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Abstract: Adjusting for covariates is important in the study of the performance of diagnostic tests.
In this manuscript, the simultaneous comparison of the sensitivities and specificities of two binary
diagnostic tests is studied when discrete covariates are observed in all of the individuals in the
sample. Four methods are presented to simultaneously compare the two sensitivities and the two
specificities: a global hypothesis test and three other methods based on individual comparisons.
The maximum likelihood method was applied to adjust the overall estimators of sensitivities and
specificities. Simulation experiments were carried out to study the asymptotic behaviors of the four
proposed methods when the covariate is binary, giving general rules of application. The results were
applied to a real example.
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1. Introduction

A diagnostic test is a medical test that is applied to a patient to determine the presence
or absence of a certain disease. When the result of a diagnostic test may be either positive
or negative, the diagnostic test is called a binary diagnostic test (BDT). The exercise test
for the diagnosis of coronary artery disease is an example of a BDT. The fundamental
parameters to measure the effectiveness of a BDT are its sensitivity and the specificity. The
sensitivity (Se) is the probability that the BDT result is positive when the individual has
the disease, and the specificity (Sp) is the probability that the BDT result is negative when
the individual does not have the disease. Both parameters depend only on the intrinsic
properties (physical, biological, chemical, etc.) of the BDT. The effectiveness of a BDT is
assessed in relation to a gold standard. A gold standard (GS) is a medical test used to
objectively diagnose the presence (or absence) of a certain disease. Therefore, a GS is an
error-free test. An angiography for diagnosis of coronary artery disease is an example of a
GS.

The comparison of the sensitivities (specificities) of two BDTs is an important topic
in the study of statistical methods for diagnosis in medicine. The most common type of
sample design to compare these parameters is the paired design. The paired design consists
of applying the two BDTs to a random sample of n patients whose disease state is known by
applying a GS. When the sensitivities and specificities of two BDTs are compared under a
paired design, the problem is traditionally solved by conditioning on the disease status and
applying a comparison test of two paired binomial proportions (e.g., the McNemar test).
Therefore, the comparison of the two sensitivities is made conditioning on the diseased
individuals and solving the test H0 : Se1 = Se2 vs. H1 : Se1 6= Se2 applying the McNemar
test to an α error [1]. Similarly, the comparison of the two specificities is made conditioning
on the non-diseased individuals and solving the test H0 : Sp1 = Sp2 vs. H1 : Sp1 6= Sp2
by applying the same method. Therefore, sensitivities and specificities are compared
independently, by solving the hypothesis tests H0 : Se1 = Se2 and H0 : Sp1 = Sp2, to the
same α error. Roldán-Nofuentes and Sidaty-Regad [2] studied the simultaneous comparison
of sensitivities and specificities, and showed that comparing the two sensitivities and the
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two specificities independently can give rise to global type I errors that greatly exceed the
nominal error (and therefore can lead to wrong conclusions).

In clinical practice, when evaluating the effectiveness of a BDT, covariates are fre-
quently observed in all patients in the sample. When the covariate is related to the disease
and to the diagnostic test, it is necessary to adjust for covariates [3]. For example, in the
diagnosis of coronary disease, smoking is a risk factor for the disease. Because smoking
speeds up the heart rate, constricts the main arteries, and can cause disturbances in the
rhythm of the heartbeat, if an exercise test is used, adjustment for smoking is needed to
properly describe the diagnostic effectiveness of the exercise test. Another topical example
is the diagnosis of COVID-19. Lahner et al. [4] studied the diagnosis of this disease in
health workers using IgG serology as a diagnostic test (among other tests). Lahner et al.
showed that the diagnostic performance of IgG serology is associated with the number of
days elapsed (at least 14 or 20 days) after the nasopharyngeal swab. Therefore, adjusting
for elapsed days is necessary to evaluate the diagnostic effectiveness of IgG serology. This
problem also arises when comparing the effectiveness of two BDTs [3]. Therefore, when
two BDTs are compared, it is necessary to eliminate the effect that the covariates have on
the estimation of sensitivities and specificities, and on the comparison of these parameters.

This manuscript is an extension of the study by Roldán-Nofuentes and Sidaty-Regad [2],
to the situation in which a discrete covariate is observed in all patients in the sample.
Therefore, a global hypothesis test was studied to simultaneously compare the sensitivities
and specificities of two BDTs when discrete covariates are observed in all patients in the
sample. Other alternatives to the global hypothesis test were also studied. Adjusting
for covariates in this situation eliminates the effect of covariates in the simultaneous
comparison of the two sensitivities and specificities. This problem is approached by
applying the maximum likelihood method to the estimation of the parameters and the delta
method to the estimation of the variances-covariances. This manuscript is structured as
follows. In Section 2, the model to simultaneously compare the sensitivities and specificities
of two BDTs in the presence of a discrete covariate is described, in addition to other
alternative methods. In Section 3, simulation experiments are carried out to study the sizes
and the powers of the methods proposed in Section 2. In Section 4, a function written
in R [5] is presented that allows the problem studied in this manuscript to be solved. In
Section 5, the results are applied to the diagnosis of coronary heart disease, and in Section 6
the results are discussed.

2. Global Hypothesis Test

The objective is to study the simultaneous comparison of overall sensitivities and
overall specificities of the two BDTs, i.e., to solve the global hypothesis test:

H0 : (Se1 = Se2 and Sp1 = Sp2) vs. H1 : (Se1 6= Se2 and/or Sp1 6= Sp2) (1)

when the two BDTs are applied to all individuals in a sample with a size of n and a discrete
covariate is observed in all of them. Therefore, let us consider two BDTs, Test 1 and Test 2,
that are applied to all n individuals in a random sample. The disease state (disease present
or disease absent) of all of the individuals in the sample is known by applying a GS. Let
Th be the binary random variable that models the result of the hth BDT: Th = 1 when the
result of the BDT is positive and Th = 0 when it is negative. Let the binary random variable
D that models the result of the GS: D = 1 when the individual is diseased and D = 0 when
the individual is non-diseased. Moreover, let us consider that for all of the n individuals
of the sample we observe a vector X = (X1, X2, . . . , XM) of a discrete covariate, where Xm
is each of the different values or patterns that the covariate can take with m = 1, . . . , M.
Let us suppose that the number of individuals that verify X = Xm is nm, and therefore

n =
M
∑

m=1
nm. Table 1 shows the observed frequencies for X = Xm, where nijm = sijm + rijm.



Mathematics 2021, 9, 2029 3 of 16

Table 1. Observed frequencies for X = Xm.

T1 = 1 T1 = 0
TotalT2 = 1 T2 = 0 T2 = 1 T2 = 0

D = 1 s11m s10m s01m s00m sm
D = 0 r11m r10m r01m r00m rm

Total n11m n10m n01m n00m nm

The sample of n individuals is the product of a multinomial distribution whose
probabilities are:

τmij = P(X = Xm, D = 1, T1 = i, T2 = j)

and:
υmij = P(X = Xm, D = 0, T1 = i, T2 = j),

with:
M

∑
m=1

1

∑
i,j=0

τmij +
M

∑
m=1

1

∑
i,j=0

υmij = 1.

From the multinomial distribution sized n and probabilities τmij and υmij, 8M − 1
parameters can be estimated, because in total there are 8M probabilities that are subject

to
M
∑

m=1

1
∑

i,j=0
τmij +

M
∑

m=1

1
∑

i,j=0
υmij = 1 (i.e., υM11 = 1 −

M
∑

m=1

1
∑

i,j=0
τmij −

M
∑

m=1

1
∑

i,j=0
υmij

(m,i,j) 6=(M,1,1)

). If the

covariate is binary, then 15 parameters can be estimated.
Let ψm = P(X = Xm) be the probability that an individual X = Xm andψ = (ψ1, . . . , ψM)T,

with
M
∑

m=1
ψm = 1. Let φijm and ϕijm be the probabilities defined as

φijm = P(D = 1, T1 = i, T2 = j|X = Xm ) and ϕijm = P(D = 0, T1 = i, T2 = j|X = Xm ),

then probabilities τmij and υmij can be written as:

τmij = ψmφijm and υmij = ψm ϕijm. (2)

The sample of n individuals can be seen as a sample of a mixture of M multinomial
independent 2× 4 tables. By conditioning on the mth table, i.e., conditioning on X = Xm,
and applying the conditional dependence model of Berry et al. [6], it holds that:

φijm = P(D = 1, T1 = i, T2 = j|X = Xm ) =
P(D = 1|X = xm )

[
P(T1 = i|X = Xm, D = 1 )× P(T2 = j|X = Xm, D = 1 ) + δijε1m

]
=

pm

[
Sei

1m(1− Se1m)
1−iSej

2m(1− Se2m)
1−j + δijSe1mSe2m(α1m − 1)

]
and:

ϕijm = P(D = 0, T1 = i, T2 = j|X = Xm ) =
P(D = 0|X = xm )

[
P(T1 = i|X = Xm, D = 0 )× P(T2 = j|X = Xm, D = 0 ) + δijε0m

]
=

qm

[
Sp1−i

1m (1− Sp1m)
iSp1−j

2m (1− Sp2m)
j + δij(1− Sp1m)(1− Sp2m)(α0m − 1)

]
,

where pm = P(D = 1|X = Xm ) =
1
∑

i,j=0
φijm is the disease prevalence for the individu-

als with X = Xm, qm = 1 − pm, δij = 1 if i = j and δij = −1 if i 6= j, and the pa-
rameter α1m (α0m) is the covariance [6] between both BDTs when D = 1 (D = 0) and
X = Xm. The covariances verify [6] that 1 ≤ α1m ≤ 1/max{Se1m, Se2m} and 1 ≤ α0m ≤
1/max{(1− Sp1m), (1− Sp2m)}. If α1m = α0m = 1, then both BDTs are conditionally inde-
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pendent on the disease when X = Xm, an assumption that is not realistic, so in practice
α1m > 1 and/or α0m > 1.

For the mth table (i.e., X = Xm), letωm = (φ11m, φ10m, φ01m, φ00m, ϕ11m, ϕ10m, ϕ01m, ϕ00m)
T

be the vector whose components are the probabilities φijm and ]ϕijm. Therefore, con-
ditioning on X = Xm, ωm is the probability vector of a multinomial distribution. Let
ω = (ω1, . . . ,ωM)T be the vector whose components areωm. In X = Xm, the sensitivities
of the BDTs are:

Se1m = P(T1 = 1|D = 1, X = Xm ) and Se2m = P(T2 = 1|D = 1, X = Xm ),

and the specificities are:

Sp1m = P(T1 = 0|D = 0, X = Xm ) and Sp2m = P(T2 = 0|D = 0, X = Xm ).

Let p =
M
∑

m=1
ψm pm =

M
∑

m=1
ψm

(
1
∑

i,j=0
φijm

)
be the overall prevalence and q = 1− p

=
M
∑

m=1
ψmqm =

M
∑

m=1
ψm

(
1
∑

i,j=0
ϕijm

)
. The overall sensitivity and the overall specificity of

each BDT are:

Seh = P(Th = 1|D = 1 ) =

M
∑

m=1
ψm pmSehm

p
and Sph = P(Th = 0|D = 0 ) =

M
∑

m=1
ψmqmSphm

q
, (3)

With h = 1, 2, and where:

Se1m =
φ11m + φ10m

pm
and Sp1m =

ϕ01m + ϕ00m

qm

are the sensitivity and specificity of Test 1 in X = Xm, and:

Se2m =
φ11m + φ01m

pm
and Sp2m =

ϕ10m + ϕ00m

qm

are the sensitivity and specificity of Test 2 in X = Xm. The overall sensitivity and the overall
specificity of each BDT are written in terms of ψm, φijm and ϕijm as:

Se1 =

M
∑

m=1
ψm(φ11m + φ10m)

M
∑

m=1

(
ψm

1
∑

i,j=0
φijm

) and Sp1 =

M
∑

m=1
ψm(ϕ00m + ϕ01m)

M
∑

m=1

(
ψm

1
∑

i,j=0
ϕijm

)

for Test 1, and:

Se2 =

M
∑

m=1
ψm(φ11m + φ01m)

M
∑

m=1

(
ψm

1
∑

i,j=0
φijm

) and Sp2 =

M
∑

m=1
ψm(ϕ00m + ϕ10m)

M
∑

m=1

(
ψm

1
∑

i,j=0
ϕijm

)

for Test 2.
The parameters of the model are estimated by applying the maximum likelihood

method. If the covariate has M patterns then 8M− 1 parameters must be estimated: 2M
sensitivities, 2M specificities, 2M covariances, M prevalences and M− 1 probabilities ψm

(since
M
∑

m=1
ψm = 1). If the covariate is binary (M = 2) then 15 parameters must be estimated:
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four sensitivities (Se11, Se21, Se12 and Se22), four specificities (Sp11, Sp21, Sp12 and Sp22),
four covariances (α11, α01, α12 and α02), two prevalences (p1 and p2) and the probability ψ1
(since ψ2 = 1− ψ1). Therefore, all the parameters of the model can be estimated from the
sample of n individuals, since the number of parameters that must be estimated is equal to
the number of parameters that can be estimated from the initial multinomial distribution.
The log-likelihood function based on n individuals is:

l(ψ,ω) =
1

∑
i,j=0

M

∑
m=1

xijm log
(
ψmφijm

)
+

1

∑
i,j=0

M

∑
m=1

yijm log
(
ψm ϕijm

)
.

This function can be written as:

l(ψ,ω) = l1(ψ) + l2(ω), (4)

where:

l1(ψ) =
1

∑
i,j=0

M

∑
m=1

nijm log(ψm) (5)

and:

l2(ω) =
1

∑
i,j=0

M

∑
m=1

xijm log
(
φijm

)
+

1

∑
i,j=0

M

∑
m=1

yijm log
(

ϕijm
)
. (6)

Maximum likelihood estimators of ψ andω are easily obtained from Functions (5)
and (6), i.e.,

ψ̂m =
nm

n
, φ̂ijm =

sijm

nm
and ϕ̂ijm =

rijm

nm
.

The estimators of sensitivities and specificities in X = Xm, the estimator of overall
prevalence, and the estimators of overall sensitivities and of overall specificities are easily
obtained by substituting the parameters for their estimators into their respective equations.
The Fisher information matrix of function (4) is:

I(ψ,ω) = Diag{I1, I2},

where I1 = I(ψ) and I2 = I(ω) are the Fisher information matrixes of Functions (5) and
(6) respectively, verifying that:

I−1(ψ,ω) = Diag
{

I−1
1 , I−1

2

}
and, therefore, the covariances between ψ andω are zero. Because vector ψ is the proba-
bility vector of a multinomial distribution, the variance-covariance matrix of ψ̂ is:

∑ψ̂
= I−1

1 =
{

Diag(ψ)−ψψT
}

/n.

The variance-covariance matrix of ω̂m is:

∑ω̂m
=
{

Diag(ωm)−ωmω
T
m

}
/nm

and the variance-covariance matrix of ω̂ is:

∑ω̂
= I−1

2 = Diag
{
∑ω̂1

, . . . ∑ω̂M

}
.

The proof can be seen in Appendix A.
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Let θ = (Se1, Sp1, Se2, Sp2)
T be a vector whose components are the overall sensitivities

and the overall specificities; then, by applying the delta method [7], the variance-covariance
matrix of θ̂ is:

∑θ̂
=

(
∂θ

∂ψ

)
∑ψ̂

(
∂θ

∂ψ

)T
+

(
∂θ

∂ω

)
ˆ∑ω̂

(
∂θ

∂ω

)T
.

The estimated variance-covariance matrix ∑̂θ̂ is obtained by substituting into this
expression the parameters for their estimators.

The global hypothesis test (1) is equivalent to the hypothesis test:

H0 : Aθ = 0 vs. H1 : Aθ 6= 0,

where A is a complete range matrix with the size 2× 4, i.e.,

A =

(
1 0 −1 0
0 1 0 −1

)
By applying the multivariate central limit theorem, it is verified that

√
n
(
θ̂−θ

)
→ N(0, ∑θ)

when n is large. Then, the statistic:

Q2 = θ̂
TAT

(
A ˆ∑θ̂

AT
)−1

Aθ̂

is distributed according to a Hotelling T-squared distribution. This distribution has 2 and
n degrees of freedom, where 2 is the dimension of the vector Aθ̂. When n is large, Q2 is
distributed according to a central chi-squared distribution with 2 degrees of freedom when
the null hypothesis is true, i.e.,

Q2 = η̂TAT
(

A ˆ∑η̂
AT
)−1

Aη̂ −−−→
n→∞

χ2
2. (7)

To calculate this test statistic, it is necessary to verify that s10m + s01m + r10m + r01m > 0.
The global hypothesis test (1) can also be solved from the individual hypothesis test,

i.e., H0 : Se1 = Se2 and H0 : Sp1 = Sp2, each of which are independent of the α error. In
this situation, the corresponding test statistics are:

z =
Ŝe1 − Ŝe2√

V̂ar
(
Ŝe1
)
+ V̂ar

(
Ŝe2
)
− 2Ĉov

(
Ŝe1, Ŝe2

) (8)

and:

z =
Ŝp1 − Ŝp2√

V̂ar
(
Ŝp1

)
+ V̂ar

(
Ŝp2

)
− 2Ĉov

(
Ŝp1, Ŝp2

) . (9)

Both test statistics have a normal standard distribution when the sample size n is large.
Another method used to solve the global test consists of solving each of the individual
tests along with a method of multiple comparisons, such as the Bonferroni method [8] or
the Holm method [9]. The Bonferroni and Holm methods are very easy to apply and are
based on the p-values of the individual hypothesis tests. In the situation studied here, the
Bonferroni method consists of solving each individual hypothesis test with an α/2 error.
The Holm method is a less conservative method than the Bonferroni method. Let p1 and p2
be the p-values obtained in each individual hypothesis test and let us suppose that p1 ≤ p2;
then, the Holm method [9] consists of the following two steps:

(1) If p1 > α/2, then none of the two null hypothesis H0 : Se1 = Se2 and H0 : Sp1 = Sp2
are rejected. If p1 ≤ α/2, then the null hypothesis corresponding to that hypothesis
test is rejected and we go on to the next step.

(2) If p2 > α, then the corresponding null hypothesis is not rejected. If p2 ≤ α, then the
null hypothesis is rejected and the process ends.
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In this proposed model, it is assumed that a discrete covariate is observed in all of
the individuals in the sample. If several discrete covariates are observed, the problem
is solved in a similar manner. In this situation, a single discrete covariate is considered,
whose number of patterns is the product of the patterns of the observed covariates [10].
For example, if two covariates are observed with two and three patterns, respectively, for
example, sex and age group (young, adult, and older), then a covariate that has six patterns
is considered (young man, adult man, older man, young woman, adult woman, and older
woman).

3. Simulation Experiments

Monte Carlo simulation experiments were carried out to study the sizes and the
powers of the four methods described in Section 2: global hypothesis test with α = 5%;
individual hypothesis tests each with α = 5%; individual hypothesis tests along with the
Bonferroni method and α = 5%; and individual hypothesis tests along with the Holm
method and α = 5%. For the global hypothesis test with α = 5%, the global type I error is
the error that is committed when the alternative hypothesis is accepted (Se1 6= Se2 and/or
Sp1 6= Sp2) when the null hypothesis is true (Se1 = Se2 and Sp1 = Sp2). Regarding the
individual hypothesis tests with α = 5% (with or without a multiple comparison method),
the objective is to study the magnitude and behavior of the global type I error and of the
global power. The global type I error is the error made when we reject H0 : Se1 = Se2
and/or H0 : Sp1 = Sp2 when both are true, whether or not each test is with α = 5% or
applies the Bonferroni (or Holm) method. The argument for the global power is similar to
this.

These experiments consisted of generating N = 10, 000 random samples with multi-
nomial distributions with a size of n = {50, 100, 200, 500, 1000, 2000}, whose probabilities
were calculated from Equation (2). It was considered that the discrete covariate X is binary
(M = 2) with patterns X1 and X2, such as the presence of a risk factor (Yes or No), family
history of the disease (Yes or No), or sex; this situation is very frequent in clinical practice.
As values for ψ1 (ψ2 = 1− ψ1), we considered 0.25 and 0.50, and for the prevalence pm, we
considered the values 10%, 25%, and 50%. As values of the sensitivities (Se11, Se12, Se21
and Se22) and specificities (Sp11, Sp12, Sp21 and Sp22) in each pattern of the covariate, we
took the values {0.70, 0.80, 0.90}. Then, from the values Sehm and Sphm, we calculated the
maximum values of the covariances α1m and α0m, and as values of α1m and α0m, we took
intermediate and high values, i.e.,

α1m =
f

Max{Se1m, Se2m}
+ 1− f

and:
α0m =

f
Max{(1− Sp1m), (1− Sp2m)}

+ 1− f ,

with f = {0.10, 0.50, 0.90}. From all of the above values, the overall sensitivities and overall
specificities were calculated by applying Equation (3). The simulation experiments were
designed in such a manner that, if it is not possible in a sample to estimate a parameter (for
example, if Ŝehm = 0), then that sample is discarded and another is generated in its place
until N samples are obtained.

3.1. Type I Errors

Tables 2 and 3 show the type I errors obtained for the four methods proposed in
Section 2, considering different scenarios. Table 2 shows some results for Seh = 0.90 and
Sph = {0.70, 0.80} (Seh > Sph), and Table 3 shows some results for Seh = {0.70, 0.80} and
Sph = 0.90 (Seh < Sph).
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Table 2. Type I errors (in %) of different methods to simultaneously compare the sensitivities
(Seh = 0.90) and specificities (Sph = {0.70, 0.80}) of two BDTs in the presence of a binary covariate.

Se1 = Se2 = 0.90, Sp1 = Sp2 = 0.70, p1 = 10%, p2 = 25%, ψ1 = 25%, ψ2 = 75%

α11 = 0.009 α01 = 0.021
α12 = 0.009 α02 = 0.021

α11 = 0.045 α01 = 0.105
α12 = 0.045 α02 = 0.105

α11 = 0.081 α01 = 0.189
α12 = 0.081 α02 = 0.189

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 0.34 2.14 1.08 1.08 0.08 0.88 0.34 0.34 0 0 0 0
100 1.28 4.10 2.08 2.08 0.86 2.88 1.42 1.42 0 0.02 0 0
200 1.40 4.52 2.36 2.36 1.20 3.70 1.64 1.64 0.02 0.82 0.16 0.16
500 1.98 4.48 2.60 2.60 1.78 4.66 2.46 2.46 0.58 3.00 1.38 1.38
1000 2.30 5.24 2.74 2.78 1.82 4.82 2.38 2.38 0.88 3.26 1.48 1.48
2000 3.50 7.24 3.58 3.60 2.44 5.26 2.40 2.40 1.20 4.18 1.96 1.96

Se1 = Se2 = 0.90, Sp1 = Sp2 = 0.70, p1 = 10% , p2 = 25%, ψ1 = 50%, ψ2 = 50%

α11 = 0.009 α01 = 0.021
α12 = 0.009 α02 = 0.021

α11 = 0.045 α01 = 0.105
α12 = 0.045 α02 = 0.105

α11 = 0.081 α01 = 0.189
α12 = 0.081 α02 = 0.189

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 0.58 2.42 1.26 1.26 0.10 1.02 0.22 0.22 0 0 0 0
100 1.20 4.08 1.86 1.86 0.50 2.88 1.16 1.16 0 0.04 0 0
200 1.76 4.40 2.22 2.22 1.16 3.64 1.58 1.58 0.04 0.68 0.14 0.14
500 2.44 4.98 2.42 2.42 1.60 4.20 1.82 1.82 0.64 3.08 1.20 1.20
1000 3.22 7.06 3.08 3.10 2.56 5.82 2.98 3.04 1.08 3.66 1.76 1.76
2000 4.20 8.16 4.22 4.28 3.26 7.14 3.26 3.32 1.76 4.48 2.06 2.06

Se1 = Se2 = 0.90, Sp1 = Sp2 = 0.80, p1 = 10%, p2 = 25%, ψ1 = 25%, ψ2 = 75%

α11 = 0.009 α01 = 0.016
α12 = 0.009 α02 = 0.016

α11 = 0.045 α01 = 0.080
α12 = 0.045 α02 = 0.080

α11 = 0.081 α01 = 0.144
α12 = 0.081 α02 = 0.144

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 0.24 1.38 0.58 0.58 0 0.45 0.05 0.05 0 0 0 0
100 0.92 3.30 1.68 1.68 0.40 2.15 0.75 0.75 0 0 0 0
200 1.14 4.24 1.90 1.90 0.75 2.75 1.15 1.15 0 0.30 0.05 0.05
500 1.76 4.68 2.36 2.36 1.40 3.75 1.85 1.85 0.25 2.25 0.70 0.70
1000 2.48 5.08 2.68 2.68 1.55 4.80 2.15 2.15 1.00 3.15 1.65 1.65
2000 3.28 6.22 3.22 3.22 2.80 6.45 3.20 3.20 1.75 3.95 2.35 2.35

Se1 = Se2 = 0.90, Sp1 = Sp2 = 0.80, p1 = 10%, p2 = 25%, ψ1 = 50%, ψ2 = 50%

α11 = 0.009 α01 = 0.016
α12 = 0.009 α02 = 0.016

α11 = 0.045 α01 = 0.080
α12 = 0.045 α02 = 0.080

α11 = 0.081 α01 = 0.144
α12 = 0.081 α02 = 0.144

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 0.32 1.78 0.66 0.66 0.04 0.74 0.22 0.22 0 0 0 0
100 1.22 3.62 1.84 1.84 0.42 2.40 0.84 0.84 0 0 0 0
200 1.52 4.48 2.04 2.04 1.08 3.50 1.46 1.46 0 0.48 0.02 0.02
500 2.40 5.28 2.66 2.66 1.70 4.54 2.22 2.22 0.32 2.02 0.56 0.56
1000 3.22 6.78 3.12 3.12 2.42 5.24 2.32 2.32 0.88 3.52 1.48 1.48
2000 3.74 8.10 3.88 3.88 3.56 7.30 3.80 3.86 1.64 4.52 2.28 2.28

M1: global hypothesis test. M2: individual test with α = 5%. M3: individual tests with Bonferroni method.
M4: individual tests with Holm method.
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Table 3. Type I errors (in %) of different methods to simultaneously compare the sensitivities
(Seh = {0.70, 0.80}) and specificities (Sph = 0.90) of two BDTs in the presence of a binary covariate.

Se1 = Se2 = 0.70, Sp1 = Sp2 = 0.90, p1 = 10%, p2 = 25%, ψ1 = 50%, ψ2 = 50%

α11 = 0.021 α01 = 0.009
α12 = 0.021 α02 = 0.009

α11 = 0.105 α01 = 0.045
α12 = 0.105 α02 = 0.045

α11 = 0.189 α01 = 0.081
α12 = 0.189 α02 = 0.081

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 0.10 0.66 0.20 0.20 0 0.08 0 0 0 0 0 0
100 0.72 2.40 1.06 1.06 0.02 0.68 0.14 0.14 0 0 0 0
200 1.88 4.78 1.72 1.74 0.62 2.60 0.74 0.76 0.02 0.08 0.02 0.02
500 2.68 6.04 2.64 2.70 1.98 4.38 1.96 2.00 0.10 0.68 0.24 0.24
1000 3.88 8.64 4.00 4.04 3.14 7.26 3.30 3.36 0.80 2.54 1.10 1.10
2000 4.54 8.84 4.52 4.58 4.24 8.82 4.08 4.10 1.44 4.06 1.48 1.48

Se1 = Se2 = 0.70, Sp1 = Sp2 = 0.90, p1 = 10%, p2 = 50%, ψ1 = 25%, ψ2 = 75%

α11 = 0.021 α01 = 0.009
α12 = 0.021 α02 = 0.009

α11 = 0.105 α01 = 0.045
α12 = 0.105 α02 = 0.045

α11 = 0.189 α01 = 0.081
α12 = 0.189 α02 = 0.081

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 0 0.22 0.04 0.04 0 0 0 0 0 0 0 0
100 0.26 1.82 0.42 0.42 0.04 0.56 0.06 0.06 0 0 0 0
200 0.88 2.98 1.20 1.20 0.32 1.96 0.60 0.60 0 0 0 0
500 2.26 4.46 1.98 1.98 1.28 4.24 1.76 1.76 0.02 0.36 0.12 0.12
1000 3.18 6.68 3.18 3.22 1.98 4.92 2.08 2.08 0.38 1.72 0.66 0.66
2000 3.78 8.20 3.74 3.86 3.46 6.88 3.22 3.24 1.18 3.74 1.40 1.40

Se1 = Se2 = 0.80, Sp1 = Sp2 = 0.90, p1 = 10%, p2 = 25%, ψ1 = 25%, ψ2 = 75%

α11 = 0.016 α01 = 0.009
α12 = 0.016 α02 = 0.009

α11 = 0.080 α01 = 0.045
α12 = 0.080 α02 = 0.045

α11 = 0.144 α01 = 0.081
α12 = 0.144 α02 = 0.081

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 0.06 0.60 0.14 0.14 0 0.04 0.02 0.02 0 0 0 0
100 0.72 2.66 1.08 1.08 0.06 0.74 0.16 0.16 0 0 0 0
200 1.58 4.50 1.44 1.46 0.62 2.48 0.98 0.98 0 0.02 0 0
500 3.24 6.30 2.84 2.88 1.96 4.62 2.06 2.06 0.06 0.84 0.14 0.14
1000 3.62 8.12 3.66 3.76 2.78 6.58 2.76 2.86 0.54 2.30 0.88 0.88
2000 5.10 9.82 5.06 5.12 4.28 8.08 4.00 4.04 1.60 4.16 1.94 1.94

Se1 = Se2 = 0.80, Sp1 = Sp2 = 0.90, p1 = 10%, p2 = 50%, ψ1 = 25%, ψ2 = 75%

α11 = 0.016 α01 = 0.009
α12 = 0.016 α02 = 0.009

α11 = 0.080 α01 = 0.045
α12 = 0.080 α02 = 0.045

α11 = 0.144 α01 = 0.081
α12 = 0.144 α02 = 0.081

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 0 0.20 0.02 0.02 0 0 0 0 0 0 0 0
100 0.10 1.58 0.18 0.18 0.02 0.32 0.06 0.06 0 0 0 0
200 1.06 3.14 1.52 1.52 0.26 2.02 0.56 0.56 0 0 0 0
500 1.78 4.34 1.92 1.92 1.46 3.84 1.76 1.76 0.00 0.42 0.14 0.14
1000 2.44 6.02 2.62 2.64 2.06 4.64 2.10 2.10 0.26 1.68 0.58 0.58
2000 4.02 8.24 3.94 4.00 2.88 6.42 2.94 2.94 0.82 2.94 1.14 1.14

M1: global hypothesis test. M2: individual test with α = 5%. M3: individual tests with Bonferroni method.
M4: individual tests with Holm method.

In the study, it is considered that the type I error exceeds the nominal error when the
global type I error is equal to or greater than or than 7%. The covariances α1m and α0m have
an important effect on the type I errors of the four methods: type I errors decrease when
the values of the covariances increase. From the results, the following general conclusions
were obtained:

(a). Global hypothesis test. The type I error of the global hypothesis test is very small when
the sample size is small and increases as the sample size increases, until it approaches
the nominal error without exceeding it. Therefore, the global hypothesis test is a
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conservative test when the sample size is small (n = 50) or moderate (n = 100–200),
and its global type I error approaches the nominal error (without exceeding it) when
the sample size is large (n = 500–1000) or very large (n = 2000).

(b). Individual tests with α = 5%. The type I error of the individual tests with α = 5% is
less than the nominal error when the sample size is small and increases as the sample
size increases. The type I error can clearly exceed the nominal error when the sample
size is large. Therefore, the method based on individual tests with α = 5% can give
false significance when the sample size is large and should not be used.

(c). Individual tests combined with the Bonferroni method. The type I error of the method
based on the individual tests combined with the Bonferroni method has a behavior
very similar to the type I error of the global hypothesis test, and there is no important
difference between both type I errors

(d). Individual tests combined with the Holm method. The type I error of the method
based on the individual tests combined with the Holm method is very similar (even
the same in many cases) to the type I error of the individual tests combined with the
Bonferroni method.

3.2. Powers

Tables 4 and 5 show the powers obtained for the four methods proposed in Section 2,
considering different scenarios. The covariances α1m and α0m have an important effect
on the powers of the methods: the powers increase when the values of the covariances
increase. From the results, the following general conclusions are obtained:

(a). The power of the method based on the individual tests with α = 5% is greater than
the powers of the other methods, due to the fact that its global type I error is also
greater than that of the other methods (clearly exceeding the nominal error when the
sample size is large).

(b). The power of the method based on individual tests combined with the Bonferroni
method and the power of the method based on individual tests combined with the
Holm method are practically equal. Therefore, both methods show an asymptotic
behavior, in terms of type I error and power, that is practically identical.

(c). In very general terms, the power of the method based on the individual tests combined
with Bonferroni (Holm) is slightly greater than the power of the global hypothesis
test when the sample size is small or moderate. When the sample size is large or very
large, the power of the global hypothesis test is, in very general terms, slightly higher
than that of the method based on individual tests with Bonferroni (Holm). In these
situations, all of these methods have a very similar type I error.
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Table 4. Powers (in %) of different methods to simultaneously compare the sensitivities
(Seh = {0.70, 0.90}) and specificities (Sph = {0.70, 0.90}) of two BDTs in the presence of a binary
covariate.

Se1 = 0.70, Se2 = 0.90, Sp1 = 0.90, Sp2 = 0.90, p1 = 10%, p2 = 25%, ψ1 = 25%, ψ2 = 75%

α11 = 0.007 α01 = 0.009
α12 = 0.007 α02 = 0.009

α11 = 0.035 α01 = 0.045
α12 = 0.035 α02 = 0.045

α11 = 0.063 α01 = 0.081
α12 = 0.063 α02 = 0.081

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 0.04 0.48 0.14 0.14 0 0.10 0 0 0 0 0 0
100 0.54 2.40 0.80 0.80 0.02 0.60 0.12 0.12 0.01 0.01 0.01 0.01
200 1.72 4.12 1.68 1.68 0.86 2.90 0.84 0.84 0.02 0.30 0.02 0.02
500 5.26 8.98 3.78 3.84 4.78 7.92 3.36 3.40 2.04 4.38 1.46 1.48
1000 21.04 31.78 20.48 20.64 23.18 35.16 22.52 22.74 21.26 37.66 22.76 22.90
2000 56.24 70.72 58.08 58.42 66.18 78.72 68.40 68.60 77.82 88.60 81.30 81.48

Se1 = 0.70, Se2 = 0.90, Sp1 = 0.90, Sp2 = 0.90, p1 = 10%, p2 = 50%, ψ1 = 25%, ψ2 = 75%

α11 = 0.007 α01 = 0.009
α12 = 0.007 α02 = 0.009

α11 = 0.035 α01 = 0.045
α12 = 0.035 α02 = 0.045

α11 = 0.063 α01 = 0.081
α12 = 0.063 α02 = 0.081

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 0.02 0.28 0.08 0.08 0 0.04 0 0 0 0 0 0
100 0.18 1.68 0.26 0.26 0.01 0.36 0.01 0.01 0.01 0.01 0.01 0.01
200 1.32 3.40 1.28 1.28 0.56 2.16 0.50 0.51 0.02 0.06 0.02 0.02
500 5.42 9.34 3.94 4.08 4.24 8.28 3.32 3.38 1.62 4.90 1.72 1.72
1000 20.84 31.50 20.76 20.96 21.14 32.68 21.16 21.38 21.4 37.88 22.88 23.16
2000 55.12 69.84 56.84 57.22 65.42 77.58 67.16 67.44 77.52 89.38 81.39 81.46

Se1 = 0.90, Se2 = 0.70, Sp1 = 0.90, Sp2 = 0.70, p1 = 10%, p2 = 25%, ψ1 = 25%, ψ2 = 75%

α11 = 0.007 α01 = 0.007
α12 = 0.007 α02 = 0.007

α11 = 0.035 α01 = 0.035
α12 = 0.035 α02 = 0.035

α11 = 0.063 α01 = 0.063
α12 = 0.063 α02 = 0.063

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 1.70 6.78 3.54 3.54 1.34 5.66 2.96 2.96 1.02 5.62 2.68 2.68
100 8.98 19.34 12.46 12.46 10.26 21.28 13.94 13.94 11.78 24.76 16.06 16.06
200 30.01 42.88 29.54 29.54 33.82 49.96 33.56 33.56 44.80 58.62 44.22 44.22
500 78.62 85.30 77.16 77.44 86.46 90.66 84.30 84.56 92.36 95.48 91.74 91.78
1000 98.68 99.18 98.34 98.46 99.58 99.70 99.16 99.20 99.98 100 99.92 99.94
2000 100 100 100 100 100 100 100 100 100 100 100 100

Se1 = 0.90, Se2 = 0.70, Sp1 = 0.90, Sp2 = 0.70, p1 = 10%, p2 = 25%, ψ1 = 50%, ψ2 = 50%

α11 = 0.007 α01 = 0.007
α12 = 0.007 α02 = 0.007

α11 = 0.035 α01 = 0.035
α12 = 0.035 α02 = 0.035

α11 = 0.063 α01 = 0.063
α12 = 0.063 α02 = 0.063

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 0.44 2.16 0.84 0.84 0.28 1.50 0.56 0.56 0.12 1.42 0.44 0.44
100 1.60 4.78 2.28 2.28 1.16 3.94 1.88 1.88 1.02 3.52 1.48 1.48
200 5.18 10.88 4.46 4.70 4.72 10.08 4.04 4.28 5.18 10.66 4.42 4.48
500 25.26 34.72 22.24 22.42 29.08 39.24 24.80 25.26 32.88 42.38 26.64 27.46
1000 62.78 74.76 59.60 60.24 71.58 81.84 68.50 69.20 85.32 91.18 83.84 84.32
2000 93.44 95.96 92.34 92.62 97.66 98.66 96.86 97.00 99.82 99.94 99.74 99.74

M1: global hypothesis test. M2: individual test with α = 5%. M3: individual tests with Bonferroni method.
M4: individual tests with Holm method.
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Table 5. Powers (in %) of different methods to simultaneously compare the sensitivities
(Seh = {0.80, 0.90}) and specificities (Sph = {0.70, 0.80, 0.90}) of two BDTs in the presence of a
binary covariate.

Se1 = 0.80, Se2 = 0.90, Sp1 = 0.90, Sp2 = 0.70, p1 = 10%, p2 = 25%, ψ1 = 25%, ψ2 = 75%

α11 = 0.008 α01 = 0.007
α12 = 0.008 α02 = 0.007

α11 = 0.040 α01 = 0.035
α12 = 0.040 α02 = 0.035

α11 = 0.072 α01 = 0.063
α12 = 0.072 α02 = 0.063

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 1.94 6.66 3.86 3.86 1.38 6.30 3.16 3.16 1.08 6.04 2.86 2.86
100 8.46 18.80 12.16 12.16 9.78 21.38 13.90 13.90 11.82 24.10 16.82 16.82
200 29.86 43.30 29.68 29.68 35.12 47.86 35.01 35.01 42.76 58.16 42.26 42.26
500 76.62 83.94 75.40 75.40 84.22 89.62 83.84 83.88 92.80 95.20 91.32 91.32
1000 97.78 98.88 97.48 97.54 99.22 99.68 99.06 99.08 99.90 99.98 99.88 99.88
2000 100 100 100 100 100 100 100 100 100 100 100 100

Se1 = 0.80, Se2 = 0.90, Sp1 = 0.90, Sp2 = 0.70, p1 = 10%, p2 = 50%, ψ1 = 25%, ψ2 = 75%

α11 = 0.008 α01 = 0.007
α12 = 0.008 α02 = 0.007

α11 = 0.040 α01 = 0.035
α12 = 0.040 α02 = 0.035

α11 = 0.072 α01 = 0.063
α12 = 0.072 α02 = 0.063

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 0.26 2.60 0.86 0.86 0.12 1.86 0.68 0.68 0.16 1.60 0.48 0.48
100 2.58 6.78 3.78 3.78 2.24 6.82 3.52 3.52 1.76 5.86 2.92 2.92
200 8.18 13.64 8.06 8.06 8.38 14.82 8.32 8.32 9.22 16.46 9.16 9.16
500 21.12 30.98 21.04 21.04 26.74 35.70 26.24 26.34 29.56 41.84 29.38 29.38
1000 49.10 58.38 46.00 46.38 58.12 66.60 54.84 55.22 68.78 75.72 65.34 65.58
2000 84.48 88.22 80.62 81.08 91.36 93.70 87.88 88.34 97.02 97.66 95.04 95.54

Se1 = 0.90, Se2 = 0.80, Sp1 = 0.90, Sp2 = 0.80, p1 = 10%, p2 = 25%, ψ1 = 25%, ψ2 = 75%

α11 = 0.008 α01 = 0.008
α12 = 0.008 α02 = 0.008

α11 = 0.040 α01 = 0.040
α12 = 0.040 α02 = 0.040

α11 = 0.072 α01 = 0.072
α12 = 0.072 α02 = 0.072

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 0.34 2.18 0.90 0.90 0.30 1.76 0.62 0.62 0.02 0.84 0.24 0.24
100 2.80 7.10 4.18 4.18 2.22 7.58 3.88 3.88 1.44 7.32 2.88 2.88
200 9.90 16.78 9.82 9.82 10.26 19.70 10.16 10.16 14.36 24.56 14.29 14.29
500 28.40 38.24 28.31 28.31 37.68 49.34 37.54 37.60 55.82 66.88 55.57 55.57
1000 60.62 69.44 57.92 58.18 74.08 81.66 71.54 71.90 91.42 95.00 90.46 90.58
2000 91.46 94.30 89.42 89.90 97.76 98.24 96.80 97.00 99.92 100 99.80 99.80

Se1 = 0.90, Se2 = 0.80, Sp1 = 0.90, Sp2 = 0.80, p1 = 10%, p2 = 25%, ψ1 = 50%, ψ2 = 50%

α11 = 0.008 α01 = 0.008
α12 = 0.008 α02 = 0.008

α11 = 0.040 α01 = 0.040
α12 = 0.040 α02 = 0.040

α11 = 0.072 α01 = 0.072
α12 = 0.072 α02 = 0.072

n M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

50 0.18 1.44 0.46 0.46 0.08 0.86 0.22 0.22 0.02 0.34 0.06 0.06
100 1.10 3.40 1.50 1.50 0.48 2.28 0.90 0.90 0.36 1.90 0.68 0.68
200 2.56 6.02 2.52 2.54 2.37 5.60 2.32 2.32 1.71 4.04 1.58 1.58
500 7.60 12.80 6.64 6.78 7.62 12.32 5.98 6.06 7.68 11.30 5.28 5.36
1000 20.08 31.10 17.96 18.46 24.52 35.70 22.78 23.08 31.70 42.40 27.60 28.28
2000 45.58 57.12 43.34 43.84 56.86 68.70 55.30 55.92 80.24 86.62 79.06 79.52

M1: global hypothesis test. M2: individual test with α = 5%. M3: individual tests with Bonferroni method.
M4: individual tests with Holm method.

3.3. Application Rules

Based on the conclusions obtained from the simulation experiments, the following
general application rules can be given when simultaneously comparing the accuracies of
two BDTs in the presence of a binary covariate:

(a). When the sample size is small or moderate, solve the individual hypothesis tests
H0 : Se1 = Se2 (Equation (8)) and H0 : Sp1 = Sp2 (Equation (9)) combined with the
Bonferroni (or Holm) method using an error α = 5%.
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(b). Whenthesamplesizeis largeorverylarge, solvetheglobal test H0 : (Se1 = Se2 and Sp1 = Sp2)
(Equation (7)) using an error α = 5%. If the global hypothesis test is not significant,
then the equality of the accuracy of the two BDTs is not rejected. If the global hy-
pothesis test is significant, then the causes of the significance will be investigated via
testing H0 : Se1 = Se2 and H0 : Sp1 = Sp2 by individually applying Equations (8)
and (9) combined with the Bonferroni (Holm) method using an error α = 5%. The
global hypothesis test is initially applied because it is a somewhat more powerful
method than the individual tests combined with the Bonferroni (Holm) method when
the sample size is large or very large.

These application rules are given solely based on the sample size n because it is the
only parameter of the study whose value was set by the researcher.

4. The “scapbc” Function

A function was written in R [5] that allows simultaneously comparing the accuracies
of two BDTs subject to a paired design in the presence of a binary covariate. The function is
called “scapbc” (simultaneous accuracy comparison in the presence of a binary covariate)
and is executed with the command:

scapbc(s111, s101, s011, s001, r111, r101, r011, r001, s112, s102, s012, s002, r112, r102, r012, r002, α)

where (s111, s101, . . . , r012, r002) are the observed frequencies and “α” is the α error. The
function checks that the values of the arguments are valid. The function solves the problem
by applying the rules given in Section 3.3, by applying the Bonferroni method. The results
obtained are recorded in the file “results_scapbc.txt” in the same folder from which the
function is run. The “scapbc” function is available as the Supplementary Materials of this
manuscript.

5. Example

The results were applied to the diagnosis of coronary artery disease [11]. Weiner
et al. [11] applied two BDTs (exercise test and clinical history) and a GS (coronary angiogra-
phy) to a sample of 2045 patients (1465 men and 580 women). The observed frequencies
of the study are shown in Table 6, where the variable T1 models the result of the exercise
test, T2 models the result of the clinical history, and D models the result of the coronary
angiography.

Table 6. Observed frequencies in the study of Weiner et al.

Men

T1 = 1 T1 = 0
Total

T2 = 1 T2 = 0 T2 = 1 T2 = 0

D = 1 786 29 183 25 1023
D = 0 69 46 176 151 442

Total 855 75 359 176 1465

Women

T1 = 1 T1 = 0
Total

T2 = 1 T2 = 0 T2 = 1 T2 = 0

D = 1 124 4 32 9 169
D = 0 81 68 101 161 411

Total 205 72 133 170 580

In this study, the risk of coronary heart disease is 2.4 times higher in men than in
women [11]. The estimated value of the odds ratio is 5.63 (95% confidence interval: 4.56
to 6.95). Therefore, sex is a covariate that is related to the disease. In the exercise test,
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ST segment depression is less sensitive in women than in men, so sex is a covariate that
can influence the test result. Therefore, adjusting for sex is necessary to simultaneously
compare the two sensitivities and the two specificities. Executing the command

scapbc(786, 29, 183, 25, 69, 46, 176, 151, 124, 4, 32, 9, 81, 68, 101, 161, 0.05),

generates the results shown in Table 7.

Table 7. Results obtained in the study of Weiner et al.

Estimates by Sex

Ŝe1m ± SE Ŝp1m ± SE Ŝe2m ± SE Ŝp2m ± SE p̂m ψ̂m

Men 0.797± 0.013 0.740± 0.021 0.947± 0.007 0.446± 0.024 69.8% 71.6%
Women 0.757± 0.033 0.637± 0.024 0.923± 0.020 0.557± 0.025 29.1% 28.4%

Overall estimates

Ŝeh ± SE Ŝph ± SE p̂

Exercise test 0.791± 0.012 0.691± 0.016
58.3%Clinical history 0.944± 0.007 0.499± 0.017

SE: standard error.

Because the sample size is very large, the global hypothesis test is solved (application
rules of Section 3.3). The test statistic for the global hypothesis test is Q2 = 224.252 and
p-value = 0. Therefore, the null hypothesis (equality of the two sensitivities and of the
two specificities) of the global hypothesis test is rejected. To investigate the causes of
significance, it is necessary to solve the individual tests and apply the Bonferroni (or Holm)
method. The test statistic for H0 : Se1 = Se2 vs. H1 : Se1 6= Se2 is 12.265 (p−value = 0), and
the test statistic for H0 : Sp1 = Sp2 vs. H1 : Sp1 6= Sp2 is 8.593 (p−value = 0). Applying
the Bonferroni method with α = 5%, the two null hypotheses are rejected. Therefore, the
sensitivity of the clinical history is significantly greater than the sensitivity of the exercise
test (95% confidence interval: 0.128 to 0.177), and the specificity of the exercise test is
significantly greater than the specificity of the clinical history (95% confidence interval:
0.148 to 0.235). The same conclusions are obtained if the Holm method is applied.

6. Discussion

Comparison of the sensitivities and specificities of two BDTs is a topic of great interest
in the study of statistical methods applied to diagnosis and has been the subject of numerous
studies in the statistical literature. When two BDTs are compared, it is common to observe
discrete covariates in all of the individuals in the sample. In this situation, if the covariates
are related to the disease and to either of the two BDTs, then it is necessary to adjust
for covariates. This adjustment has the purpose of eliminating the effect of the covariate
in the estimation of the global sensitivity and specificity of each BDT, and consequently
eliminating its effect in the comparison of the parameters. Therefore, adjustment for
covariates is important because the comparison of two diagnostic tests may be biased
when an adjustment is not made. This manuscript makes a contribution to this topic, by
simultaneously comparing the accuracies of two BDTs by adjusting for discrete covariates.
Therefore, in this manuscript the simultaneous comparison of the sensitivities and the
specificities of two BDTs was studied when discrete covariates are observed in all of the
individuals in the sample. The overall estimators of the sensitivities and specificities were
obtained by applying the maximum likelihood method and the variances-covariances
were estimated by applying the delta method. In this situation, simultaneous comparison
of sensitivities and specificities of two BDTs was resolved by four methods: the global
hypothesis test H0 : (Se1 = Se2 and Sp1 = Sp2) with an α error; individual tests H0 :
Se1 = Se2 and H0 : Sp1 = Sp2, each with an α error; individual tests H0 : Se1 = Se2 and
H0 : Sp1 = Sp2 and application of the Bonferroni method with an α error; and individual
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tests H0 : Se1 = Se2 and H0 : Sp1 = Sp2 and application of the Holm method with an α
error.

Simulation experiments were carried out to study the behaviors of the different
methods when the covariate is binary. The results showed that the method based on the
individual tests H0 : Se1 = Se2 and H0 : Sp1 = Sp2, each with an α error, can give rise
to type I errors that far exceed the nominal error, and therefore this method gives rise to
too many false significances. Furthermore, the method based on the global hypothesis
test has better asymptotic behavior when the sample size is large or very large than the
methods based on individual tests and the application of the Bonferroni or Holm methods.
However, when the sample size is small or moderate, these latter two methods perform
better than the method based on the global hypothesis test. Therefore, based on the results
of the simulation experiments, some rules of application of the methods can be given
according to the sample size (which is the only value set by the researcher). These rules
are: (a) When the sample size is small or moderate, solve the individual hypothesis tests
H0 : Se1 = Se2 and H0 : Sp1 = Sp2 combined with the Bonferroni (or Holm) method
with an error α = 5%; (b) When the sample size is large or very large, solve the global
test H0 : (Se1 = Se2 and Sp1 = Sp2) with an error α = 5%. If the global hypothesis test
is not significant, then it is not rejected that the two sensitivities are equal and that the
two specificities are equal. If the global hypothesis test is significant, then the causes of
significance are investigated by solving the individual tests combined with the Bonferroni
(Holm) method with an error α = 5%. The method based on the global hypothesis test is
very similar to the analysis of variance: first the global test is solved and, if it is significant,
then the individual tests are solved and a multiple comparisons method is applied.

Simulation experiments have shown that the covariances between the two BDTs
have an important effect on type I errors and powers. Type I errors are greater when
the two BDTs are conditionally independent of the disease than when the two BDTs are
conditionally dependent on the disease. Regarding the powers, for a fixed sample size, the
power of each method is greater when the two BDTs are conditionally dependent on the
disease than when they are conditionally independent of the disease. In practice, the only
parameter that the researcher can control is the sample size. Therefore, although the effect
of the covariances is important, the increase in power can only be achieved by increasing
the sample size (the researcher cannot increase the values of the covariances, because these
depend on the intrinsic properties of both diagnostic tests).

Simulation experiments have also shown that the global hypothesis test, whose test
statistic is a Wald-type test statistic, has a good asymptotic performance in terms of type I
error and power. The type I error of the global test is close to the nominal error when the
sample size is large or very large. Regarding the power, in general terms and depending
on the covariances between the two BDTs, a large sample size is needed for the power to
be large. Therefore, the global test performance when the covariate is binary is very similar
to that obtained in other studies [2].

The proposed method is based on the fact that the covariate is discrete. A future study
should address the problem that occurs when the covariate is quantitative.

Finally, a function was written in R that allows us to solve the problem posed when
the covariate is binary. The function is easy to use and provides all of the results so that
the researcher can easily solve the problem. The function is available as Supplementary
Materials to this manuscript.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/math9172029/s1. The “scapbc” function is a function written in R that allows simultaneous
comparison of the accuracies of two BDTs subject to a paired design in the presence of a binary
covariate.
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Appendix A

The log-likelihood function l2(ω) (Equation (6)) can be written as:

l2(ω) =
1

∑
i,j=0

M

∑
m=1

xijm log
(
φijm

)
+

1

∑
i,j=0

M

∑
m=1

yijm log
(

ϕijm
)
=

M

∑
m=1

l2m,

where:

l2m =
1

∑
i,j=0

[
xijm log

(
φijm

)
+ yijm log

(
ϕijm

)]
is the log-likelihood function in the mth covariate pattern. Then, the Fisher information
matrix of function l2(ω) is:

I2 = Diag{I21, . . . , I2M}

and, therefore:

∑ω̂
= I−1

2 = Diag
{
∑ω̂1

, . . . ∑ω̂M

}
.
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