Se_1 = 0.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0, Se <sub>2</sub> =                                                                                                                                                                                                                         | 0.70, S <sub>]</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $p_1 = 0.9$                                                                                                                                                                                            | 0, Sp <sub>2</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.70, p                                                                                                                                                                                                                                             | l = 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $p_2 = 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5%, ψ <sub>1</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 25%, u                                                                                                                                                      | $\psi_2 = 75\%$                                                                                                                                                                                       | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| S                                                                                                                                                                          | $\delta e_1 = 0.9$<br>$\alpha_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>0, Se<sub>2</sub> =</b><br>= 0.007                                                                                                                                                                                                        | $\alpha_{01} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>p</b> <sub>1</sub> <b>= 0.9</b><br>.007                                                                                                                                                             | 0, Sp <sub>2</sub> =<br>α <sub>11</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>0.70, p</b><br>= 0.035                                                                                                                                                                                                                           | $\alpha_{01} = 10\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , <b>p</b> <sub>2</sub> = 25<br>.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>5%, ψ<sub>1</sub> =</b><br>α <sub>11</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = <b>25%,</b> 1<br>= 0.063                                                                                                                                    | $\psi_2 = 75\%$ $\alpha_{01} = 0$                                                                                                                                                                     | %<br>).063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| S                                                                                                                                                                          | $\delta e_1 = 0.9$<br>$\alpha_{11}$<br>$\alpha_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>0, Se<sub>2</sub> =</b><br>= 0.007<br>= 0.007                                                                                                                                                                                             | $\begin{array}{l} \mathbf{0.70, S_{l}} \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>p</b> <sub>1</sub> = <b>0.9</b><br>.007<br>.007                                                                                                                                                     | $\alpha_{11} = \alpha_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>0.70, p</b><br>= 0.035<br>= 0.035                                                                                                                                                                                                                | $ \begin{array}{l} \alpha_{01} = 10\%, \\ \alpha_{01} = 0, \\ \alpha_{02} = 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , <b>p</b> <sub>2</sub> = 25<br>.035<br>.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \frac{\alpha_{11}}{\alpha_{12}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = <b>25%, t</b><br>= 0.063<br>= 0.063                                                                                                                         | $\psi_2 = 75\%$<br>$\alpha_{01} = 0$<br>$\alpha_{02} = 0$                                                                                                                                             | %<br>).063<br>).063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                            | $\delta e_1 = 0.9$<br>$\alpha_{11}$<br>$\alpha_{12}$<br>M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>0, Se<sub>2</sub> =</b><br>= 0.007<br>= 0.007<br>M2                                                                                                                                                                                       | $\begin{array}{l} \mathbf{0.70, S_{j}} \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \end{array}$ M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p <sub>1</sub> = 0.9<br>.007<br>.007<br>M4                                                                                                                                                             | 0, $Sp_2 = \frac{\alpha_{11}}{\alpha_{12}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>0.70, p</b><br>= 0.035<br>= 0.035<br>M2                                                                                                                                                                                                          | $   \begin{array}{l} \mathbf{a}_{01} = \mathbf{10\%}, \\ \alpha_{01} = 0, \\ \alpha_{02} = 0, \\ \\ \mathbf{M3} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , <b>p</b> <sub>2</sub> = 25<br>.035<br>.035<br>M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \frac{\alpha_{11}}{\alpha_{12}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = <b>25%, u</b><br>= 0.063<br>= 0.063<br>M2                                                                                                                   | $\phi_2 = 75\%$<br>$\alpha_{01} = 0$<br>$\alpha_{02} = 0$<br>M3                                                                                                                                       | %<br>0.063<br>0.063<br>M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                            | $\delta e_1 = 0.9$<br>$\alpha_{11}$<br>$\alpha_{12}$<br>M1<br>1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{r} \mathbf{0, Se_2 =} \\ = 0.007 \\ = 0.007 \\ \hline \mathbf{M2} \\ \hline 6.78 \end{array} $                                                                                                                               | $\begin{array}{c} \textbf{a}_{01} = 0\\ \alpha_{01} = 0\\ \alpha_{02} = 0\\ \hline \textbf{M3}\\ 3.54 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>p</b> <sub>1</sub> = <b>0.9</b><br>.007<br>.007<br>M4<br>3.54                                                                                                                                       | 0, $Sp_2 = \frac{\alpha_{11}}{\alpha_{12}}$<br>M1<br>1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.70, p<br>= 0.035<br>= 0.035<br>M2<br>5.66                                                                                                                                                                                                         | $   \begin{array}{l} \mathbf{a}_{01} = \mathbf{10\%}, \\ \alpha_{01} = 0, \\ \alpha_{02} = 0, \\ \mathbf{M3}, \\ 2.96 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , <b>p</b> <sub>2</sub> = 25<br>.035<br>.035<br>M4<br>2.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \frac{\alpha_{11}}{\alpha_{12}} = \frac{\alpha_{11}}{M1} $ 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 25%, u $= 0.063$ $= 0.063$ $M2$ $5.62$                                                                                                                      |                                                                                                                                                                                                       | %<br>0.063<br>0.063<br>M4<br>2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <u>n</u><br>50<br>100                                                                                                                                                      | $6e_1 = 0.9$ $\alpha_{11}$ $\alpha_{12}$ M1 1.70 8.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0, Se_2 = 0.007 = 0.007$ $M2$ $6.78$ $19.34$                                                                                                                                                                                                | $\begin{array}{c} \textbf{0.70, S_{1}} \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ 3.54 \\ 12.46 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p <sub>1</sub> = 0.9<br>.007<br>.007<br>M4<br>3.54<br>12.46                                                                                                                                            | 0, $Sp_2 = \frac{\alpha_{11}}{\alpha_{12}}$<br>M1<br>1.34<br>10.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>0.70, p</b><br>= 0.035<br>= 0.035<br>M2<br>5.66<br>21.28                                                                                                                                                                                         | $a_{01} = 10\%,$ $a_{01} = 0,$ $a_{02} = 0,$ $M3,$ $2.96,$ $13.94,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , <b>p</b> <sub>2</sub> = 25<br>.035<br>.035<br>M4<br>2.96<br>13.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \frac{\alpha_{11}}{\alpha_{12}} $<br>$ \frac{\alpha_{11}}{\alpha_{12}} $<br>M1<br>1.02<br>11.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 25%, u $= 0.063$ $= 0.063$ $M2$ $5.62$ $24.76$                                                                                                              |                                                                                                                                                                                                       | %<br>0.063<br>0.063<br>M4<br>2.68<br>16.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| n<br>50<br>100<br>200                                                                                                                                                      | $6e_1 = 0.9$ $\alpha_{11}$ $\alpha_{12}$ M1 1.70 8.98 30.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0, Se_2 = 0.007 = 0.007$ $M2$ $6.78$ $19.34$ $42.88$                                                                                                                                                                                        | $\begin{array}{c} \textbf{a}_{01} = 0\\ \alpha_{01} = 0\\ \alpha_{02} = 0\\ \hline \textbf{M3}\\ 3.54\\ 12.46\\ 29.54 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $p_1 = 0.99$ .007 .007 M4 3.54 12.46 29.54                                                                                                                                                             | 0, $Sp_2 = \frac{\alpha_{11}}{\alpha_{12}}$<br>M1<br>1.34<br>10.26<br>33.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.70, p<br>= 0.035<br>= 0.035<br>M2<br>5.66<br>21.28<br>49.96                                                                                                                                                                                       | $a_{01} = 0$ $a_{02} = 0$ $M3$ $2.96$ $13.94$ $33.56$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , <b>p</b> <sub>2</sub> = 25<br>.035<br>.035<br>M4<br>2.96<br>13.94<br>33.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\delta^{0}, \psi_{1} = \frac{\alpha_{11}}{\alpha_{12}}$<br>M1<br>1.02<br>11.78<br>44.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 25%, u $= 0.063$ $= 0.063$ $M2$ $5.62$ $24.76$ $58.62$                                                                                                      | $p_2 = 75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $2.68$ $16.06$ $44.22$                                                                                                                          | %<br>0.063<br>0.063<br>M4<br>2.68<br>16.06<br>44.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| n<br>50<br>100<br>200<br>500                                                                                                                                               | $6e_1 = 0.9$ $\alpha_{11}$ $\alpha_{12}$ $M1$ $1.70$ $8.98$ $30.01$ $78.62$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0, Se_2 = 0.007 = 0.007$ $M2$ $6.78$ $19.34$ $42.88$ $85.30$                                                                                                                                                                                | $\begin{array}{c} \textbf{0.70, S_{I}} \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ 3.54 \\ 12.46 \\ 29.54 \\ 77.16 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p <sub>1</sub> = 0.99<br>.007<br>.007<br>M4<br>3.54<br>12.46<br>29.54<br>77.44                                                                                                                         | $0, Sp_{2} = \frac{\alpha_{11}}{\alpha_{12}}$ $M1$ $1.34$ $10.26$ $33.82$ $86.46$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.70, p<br>= 0.035<br>= 0.035<br>M2<br>5.66<br>21.28<br>49.96<br>90.66                                                                                                                                                                              | $a_{01} = 10\%,$<br>$a_{01} = 0,$<br>$a_{02} = 0,$<br>M3<br>2.96<br>13.94<br>33.56<br>84.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $p_2 = 25$<br>0.035<br>0.035<br>M4<br>2.96<br>13.94<br>33.56<br>84.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \frac{\alpha_{11}}{\alpha_{12}} $<br>$ \frac{\alpha_{11}}{\alpha_{12}} $<br>M1<br>1.02<br>11.78<br>44.80<br>92.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 25%, u<br>= 0.063<br>= 0.063<br>M2<br>5.62<br>24.76<br>58.62<br>95.48                                                                                       | $p_2 = 75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $2.68$ $16.06$ $44.22$ $91.74$                                                                                                                  | %<br>0.063<br>0.063<br>M4<br>2.68<br>16.06<br>44.22<br>91.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| n<br>50<br>100<br>200<br>500<br>1000                                                                                                                                       | $6e_1 = 0.9$ $\alpha_{11}$ $\alpha_{12}$ M1 1.70 8.98 30.01 78.62 98.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0, Se_2 = 0.007 = 0.007$ $M2$ $6.78$ $19.34$ $42.88$ $85.30$ $99.18$                                                                                                                                                                        | $\begin{array}{c} \textbf{0.70, S_{J}} \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{3.54} \\ 12.46 \\ 29.54 \\ 77.16 \\ 98.34 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>p</b> <sub>1</sub> = 0.9<br>.007<br>.007<br><u>M4</u><br>3.54<br>12.46<br>29.54<br>77.44<br>98.46                                                                                                   | $0, Sp_2 = \frac{\alpha_{11}}{\alpha_{12}}$ M1 1.34 10.26 33.82 86.46 99.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.70, p<br>= 0.035<br>= 0.035<br>M2<br>5.66<br>21.28<br>49.96<br>90.66<br>99.70                                                                                                                                                                     | $\alpha_{01} = 0$ $\alpha_{02} = 0$ $\alpha_{02} = 0$ $M3$ $2.96$ $13.94$ $33.56$ $84.30$ $99.16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , <b>p</b> <sub>2</sub> = 25<br>.035<br>.035<br>M4<br>2.96<br>13.94<br>33.56<br>84.56<br>99.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \frac{\alpha_{11}}{\alpha_{12}} $<br>$ \frac{\alpha_{11}}{\alpha_{12}} $<br>M1<br>1.02<br>11.78<br>44.80<br>92.36<br>99.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 25%, u<br>= 0.063<br>= 0.063<br>M2<br>5.62<br>24.76<br>58.62<br>95.48<br>100                                                                                | $b_2 = 75\%$ $a_{01} = 0$ $a_{02} = 0$ M3 2.68 16.06 44.22 91.74 99.92                                                                                                                                | %<br>0.063<br>0.063<br>M4<br>2.68<br>16.06<br>44.22<br>91.78<br>99.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000                                                                                                                               | $\begin{aligned} \mathbf{\hat{se}_{1}} &= 0.9\\ \hline & \alpha_{11} \\ & \alpha_{12} \\ \hline & \mathbf{M1} \\ \hline & 1.70 \\ & 8.98 \\ & 30.01 \\ & 78.62 \\ & 98.68 \\ & 100 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>0, Se<sub>2</sub> =</b><br>= 0.007<br>= 0.007<br>M2<br>6.78<br>19.34<br>42.88<br>85.30<br>99.18<br>100                                                                                                                                    | $\begin{array}{c} \textbf{0.70, S_{I}} \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \textbf{3.54} \\ \textbf{12.46} \\ \textbf{29.54} \\ \textbf{77.16} \\ \textbf{98.34} \\ \textbf{100} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007<br>M4<br>3.54<br>12.46<br>29.54<br>77.44<br>98.46<br>100                                                                                                  | $0, Sp_2 = \frac{\alpha_{11}}{\alpha_{12}}$ $M1$ $1.34$ $10.26$ $33.82$ $86.46$ $99.58$ $100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.70, p<br>= 0.035<br>= 0.035<br>M2<br>5.66<br>21.28<br>49.96<br>90.66<br>99.70<br>100                                                                                                                                                              | $\begin{array}{c} \mathbf{a} = \mathbf{10\%},\\ \alpha_{01} = 0,\\ \alpha_{02} = 0,\\ \mathbf{M3} \\ 2.96 \\ 13.94 \\ 33.56 \\ 84.30 \\ 99.16 \\ 100 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>p</b> <sub>2</sub> = 25<br>.035<br>.035<br>M4<br>2.96<br>13.94<br>33.56<br>84.56<br>99.20<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \frac{8\%, \psi_1}{\alpha_{12}} = \frac{\alpha_{11}}{\alpha_{12}} $<br>M1<br>1.02<br>11.78<br>44.80<br>92.36<br>99.98<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 25%, u<br>= 0.063<br>= 0.063<br>M2<br>5.62<br>24.76<br>58.62<br>95.48<br>100<br>100                                                                         | $p_2 = 75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $2.68$ $16.06$ $44.22$ $91.74$ $99.92$ $100$                                                                                                    | %<br>0.063<br>0.063<br>M4<br>2.68<br>16.06<br>44.22<br>91.78<br>99.94<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000                                                                                                                               | $ \frac{3}{3} \frac{1}{3} 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>= 0.007<br>M2<br>6.78<br>19.34<br>42.88<br>85.30<br>99.18<br>100<br><b>0</b> , <b>Se</b> <sub>2</sub> =                                                                                    | $\begin{array}{c} \textbf{0.70, Sj} \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ 3.54 \\ 12.46 \\ 29.54 \\ 77.16 \\ 98.34 \\ 100 \\ \hline \textbf{0.70, Sj} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007<br>3.54<br>12.46<br>29.54<br>77.44<br>98.46<br>100<br><b>p</b> <sub>1</sub> = 0.99                                                                        | $0, Sp_2 = \frac{\alpha_{11}}{\alpha_{12}}$ M1 1.34 10.26 33.82 86.46 99.58 100 0, Sp_2 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.70, p<br>= 0.035<br>= 0.035<br>M2<br>5.66<br>21.28<br>49.96<br>90.66<br>99.70<br>100<br>0.70, p                                                                                                                                                   | $\begin{array}{c} 1 = \mathbf{10\%},\\ \alpha_{01} = 0,\\ \alpha_{02} = 0,\\ \mathbf{M3},\\ 2.96,\\ 13.94,\\ 33.56,\\ 84.30,\\ 99.16,\\ 100,\\ 1 = \mathbf{10\%},\\ \mathbf{10\%},\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ $                     | <b>p</b> <sub>2</sub> = 25<br>.035<br>.035<br>M4<br>2.96<br>13.94<br>33.56<br>84.56<br>99.20<br>100<br><b>, p</b> <sub>2</sub> = 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \frac{\kappa_{11}}{\kappa_{12}} = \frac{\kappa_{11}}{\kappa_{12}} $<br>M1<br>1.02<br>11.78<br>44.80<br>92.36<br>99.98<br>100<br>$\frac{\kappa_{11}}{\kappa_{12}} = \frac{\kappa_{11}}{\kappa_{12}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 25%, u<br>= 0.063<br>= 0.063<br>M2<br>5.62<br>24.76<br>58.62<br>95.48<br>100<br>100<br>= 50%, u                                                             | $p_2 = 75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $2.68$ $16.06$ $44.22$ $91.74$ $99.92$ $100$ $p_2 = 50\%$                                                                                       | %           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.063           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064           0.064 |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000<br>S<br>S                                                                                                                     | $\frac{3}{3} \frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{\alpha_{12}}$ $\frac{\alpha_{11}}{\alpha_{11}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>= 0.007<br>M2<br>6.78<br>19.34<br>42.88<br>85.30<br>99.18<br>100<br><b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007                                                                         | $\begin{array}{c} \mathbf{0.70, S_{I}} \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \mathbf{M3} \\ 3.54 \\ 12.46 \\ 29.54 \\ 77.16 \\ 98.34 \\ 100 \\ \hline \mathbf{0.70, S_{I}} \\ \alpha_{01} = 0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007<br>M4<br>3.54<br>12.46<br>29.54<br>77.44<br>98.46<br>100<br><b>p</b> <sub>1</sub> = 0.99<br>.007                                                          | $0, Sp_{2} = \frac{\alpha_{11}}{\alpha_{12}}$ $M1$ $1.34$ $10.26$ $33.82$ $86.46$ $99.58$ $100$ $0, Sp_{2} = \frac{\alpha_{11}}{\alpha_{12}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>0.70, p</b><br>= 0.035<br>= 0.035<br>M2<br>5.66<br>21.28<br>49.96<br>90.66<br>99.70<br>100<br><b>0.70, p</b><br>= 0.035                                                                                                                          | $\begin{array}{c} \mathbf{a} = \mathbf{10\%},\\ \alpha_{01} = 0,\\ \alpha_{02} = 0,\\ \mathbf{M3} \\ 2.96 \\ 13.94 \\ 33.56 \\ 84.30 \\ 99.16 \\ 100 \\ 100 \\ \mathbf{a} = \mathbf{10\%},\\ \alpha_{01} = 0,\\ 00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>p</b> <sub>2</sub> = 25<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \frac{8\%}{\psi_1} + \frac{1}{2} = \frac{\alpha_{11}}{\alpha_{12}} $<br>M1<br>1.02<br>11.78<br>44.80<br>92.36<br>99.98<br>100<br>$\frac{1}{2}, \frac{1}{2}, 1$ | = 25%, u<br>= 0.063<br>= 0.063<br>M2<br>5.62<br>24.76<br>58.62<br>95.48<br>100<br>100<br>= 50%, u<br>= 0.063                                                  |                                                                                                                                                                                                       | %           0.063           0.063           0.063           44.22           91.78           99.94           100           %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000<br>S                                                                                                                          | $ \frac{3}{6} \frac{1}{1} = 0.9 \\ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{\alpha_{12}} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>= 0.007<br>M2<br>6.78<br>19.34<br>42.88<br>85.30<br>99.18<br>100<br><b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>= 0.007                                                              | $\begin{array}{c} \textbf{0.70, S_{l}} \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \textbf{3.54} \\ \textbf{12.46} \\ \textbf{29.54} \\ \textbf{77.16} \\ \textbf{98.34} \\ \textbf{100} \\ \textbf{c.0.70, S_{l}} \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007<br>M4<br>3.54<br>12.46<br>29.54<br>77.44<br>98.46<br>100<br><b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007                                                  | $0, Sp_{2} = \frac{\alpha_{11}}{\alpha_{12}}$ $M1$ $1.34$ $10.26$ $33.82$ $86.46$ $99.58$ $100$ $0, Sp_{2} = \frac{\alpha_{11}}{\alpha_{12}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.70, p<br>= 0.035<br>= 0.035<br>M2<br>5.66<br>21.28<br>49.96<br>90.66<br>99.70<br>100<br>0.70, p<br>= 0.035<br>= 0.035                                                                                                                             | $\mathbf{a}_{11} = \mathbf{10\%},$ $\alpha_{01} = 0,$ $\alpha_{02} = 0,$ $\mathbf{M3}$ $2.96$ $13.94$ $33.56$ $84.30$ $99.16$ $100$ $\mathbf{a}_{10} = \mathbf{10\%},$ $\alpha_{01} = 0,$ $\alpha_{02} = 0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>p</b> <sub>2</sub> = 25<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \frac{8\%}{4}, \frac{\psi_1}{4} = \frac{\omega_{11}}{\omega_{12}} $<br>M1<br>1.02<br>11.78<br>44.80<br>92.36<br>99.98<br>100<br>$\frac{99.98}{100}$<br>$\frac{100}{8\%}, \frac{\psi_1}{4} = \frac{\omega_{11}}{\omega_{12}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 25%, u<br>= 0.063<br>= 0.063<br>M2<br>5.62<br>24.76<br>58.62<br>95.48<br>100<br>100<br>= 50%, u<br>= 0.063<br>= 0.063                                       | $p_2 = 75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $2.68$ $16.06$ $44.22$ $91.74$ $99.92$ $100$ $p_2 = 50\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$                                                   | %           0.063           0.063           0.063           0.063           91.78           99.94           100           %           0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000<br>500<br>1000<br>2000<br>S                                                                                                   | $ \frac{3}{3} \frac{1}{2} = 0.9 \\ \frac{\alpha_{11}}{\alpha_{12}} \\$ | <b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>= 0.007<br>M2<br>6.78<br>19.34<br>42.88<br>85.30<br>99.18<br>100<br><b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>= 0.007<br>M2                                                        | $\begin{array}{c} \mathbf{0.70, S_{j}} \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \mathbf{M3} \\ 3.54 \\ 12.46 \\ 29.54 \\ 77.16 \\ 98.34 \\ 100 \\ \mathbf{0.70, S_{j}} \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \mathbf{M3} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007<br>M4<br>3.54<br>12.46<br>29.54<br>77.44<br>98.46<br>100<br><b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007<br>.007                                          | $0, Sp_{2} = \frac{\alpha_{11}}{\alpha_{12}}$ M1 1.34 10.26 33.82 86.46 99.58 100 0, Sp_{2} = \frac{\alpha_{11}}{\alpha_{12}} M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.70, p<br>= 0.035<br>= 0.035<br>M2<br>5.66<br>21.28<br>49.96<br>90.66<br>99.70<br>100<br>0.70, p<br>= 0.035<br>= 0.035<br>M2                                                                                                                       | $\begin{array}{c} \mathbf{a} = \mathbf{10\%},\\ \alpha_{01} = 0,\\ \alpha_{02} = 0,\\ \mathbf{M3} \\ 2.96 \\ 13.94 \\ 33.56 \\ 84.30 \\ 99.16 \\ 100 \\ \mathbf{a} \\ 100 \\ \mathbf{a} \\ \mathbf{a} \\ 01 = 0 \\ \alpha_{02} = 0,\\ \mathbf{M3} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>p</b> <sub>2</sub> = 25<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $s\%, \psi_1 = \frac{\alpha_{11}}{\alpha_{12}}$<br>M1<br>1.02<br>11.78<br>44.80<br>92.36<br>99.98<br>100<br>$s\%, \psi_1 = \frac{\alpha_{11}}{\alpha_{12}}$<br>M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 25%, u<br>= 0.063<br>= 0.063<br>M2<br>5.62<br>24.76<br>58.62<br>95.48<br>100<br>100<br>= 50%, u<br>= 0.063<br>= 0.063<br>M2                                 | $p_2 = 75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $2.68$ $16.06$ $44.22$ $91.74$ $99.92$ $100$ $p_2 = 50\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$                                              | %           0.063           0.063           0.063           44           2.68           16.06           44.22           91.78           99.94           100           %           0.063           0.063           0.063           0.063           M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000<br>2000<br>500<br>1000<br>2000<br>50<br>50                                                                                    | $ \frac{3}{6} \frac{1}{1} = 0.9 \\ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{\alpha_{11}} \\ \frac{\alpha_{11}}{\alpha_{12}} \\ \frac{\alpha_{11}}{\alpha_{14}} \\ \frac{\alpha_{14}}{\alpha_{14}} \\$ | <b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>= 0.007<br>M2<br>6.78<br>19.34<br>42.88<br>85.30<br>99.18<br>100<br><b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>= 0.007<br>M2<br>2.16                                                | $\begin{array}{c} \mathbf{0.70, S_{j}} \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \mathbf{M3} \\ 3.54 \\ 12.46 \\ 29.54 \\ 77.16 \\ 98.34 \\ 100 \\ \mathbf{0.70, S_{j}} \\ \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \mathbf{M3} \\ 0.84 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007<br>M4<br>3.54<br>12.46<br>29.54<br>77.44<br>98.46<br>100<br><b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007<br>.007<br>M4<br>0.84                            | $\begin{array}{c} \mathbf{0, Sp_2 =} \\ \hline \alpha_{11} \\ \alpha_{12} \\ \hline \\ \mathbf{M1} \\ 1.34 \\ 10.26 \\ 33.82 \\ 86.46 \\ 99.58 \\ 100 \\ \hline \\ \mathbf{0, Sp_2 =} \\ \hline \alpha_{11} \\ \alpha_{12} \\ \hline \\ \mathbf{M1} \\ 0.28 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>0.70, p</b><br>= 0.035<br>= 0.035<br>M2<br>5.66<br>21.28<br>49.96<br>90.66<br>99.70<br>100<br><b>0.70, p</b><br>= 0.035<br>= 0.035<br>M2<br>1.50                                                                                                 | $\begin{array}{c} \mathbf{a} = \mathbf{10\%},\\ \alpha_{01} = 0,\\ \alpha_{02} = 0,\\ \mathbf{M3} \\ 2.96 \\ 13.94 \\ 33.56 \\ 84.30 \\ 99.16 \\ 100 \\ 100 \\ \mathbf{a} \\ 100 \\ \mathbf{a} \\ \mathbf{a} \\ 01 = 0 \\ \mathbf{\alpha} \\ 02 = 0 \\ \mathbf{M3} \\ 0.56 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , p <sub>2</sub> = 25         .035         .035         .035         M4         2.96         13.94         33.56         84.56         99.20         100         , p <sub>2</sub> = 25         .035         .035         .035         .044         0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \frac{8\%}{\psi_1} + \frac{1}{2} $<br>$ \frac{\alpha_{11}}{\alpha_{12}} $<br>$ \frac{\alpha_{12}}{\alpha_{12}} $<br>$ \frac{1.02}{11.78} $<br>$ \frac{44.80}{92.36} $<br>$ \frac{99.98}{100} $<br>$ \frac{100}{5\%}, \psi_1 = \frac{\alpha_{11}}{\alpha_{12}} $<br>$ \frac{\alpha_{11}}{\alpha_{12}} $<br>$ \frac{100}{12} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 25%, u $= 0.063$ $= 0.063$ $M2$ $5.62$ $24.76$ $58.62$ $95.48$ $100$ $100$ $= 50%, u$ $= 0.063$ $= 0.063$ $M2$ $1.42$                                       |                                                                                                                                                                                                       | %           0.063           0.063           0.063           16.06           44.22           91.78           99.94           100           %           0.063           0.063           0.063           0.063           0.063           0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000<br>500<br>1000<br>2000<br>50<br>100<br>50<br>100                                                                              | $ \frac{3}{6} \frac{1}{1} = 0.9 \\ \frac{\alpha_{11}}{\alpha_{12}} \\$ | <b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>= 0.007<br>M2<br>6.78<br>19.34<br>42.88<br>85.30<br>99.18<br>100<br><b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br><b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>M2<br>2.16<br>4.78 | $\begin{array}{c} \textbf{0.70, S_{l}} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{3.54} \\ 12.46 \\ 29.54 \\ 77.16 \\ 98.34 \\ 100 \\ \hline \textbf{0.70, S_{l}} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{0.84} \\ 2.28 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>p</b> <sub>1</sub> = 0.9<br>.007<br>.007<br>M4<br>3.54<br>12.46<br>29.54<br>77.44<br>98.46<br>100<br><b>p</b> <sub>1</sub> = 0.9<br>.007<br>.007<br>.007<br>.007<br>.007<br>M4<br>0.84<br>2.28      | $\begin{array}{c} 0, \mathbf{Sp}_{2} = \\ \hline \alpha_{11} \\ \alpha_{12} \\ \hline \\ \mathbf{M1} \\ 1.34 \\ 10.26 \\ 33.82 \\ 86.46 \\ 99.58 \\ 100 \\ \hline \\ 0, \mathbf{Sp}_{2} = \\ \hline \\ \alpha_{11} \\ \alpha_{12} \\ \hline \\ \mathbf{M1} \\ 0.28 \\ 1.16 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.70, p<br>= 0.035<br>= 0.035<br>M2<br>5.66<br>21.28<br>49.96<br>90.66<br>99.70<br>100<br>0.70, p<br>= 0.035<br>= 0.035<br>M2<br>1.50<br>3.94                                                                                                       | $\begin{array}{c} \mathbf{a} = \mathbf{10\%},\\ \alpha_{01} = 0,\\ \alpha_{02} = 0,\\ \mathbf{M3},\\ 2.96,\\ 13.94,\\ 33.56,\\ 84.30,\\ 99.16,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ 100,\\ $                             | , p2 = 25         .035         .035         .035         .035         .035         .035         .035         .000         .021         .035         .035         .035         .035         .035         .035         .035         .035         .035         .044         0.566         1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $s^{*}, \psi_1 = \frac{\alpha_{11}}{\alpha_{12}}$<br>M1<br>1.02<br>11.78<br>44.80<br>92.36<br>99.98<br>100<br>$s^{*}, \psi_1 = \frac{\alpha_{11}}{\alpha_{12}}$<br>M1<br>0.12<br>1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 25%, t $= 0.063$ $= 0.063$ $M2$ $5.62$ $24.76$ $58.62$ $95.48$ $100$ $100$ $= 50%, t$ $= 0.063$ $= 0.063$ $M2$ $1.42$ $3.52$                                |                                                                                                                                                                                                       | %           0.063           0.063           0.063           16.06           44.22           91.78           99.94           100           %           0.063           0.063           0.063           0.063           0.44           1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000<br>S<br>500<br>1000<br>2000<br>S<br>100<br>200                                                                                | $\begin{aligned} \hat{\mathbf{se}_{1}} &= 0.9 \\ & \alpha_{11} \\ & \alpha_{12} \\ \hline & \mathbf{M1} \\ & 1.70 \\ & 8.98 \\ & 30.01 \\ & 78.62 \\ & 98.68 \\ & 100 \\ \hline & \mathbf{se_{1}} &= 0.9 \\ & \alpha_{11} \\ & \alpha_{12} \\ \hline & \mathbf{M1} \\ & 0.44 \\ & 1.60 \\ & 5.18 \\ \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>= 0.007<br>M2<br>6.78<br>19.34<br>42.88<br>85.30<br>99.18<br>100<br><b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br><b>0</b> , <b>O</b><br>= 0.007<br>M2<br>2.16<br>4.78<br>10.88        | $\begin{array}{c} \textbf{0.70, S_{l}} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{3.54} \\ 12.46 \\ 29.54 \\ 77.16 \\ 98.34 \\ 100 \\ \hline \textbf{c.0.70, S_{l}} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{0.84} \\ 2.28 \\ 4.46 \\ \hline \textbf{4.46} \\ \hline \textbf{0.84} \hline \textbf{0.84} \\ \hline \textbf{0.84} \\ \hline \textbf{0.84} \\ \hline \textbf{0.84} \hline \hline \textbf{0.84} \\ \hline \textbf$ | <b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007<br>M4<br>3.54<br>12.46<br>29.54<br>77.44<br>98.46<br>100<br><b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007<br>.007<br>M4<br>0.84<br>2.28<br>4.70            | $\begin{array}{c} 0, \mathbf{Sp}_{2} = \\ \hline \alpha_{11} \\ \alpha_{12} \\ \hline \mathbf{M1} \\ 1.34 \\ 10.26 \\ 33.82 \\ 86.46 \\ 99.58 \\ 100 \\ \hline 0, \mathbf{Sp}_{2} = \\ \hline \alpha_{11} \\ \alpha_{12} \\ \hline \mathbf{M1} \\ \hline 0.28 \\ 1.16 \\ 4.72 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>0.70, p</li> <li>0.035</li> <li>0.035</li> <li>M2</li> <li>5.66</li> <li>21.28</li> <li>49.96</li> <li>90.66</li> <li>99.70</li> <li>100</li> <li>0.70, p</li> <li>0.035</li> <li>M2</li> <li>1.50</li> <li>3.94</li> <li>10.08</li> </ul> | $\mathbf{a}_{11} = 10\%,$ $\alpha_{01} = 0,$ $\alpha_{02} = 0,$ $\mathbf{M3}$ $2.96$ $13.94$ $33.56$ $84.30$ $99.16$ $100$ $\mathbf{a}_{01} = 0\%,$ $\alpha_{01} = 0,$ $\alpha_{02} = 0,$ $\mathbf{M3}$ $0.56$ $1.88$ $4.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>p</b> <sub>2</sub> = 25<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.035<br>.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \frac{8\%}{4}, \psi_1 = \frac{\alpha_{11}}{\alpha_{12}} $<br>M1<br>1.02<br>11.78<br>44.80<br>92.36<br>99.98<br>100<br>$\frac{3\%}{4}, \psi_1 = \frac{\alpha_{11}}{\alpha_{12}}$<br>M1<br>0.12<br>1.02<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5.18<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 25%, 1 $= 0.063$ $= 0.063$ $M2$ $5.62$ $24.76$ $58.62$ $95.48$ $100$ $100$ $= 50%, 1$ $= 0.063$ $M2$ $1.42$ $3.52$ $10.66$                                  |                                                                                                                                                                                                       | %           0.063           0.063           0.063           0.063           16.06           44.22           91.78           99.94           100           %           0.063           0.063           0.063           0.44           1.48           4.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000<br>S<br>n<br>50<br>100<br>200<br>500<br>1000                                                                                  | $\begin{aligned} \hat{\mathbf{se}_{1}} &= 0.9 \\ & \alpha_{11} \\ & \alpha_{12} \\ \hline & \mathbf{M1} \\ & 1.70 \\ & 8.98 \\ & 30.01 \\ & 78.62 \\ & 98.68 \\ & 100 \\ \hline & \mathbf{se_{1}} &= 0.9 \\ & \alpha_{11} \\ & \alpha_{12} \\ \hline & \mathbf{M1} \\ & 0.44 \\ & 1.60 \\ & 5.18 \\ & 25.26 \\ & (2.26) \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>= 0.007<br>M2<br>6.78<br>19.34<br>42.88<br>85.30<br>99.18<br>100<br><b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>M2<br>2.16<br>4.78<br>10.88<br>34.72                                 | $\begin{array}{c} \textbf{0.70, S_{l}} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{3.54} \\ 12.46 \\ 29.54 \\ 77.16 \\ 98.34 \\ 100 \\ \hline \textbf{c.0.70, S_{l}} \\ \hline \alpha_{01} = 0 \\ \alpha_{02} = 0 \\ \hline \textbf{M3} \\ \hline \textbf{0.84} \\ 2.28 \\ 4.46 \\ 22.24 \\ \hline \textbf{2.24} \\ \hline \textbf{2.24} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007<br>M4<br>3.54<br>12.46<br>29.54<br>77.44<br>98.46<br>100<br><b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007<br>M4<br>0.84<br>2.28<br>4.70<br>22.42<br>(2.24) | $\begin{array}{c} 0, \mathbf{Sp}_{2} = \\ \hline \alpha_{11} \\ \alpha_{12} \\ \hline \mathbf{M1} \\ 1.34 \\ 10.26 \\ 33.82 \\ 86.46 \\ 99.58 \\ 100 \\ \hline 0, \mathbf{Sp}_{2} = \\ \hline \alpha_{11} \\ \alpha_{12} \\ \hline \mathbf{M1} \\ 0.28 \\ 1.16 \\ 4.72 \\ 29.08 \\ \hline 1.16 \\ 4.72 \\ 29.08 \\ \hline 1.16 \\ 4.72 \\ 29.08 \\ \hline 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16 \\ 1.16$ | 0.70, p<br>= 0.035<br>= 0.035<br>M2<br>5.66<br>21.28<br>49.96<br>90.66<br>99.70<br>100<br>0.70, p<br>= 0.035<br>M2<br>1.50<br>3.94<br>10.08<br>39.24                                                                                                | $\mathbf{a}_{1} = 10\%,$ $\alpha_{01} = 0,$ $\alpha_{02} = 0,$ $\mathbf{M3}$ $2.96$ $13.94$ $33.56$ $84.30$ $99.16$ $100$ $\mathbf{a}_{01} = 0,$ $\alpha_{01} = 0,$ $\mathbf{M3}$ $0.56$ $1.88$ $4.04$ $24.80$ $\mathbf{(2.56)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $p_2 = 25$<br>.035<br>.035<br>M4<br>2.96<br>13.94<br>33.56<br>84.56<br>99.20<br>100<br>$p_2 = 25$<br>.035<br>.035<br>M4<br>0.56<br>1.88<br>4.28<br>25.26<br>(2.26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $s^{96}, \psi_1 = \frac{\alpha_{11}}{\alpha_{12}}$<br>M1<br>1.02<br>11.78<br>44.80<br>92.36<br>99.98<br>100<br>$s^{90}, \psi_1 = \frac{\alpha_{11}}{\alpha_{12}}$<br>M1<br>0.12<br>1.02<br>5.18<br>32.88<br>35.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 25%, 1<br>= 0.063<br>= 0.063<br>M2<br>5.62<br>24.76<br>58.62<br>95.48<br>100<br>100<br>= 50%, 1<br>= 0.063<br>M2<br>1.42<br>3.52<br>10.66<br>42.38<br>21.16 |                                                                                                                                                                                                       | %           0.063           0.063           0.063           0.063           16.06           44.22           91.78           99.94           100           %           0.063           0.063           0.063           0.44           1.48           4.48           27.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| n<br>50<br>100<br>200<br>500<br>1000<br>2000<br>S00<br>1000<br>200<br>500<br>1000<br>2000                                                                                  | $\begin{aligned} \hat{\mathbf{se}_{1}} &= 0.9 \\ \hat{\alpha}_{11} & \hat{\alpha}_{12} \\ \hline & \mathbf{M1} \\ 1.70 \\ 8.98 \\ 30.01 \\ 78.62 \\ 98.68 \\ 100 \\ \hline & \mathbf{se_{1}} = 0.9 \\ \hat{\alpha}_{11} \\ \hat{\alpha}_{12} \\ \hline & \mathbf{M1} \\ 0.44 \\ 1.60 \\ 5.18 \\ 25.26 \\ 62.78 \\ 25.27 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>= 0.007<br>M2<br>6.78<br>19.34<br>42.88<br>85.30<br>99.18<br>100<br><b>0</b> , <b>Se</b> <sub>2</sub> =<br>= 0.007<br>M2<br>2.16<br>4.78<br>10.88<br>34.72<br>74.76                        | $\begin{array}{c} \mathbf{0.70, S_{l}} \\ \mathbf{\alpha}_{01} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{M3} \\ 3.54 \\ 12.46 \\ 29.54 \\ 77.16 \\ 98.34 \\ 100 \\ \mathbf{c} \mathbf{0.70, S_{l}} \\ \mathbf{\alpha}_{01} = 0 \\ \mathbf{\alpha}_{02} = 0 \\ \mathbf{M3} \\ 0.84 \\ 2.28 \\ 4.46 \\ 22.24 \\ 59.60 \\ 22.24 \\ 59.60 \\ 22.24 \\ 59.60 \\ 22.24 \\ 59.60 \\ 22.24 \\ 59.60 \\ 22.24 \\ 59.60 \\ 22.24 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ 59.60 \\ \mathbf$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007<br>M4<br>3.54<br>12.46<br>29.54<br>77.44<br>98.46<br>100<br><b>p</b> <sub>1</sub> = 0.99<br>.007<br>.007<br>M4<br>0.84<br>2.28<br>4.70<br>22.42<br>60.24  | $\begin{array}{c} 0, \mathbf{Sp}_{2} = \\ \hline \alpha_{11} \\ \alpha_{12} \\ \hline \\ \mathbf{M1} \\ 1.34 \\ 10.26 \\ 33.82 \\ 86.46 \\ 99.58 \\ 100 \\ 0, \mathbf{Sp}_{2} = \\ \hline \alpha_{11} \\ \alpha_{12} \\ \hline \\ \mathbf{M1} \\ 0.28 \\ 1.16 \\ 4.72 \\ 29.08 \\ 71.58 \\ 71.58 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.70, p<br>= 0.035<br>= 0.035<br>M2<br>5.66<br>21.28<br>49.96<br>90.66<br>99.70<br>100<br>0.70, p<br>= 0.035<br>M2<br>1.50<br>3.94<br>10.08<br>39.24<br>81.84<br>81.84<br>24                                                                        | $\begin{array}{c} \mathbf{a} = 10\%, \\ \alpha_{01} = 0, \\ \alpha_{02} = 0, \\ \mathbf{M3} \\ 2.96 \\ 13.94 \\ 33.56 \\ 84.30 \\ 99.16 \\ 100 \\ 100 \\ \mathbf{a}_{01} = 0, \\ \alpha_{01} = 0, \\ \alpha_{02} = 0, \\ \mathbf{M3} \\ 0.56 \\ 1.88 \\ 4.04 \\ 24.80 \\ 68.50 \\ 96.50 \\ 1.58 \\ 100 \\ 1.58 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ $ | $p_2 = 25$<br>0.035<br>0.035<br>M4<br>2.96<br>13.94<br>33.56<br>84.56<br>99.20<br>100<br>$p_2 = 25$<br>0.035<br>0.035<br>M4<br>0.56<br>1.88<br>4.28<br>25.26<br>69.20<br>0.52<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.52<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.52<br>0.52<br>0.52<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.52<br>0.52<br>0.52<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.56<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.56<br>0.56<br>0.56<br>0.52<br>0.52<br>0.56<br>0.56<br>0.56<br>0.56<br>0.52<br>0.56<br>0.52<br>0.52<br>0.56<br>0.52<br>0.52<br>0.52<br>0.56<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52<br>0.52 | $s\%, \psi_1 = \frac{\alpha_{11}}{\alpha_{12}}$<br>M1<br>1.02<br>11.78<br>44.80<br>92.36<br>99.98<br>100<br>$s\%, \psi_1 = \frac{\alpha_{11}}{\alpha_{12}}$<br>M1<br>0.12<br>1.02<br>5.18<br>32.88<br>85.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 25%, t<br>= 0.063<br>= 0.063<br>M2<br>5.62<br>24.76<br>58.62<br>95.48<br>100<br>100<br>= 0.063<br>= 0.063<br>M2<br>1.42<br>3.52<br>10.66<br>42.38<br>91.18  | $p_2 = 75\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $2.68$ $16.06$ $44.22$ $91.74$ $99.92$ $100$ $p_2 = 50\%$ $\alpha_{01} = 0$ $\alpha_{02} = 0$ $M3$ $0.44$ $1.48$ $4.42$ $26.64$ $83.84$ $97.74$ | %           0.063           0.063           0.063           16.06           44.22           91.78           99.94           100           %           0.063           0.063           0.063           0.063           M4           0.44           1.48           4.48           27.46           84.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Se <sub>1</sub> = 0.80, Se <sub>2</sub> = 0.90, Sp <sub>1</sub> = 0.90, Sp <sub>2</sub> = 0.70, p <sub>1</sub> = 10%, p <sub>2</sub> = 25%, $\psi_1$ = 25%, $\psi_2$ = 75% |                        |                      |                   |                      |                                              |                             |                   |            |                                              |                 |                   |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|-------------------|----------------------|----------------------------------------------|-----------------------------|-------------------|------------|----------------------------------------------|-----------------|-------------------|-----------|
| $\alpha_{11} = 0.008 \; \alpha_{01} = 0.007$                                                                                                                               |                        |                      |                   |                      | $\alpha_{11} = 0.040 \; \alpha_{01} = 0.035$ |                             |                   |            | $\alpha_{11} = 0.072 \; \alpha_{01} = 0.063$ |                 |                   |           |
|                                                                                                                                                                            | <i>a</i> <sub>12</sub> | = 0.008              | $\alpha_{02}=0$   | .007                 | <i>α</i> <sub>12</sub>                       | = 0.040                     | $\alpha_{02} = 0$ | .035       | <i>α</i> <sub>12</sub>                       | = 0.072         | $\alpha_{02} = 0$ | .063      |
| п                                                                                                                                                                          | M1                     | M2                   | M3                | M4                   | M1                                           | M2                          | M3                | M4         | M1                                           | M2              | M3                | M4        |
| 50                                                                                                                                                                         | 1.94                   | 6.66                 | 3.86              | 3.86                 | 1.38                                         | 6.30                        | 3.16              | 3.16       | 1.08                                         | 6.04            | 2.86              | 2.86      |
| 100                                                                                                                                                                        | 8.46                   | 18.80                | 12.16             | 12.16                | 9.78                                         | 21.38                       | 13.90             | 13.90      | 11.82                                        | 24.10           | 16.82             | 16.82     |
| 200                                                                                                                                                                        | 29.86                  | 43.30                | 29.68             | 29.68                | 35.12                                        | 47.86                       | 35.01             | 35.01      | 42.76                                        | 58.16           | 42.26             | 42.26     |
| 500                                                                                                                                                                        | 76.62                  | 83.94                | 75.40             | 75.40                | 84.22                                        | 89.62                       | 83.84             | 83.88      | 92.80                                        | 95.20           | 91.32             | 91.32     |
| 1000                                                                                                                                                                       | 97.78                  | 98.88                | 97.48             | 97.54                | 99.22                                        | 99.68                       | 99.06             | 99.08      | 99.90                                        | 99.98           | 99.88             | 99.88     |
| 2000                                                                                                                                                                       | 100                    | 100                  | 100               | 100                  | 100                                          | 100                         | 100               | 100        | 100                                          | 100             | 100               | 100       |
| S                                                                                                                                                                          | $e_1 = 0.8$            | $0, Se_2 =$          | 0.90, S           | p <sub>1</sub> = 0.9 | $0, Sp_2 =$                                  | <b>0.70, p</b> <sub>1</sub> | l = 10%,          | $p_2 = 50$ | )%, ψ <sub>1</sub> =                         | = 25%, ι        | $\psi_2 = 75\%$   | 6         |
| $\alpha_{11} = 0.008 \ \alpha_{01} = 0.007$ $\alpha_{11} = 0.040 \ \alpha_{01} = 0.035$ $\alpha_{11} = 0.072 \ \alpha_{01} = 0.063$                                        |                        |                      |                   |                      |                                              |                             |                   |            |                                              |                 |                   |           |
|                                                                                                                                                                            | <i>a</i> <sub>12</sub> | = 0.008              | $\alpha_{02} = 0$ | .007                 | <i>a</i> <sub>12</sub>                       | = 0.040                     | $\alpha_{02} = 0$ | .035       | <i>α</i> <sub>12</sub>                       | = 0.072         | $\alpha_{02} = 0$ | .063      |
| п                                                                                                                                                                          | M1                     | M2                   | M3                | M4                   | M1                                           | M2                          | M3                | M4         | M1                                           | M2              | M3                | M4        |
| 50                                                                                                                                                                         | 0.26                   | 2.60                 | 0.86              | 0.86                 | 0.12                                         | 1.86                        | 0.68              | 0.68       | 0.16                                         | 1.60            | 0.48              | 0.48      |
| 100                                                                                                                                                                        | 2.58                   | 6.78                 | 3.78              | 3.78                 | 2.24                                         | 6.82                        | 3.52              | 3.52       | 1.76                                         | 5.86            | 2.92              | 2.92      |
| 200                                                                                                                                                                        | 8.18                   | 13.64                | 8.06              | 8.06                 | 8.38                                         | 14.82                       | 8.32              | 8.32       | 9.22                                         | 16.46           | 9.16              | 9.16      |
| 500                                                                                                                                                                        | 21.12                  | 30.98                | 21.04             | 21.04                | 26.74                                        | 35.70                       | 26.24             | 26.34      | 29.56                                        | 41.84           | 29.38             | 29.38     |
| 1000                                                                                                                                                                       | 49.10                  | 58.38                | 46.00             | 46.38                | 58.12                                        | 66.60                       | 54.84             | 55.22      | 68.78                                        | 75.72           | 65.34             | 65.58     |
| 2000                                                                                                                                                                       | 84.48                  | 88.22                | 80.62             | 81.08                | 91.36                                        | 93.70                       | 87.88             | 88.34      | 97.02                                        | 97.66           | 95.04             | 95.54     |
| S                                                                                                                                                                          | $e_1 = 0.9$            | 0, Se <sub>2</sub> = | 0.80, S           | p <sub>1</sub> = 0.9 | $0, Sp_2 =$                                  | <b>0.80, p</b> <sub>1</sub> | l = 10%,          | $p_2 = 25$ | 5%, ψ <sub>1</sub> =                         | = 25%, ı        | $\psi_2 = 75\%$   | 6         |
|                                                                                                                                                                            | $\alpha_{11}$          | = 0.008              | $\alpha_{01} = 0$ | .008                 | $\alpha_{11}$                                | = 0.040                     | $\alpha_{01} = 0$ | .040       | $\alpha_{11}$                                | = 0.072         | $\alpha_{01} = 0$ | .072      |
|                                                                                                                                                                            | $\alpha_{12}$          | = 0.008              | $\alpha_{02} = 0$ | .008                 | <i>α</i> <sub>12</sub>                       | = 0.040                     | $\alpha_{02} = 0$ | .040       | <i>α</i> <sub>12</sub> =                     | = 0.072         | $\alpha_{02} = 0$ | .072      |
| п                                                                                                                                                                          | M1                     | M2                   | M3                | M4                   | M1                                           | M2                          | M3                | M4         | M1                                           | M2              | M3                | M4        |
| 50                                                                                                                                                                         | 0.34                   | 2.18                 | 0.90              | 0.90                 | 0.30                                         | 1.76                        | 0.62              | 0.62       | 0.02                                         | 0.84            | 0.24              | 0.24      |
| 100                                                                                                                                                                        | 2.80                   | 7.10                 | 4.18              | 4.18                 | 2.22                                         | 7.58                        | 3.88              | 3.88       | 1.44                                         | 7.32            | 2.88              | 2.88      |
| 200                                                                                                                                                                        | 9.90                   | 16.78                | 9.82              | 9.82                 | 10.26                                        | 19.70                       | 10.16             | 10.16      | 14.36                                        | 24.56           | 14.29             | 14.29     |
| 500                                                                                                                                                                        | 28.40                  | 38.24                | 28.31             | 28.31                | 37.68                                        | 49.34                       | 37.54             | 37.60      | 55.82                                        | 66.88           | 55.57             | 55.57     |
| 1000                                                                                                                                                                       | 60.62                  | 69.44                | 57.92             | 58.18                | 74.08                                        | 81.66                       | 71.54             | 71.90      | 91.42                                        | 95.00           | 90.46             | 90.58     |
| 2000                                                                                                                                                                       | 91.46                  | 94.30                | 89.42             | 89.90                | 97.76                                        | 98.24                       | 96.80             | 97.00      | 99.92                                        | 100             | 99.80             | 99.80     |
| S                                                                                                                                                                          | $e_1 = 0.9$            | $0, Se_2 =$          | 0.80, S           | p <sub>1</sub> = 0.9 | $0, Sp_2 =$                                  | <b>0.80, p</b> <sub>1</sub> | l = 10%,          | $p_2 = 25$ | 5%, ψ <sub>1</sub> =                         | = 50%, <b>u</b> | $\psi_2 = 50\%$   | <b>/o</b> |
|                                                                                                                                                                            | $\alpha_{11}$          | = 0.008              | $\alpha_{01} = 0$ | .008                 | $\alpha_{11}$                                | = 0.040                     | $\alpha_{01} = 0$ | .040       | $\alpha_{11}$                                | = 0.072         | $\alpha_{01} = 0$ | .072      |
|                                                                                                                                                                            | <i>a</i> <sub>12</sub> | = 0.008              | $\alpha_{02} = 0$ | .008                 | <i>a</i> <sub>12</sub>                       | = 0.040                     | $\alpha_{02} = 0$ | .040       | <i>a</i> <sub>12</sub>                       | = 0.072         | $\alpha_{02} = 0$ | .072      |
| п                                                                                                                                                                          | M1                     | M2                   | M3                | M4                   | M1                                           | M2                          | M3                | M4         | M1                                           | M2              | M3                | M4        |
| 50                                                                                                                                                                         | 0.18                   | 1.44                 | 0.46              | 0.46                 | 0.08                                         | 0.86                        | 0.22              | 0.22       | 0.02                                         | 0.34            | 0.06              | 0.06      |
| 100                                                                                                                                                                        | 1.10                   | 3.40                 | 1.50              | 1.50                 | 0.48                                         | 2.28                        | 0.90              | 0.90       | 0.36                                         | 1.90            | 0.68              | 0.68      |
| 200                                                                                                                                                                        | 2.56                   | 6.02                 | 2.52              | 2.54                 | 2.37                                         | 5.60                        | 2.32              | 2.32       | 1.71                                         | 4.04            | 1.58              | 1.58      |
| 500                                                                                                                                                                        | 7.60                   | 12.80                | 6.64              | 6.78                 | 7.62                                         | 12.32                       | 5.98              | 6.06       | 7.68                                         | 11.30           | 5.28              | 5.36      |
| 1000                                                                                                                                                                       | 20.08                  | 31.10                | 17.96             | 18.46                | 24.52                                        | 35.70                       | 22.78             | 23.08      | 31.70                                        | 42.40           | 27.60             | 28.28     |
| 2000                                                                                                                                                                       | 45.58                  | 57.12                | 43.34             | 43.84                | 56.86                                        | 68.70                       | 55.30             | 55.92      | 80.24                                        | 86.62           | 79.06             | 79.52     |

**Table 5.** Powers (in %) of different methods to simultaneously compare the sensitivities  $(Se_h = \{0.80, 0.90\})$  and specificities  $(Sp_h = \{0.70, 0.80, 0.90\})$  of two BDTs in the presence of a binary covariate.

#### 3.3. Application Rules

Based on the conclusions obtained from the simulation experiments, the following general application rules can be given when simultaneously comparing the accuracies of two BDTs in the presence of a binary covariate:

(a). When the sample size is small or moderate, solve the individual hypothesis tests  $H_0: Se_1 = Se_2$  (Equation (8)) and  $H_0: Sp_1 = Sp_2$  (Equation (9)) combined with the Bonferroni (or Holm) method using an error  $\alpha = 5\%$ .

(b). When the sample size is large or very large, solve the global test  $H_0$ : ( $Se_1 = Se_2$  and  $Sp_1 = Sp_2$ ) (Equation (7)) using an error  $\alpha = 5\%$ . If the global hypothesis test is not significant, then the equality of the accuracy of the two BDTs is not rejected. If the global hypothesis test is significant, then the causes of the significance will be investigated via testing  $H_0$ :  $Se_1 = Se_2$  and  $H_0$ :  $Sp_1 = Sp_2$  by individually applying Equations (8) and (9) combined with the Bonferroni (Holm) method using an error  $\alpha = 5\%$ . The global hypothesis test is initially applied because it is a somewhat more powerful method than the individual tests combined with the Bonferroni (Holm) method when the sample size is large or very large.

These application rules are given solely based on the sample size *n* because it is the only parameter of the study whose value was set by the researcher.

# 4. The "scapbc" Function

A function was written in R [5] that allows simultaneously comparing the accuracies of two BDTs subject to a paired design in the presence of a binary covariate. The function is called "scapbc" (simultaneous accuracy comparison in the presence of a binary covariate) and is executed with the command:

```
scapbc(s_{111}, s_{101}, s_{011}, s_{001}, r_{111}, r_{101}, r_{011}, s_{112}, s_{102}, s_{012}, s_{002}, r_{112}, r_{102}, r_{012}, r_{002}, \alpha)
```

where  $(s_{111}, s_{101}, \ldots, r_{012}, r_{002})$  are the observed frequencies and " $\alpha$ " is the  $\alpha$  error. The function checks that the values of the arguments are valid. The function solves the problem by applying the rules given in Section 3.3, by applying the Bonferroni method. The results obtained are recorded in the file "results\_scapbc.txt" in the same folder from which the function is run. The "scapbc" function is available as the Supplementary Materials of this manuscript.

## 5. Example

The results were applied to the diagnosis of coronary artery disease [11]. Weiner et al. [11] applied two BDTs (exercise test and clinical history) and a GS (coronary angiography) to a sample of 2045 patients (1465 men and 580 women). The observed frequencies of the study are shown in Table 6, where the variable  $T_1$  models the result of the exercise test,  $T_2$  models the result of the clinical history, and D models the result of the coronary angiography.

Men  $T_1 = 1$  $T_1 = 0$ Total  $T_2 = 0$  $T_2 = 0$  $T_2 = 1$  $T_2 = 1$ D = 1786 29 183 25 1023 D = 069 46 176 151 442 Total 855 75 359 176 1465 Women  $T_1 = 1$  $T_1 = 0$ Total  $T_2 = 1$  $T_2 = 0$  $T_2 = 1$  $T_2 = 0$ D = 1124 32 9 169 4 D = 081 68 101 161 411 Total 205 133 170 580 72

**Table 6.** Observed frequencies in the study of Weiner et al.

In this study, the risk of coronary heart disease is 2.4 times higher in men than in women [11]. The estimated value of the odds ratio is 5.63 (95% confidence interval: 4.56 to 6.95). Therefore, sex is a covariate that is related to the disease. In the exercise test,

ST segment depression is less sensitive in women than in men, so sex is a covariate that can influence the test result. Therefore, adjusting for sex is necessary to simultaneously compare the two sensitivities and the two specificities. Executing the command

scapbc(786, 29, 183, 25, 69, 46, 176, 151, 124, 4, 32, 9, 81, 68, 101, 161, 0.05),

generates the results shown in Table 7.

Table 7. Results obtained in the study of Weiner et al.

| Estimates by Sex |                       |                        |                       |                        |             |                |  |  |  |  |
|------------------|-----------------------|------------------------|-----------------------|------------------------|-------------|----------------|--|--|--|--|
|                  | $\hat{S}e_{1m}\pm SE$ | $\hat{S}p_{1m} \pm SE$ | $\hat{S}e_{2m}\pm SE$ | $\hat{S}p_{2m} \pm SE$ | $\hat{p}_m$ | $\hat{\psi}_m$ |  |  |  |  |
| Men              | $0.797 \pm 0.013$     | $0.740 \pm 0.021$      | $0.947 \pm 0.007$     | $0.446 \pm 0.024$      | 69.8%       | 71.6%          |  |  |  |  |
| women            | 0.737 ± 0.033         | 0.637 ± 0.024          | 0.923 ± 0.020         | $0.337 \pm 0.023$      | 29.1%       | 20.4 %         |  |  |  |  |
|                  |                       | Over                   | all estimates         |                        |             |                |  |  |  |  |
|                  |                       | $\hat{S}e_h$ :         | $\pm SE$              | $\hat{S}p_h \pm SE$    | 1           | ô              |  |  |  |  |
| Ex               | ercise test           | 0.791 =                | ± 0.012               | $0.691 \pm 0.016$      | 58.         | 3%             |  |  |  |  |
| Clin             | ical history          | 0.944 =                | ± 0.007               | $0.499 \pm 0.017$      | 00.         | 0,0            |  |  |  |  |

SE: standard error.

Because the sample size is very large, the global hypothesis test is solved (application rules of Section 3.3). The test statistic for the global hypothesis test is  $Q^2 = 224.252$  and p-value = 0. Therefore, the null hypothesis (equality of the two sensitivities and of the two specificities) of the global hypothesis test is rejected. To investigate the causes of significance, it is necessary to solve the individual tests and apply the Bonferroni (or Holm) method. The test statistic for  $H_0 : Se_1 = Se_2 \text{ vs. } H_1 : Se_1 \neq Se_2 \text{ is } 12.265 (p-value = 0)$ , and the test statistic for  $H_0 : Sp_1 = Sp_2 \text{ vs. } H_1 : Sp_1 \neq Sp_2 \text{ is } 8.593 (p-value = 0)$ . Applying the Bonferroni method with  $\alpha = 5\%$ , the two null hypotheses are rejected. Therefore, the sensitivity of the clinical history is significantly greater than the sensitivity of the exercise test (95% confidence interval: 0.128 to 0.177), and the specificity of the exercise test is significantly greater than the specificity of the clinical history is applied.

#### 6. Discussion

Comparison of the sensitivities and specificities of two BDTs is a topic of great interest in the study of statistical methods applied to diagnosis and has been the subject of numerous studies in the statistical literature. When two BDTs are compared, it is common to observe discrete covariates in all of the individuals in the sample. In this situation, if the covariates are related to the disease and to either of the two BDTs, then it is necessary to adjust for covariates. This adjustment has the purpose of eliminating the effect of the covariate in the estimation of the global sensitivity and specificity of each BDT, and consequently eliminating its effect in the comparison of the parameters. Therefore, adjustment for covariates is important because the comparison of two diagnostic tests may be biased when an adjustment is not made. This manuscript makes a contribution to this topic, by simultaneously comparing the accuracies of two BDTs by adjusting for discrete covariates. Therefore, in this manuscript the simultaneous comparison of the sensitivities and the specificities of two BDTs was studied when discrete covariates are observed in all of the individuals in the sample. The overall estimators of the sensitivities and specificities were obtained by applying the maximum likelihood method and the variances-covariances were estimated by applying the delta method. In this situation, simultaneous comparison of sensitivities and specificities of two BDTs was resolved by four methods: the global hypothesis test  $H_0$ : ( $Se_1 = Se_2$  and  $Sp_1 = Sp_2$ ) with an  $\alpha$  error; individual tests  $H_0$ :  $Se_1 = Se_2$  and  $H_0: Sp_1 = Sp_2$ , each with an  $\alpha$  error; individual tests  $H_0: Se_1 = Se_2$  and  $H_0: Sp_1 = Sp_2$  and application of the Bonferroni method with an  $\alpha$  error; and individual

tests  $H_0$ :  $Se_1 = Se_2$  and  $H_0$ :  $Sp_1 = Sp_2$  and application of the Holm method with an  $\alpha$  error.

Simulation experiments were carried out to study the behaviors of the different methods when the covariate is binary. The results showed that the method based on the individual tests  $H_0$ :  $Se_1 = Se_2$  and  $H_0$ :  $Sp_1 = Sp_2$ , each with an  $\alpha$  error, can give rise to type I errors that far exceed the nominal error, and therefore this method gives rise to too many false significances. Furthermore, the method based on the global hypothesis test has better asymptotic behavior when the sample size is large or very large than the methods based on individual tests and the application of the Bonferroni or Holm methods. However, when the sample size is small or moderate, these latter two methods perform better than the method based on the global hypothesis test. Therefore, based on the results of the simulation experiments, some rules of application of the methods can be given according to the sample size (which is the only value set by the researcher). These rules are: (a) When the sample size is small or moderate, solve the individual hypothesis tests  $H_0$ :  $Se_1 = Se_2$  and  $H_0$ :  $Sp_1 = Sp_2$  combined with the Bonferroni (or Holm) method with an error  $\alpha = 5\%$ ; (b) When the sample size is large or very large, solve the global test  $H_0$ : ( $Se_1 = Se_2$  and  $Sp_1 = Sp_2$ ) with an error  $\alpha = 5\%$ . If the global hypothesis test is not significant, then it is not rejected that the two sensitivities are equal and that the two specificities are equal. If the global hypothesis test is significant, then the causes of significance are investigated by solving the individual tests combined with the Bonferroni (Holm) method with an error  $\alpha = 5\%$ . The method based on the global hypothesis test is very similar to the analysis of variance: first the global test is solved and, if it is significant, then the individual tests are solved and a multiple comparisons method is applied.

Simulation experiments have shown that the covariances between the two BDTs have an important effect on type I errors and powers. Type I errors are greater when the two BDTs are conditionally independent of the disease than when the two BDTs are conditionally dependent on the disease. Regarding the powers, for a fixed sample size, the power of each method is greater when the two BDTs are conditionally dependent on the disease than when they are conditionally independent of the disease. In practice, the only parameter that the researcher can control is the sample size. Therefore, although the effect of the covariances is important, the increase in power can only be achieved by increasing the sample size (the researcher cannot increase the values of the covariances, because these depend on the intrinsic properties of both diagnostic tests).

Simulation experiments have also shown that the global hypothesis test, whose test statistic is a Wald-type test statistic, has a good asymptotic performance in terms of type I error and power. The type I error of the global test is close to the nominal error when the sample size is large or very large. Regarding the power, in general terms and depending on the covariances between the two BDTs, a large sample size is needed for the power to be large. Therefore, the global test performance when the covariate is binary is very similar to that obtained in other studies [2].

The proposed method is based on the fact that the covariate is discrete. A future study should address the problem that occurs when the covariate is quantitative.

Finally, a function was written in R that allows us to solve the problem posed when the covariate is binary. The function is easy to use and provides all of the results so that the researcher can easily solve the problem. The function is available as Supplementary Materials to this manuscript.

**Supplementary Materials:** The following are available online at https://www.mdpi.com/article/10 .3390/math9172029/s1. The "scapbc" function is a function written in R that allows simultaneous comparison of the accuracies of two BDTs subject to a paired design in the presence of a binary covariate.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

**Acknowledgments:** The author wants to thank the anonymous referees for their helpful comments that improved the quality of the manuscript.

Conflicts of Interest: The author declares no conflict of interest.

# Appendix A

The log-likelihood function  $l_2(\boldsymbol{\omega})$  (Equation (6)) can be written as:

$$l_{2}(\boldsymbol{\omega}) = \sum_{i,j=0}^{1} \sum_{m=1}^{M} x_{ijm} \log(\phi_{ijm}) + \sum_{i,j=0}^{1} \sum_{m=1}^{M} y_{ijm} \log(\varphi_{ijm}) = \sum_{m=1}^{M} l_{2m},$$

where:

$$l_{2m} = \sum_{i,j=0}^{1} [x_{ijm} \log(\phi_{ijm}) + y_{ijm} \log(\varphi_{ijm})]$$

is the log-likelihood function in the *m*th covariate pattern. Then, the Fisher information matrix of function  $l_2(\omega)$  is:

$$I_2 = Diag\{I_{21}, \ldots, I_{2M}\}$$

and, therefore:

$$\sum_{\hat{\boldsymbol{\omega}}} = I_2^{-1} = Diag \Big\{ \sum_{\hat{\boldsymbol{\omega}}_1} \dots \sum_{\hat{\boldsymbol{\omega}}_M} \Big\}.$$

#### References

- 1. Zhou, X.H.; Obuchowski, N.A.; McClish, D.K. *Statistical Methods in Diagnostic Medicine*, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011.
- Roldán-Nofuentes, J.A.; Sidaty-Regad, S.B. Recommended methods to compare the accuracy of two binary diagnostic tests subject to a paired design. J. Stat. Comput. Simul. 2019, 89, 2621–2644. [CrossRef]
- Janes, H.; Pepe, M.S. Adjusting for Covariates in Studies of Diagnostic, Screening, or Prognostic Markers: An Old Concept in a New Setting. Am. J. Epidemiol. 2008, 168, 89–97. [CrossRef] [PubMed]
- Lahner, E.; Dilaghi, E.; Prestigiacomo, C.; Alessio, G.; Marcellini, L.; Simmaco, M.; Santino, I.; Orsi, G.B.; Anibaldi, P.; Marcolongo, A.; et al. Prevalence of SARS-CoV-2 infection in health workers (HWs) and diagnostic test performance: The experience of a teaching Hospital in Central Italy. *Int. J. Environ. Res. Public Health* 2020, *17*, 4417. [CrossRef] [PubMed]
- 5. R Core Team. *R: A Language and Environment for Statistical Computing;* R Core Team: Vienna, Austria, 2016; Available online: https://www.R-project.org/ (accessed on 8 July 2021).
- Berry, G.; Smith, C.; Macaskill, P.; Irwig, L. Analytic methods for comparing two dichotomous screening or diagnostic tests applied to two populations of differing disease prevalence when individuals negative on both tests are unverified. *Stat. Med.* 2002, *21*, 853–862. [CrossRef] [PubMed]
- 7. Agresti, A. Categorical Data Analysis, 3rd ed.; Wiley: New York, NY, USA, 2013.
- 8. Bonferroni, C.E. Teoria statistica delle classi e calcolo delle probabilità. Pubbl. R Ist. Super. Sci. Econ. Commer. Firenze 1936, 8, 3–62.
- 9. Holm, S. A simple sequential rejective multiple testing procedure. *Scand. J. Stat.* **1979**, *6*, 65–70.
- 10. Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; Wiley: New York, NY, USA, 2000.
- Weiner, D.A.; Ryan, T.J.; McCabe, C.H.; Kennedy, J.W.; Schloss, M.; Tristani, F.; Chaitman, B.R.; Fisher, L.D. Correlations among history of angina, ST-segment and prevalence of coronary artery disease in the coronary artery surgery study (CASS). *N. Engl. J. Med.* 1979, 301, 230–235. [CrossRef] [PubMed]